DIE THEORIE
DER
PARALLELLINIERN
VON EUKLID BIS AUF GAUSS,
EINE URKUNDENSAMMLUNG
ZUR VORGESCHICHTE DER NICHTEUKLIDISCHEN GEOMETRIE,
IN GEMEINSCHAFT
MIT
FRIEDRICH ENGEL
HERAUSGEGEBEN
VON
PAUL STÄCKEL.

MIT 145 FIGUREN IM TEXT UND DER NACHBILDUNG
EINES BRIEFES VON GAUSS.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TORONTO

LEIPZIG,
DRUCK UND VERLAG VON B. G. TEUBNER.
1895.
ALLE RECHTE,
EINSCHLIESSLICH DES ÜBERSETZUNGSRECHTS, VORBEHALTEN.
Vorwort.

Gaufs, Lobatschefskij und Bolyai galten nunmehr als die Schöpfer der nichteuklidischen Geometrie, deren weitere Ausbildung und tiefere Begründung von Riemann und Helmholtz angebahnt worden war.

Untersuchungen über die ältere Geschichte der Flächentheorie waren die Veranlassung, dass ich im Januar 1893 eine der ältesten

Das Vorhergehende dürfte schon deutlich zeigen, was, vom mathematisch-historischen Standpunkte aus betrachtet, dieses Buch bezieht. Es soll nicht eine Geschichte der Parallellinientheorie sein; an ein so weitschichtiges Unternehmen, bei dem allein die Sammlung

Für nicht weniger wesentlich halten wir einen zweiten Gesichtspunkt, von dem aus wir unser Buch betrachtet zu sehen wünschen. Wenn immer mehr anerkannt wird, in wie hohem Maße gerade bei den feinsten Untersuchungen der neueren Mathematik das tiefe Verständnis durch die geschichtliche Betrachtungsweise gefördert wird, so trifft das ganz besonders bei der nichteuklidischen Geometrie zu. Wir sind überzeugt, daß das Eindringen in diese beim ersten Anblick so paradoxen, dem gesunden Menschenverstande scheinbar so widerstrebenden Gedankenbildungen durch nichts mehr erleichtert wird, als wenn man ihrer geschichtlichen Entwicklung nachgeht, wenn man verfolgt, wie die Emancipation von Euklid durch jahrhundertelange Arbeit vorbereitet wird, und wie sich dann die neuen Ideen mit unwiderstehlicher Gewalt fast gleichzeitig an räumlich weit entfernten Orten Europas Bahn brechen.

In engem Zusammenhange hiermit steht ein weiterer Zweck, den unser Buch dienen soll.

Wer sich über das Wesen der nichteuklidischen Geometrie Klärheit verschaffen wollte, befand sich bisher in einer recht schwierigen Lage: fast alle Arbeiten über diesen Gegenstand setzen erhebliche Vorkenntnisse auf den verschiedensten Gebieten der neueren Mathematik voraus, und da, wo die Anforderungen in dieser Beziehung geringer sind, wie bei Lobatschefskij und bei Bolyai, erschwert die Art der Darstellung das Verständnis.

Unter diesen Umständen dürfte unser Buch namentlich denen willkommen sein, die in den Gedankenkreis der nichteuklidischen Geometrie einzudringen gewillt sind, denn die Abhandlungen von Wallis, Sacchéri und Lambert sind einem jeden verständlich, der über die elementarsten Vorkenntnisse verfügt, und, was die Darstellung betrifft, so zeichnet sich Saccheris Euclides ab omni naero vindicatus durch
Vorwort.

Haben wir uns bis jetzt an die Mathematiker gewendet, so möchten wir doch auch die Philosophen auf unser Buch aufmerksam machen, denn die Parallelentheorie steht mit verschiedenen philosophischen Grundproblemen in enger Verbindung, streift doch, wie Gauß sich ausdrückt, der Fragepunkt unmittelbar an die Metaphysik. Freilich haben wir darauf verzichtet, in diesem Buche, das zunächst für mathematische Leser bestimmt ist, auf den oft recht nahe liegenden Zusammenhang der Untersuchungen über Parallelentheorie mit den philosophischen Fragen ihrer Zeit einzugehen. Immerhin glauben wir, daß unser Buch dem Philosophen mancherlei Anregung zu weiteren Untersuchungen bietet, und möchten in dieser Hinsicht etwa auf die Beziehungen zu dem Problem des Unendlichen hinweisen, sowie den unverkennbaren Einfluß der Kantischen Philosophie (Kritik der reinen Vernunft 1781) auf das Wiedererwachen des Interesses für die Grundlagen der Geometrie und damit auch für die Parallelentheorie betonen.

Schließlich müssen wir der Unterstützung gedenken, die uns bei unserer Arbeit von verschiedenen Seiten zu teil wurde. Es ist uns nicht möglich, an dieser Stelle allen denen namentlich zu danken, die uns durch freundliche Auskunft auf unsere Anfragen, durch wertvolle geschichtliche Mitteilungen, durch Überlassung von uns sonst unzugänglichen Büchern verpflichtet haben, und wir müssen uns darauf beschränken, hier folgende Herren zu nennen.

Dem Direktor der Biblioteca Estense in Modena, Herrn A. Forti, verdanken wir eine Abschrift von Aufzeichnungen, die ein Freund und Ordensbruder Saccheris über dessen Leben und Werke gemacht hat; durch diese Aufzeichnungen werden die spärlichen gedruckten Nachrichten über Saccheri, die wir ermitteln konnten, wesentlich ergänzt. Herr Pastor A. Färer in Merseburg, ein Stiefbruder des Taurinus, hat uns zwei Briefe von Schweikart an Taurinus, sowie einen Brief von Gauß an Taurinus zur Veröffentlichung überlassen. Er hat uns auch auf die *Elementa des Taurinus* aufmerksam gemacht, die bis dahin ganz unbekannt geblieben waren. Herr Bau-
Vorwort.

meister Fr. Schmidt in Budapest stellte uns wichtige Mitteilungen über die beiden Bolyai, sowie über Schweikart zur Verfügung. Herr Prof. A. Wassiljef in Kasan solche über Lobatschefskij. Endlich hat Herr Dr. Wiegner in Leipzig aus seinem Interesse für die Sache sich der großen Mühe unterzogen, für den Neudruck eine genaue Abschrift von Lamberts Abhandlung anzufertigen.

Herrn Dr. A. Gutzmer in Berlin sind wir für seine freundliche Beihilfe bei der Korrektur zu Dank verpflichtet.

Halle a. S., im Juni 1895.

Paul Stäckel.
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis.</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwort</td>
<td>III—VII</td>
</tr>
<tr>
<td>Euklid, um 300 v.Chr.</td>
<td>1—14</td>
</tr>
<tr>
<td>Einleitung und Litteratur</td>
<td>3—5</td>
</tr>
<tr>
<td>Euklids Elemente, erstes Buch, Erklärungen, Forderungen, Grundsätze, Satz 1—32</td>
<td>6—14</td>
</tr>
<tr>
<td>John Wallis, 1616—1703</td>
<td>15—30</td>
</tr>
<tr>
<td>Einleitung und Litteratur</td>
<td>17—20</td>
</tr>
<tr>
<td>Euklid bei den Arabern</td>
<td>17</td>
</tr>
<tr>
<td>Ältere Euklidausgaben</td>
<td>17—18</td>
</tr>
<tr>
<td>Die Parallelentheorie in Frankreich (Ramus, Desargues)</td>
<td>18</td>
</tr>
<tr>
<td>Die Parallelentheorie in England (Savile; Wallis)</td>
<td>18—19</td>
</tr>
<tr>
<td>Der Beweisversuch von Wallis</td>
<td>19</td>
</tr>
<tr>
<td>Litteratur</td>
<td>19—20</td>
</tr>
<tr>
<td>Beweis der fünften Forderung Euklids, öffentlich vorgetragen in Oxford am Abend des 11. Juli 1663</td>
<td>21—30</td>
</tr>
<tr>
<td>Girolamo Saccheri, 1667—1733</td>
<td>31—136</td>
</tr>
<tr>
<td>Einleitung und Litteratur</td>
<td>33—40</td>
</tr>
<tr>
<td>Die Parallelentheorie in Italien (Borelli, Giordano da Bitonto; Saccheri)</td>
<td>33—34</td>
</tr>
<tr>
<td>Saccheris Leben</td>
<td>34—35</td>
</tr>
<tr>
<td>Seine mathematischen Schriften</td>
<td>35—36</td>
</tr>
<tr>
<td>Saccheris Euclides ab omni naevo vindicatus</td>
<td>36—39</td>
</tr>
<tr>
<td>Litteratur</td>
<td>40</td>
</tr>
<tr>
<td>Euclides ab omni naevo vindicatus: sive conatus geometricus quo stabiluntur prima ipsa universae Geometriae Principia. Liber 1.</td>
<td>41—135</td>
</tr>
<tr>
<td>Vorwort an den Leser</td>
<td>45—47</td>
</tr>
<tr>
<td>Inhaltsverzeichnis</td>
<td>48—49</td>
</tr>
<tr>
<td>Erstes Buch, erster Teil, Lehrsatz 1—XXXIII</td>
<td>50—122</td>
</tr>
<tr>
<td>Des ersten Buches zweiter Teil, Lehrsatz XXXIV—XXXIX</td>
<td>123—135</td>
</tr>
<tr>
<td>Abweichungen vom Urtext</td>
<td>136</td>
</tr>
<tr>
<td>Johann Heinrich Lambert, 1728—1777</td>
<td>137—208</td>
</tr>
<tr>
<td>Einleitung und Litteratur</td>
<td>139—151</td>
</tr>
</tbody>
</table>
Die Parallellentheorie in Deutschland (Kaestner, Klügel; Lambert) 139 - 141
Die Parallellentheorie von Lambert 141 - 148
Lamberts Nachlaß 148 - 150
Litteratur 151

Theorie der Parallellinien 152 - 207

1) Vorläufige Betrachtungen. §. 1 - 11 152 - 162
2) Vortrag einiger Sätze, die für sich betrachtet werden können. §. 12 - 26 163 - 176
3) Theorie der Parallel-Linien. §. 27 - 88 176 - 207
 Allgemeines §. 27 - 39 176 - 180
 Erste Hypothese §. 40 - 51 180 - 185
 Zwote Hypothese §. 52 - 64 186 - 192
 Dritte Hypothese §. 65 - 88 192 - 207
Abweichungen vom Original 208

Carl Friedrich Gauß, 1777 - 1855 209 - 236
Einleitung und Litteratur 211 - 218
 Die Parallellentheorie in Frankreich (d’Alembert, Fourier, Lagrange, Laplace, Legendre) 211 - 213
 Die Parallellentheorie in Deutschland (Seyffer, Voit; Gauß) 213 - 215
 Die bisher bekannten Äußerungen von Gauß 215 - 217
 Litteratur 218
I. Brief von Gauß an W. Bolyai, Ende 1799 219
II. Eine Besprechung aus den Göttingischen gelehrten Anzeigen vom 20. April 1816 220 - 223
III. Eine Besprechung aus den Göttingischen gelehrten Anzeigen vom 28. October 1822 223 - 226
IV. Aus Briefen von Gauß und Bessel, 1829 und 1830 226 - 227
V. Aus Briefen von Gauß und Schumacher, 1831 und 1846 227 - 235
Abweichungen von den Originalabdrücken 236

Ferdinand Karl Schweikart, 1780 - 1857 und Franz Adolph Taurinus, 1794 - 1874 237 - 286
Einleitung und Litteratur 239 - 254
 Allgemeines 239 - 240
 N. Lobatschefskij 240 - 241
 W. und J. Bolyai 241 - 243
 F. K. Schweikart 243 - 246
 Gaußs über Schweikart, 1819 246
 F. A. Taurinus 246 - 252
 Aus der Vorrede zu den Elementa, 1826 247 - 248
 Gaußs an Taurinus, 1824 249 - 250
 Würdigung von Schweikart und Taurinus 251 - 252
 Litteratur 253 - 254
Stücke aus der Theorie der Parallellinien von F. A. Taurinus, 1825 255 - 266
Stücke aus den Geometriac prima elementa von F. A. Taurinus, 1826 267 - 283
Abweichungen vom Urtext der Elementa 284 - 286
Verzeichnis von Schriften über die Parallelentheorie, die bis zum Jahre 1837 erschienen sind .. 287—313
Einleitung .. 289—290
Bibliographische Quellen in chronologischer Reihenfolge 291—292
Verzeichnis der Schriften nach den Jahren ihres Erscheinenens ... 293—313
Alphabetisches Verzeichnis der Autoren dieser Schriften 314—316

Nachträge und Berichtigungen .. 317—320
Alphabetisches Verzeichnis der im Texte besprochenen oder erwähnten Autoren ... 321—325

EUKLID

UM 300 V. CHR.
Die Geschichte der Parallelentheorie beginnt mit den Griechen oder genauer mit Euklid, denn erst die Griechen haben die Mathematik zu dem Range einer Wissenschaft erhoben, indem sie nicht nur den mathematischen Kenntnissen, die ihnen von den Ägyptern überkommen waren, viel Neues hinzufügten, sondern auch vor allem das mathe-
matische Beweisverfahren in seiner vollen Strenge ausbildeten und die einzelnen Sätze zu einem zusammenhängenden Ganzen vereinigten. Euklids Elemente stellen uns das endgültige Ergebnis dieser jahr-
hundertelangen Entwicklung dar.

Für die Parallelentheorie kommt nur das erste Buch der Elemente in Betracht. Beim ersten Anblick erscheint es als eine willkürliche Zusammenstellung von Lehrsätzen und Aufgaben, aber bei tiefem Eindringen zeigt sich, daß man es mit einem wohlgedachten System zu thun hat. Es ist kein Zufall, daß die ersten achtundzwanzig Sätze von der fünften Forderung, dem sogenannten Parallelenaxiom, durchaus unabhängig sind, und daß dieses erst beim Beweise des neunund-
zwanzigsten Satzes eintritt, es ist kein Zufall, daß der Außenwinkel des Dreiecks an zwei Stellen behandelt wird: zuerst, in Satz 16, wird nur gezeigt, daß er größer ist als jeder der beiden ihm gegenüberliegenden inneren Winkel, und erst später, in Satz 32, stellt sich heraus, daß der Außenwinkel der Summe jener beiden inneren Winkel genau gleich ist.

Diese Anordnung berechtigt zu dem Schluß, daß Euklid die in der Parallelentheorie verborgene Schwierigkeit sehr wohl durch-
schaut hat.

Als Euklid Sätze beweisen wollte, welche die geometrische An-
schauung unmittelbar liefert, zum Beispiel das Vorhandensein von Rechtecken, reichten die Grundsätze und Forderungen nicht mehr aus, die für die ersten achtundzwanzig Sätze genügt hatten; er führte deshalb eine neue Forderung ein, seine fünfte:

Wenn eine Gerade zwei Gerade trifft und mit ihnen auf derselben Seite innere Winkel bildet, die zusammen kleiner sind als zwei Rechte, so sollen die beiden Geraden, ins Unendliche verlängert,
Einleitung zum ersten Buche

schließlich auf der Seite zusammentreffen, auf der die Winkel liegen, die zusammen kleiner sind als zwei Rechte.

Es gehörte ein gewisser Mut dazu, eine solche Forderung neben den andern, so überaus einfachen Grundsätzen und Forderungen auszusprechen, und es ist daher erklärlich, daß man schon im Altertum Versuche machte, ein folgerichtiges System der Geometrie in einfacherer Weise aufzubauen. Über diese Versuche hat uns Proklos in seinem Kommentar zum ersten Buche der Euklidischen Elemente ausführlich berichtet. Er machte selbst einen Versuch, indem er vorschlug, man solle Euklids Erklärung der parallelen Geraden aufgeben und die beständige Gleichheit des Abstandes als charakteristisches Merkmal benutzen. Freilich hat im Altertum keiner dieser Versuche, die im Grunde die fünfte Forderung nur durch eine andere, auch nicht einfachere ersetzen, die Euklidische Darstellung zu verdrängen vermocht.

Wenn wir im folgenden das erste Buch der Elemente bis zum zweiunddreißigsten Satze im Auszuge mitteilen, so geschieht dies nicht nur, weil die ganze weitere Entwicklung der Parallelentheorie auf dieser Grundlage beruht, sondern auch aus einem äußeren Grunde: die älteren Schriftsteller, zum Beispiel Saccheri und Lambert, setzten euklidfeste Leser voraus und durften das, man kann sie daher nicht lesen, ohne die Elemente oder wenigstens das erste Buch zur Hand zu haben.

Die Beweise der Sätze haben wir nur dann mitgeteilt, wenn sie entweder von den gegenwärtig üblichen erheblich abweichen, oder für das Verständnis der Euklidischen Parallelentheorie unentbehrlich sind. Mit dem zweiunddreißigsten Satze brechen wir ab, weil die folgenden Sätze für unseren Zweck nicht in Betracht kommen, wollen aber noch bemerken, daß die Entwickelungen des ersten Buches der Elemente in dem pythagoreischen Lehrratszen (Satz 47 und 48) ihren Zielpunkt haben.
der Elemente Euklids.

Litteratur.

Hauber, C. F., Chrestomathia geometrica. Tübingen 1820.

Heiberg, J. L., Euclidis Elementa. 5 Bände. Leipzig 1883—1888.

Maier, L., Proklos über die Petita und Axiomata bei Euklid. (Programm des Gymnasiums zu Tübingen. 1875.)

Euklids Elemente.

Erstes Buch.

Erklärungen.

1. Was keine Teile hat, ist ein Punkt.
2. Eine Länge ohne Breite ist eine Linie.
4. Eine Linie ist gerade, wenn sie gegen die in ihr befindlichen Punkte auf einerlei Art gelegen ist.
5. Was nur Länge und Breite hat, ist eine Fläche.
7. Eine Fläche ist eben, wenn sie gegen die in ihr befindlichen Geraden auf einerlei Art gelegen ist.
8. Ein ebener Winkel ist die gegenseitige Neigung zweier Linien, die sich in einer Ebene treffen, ohne in einer geraden Linie zu liegen.
9. Sind die den Winkel einschließenden Linien gerade, so heißt der Winkel geradlinig.
10. Wenn eine Gerade, die auf einer anderen errichtet ist, zu beiden Seiten gleiche Winkel bildet, so ist jeder der beiden gleichen Winkel ein Rechter, und die errichtete Gerade heißt senkrecht zu der, auf der sie errichtet ist.
11. Stumpf ist ein Winkel, der größer ist als ein Rechter.
20. Unter den dreiseitigen Figuren ist ein gleichseitiges Dreieck die mit drei gleichen Seiten, ein gleichschenkliges Dreieck die mit nur zwei gleichen Seiten, endlich ein ungleichseitiges die mit drei ungleichen Seiten.
21. Unter den dreiseitigen Figuren ist ferner ein rechtwinkliges Dreieck die mit einem rechten Winkel, ein stumpfwinkliges die mit einem stumpfen Winkel, endlich ein spitzwinkliges die mit drei spitzen Winkeln.
22. Unter den vierseitigen Figuren ist ein Quadrat eine solche, die gleichseitig und rechtwinklig ist, ein Rechteck eine solche, die rechtwinklig, aber nicht gleichseitig ist, ein Rhombus eine solche, die gleichseitig, aber nicht rechtwinklig ist, ein Rhomboid eine solche, deren gegenüberliegende Seiten und Winkel gleich sind, die aber weder gleichseitig noch rechtwinklig ist. Alle übrigen vierseitigen Figuren sollen Trapeze heißen.
23. Parallel sind gerade Linien, die in derselben Ebene liegen und, nach beiden Seiten ins Unendliche verlängert, auf keiner Seite zusammentreffen.

Forderungen.
1. Es soll gefordert werden, daß sich von jedem Punkte nach jedem Punkte eine gerade Linie ziehen lasse.
2. Ferner, daß sich eine begrenzte Gerade stetig in gerader Linie verlängern lasse.
3. Ferner, daß sich mit jedem Mittelpunkt und Halbmesser ein Kreis beschreiben lasse.
5. Endlich, wenn eine Gerade zwei Gerade trifft und mit ihnen auf derselben Seite innere Winkel bildet, die zusammen kleiner sind.
als zwei Rechte, so sollen die beiden Geraden, ins Unendliche verlängert, schließlich auf der Seite zusammentreffen, auf der die Winkel liegen, die zusammen kleiner sind als zwei Rechte.

Grundsätze.

1. Dinge, die demselben Dinge gleich sind, sind einander gleich.
2. Fügt man zu Gleichem Gleiches hinzu, so sind die Summen gleich.
3. Nimmt man von Gleichem Gleiches hinweg, so sind die Reste gleich.
7. Was zur Deckung mit einander gebracht werden kann, ist einander gleich.
8. Das Ganze ist größer als sein Teil.
[9. Zwei gerade Linien schließen keinen Raum ein*).

1. Über einer gegebenen begrenzten Geraden ein gleichseitiges Dreieck zu errichten.

2. An einen gegebenen Punkt eine einer gegebenen Geraden gleiche Gerade zu legen.

3. Wenn zwei ungleiche Gerade gegeben sind, von der größeren eine der kleineren Geraden gleiche Gerade abzuschneiden.

4. Sind in zwei Dreiecken zwei Seiten der Reihe nach zwei Seiten gleich, und sind die von den gleichen Seiten eingeschlossenen Winkel gleich, so sind auch die Grundlinien gleich, und das eine Dreieck ist dem anderen gleich, und die übrigen Winkel, nämlich die gleichen Seiten gegenüberliegenden, sind der Reihe nach den übrigen gleich**).

*) [Die Grundsätze 4 bis 6 und 9 rühren vermutlich nicht von Euklid her.]
5.

In jedem gleichschenkligen Dreieck sind die Winkel an der Grundlinie einander gleich, und verlängert man die gleichen Geraden, so sind die Winkel unterhalb der Grundlinie einander gleich.

[Da Euklid an dieser Stelle die Konstruktion des Lotes von der Spitze A des gleichschenkligen Dreiecks $B\Lambda\Gamma$ auf die Grundlinie $B\Gamma$ noch nicht gelehrt hat, verfährt er so: AB und $A\Gamma$ werden um die gleichen Stücke BZ und ΓH verlängert, und es wird BH und ΓZ gezogen. Dann ist nach Lehrsatz 4 das Dreieck ABH dem Dreieck $A\Gamma Z$ kongruent, also $Z\Gamma$ gleich HB und der Winkel ABH gleich dem Winkel $A\Gamma Z$. Hieraus folgt, daß, wieder nach Lehrsatz 4, das Dreieck ΓHB dem Dreieck $B\Gamma Z$ kongruent, also der Winkel ΓBH gleich dem Winkel $B\Gamma Z$ ist. Mithin ist auch nach Grundsatz 3 der Winkel $AB\Gamma$ gleich dem Winkel $A\Gamma B$. Endlich folgt aus der Kongruenz der Dreiecke $B\Gamma Z$ und ΓBH, daß auch die Winkel unterhalb der Grundlinie $B\Gamma$ gleich sind.

Einfacher wäre es gewesen, Z mit B, H mit Γ zusammenfallen zu lassen und zu sagen, daß die Dreiecke $B\Lambda\Gamma$ und $\Gamma A\Lambda$ kongruent sind.]

6.

Sind in einem Dreieck zwei Winkel einander gleich, so sind auch die den gleichen Winkeln gegenüberliegenden Seiten einander gleich.

[Beweis: Es sei der Winkel $AB\Gamma$ gleich dem Winkel $B\Gamma A$. Wäre AB größer als $A\Gamma$, so mache man AB gleich $A\Gamma$ und ziehe $A\Gamma$. Dann wären nach Lehrsatz 4 die Dreiecke $AB\Gamma$ und $A\Gamma B$ kongruent, was gegen Grundsatz 8 verstößt.]

7.

Sind von den Endpunkten einer Geraden nach einem Punkte außerhalb zwei Gerade gezogen, so kann man nicht von diesen Endpunkten aus nach einem anderen Punkt auf derselben Seite jener Geraden zwei Gerade ziehen, die den ersten beziehungsweise gleich sind.

[Beweis: Es sei $A\Gamma = AD$, $B\Gamma = BD$. Man ziehe $\Gamma\Delta$. Dann ist nach Lehrsatz 5 der Winkel $AA\Gamma$ gleich dem Winkel $A\Gamma\Delta$, folglich nach Grundsatz 8 $B\Lambda\Gamma$ größer als $B\Gamma\Delta$. Andererseits ist aber, wieder nach Lehrsatz 5, der Winkel $B\Gamma\Delta$ gleich dem Winkel $B\Lambda\Delta$, was unmöglich ist.

Auf ähnliche Art wird der Beweis in dem von Euklid nicht ausdrücklich erwähnten Falle geführt, daß A innerhalb des Dreiecks $A\Gamma B$ liegt.]
8.
Sind in zwei Dreiecken zwei Seiten der Reihe nach zwei Seiten gleich und sind außerdem die Grundlinien gleich, so sind auch die Winkel gleich, die von gleichen Seiten eingeschlossen werden.

9.
Einen gegebenen geradlinigen Winkel zu halbieren.

10.
Eine gegebene begrenzte Gerade zu halbieren.

11.
Aus einem gegebenen Punkte einer gegebenen Geraden eine Gerade unter rechtem Winkel zu ziehen.

12.
Auf eine gegebene unbegrenzte Gerade von einem gegebenen Punkte aus, der nicht auf ihr liegt, das Lot zu fällen.

13.
Die Winkel, die eine Gerade mit einer anderen bildet, auf der sie steht, sind entweder beide rechte oder zusammen gleich zwei Rechten.

[Beweis: Sind die Winkel einander gleich, so sind sie zwei Rechte. Sind sie ungleich, so errichte man in B die Senkrechte BE. Mittelst der Grundsätze 1 und 2 beweist man dann, daß die Summe von FBA und ABA gleich der Summe von FBE und EBA ist.]

14.
Gehen durch einen und denselben Punkt einer Geraden zwei nicht auf derselben Seite liegende Gerade, und bilden sie mit dieser Geraden Winkel, die zusammen zwei Rechten gleich sind, so liegen sie auf einer Geraden.

15.
Wenn zwei Gerade einander schneiden, so sind die von ihnen gebildeten Scheitelwinkel gleich.
Satz 8—19.

16. Wenn man bei irgend einem Dreieck eine der Seiten verlängert, so ist der Außenwinkel größer als jeder der beiden inneren gegenüberliegenden Winkel.

Das Dreieck sei $AB\Gamma$, und man verlängere eine seiner Seiten $B\Gamma$ bis Δ. Ich behaupte, daß der Außenwinkel $A\Gamma\Delta$ größer ist als jeder der beiden inneren gegenüberliegenden Winkel $\Gamma\Delta A$ und $B\Delta A$.

Man halbiere $\Delta A\Gamma$ in E, ziehe BE, verlängere es bis Z und mache EZ gleich BE. Man ziehe noch $Z\Gamma$, und verlängere $\Delta A\Gamma$ bis H.

Da nun AE gleich $E\Gamma$ ist und BE gleich EZ, so sind die beiden Geraden AE und EB der Reihe nach gleich den beiden Geraden $E\Gamma$ und EZ, und da die Winkel AEB und $ZE\Gamma$ als Scheitelwinkel gleich sind, so ist auch die Grundlinie AB der Grundlinie $EZ\Gamma$ gleich, und das Dreieck ABE gleich dem Dreieck $ZE\Gamma$, und die beiden übrigen Winkel sind der Reihe nach den beiden übrigen Winkeln gleich, die nämlich, die gleichen Seiten gegenüberliegen. Daher ist der Winkel $B\Delta E$ gleich dem Winkel $E\Gamma Z$. Nun ist der Winkel $E\Gamma A$ größer als der Winkel $E\Gamma Z$, folglich ist auch der Winkel $A\Gamma A$ größer als der Winkel $B\Delta E$.

In ähnlicher Weise zeigt man nach Halbierung der Geraden $B\Gamma$, daß der Winkel $B\Gamma H$ größer ist als der Winkel $AB\Gamma$, das heisst, daß der Winkel $A\Gamma A$ größer ist als der Winkel $AB\Gamma$*).

17. In jedem Dreieck sind irgend zwei Winkel zusammen kleiner als zwei Rechte.

18. In jedem Dreieck liegt der größeren Seite auch der größere Winkel gegenüber.

[Beweis: Da $A\Gamma$ größer als AB ist, so mache man $A\Delta$ gleich AB und ziehe $B\Delta$. Dann ist der Winkel $A\Delta B$ gleich dem Winkel ABA. Nun ist, nach Lehrsatz 16, $A\Delta B$ größer als $A\Gamma B$. Mithin ist auch $AB\Delta$, also um so mehr $AB\Gamma$ größer als $A\Gamma B$.]

19. In jedem Dreieck liegt dem größeren Winkel auch die größere Seite gegenüber.

[Beweis indirekt aus Satz 5 und 18.]

*) [Bei diesem Beweise wird als selbstverständlich angenommen, daß der Punkt Z auf derselben Seite der Geraden $B\Gamma$ liegt wie der Punkt Δ; hierin steckt die von Euklid nicht ausdrücklich ausgesprochene, wesentliche Voraussetzung, daß jede Gerade eine unendliche Länge hat.]
20.
In jedem Dreieck sind irgend zwei Seiten zusammen größer als die dritte.

[Beweis: Man verlängere BA um AG bis A und ziehe AG. Dann ist, nach Lehrsatz 19, BA grösser als BG, also sind auch BA und AG zusammen grösser als BG.]

21.
Verbindet man die Endpunkte einer Dreiecksseite mit einem Punkte im Innern des Dreiecks, so sind die Verbindungslinien zusammen kleiner als die beiden übrigen Seiten des Dreiecks zammengenommen; dagegen schliesen sie einen grösseren Winkel ein.

22.
Aus drei Geraden, die drei gegebenen gleich sind, ein Dreieck zu konstruieren; es müssen aber irgend zwei von ihnen zusammen grösser sein als die dritte.

23.
An eine gegebene Gerade in einem gegebenen Punkte einen geradlinigen Winkel anzutragen, der einem gegebenen geradlinigen Winkel gleich ist.

24.
Wenn in zwei Dreiecken zwei Seiten der Reihe nach zwei Seiten gleich sind, und der Winkel, den die gleichen Seiten einschliesen, in dem einen grösser ist als in dem andern, so ist die Grundlinie in jenem grösser als in diesem.

25.
Wenn in zwei Dreiecken zwei Seiten der Reihe nach zwei Seiten gleich sind, und die Grundlinie des einen grösser ist als die Grundlinie des andern, so ist der von den gleichen Seiten eingeschlossene Winkel in jenem grösser als in diesem.

26.
Wenn in zwei Dreiecken zwei Winkel der Reihe nach zwei Winkeln gleich sind, und eine Seite einer Seite gleich ist, nämlich entweder die an den gleichen Winkeln oder die einem der gleichen Winkel gegenüberliegende, so sind auch die beiden übrigen Seiten der Reihe nach gleich und der dritte Winkel dem dritten.

[Der Beweis wird von Euklid für jeden der beiden Teile des Satzes besonders geführt. In der That besteht zwischen beiden ein wesentlicher Unterschied: Beim Beweis des zweiten Teiles kann nämlich der Satz 16,
vom Außenwinkel, nicht entbehrt werden, während der erste Teil, ebenso wie die früheren Kongruenzsätze, durchaus davon unabhängig ist.]

27.
Wenn eine Gerade, die zwei Gerade trifft, mit ihnen gleiche Wechselwinkel bildet, so sind diese Geraden einander parallel.

Die Gerade EZ schneide die beiden Geraden AB und FA und bilde die einander gleichen Wechselwinkel AEZ und EZA. Ich behaupte, daß die Gerade AB der Geraden FA parallel ist.

Auf ähnliche Art wird man beweisen, daß sie auch nicht auf der Seite von A, F zusammentreffen. Aber Gerade, die auf keiner Seite zusammentreffen, sind parallel. Also ist die Gerade AB der Geraden FA parallel.

28.
Wenn eine Gerade, die zwei Gerade trifft, mit ihnen entweder einen äußeren Winkel bildet, der dem inneren, entgegengesetzten, auf derselben Seite befindlichen Winkel gleich ist, oder innere Winkel auf derselben Seite, die zusammen gleich zwei Rechten sind, so sind diese Geraden einander parallel.

29.
Wenn eine Gerade zwei parallele Gerade schneidet, so bildet sie gleiche Wechselwinkel; ferner ist jeder äußere Winkel dem inneren, entgegengesetzten gleich, und die inneren, auf derselben Seite liegenden Winkel sind zusammen gleich zwei Rechten.

Die Gerade EZ schneideämlich die parallelen Geraden AB und FA. Ich behaupte, daß sie gleiche Wechselwinkel AHΘ und ΘA als bildet, daß der äußere Winkel EHB dem inneren, entgegengesetzten ΘA gleich ist, und daß die inneren, auf derselben Seite befindlichen Winkel BΘA und ΘA zusammen gleich zwei Rechten sind.

Wenn nämlich der Winkel AHΘ von dem Winkel ΘA verschieden ist, so ist einer von beiden größer. Es möge AHΘ größer sein. Man füge zu beiden den Winkel ΘA hinzu. Dann sind die Winkel AHΘ und
Euklids Elemente, Buch I. — Satz 29—32.

BH0 zusammen größer als BH0 und H0A. Aber AH0 und BH0 sind zusammen gleich zwei Rechten, mithin sind BH0 und H0A zusammen kleiner als zwei Rechte.

Werden aber zwei Gerade unter Winkeln, die kleiner sind als zwei Rechte, ins Unendliche verlängert, so treffen sie zusammen.

Mithin werden AB und G, ins Unendliche verlängert, zusammen treffen. Sie können jedoch nicht zusammentreffen, weil sie nach der Voraussetzung parallel sind. Folglich ist der Winkel AH0 nicht verschieden von dem Winkel H0A, also ihm gleich.

Ferner ist der Winkel AH0 gleich dem Winkel EHB, und deshalb auch der Winkel EHB gleich dem Winkel H0A. Man füge zu beiden den Winkel BH0 hinzu, so sind EHB und BH0 zusammen gleich BH0 und H0A. Aber EHB und BH0 sind zusammen gleich zwei Rechten. Mithin sind auch BH0 und H0J zusammen gleich zwei Rechten.

30.

Gerade Linien, die derselben Geraden parallel sind, sind auch einander parallel.

31.

Durch einen gegebenen Punkt eine Gerade parallel zu einer gegebenen Geraden zu ziehen.

[Geschieht mit Hilfe von Satz 23 und 27.]

32.

In jedem Dreieck ist, wenn man eine seiner Seiten verlängert, der Außtenwinkel gleich der Summe der beiden inneren, gegenüberehrenden Winkel, und die drei inneren Winkel des Dreiecks sind zusammen gleich zwei Rechten.

Es sei ABF ein Dreieck. Man verlängere eine Seite, etwa BF, bis A. Ich behaupte, daß der Außtenwinkel AGA gleich den beiden inneren, ihm gegenüberliegenden Winkeln GAB und ABF ist, und daß die drei inneren Winkel des Dreiecks, nämlich ABG, BGA und GAB gleich zwei Rechten sind.

Man ziehe nämlich durch den Punkt G parallel der Geraden AB die Gerade GE. Da nun AB parallel GE ist, und diese Geraden von AG geschnitten werden, so sind die Wechselwinkel BAG und AGE einander gleich. Da ferner AB parallel GE ist, und diese Geraden von BA geschnitten werden, so ist der äußere Winkel EGA gleich dem inneren, entgegengesetzten Winkel ABF. Es wurde aber bewiesen, daß auch AGE gleich BAG ist. Deshalb ist der ganze Winkel AGA gleich den ihm gegenüberliegenden Winkeln BAG und ABF.

Fügt man zu beiden AGA hinzu, so sind AGA und ABG zusammen gleich den drei Winkeln ABF, BGA und GAB. Aber AGA und ABG sind zusammen gleich zwei Rechten. Mithin sind auch ABF, BGA und GAB zusammen gleich zwei Rechten.
JOHN WALLIS 1616—1703.

Einleitung zu dem Wallis'schen Beweise

Figur, die wir später bei Giordano da Bitonto (1680) und Saccheri (1733) wieder antreffen werden.

Mit dem Beginn des siebzehnten Jahrhunderts begegnen uns schon Veröffentlichungen, die ausschließlich der Theorie der Parallelen gewidmet sind: 1603 erscheint Cataldi's Operetta delle linee rette equidistanti et non equidistanti, und 1604 Oliver of Bury's: De rectarum linearum parallelismo et concursu doctrina geometrica; so weit wir sie kennen, enthalten diese Abhandlungen allerdings nichts wesentlich Neues.

Der neue Gedanke von Wallis besteht darin, daß er zwar Euklids Erklärung der Parallelen beibehält, aber die fünfte Forderung durch die andere ersetzt, daß sich zu jedem Dreiecke ein ähnliches in beliebig großem Maßstab zeichnen lasse. Übrigens hat er die Tragweite seiner Forderung nicht vollständig durchschaute; Saccheri sah in dieser Beziehung weiter als er. Saccheri weist nämlich nach, daß die Euklidsche geometrie in aller Strenge begründet werden kann, sobald auch nur zu einem einzigen Dreieck ein von ihm verschiedenes gehört, das dieselben Winkel aufweist; allerdings stützt er sich dabei auf den Satz vom Außenwinkel. Entsprechende Bemerkungen finden sich auch bei Lambert.

[Cantor, M., Vorlesungen über die Geschichte der Mathematik, besonders Bd. I, Kap. 36, und Bd. III, Kap. 83.]

Beweis

der fünften Forderung Euklids,

Bekanntlich haben einige alte wie auch einige neuere Autoren es dem Euklid zum Vorwurf gemacht, dass er die fünfte Forderung, oder (wie andere sagen) das elfte Axiom oder (nach der Zählung des Clavius) das dreizehnte Axiom ohne Beweis zugestanden haben will, während er es doch (wie jene glauben) hätte beweisen sollen. Namentlich hat man getadelt, dass er für gerade Linien etwas als an sich einleuchtend annimmt, was für Linien im allgemeinen gar nicht richtig ist. Denn allerdings mag für gerade Linien allgemein richtig sein, was er behauptet, nämlich:

Wenn zwei Gerade von einer dritten geschnitten werden, und die innern Winkel, die diese an derselben Seite bildet, zusammen kleiner sind als zwei Rechte, so treffen die beiden Geraden, ins Unendliche verlängert, einander schließlich auf der Seite, wo jene beiden Winkel zusammen kleiner als zwei Rechte sind, für krumme Linien ist es jedoch nicht allgemein richtig. Es können ja zwei Curven oder eine Gerade und eine Curve einander beständig näher kommen, ohne doch jemals zusammenzutreffen.

Indes stützen die meisten dieser Ankläger des Euklid (wenigstens soweit ich sie bis jetzt geprüft habe) ihre Beweise auf andere Annahmen, die man, wie mir scheint, keineswegs leichter zugeben wird, als das, was Euklid fordert, und sie verfallen sogar nicht selten gerade in den Fehler, den sie vermeiden wollen, indem sie nämlich für gerade Linien etwas als unzweifelhaft richtig annehmen, was für Linien im allgemeinen nicht richtig ist, wie ich an anderer Stelle gezeigt habe*).

*] [Opera, t. II. S. 668 in der Einleitung zu den beiden Vorlesungen von 1651 und 1663.]
Ich meinte, steils gestehe dem Euklid unbedenklich zu, was er fordert, nicht nur, weil die Beweise der anderen an demselben Fehler leiden, den sie bei ihm tadeln, oder weil ihre Forderungen durchaus nicht einleuchtender sind, sondern weil man, wie mir scheint, unbedingt entweder diese Forderung oder statt ihrer eine andere stellen muss, und endlich, weil man, die Beweisbarkeit dieser Forderung zugestanden, als Grundsatz nicht nur das gelten zu lassen pflegt, was gar nicht beweisbar ist, sondern auch das, was an sich so klar ist, daß es keines Beweises bedarf; denn sicherlich können einige der übrigen Axiome bewiesen werden, und das zu zeigen wäre nicht schwer, wenn es dessen bedürfte.

Da ich aber sehe, wie viele bis jetzt einen Beweis jener Forderung versucht haben, in der Meinung, daß sie eines Beweises bedürftig sei, will auch ich meinen Beitrag liefern und versuchen, ob ich nicht einen Beweis liefern kann, der weniger angreifbar ist als die bis jetzt von anderen gelieferten Beweise.

Den Beweis für die Behauptung erbringe ich nun auf Grund einiger Hilfssätze, die ich vorausschicke, wie folgt:

I. Wird eine begrenzte Gerade, die auf einer unbegrenzten Geraden liegt, geradlinig verlängert, so liegt auch die Verlängerung auf dieser unbegrenzten Geraden.

Es sei EACF die unbegrenzte Gerade, und die auf ihr liegende begrenzte Gerade AC möge geradlinig bis \(\gamma \) verlängert werden. Ich behaupte, daß die ganze Linie AC\(\gamma \), das heisst, die Verlängerung von AC, auch auf der unbegrenzten Geraden ACF liegt.

Da nämlich nach der Voraussetzung ACF eine einzige Gerade ist, so liegt CF mit AC in gerader Linie. Es ist aber auch (da AC bis \(\gamma \) geradlinig verlängert wurde) \(\gamma C \) die geradlinige Verlängerung von AC und liegt daher auf CF (denn alle Geometer nehmen an, daß an einem Endpunkt einer Geraden nicht verschiedene Gerade als Verlängerungen angesetzt werden können, und ungefähr dasselbe ist der Inhalt des dem Proklos entnommenen zehnten Axioms bei Clavius). Aber AC liegt nach der Voraussetzung ebenfalls auf ACF. Mithin liegt AC\(\gamma \), die Verlängerung von AC, ganz auf der unbegrenzten Geraden ACF. Was zu beweisen war.

II. Denkt man sich eine begrenzte Gerade, die auf einer unbegrenzten Geraden liegt, in ihrer Richtung beliebig weit
Beweis der fünften Forderung Euklids.

Es sei AC die begrenzte Gerade, die auf der unbegrenzten Geraden AF liegt, und man denke sie sich in ihrer Richtung nach der Seite von C bewegt, sodass der Punkt A in α und C in γ übergangen. Ich behaupte, dass die Gerade $\alpha \gamma$, also die bewegte Gerade AC, auf derselben unbegrenzten Geraden AF liegt.

Es liegt nämlich $C\gamma$ auf der Verlängerung der Geraden AC (denn nach der Voraussetzung wird der Punkt C geradlinig, das heißt, auf der Verlängerung der Geraden AC fortbewegt), also auch auf der unbegrenzten Geraden ACF (nach Hilfssatz I). Ebenso liegt auch α auf der (nötigenfalls verlängerten) Geraden AC (denn nach der Voraussetzung wird der Punkt A ebenfalls auf der Geraden AC geradlinig fortbewegt), also auch auf der unbegrenzten Geraden ACF. In ähnlicher Weise zeigt man dasselbe von jedem Zwischenpunkte der bewegten Geraden AC. Also liegt $\alpha \gamma$, das heißt die bewegte Gerade AC, ganz auf der unbegrenzten Geraden ACF. Was zu beweisen war.

Dasselbe könnte man auch in ähnlicher Weise zeigen, wenn dieselbe Gerade AC nach der Seite des Punktes A bewegt würde.

III. Liegt eine begrenzte Gerade auf einer unbegrenzten Geraden, und bildet eine auf ihr stehende Gerade mit ihr einen Winkel, so bildet sie mit der unbegrenzten Geraden denselben Winkel.

Es sei EAF eine unbegrenzte Gerade, und auf ihr liege die begrenzte Gerade AC, mit der die darauf stehende Gerade AB den Winkel BAC bildet. Dann behaupte ich, daß die Gerade AB mit der unbegrenzten Geraden AF denselben Winkel bildet. Da nämlich die Gerade AC auf der Geraden AF liegt, und da BA beide Male dasselbe ist, so sind BAC und BAF (durch Kongruenz) derselbe Winkel. Was zu beweisen war.

IV. Es liege eine begrenzte Gerade auf einer unbegrenzten Geraden. Wird sie auf dieser geradlinig fortbewegt, und macht eine auf ihr stehende Gerade (ohne Änderung des Winkels) die Bewegung mit, so bildet sie mit jener unbegrenzten Geraden überall dieselben (oder gleiche) Winkel.

Auf der unbegrenzten Geraden EAF möge die auf ihr liegende begrenzte Gerade AC geradlinig fortbewegt werden, und die auf dieser stehende Gerade AB mache ohne Änderung des Winkels die Bewegung so lange mit, bis sie, wenn AC in die Lage $\alpha \gamma$ geht, gleichzeitig nach $\alpha \beta$ gelangt. Dann behaupte ich, daß der Winkel $\beta a F$ dem Winkel BAC oder BAF gleich ist.

Die Gerade AC geht nämlich bei ihrer Bewegung in die Gerade $\alpha \gamma$ über, die (nach Hilfssatz 2) auf der unbegrenzten Geraden AF liegt. Ferner bleibt (nach der Voraussetzung) der Winkel BAC, das heißt $\beta a \gamma$, unverändert. Da endlich (nach Hilfssatz 3) dieser unveränderte Winkel zuerst mit dem Winkel BAF und dann mit dem Winkel $\beta a F$ zur Deckung kommt, so sind mithin die Winkel BAF und $\beta a F$ einander gleich. Was zu beweisen war.

In ähnlicher Weise könnte man zeigen, daß der Nebenwinkel $\beta a A$ dem Winkel BAE gleich ist.

V. Werden zwei Gerade von einer dritten geschnitten, und sind die inneren Winkel an derselben Seite zusammen kleiner als zwei Rechte, so ist jeder der beiden Außenwinkel größer als der ihm gegenüberliegende innere Winkel.
Die Gerade ACF' schneide die beiden Geraden AB und CD und bilde auf derselben Seite die inneren Winkel BAC und DCA, die zusammen kleiner sind als zwei Rechte. Ich behaupte, daß der Außenwinkel DCF (der Nebenwinkel des inneren Winkels DCA) größer ist als der ihm gegenüberliegende innere Winkel BAC.

Die Winkel DCA und DCF sind nämlich (nach Satz 13 des ersten Buches) zusammen gleich zwei Rechten. Hingegen sind (nach der Voraussetzung) die beiden inneren Winkel DCA und BAC zusammen kleiner als zwei Rechte. Nimmt man also beide Male den gemeinsamen Winkel DCA fort, so ist der übrig bleibende DCF größer als der übrig bleibende BAC. Was zu beweisen war.

VI. Wird unter denselben Voraussetzungen die zwischen AB und CD liegende Gerade AC geradlinig bis in die Lage $\alpha \gamma$ bewegt, so daß der Punkt α mit C zusammenfällt, und gelangt zugleich AB (ohne Änderung des Winkels BAC) in die Lage $\alpha \beta$, so behaupte ich, daß die ganze Gerade $\alpha \beta$, das heißt, die bewegte Gerade AB, außerhalb DC fällt.

Da nämlich (nach Hilfssatz 2) $\alpha \gamma$, das heißt $C \gamma$, auf CF liegt, und da (nach Hilfssatz 3 und 4) der Winkel BAC, das heißt BAF', dem Winkel $\beta \alpha F$, das heißt βCF gleich ist, und da endlich (nach Hilfssatz 5) der Winkel BAC kleiner ist als der Winkel DCF: so ist auch der Winkel βCF kleiner als derselbe Winkel DCF. Demnach fällt die Gerade $C \beta$, das heißt $\alpha \beta$, ganz außerhalb der Geraden CD (ganz, sage ich, denn sie kann CD nirgends anders als in dem Punkte C treffen, nach der letzten Forderung oder dem letzten Axiom, daß zwei Gerade keinen Raum einschließen).
VII. Unter denselben Voraussetzungen behaupte ich, dass die Gerade $\alpha \beta$, das heißt \overline{AB}, bei ihrer Bewegung die Gerade \overline{CD} schneidet, ehe der Punkt α nach C gelangt.

Da nämlich (nach Hilfssatz 6), sobald der Punkt α nach C gelangt, die ganze Gerade $\alpha \beta$ die Gerade \overline{CD} überschritten hat, so muß sie diesen Übergang entweder als Ganzes oder stückweise gemacht haben. Aber als Ganzes kann sie den Übergang nicht machen, sonst läge nämlich einmal die Gerade $\alpha \beta$ auf der Geraden \overline{CD}, und der Winkel $\angle DCF$ deckte sich mit dem Winkel $\angle \alpha EF$, ein größerer mit einem kleineren, was unmöglich ist. Mithin geschieht der Übergang stückweise, das heißt, die Gerade $\alpha \beta$ schneidet einmal die Gerade \overline{CD}, dann nämlich, wenn ein Teil von ihr den Übergang gemacht hat, aber noch nicht die ganze Gerade, und zwar (nach Hilfssatz 6), bevor der Punkt α zum Punkte C gelangt ist. Was zu beweisen war.

VIII. Schließlich will ich (indem ich die Lehre von den Verhältnissen und den Begriff der ähnlichen Figuren als bekannt voraussetze) als Grundsatz annehmen:

Zu jeder beliebigen Figur gebe es stets eine andere ihr ähnliche von beliebiger Größe.

Das scheint nämlich (da Größen einer unbeschränkten Teilung und Vervielfachung fähig sind) aus dem Wesen der Größenverhältnisse zu folgen, daß man nämlich jede Figur (während sie ihre Gestalt behält) unbeschränkt verkleinern und vergrößern kann.

In der That machen alle Geometer diese Annahme (ohne es ausdrücklich auszusprechen oder vielleicht selbst zu bemerken), und darunter auch Euklid. Denn, wenn er fordert, daß sich bei gegebenem Mittelpunkt und Halbmesser der Kreis beschreiben lasse, so setzt er voraus, daß es einen Kreis von beliebiger Größe oder mit beliebig großem Halbmesser gebe, und, wenn er voraussetzt, daß etwas möglich sei, so fordert er, daß man es ausführen könne. Nun wäre es freilich kein billiges Verlangen, daß man (ohne die nötigen Vorkeimutnisse) nach einem gegebenen Maafsstabe zu jeder Figur eine ähnliche solle zeichnen können. Aber daß es ausführbar ist, das darf man bei einer beliebigen Figur ebenso gut wie beim Kreise voraussetzen. Denn nicht deshalb, weil er vor den übrigen Figuren etwas voraus hat, gestattet es der Kreis, daß man ihn ohne Änderung der Gestalt nach Belieben stetig vergrößert oder verkleinert, sondern wegen der
Eigenschaften der stetigen Größen, die den übrigen Figuren mit dem Kreise gemeinschaftlich sind. Man darf demnach ebenso voraussetzen, daß auch bei diesen (ohne Änderung der Gestalt) eine stetige und unbegrenzte Vergrößerung oder Verkleinerung möglich sei.

Gegen unsere Annahme darf man auch nicht einwenden, daß Euklid an dieser Stelle weder die Erklärung proportionaler Größen noch die Erklärung ähnlicher Dreiecke (die jene voraussetzt) gegeben hat, daß er vielmehr die eine erst im fünften, die andere erst im sechsten Buche giebt. Denn Euklid hätte, wenn es ihm angebracht erschienen wäre, beide dem ersten Buche vorausschicken können.

IX. Mittelst dieser Hilfssätze beweise ich nun auf folgende Art den eigentlichen Satz, der so lautet:

Werden zwei Gerade von einer dritten geschnitten, und sind die inneren Winkel an derselben Seite zusammen kleiner als zwei Rechte, so treffen die Geraden, ins Unendliche verlängert, einander auf der Seite, wo jene beiden Winkel liegen, die zusammen kleiner sind als zwei Rechte.

Es seien AB und CD die beiden Geraden, die von der unbegrenzten Geraden ACF getroffen werden und mit ihr an derselben Seite innere Winkel BAC und DCA bilden, die zusammen kleiner sind als zwei Rechte. Ich behaupte, daß jene beiden Geraden AB und CD, ins Unendliche verlängert, einander treffen, und zwar auf der Seite der Geraden AF, wo sich jene beiden Winkel befinden.

Man denke sich nämlich die Gerade AC, die zwischen ihnen auf der unbegrenzten Geraden ACF liegt, auf dieser geradlinig bewegt. Die Gerade AB, die auf AC steht, mache die Bewegung ohne Änderung des Winkels BAC mit, bis $\alpha\beta$, das heißt, die bewegte Gerade AB, die Gerade CD (nach Hilfssatz 7) in einem Punkte π schneidet. Alsdaß ist πCa ein Dreieck, und es gibt (nach Hilfssatz 8) ähnliche Dreiecke von jeder beliebigen Größe. Man kann daher über der Geraden CA ein Dreieck zeichnen, das dem Dreieck πCa mit der Grundlinie Ca ähnlich ist. Man denke sich das ausgeführt, und es sei PCA dieses Dreieck.

Hier darf man nicht einwenden, daß Euklid noch nicht gelehrt habe, wie man über einer gegebenen Grundlinie ein Dreieck zeichnet,

Ebenso gut gelingt hier der Beweis, sobald nur feststeht, daß man das ausführen kann, was hier als ausgeführt gedacht wird, nämlich das Dreieck PCA zu zeichnen. Wir fahren in dem Beweise fort.

Da also PCA ein Dreieck ist, so treffen (nach der Erklärung des Dreiecks) die beiden Geraden CP und AP einander im Punkte P, und da das Dreieck PCA dem Dreieck $πCA$ (nach Konstruktion) ähnlich ist, so sind die einzelnen Winkel den einzelnen Winkeln der Reihe nach gleich (nach der Erklärung ähnlicher geradliniger Figuren). Mithin ist der Winkel PCA dem Winkel $πCA$, das heißt dem Winkel DCA gleich, und es liegt daher die Gerade CP in der Verlängerung der Geraden CD. Läge nämlich die Gerade CD jenseits oder diesseits, so wäre der Winkel PCA größer oder kleiner als der Winkel DCA, während doch ihre Gleichheit bewiesen wurde.

Ebenso ist der Winkel PAC gleich dem Winkel $πaC$. Demselben Winkel $πaC$, das heißt dem Winkel $βAF$, ist aber der Winkel BAF oder BAC gleich (nach Hilfssatz 3 und 4), und daher ist auch der Winkel BAC gleich dem Winkel PAC. Mithin liegt die Gerade AP in der Verlängerung der Geraden AB (läge sie nämlich jenseits oder

*) [Was Wallis hier behauptet, ist nicht ganz richtig: merkwürdiger Weise findet sich in den Elementen nichts über die Konstruktion von Dreiecken, die einem gegebenen Dreieck ähnlich sind.]

**) [Im Original steht: in ἀποδεικτικῷ ad demonstrationes theorematum.]
Beweis der fünften Forderung Euklids.

diesseits, so wären die Winkel BAC und PAC verschieden, deren Gleichheit bewiesen ist).

Demnach fällt die Gerade AP mit der Verlängerung von AB zusammen. Ebenso bilden CP und die Verlängerung von CD eine Gerade. Es treffen sich aber (wie schon gezeigt ist) AP und CP in dem Punkte P, also treffen sich auch die Verlängerungen von AB und CD, und zwar in eben diesem Punkte P, das heißt, auf der Seite der Geraden EAF, wo jene beiden Winkel liegen, die zusammen kleiner als zwei Rechte sind. Was zu beweisen war.

Diesen Beweis habe ich nach den strengsten Regeln für das Beweisen durchgeführt, indem ich mir Euklid zum Vorbild genommen habe, damit auch ein strenger Richter mir nicht den Vorwurf machen kann, daß zum vollgültigen Beweise etwas fehle. Jedoch tadel ich ganz und gar nicht, daß Euklid keinen Beweis gegeben hat, vielmehr würde ich sogar nichts dagegen haben, wenn er noch mehr unbewiesene Forderungen aufgestellt hätte, zum Beispiel, wenn er (mit Archimedes) gefordert hätte, daß die gerade Linie unter allen Linien zwischen denselben Endpunkten die kürzeste sei, (dabei hätte er dann nicht neunzehn Sätze vorauszuschicken gebraucht, ehe er bewies, daß zwei Dreiecksseiten zusammengenommen größer sind als die dritte) und anderes, was an und für sich einleuchtend ist.

Aber Euklid scheint die Absicht gehabt zu haben, auf Grund möglichst weniger Forderungen das Übrige durch die strengsten Schlüsse zu beweisen, und so kommt es, daß er sich nicht selten damit abquält, Dinge zu beweisen, die ihm jedermann ohne weiteres zugestehen wird. Bei jedem Beweise, und zwar in jedem Gebiete ohne Ausnahme, muß man etwas voraussetzen. Denn, ohne etwas vorauszusetzen (oder es vorher zuzugeben oder vorher zu beweisen), ist kein Beweis möglich. Freilich pflegen diese Voraussetzungen von anderen Schriftstellern (über andere Gegenstände) nicht ausdrücklich genannt zu werden (wie das Euklid gethan hat), sondern sie nehmen solche Voraus- setzungen stillschweigend an, ohne es zu bemerken.

Auch bei Euklid selbst finden sich im Fortgange seines Werkes neben den ausdrücklich erwähnten Voraussetzungen (den wichtigsten und bemerkenswertesten) zuweilen noch andere, die entweder aus dem Anblicke der Figur oder anderswoher einleuchten, die aber niemand bestreiten wird. Eine solche Voraussetzung (die überall vorkommt) ist die, daß das Ganze genau dasselbe ist wie die Summe der Teile (woraus man schließt, daß, wenn sich zeigen läßt, etwas
sei gleich der Summe der Teile, es auch dem Ganzen gleich ist),
ebenso, dass, was für die einzelnen Fälle als richtig bewiesen ist,
allgemein richtig ist (zum Beispiel, was für das rechtwinklige, das
spitzwinklige, und das stumpfwinklige Dreieck gilt, gilt für
dedes geradlinige Dreieck, weil es eben keine anderen gerad-
linigen Dreiecke gibt), und ebenso, dass eins und eins zwei, und vier
und eins fünf ist, und ähnliches, was ein aufmerksamer Leser ab und
zu bemerken, was aber niemand tadeln wird, (nicht zu erwähnen, dass
er bei der Erklärung der Kugel, des Kegels und des Cylinders
die Bewegung der Ebene voraussetzt, die er weder erklärt noch
gefordert hat). Aber auch wenn er noch mehr entweder stillschweigend
vorausgesetzt oder ausdrücklich gefordert hätte, was an sich ein-
leuchtend ist, darf man ihn deshalb nicht anklagen, also auch nicht,
if er fordert, dass zwei (in derselben Ebene liegende) Ge-
rade, die einander näher kommen, schließlich zusammen-
treffen sollen.
GIROLAMO SACCHERI
1667—1733.
In den Vorbemerkungen zu dem Versuche von Wallis hatten wir bereits erwähnt, daß im siebzehnten Jahrhundert auch in Italien das Interesse für die Grundlagen der Geometrie rege war, und zwar sind die Gegenstände, mit denen sich die Mathematiker damals hauptsächlich beschäftigten, die Lehre von den Proportionen und die Parallelentheorie.

In den meisten Lehrbüchern der Elementargeometrie vom sechzehnten bis zum Anfange des achttzehnten Jahrhunderts werden — was ja sehr bequem ist — parallele Gerade sofort als äquidistante erklärt. Der erste, der erkannte, daß diese Erklärung nur dann zulässig ist, wenn man das Vorhandensein solcher Geraden erweisen kann, scheint Giordano da Bitonto (1680) gewesen zu sein. In den Endpunkten einer Grundlinie denkt er sich Lote von gleicher Länge errichtet und sucht zu beweisen, daß die Verbindungsgerate

Stäckel u. Engel, Parallelentheorie.
Einleitung zu Saccheris

Saccheris Charakter schildert sein Biograph Gambarana mit folgenden Worten: „Er kümmerte sich nicht um seine Person, um Speise, um Kleidung, um Bequemlichkeit, nur die Wahrheit, das Wohl anderer, die Ehre und die Fortschritte des heiligen römischen Glaubens lagen ihm am Herzen.“
Mit besonderer Ausführlichkeit verweilt Gambarana bei einer Seite von Saccheris Begabung, die auf jeden, der ihn kennen lernte, besonderen Eindruck machen musste, bei seiner ungewöhnlichen Gedächtniskraft und Combinationsgabe. Schon früh zeigte sich sein Rechenlegen. Als Knabe von fünf Jahren löste er bereits schwierige Rechenaufgaben, die man ihm vorgelegt hatte. Später wurde er ein vorzüglicher Schachspieler, er spielte gleichzeitig drei Partien ohne Ansicht des Brettes und siegte in der Regel. Während des Spiels konnte er sich mit andern unterhalten und sogar „über abstruse Probleme der Geometrie nachdenken“; nachher wiederholte er die Partien aus dem Gedächtnis. Tommaso Ceva hat ihn in seiner Philosophia Novo-antiqua, Mailand 1704, mit den Versen besungen:

Scacchia qui triplici certamine versat eodem
Tempore, summotus ludo procul omnia mente
Complexus memori.

Eine ebenso große Geschicklichkeit besaß Saccheri in der Kunst des Chiffrensens, wovon Gambarana erstaunliche Proben mitteilte.

Dagegen haben wir die drei mathematischen Schriften Saccheris sämtlich eingesehen. Die königlichen Bibliotheken in Berlin und in München besitzen sein Erstlingswerk:

Quaesita geometrica a Comite Ruggerio de Viginti Milliis omnibus proposita, ab Hieronymo Saccherio Genuenisi Societatis Jesu soluta. Mediolani 1693, 4°, 37 Seiten, von dem Riccardi eine zweite Ausgabe erwähnt:

Sphinx geometrica seu quaesita geometrica proposita et soluta rursus prodeunt auspiciis Serenissimi Principis Francisci Farnese, Parma 1694. 4°.

Euclides ab omni novo vindicatus.

berichtet, nach langer Krankheit am 25. Oktober 1733 starb, dieses Werk, das wohl die Arbeit eines Menschenlebens darstellt, noch vor seinem Tode gedruckt sehen wollte; ob er die Vollendung des Druckes erlebt hat, erscheint fraglich. Diese Umstände erklären es sehr gut, daß einige Beweise noch kleine Lücken zeigen, sowie auch, daß sich an einigen Stellen falsche Rückverweisungen auf frühere Sätze finden.

Das Werk besteht aus zwei Büchern, die an Umfang, wie an Wert, sehr ungleich sind. Das zweite, kürzere betrifft die Lehre von den Proportionen und braucht hier nicht berücksichtigt zu werden. Um so wichtiger ist das erste, das einen geistreichen Versuch enthält, die Euklidische Geometrie als die einzig mögliche nachzuweisen.

Saccheri hat das unvergängliche Verdienst, dem Probleme der Parallellinien eine ganz neue Seite abgewonnen zu haben. Die Versuche, die wir im Vorhergehenden kennen gelernt haben, beruhten auf dem gemeinschaftlichen Grundgedanken, daß man die fünfte Forde-

rung unmittelbar aus den anderen Voraussetzungen der Euklidischen Geometrie herleiten wollte. Alle diese Versuche litten an dem wesentlichen Mangel, daß bei ihnen, mehr oder weniger offen, ein neues Axiom an Stelle des zu beweisenden eingeführt wurde.

Saccheri giebt nun der Frage die neue Wendung: Wäre die fünfte Forderung keine Folge der übrigen Voraussetzungen Euklids, so könnten bei einem Viereck $ABDC$, das in A und B rechte Winkel hat und wo $AC = BD$ ist, die Winkel bei C und D spitz oder stumpf sein. Macht man eine dieser beiden Annahmen, die er als die Hypothese des spitzen bez. des stumpfen Winkels bezeichnet, so lassen sich aus ihr weitere geometrische Folgerungen ziehen. Um die Wahrheit der fünften Forderung nachzuweisen, an der Saccheri nicht gezweifelt zu haben scheint, muß man also zeigen, daß jede dieser Annahmen schließlich zu einem Widerspruch führt. Einen solchen Widerspruch zu finden, gelingt Saccheri bei der Hypothese des stumpfen Winkels ohne Schwierigkeit, jedoch bei der Hypothese des spitzen Winkels erst, wie er sich ausdrückt, nach einem langwierigen Kampfe. Er sieht sich dabei genötigt, die Folgerungen ziemlich weit zu treiben, und gelangt so zu einer Reihe von Sätzen, die man gewöhnlich teils Legendre, teils den Begründern der nichteuklidischen Geometrie Lobatschefskij und Bolyai zuschreibt.

Legendre, dessen Untersuchungen über die Parallelentheorie in die Zeit von 1794—1833 fallen, hat unter ausschließlich der Benutzung der ersten achtundzwanzig Sätze des ersten Buches der Elemente bewiesen, daß die Summe der Winkel eines Dreiecks nicht kleiner sein kann als zwei Rechte, und daß sie gleich zwei Rechten sein muß,
Einleitung zu Saccheris

sobald das für irgend ein Dreieck der Fall ist. Beide Sätze finden sich schon bei Saccheri, der nicht nur die Hypothese des stumpfen Winkels widerlegt, sondern auch eine ganze Reihe von Sätzen entwickelt hat, in denen Kennzeichen zur Unterscheidung der Hypothese des rechten Winkels von den beiden anderen Hypothesen aufgestellt werden; eins dieser Kennzeichen ist das von Legendre wieder-gefundene.

Weiter aber hat Saccheri bei der Hypothese des spitzen Winkels das Verhalten zweier sich nicht schneidender Geraden eingehend untersucht und das Vorhandensein des gemeinsamen Lotes und der Grenzlinien in aller Strenge nachgewiesen. Er hat auch schon den Ort der Punkte betrachtet, die von einer Geraden gleich weit entfernt sind, und ist so zu den Oricyclen von Lobatschefskij gelangt.

Hervorzuheben ist noch, daß Saccheris Beweise für diese Sätze sehr klar und elegant sind, während später, wo es gilt, die angeblichen Widersprüche zu finden, seine Darstellung mühsam und weit-schweifig wird.

Der Euclides ab omni naevo vindicatus scheint ein ziemlich verbreitetes Buch gewesen zu sein. In Deutschland haben wir sein Vor-handensein auf den Königlichen Bibliotheken zu Berlin und Dresden und auf den Universitätsbibliotheken in Göttingen (seit 1770), Halle, Rostock und Tübingen festgestellt. Auch findet man das Werk im achtzehnten Jahrhundert wiederholt erwähnt. So erschien, um nur das Wichtigste anzuführen, im Jahre 1736 eine Anzeige in den Acta Eru-ditorum (S. 277), die jedoch auf den Inhalt nur oberflächlich eingeg,
Euclides ab omni naevo vindicatus.

Litteratur zu Saccheri.

Bäcker, Augustin et Alois de, Bibliothèque des écrivains de la compagnie de Jésus. 4ième série. Liège 1858. S. 650.

Borelli, Euclides restitutos sive prisca geometriae elementa brevius et facilius contexta. Pisa 1658.

Cantor, M., Vorlesungen über die Geschichte der Mathematik, Bd. 2. 1892. S. 607; Bd. 3. 1894. S. 13 und 18.

Ferrari, Guido, Opusculorum Collectio, Lugani 1777, S. 82, 99 und 101.

EUCLIDES
AB OMNI NÆVO VINDICATUS:
SIVE
CONATUS GEOMETRICUS
QUO STABILIUNTUR
Prima ipsa univerśae Geometriæ Principia.
AUCTORE
HIERONYMO SACCHERIO
SOCIETATIS JESU
In Ticinenši Universitatis Matheæos Professore.
OPUSCULUM
EX MO SENATUI
MEDIOLANENSI
Ab Auctore Dicatum.
MEDIOLANI, MDCCXXXIII.
Ex Typographia Pauli Antonii Montani. Superiorum permìssu.
DER VON JEDEM MAKEL BEFREIETE

EUKLID

ODER

EIN GEOMETRISCHER VERSUCH

ZUR BEGRÜNDUNG

der Grundsätze der ganzen Geometrie.

VERFASSET

VON

GIROLAMO SACCHERI

VON DER GESELLSCHAFT JESU

Der Mathematik Professor an der Universität zu Pavia.

EINEM

HOCHEDLEN SENATE

VON MAILAND

WIDMET DIESES WERK

DER VERFASSER.

MAILAND 1733.

Druck von Paolo Antonio Montano. Mit Erlaubnifs der Oberen.
Vorwort an den Leser*).

Wer überhaupt Mathematik gelernt hat, würdigt die hohen Vorzüge der Elemente Euklids. Hierfür kann ich als auserlesene Zeugen Archimedes, Apollonius, Theodosius anführen und außerdem beinahe unzählig viele andere mathematische Schriftsteller bis auf die Gegenwart, die Euklids Elemente als die längst feststehende und vollkommen unerschütterliche Grundlage benutzen. Freilich hat dieses große Ansehen nicht hindern können, daß viele alte wie neue und zwar angesehene Geometer behaupteten, sie hätten in diesen so schönen und niemals genug gepriesenen Elementen gewisse Makel gefunden, und zwar nennen sie drei solche Makel, die ich sogleich anführe.

Der erste betrifft die Erklärung der Parallellinien und in Verbindung damit das Axiom, das bei Clavius das dreizehnte des ersten Buches ist, wo Euklid sagt: Werden zwei gerade Linien, die in derselben Ebene liegen, von einer dritten geschnitten, und sind die inneren Winkel, die sie auf der einen Seite bilden, zusammen kleiner als zwei Rechte, so müssen beide Linien, nach dieser Seite ins Unendliche verlängert, zusammentreffen.

Gewiß zweifelt niemand an der Wahrheit dieser Behauptung, vielmehr wird Euklid nur deshalb getadelt, weil er dafür den Namen Axiom gebraucht hat, als wenn sie schon bei richtigem Verständnis ihres Wortlautes von selbst einleuchtete. Nicht wenige haben daher versucht (während sie im übrigen Euklids Erklärung der Parallelen behielten) dieses Axiom ausschließlich auf Grund der Sätze des ersten Euklidischen Buches zu beweisen, welche dem neunundzwanzigsten vorangehen, denn bei diesem wird das strittige Axiom zum ersten Male angewendet.

Da aber wiederum die Versuche der Alten in dieser Frage nicht vollständig zum Ziele zu führen scheinen, so ist es gekommen, dafs

Saccheri, Euclides ab omni naevo vindicatus.

viele ausgezeichnete Geometer der folgenden Zeiten sich dieselbe Aufgabe gestellt und eine neue Erklärung der Parallelen für notwendig befunden haben. Während also Euklid parallele Gerade als solche erklärt, die in derselben Ebene liegen und, wenn sie nach beiden Seiten ins Unendliche verlängert werden, einander niemals treffen, so setzen sie an Stelle der letzten Worte der eben angeführten Erklärung diese anderen: die immer gleiche Entfernung von einander haben, sodass nämlich alle Lote, die von beliebigen Punkten der einen auf die andere gefällt werden, immer einander gleich sind.

Hieraus aber entspringt ein neuer Zwiespalt. Einige nämlich, und zwar die scharfsinnigeren, suchen das Vorhandensein der so erklärten Parallellinien zu beweisen und schreiten von da aus zum Beweise jenes Axioms, das, so wie es Euklid ausspricht, strittig ist; denn auf ihm beruht ja von jenem neunundzwanzigsten Satze des ersten Euklidischen Buches an (mit sehr wenigen Ausnahmen) die ganze Geometrie.

Andere aber nehmen (nicht ohne einen groben Verstoß gegen die strenge Logik) parallele Geraden dieser Art, nämlich gleich weit von einander entfernte, von vorn herein als gegeben an, um von da aus zum Beweise der anderen Sätze überzugehen.

Dies genüge, um den Leser auf das vorzubereiten, was den Gegenstand des ersten Buches meiner Abhandlung bilden wird, denn eine ausführlichere Erklärung alles eben Gesagten wird in den Anmerkungen hinter dem Lehrsätze XXI dieses Buches gegeben werden.

Ich gehe zu den beiden anderen Makeln über, die man Euklid vorgeworfen hat. Der erste bezieht sich auf die sechste Erklärung des fünften Buches über proportionale Größen, der zweite auf die fünfte Erklärung des sechsten Buches über die Zusammensetzung von Verhältnissen. Es wird das einzige Ziel meines zweiten Buches sein, die erwähnten Euklidischen Erklärungen eingehend zu erörtern und zugleich zu zeigen, daß Euklids Ruhm hier mit Unrecht angegriffen worden ist.

An Stelle eines Inhaltsverzeichnisses glaube ich Folgendes hinzufügen zu sollen.

1. Im Lehrlsatze I und II des ersten Buches werden zwei Grundsätze aufgestellt, mit deren Hilfe in III und IV bewiesen wird, daß die inneren Winkel an der Verbindungsgeraden zwischen den Endpunkten gleicher Senkrechten, die in zwei Punkten einer anderen Geraden, der Grundlinie, nach derselben Seite (in derselben Ebene) errichtet werden, nicht nur einander gleich, sondern außerdem entweder rechte oder stumpfe oder spitze sind, nachdem jene Verbindungsgerade der genannten Grundlinie gleich ist oder kleiner oder größer ist als diese, und umgekehrt.

2. Hieraus wird Veranlassung genommen, drei verschiedene Hypothesen zu unterscheiden, erstens die des rechten Winkels, zweitens die des stumpfen und drittens die des spitzen. Von diesen Hypothesen wird in den Lehrlsätzen V, VI und VII bewiesen, daß jede unter ihnen immer allein die richtige ist, sobald sie sich in irgend einem besonderen Falle als richtig erweist.

3. Nach Einschaltung dreier anderer unentbehrlicher Lehrlsätze wird in den Lehrlsätzen XI, XII und XIII die allgemeine Gültigkeit des bekannten Axioms für den Fall bewiesen, daß ausschließlich die beiden ersten Hypothesen, die des rechten Winkels und die des stumpfen Winkels, berücksichtigt werden, und endlich wird in Lehrlsatz XIV die vollständige Unrichtigkeit der Hypothese des stumpfen Winkels nachgewiesen. Und von jetzt an beginnt ein langwieriger Kampf gegen die Hypothese des spitzen Winkels, die allein der Wahrheit jenes Axioms entgegensteht.

4. Daher wird in den Lehrlsätzen XV und XVI bewiesen, daß der Reihe nach die Hypothese des rechten Winkels oder die des stumpfen oder die des spitzen durch irgend ein geradliniges Dreieck bedingt wird, dessen drei Winkel zusammen der Reihe nach gleich zwei Rechten sind oder größer oder kleiner, und in ähnlicher Weise durch irgend ein geradliniges Viereck, dessen vier Winkel zusammen der Reihe nach gleich vier Rechten sind oder größer oder kleiner.

5. Es folgen fünf weitere Lehrlsätze, in denen andere Kennzeichen zur Unterscheidung der wahren Hypothese von den falschen abgeleitet werden.
6. Hier kommen vier wichtige Anmerkungen hinzu. In der letzten wird eine gewisse geometrische Figur erklärt, an die Euklid vielleicht gedacht hat, um sein Axiom als an und für sich einleuchtend hinzustellen. In den drei vorhergehenden wird nachgewiesen, daß die früheren Versuche ausgezeichneter Geometer ihr Ziel nicht erreicht haben. Weil aber das strittige Axiom ganz streng bewiesen werden kann, wenn man von vornherein voraussetzt, daß es zwei gerade Linien giebt, die gleiche Entfernung von einander haben, so macht der Verfasser dort darauf aufmerksam, daß eine solche Vor- aussetzung einen offenbaren Zirkelschluß enthält. Und wenn man sich hier auf die allgemein verbreitete Überzeugung und auf die Gewißheit der Erfahrung berufen will, so macht er wiederum darauf aufmerksam, daß man sich nicht auf Versuche berufen darf, die unendlich viele Punkte betreffen, da ein Versuch in Bezug auf irgend einen Punkt genügen kann. An dieser Stelle bringt er drei eigene, unwiderlegliche physikalisch-geometrische Beweismethoden. Von S. 29 an.

[Nunmehr folgt der Inhalt des zweiten Buches, das hier nicht in Betracht kommt. Auf S. XVI befindet sich noch ein Druckfehlerverzeichnis.]
Euklid
von jedem Makel befreit.

Erstes Buch,
worin bewiesen wird:

Werden zwei gerade Linien, die in derselben Ebene liegen, von einer dritten geschnitten, und sind die von dieser auf derselben Seite gebildeten inneren Winkel zusammen kleiner als zwei Rechte, so treffen die beiden Linien, ins Unendliche verlängert, schließlich auf dieser Seite zusammen.

Erster Teil.

Lehrsatz I. Wenn zwei gleiche gerade Linien (Fig. 1) AC und BD mit der Geraden AB auf derselben Seite gleiche Winkel bilden, so behaupte ich, daß die Winkel an der Verbindungslinie CD einander gleich sind.

Beweis. Man ziehe AD und CB und betrachte die Dreiecke CAB und DBA. Ihre Grundlinien CB und AD sind (nach I. 4*) sicher gleich. Darauf betrachte man die Dreiecke ACD und BDC. Die Winkel ACD und BDC sind (nach I. 8) sicher gleich. Was zu beweisen war.

Lehrsatz II. Hat man ein solches Viereck ABDC und halbiert die 2 Seiten AB und CD (Fig. 2) in den Punkten M und H, so behaupte ich, daß die Winkel an der Verbindungslinie MH auf beiden Seiten rechte sind.

*) [I. 4 bedeutet: Satz 4 des ersten Buches der Euklidischen Elemente.]

Lehrsatz III. Wenn zwei gleiche gerade Linien AC und BD (Fig. 3) auf irgend einer Geraden AB senkrecht stehen, so behaupte ich, daß die Verbindungslinie CD entweder gleich AB oder kleiner oder größer ist, jenachdem die Winkel an CD rechte oder stumpfe oder spitze sind.

Beweis des ersten Teiles. Sind die beiden Winkel C und D rechte, so sei, wenn das überhaupt möglich ist, die eine der beiden Geraden, etwa DC, größer als die andere BA. Man nehme auf DC das Stück DK gleich BA an und ziehe AK. Da nun die gleich langen Geraden BA und DK auf BD senkrecht stehen, so sind (nach Lehrsatze I) die Winkel BAK und DKA gleich. Das ist aber widersinnig, da nach der Konstruktion der Winkel BAK kleiner ist als der Winkel BAC, der als rechter vorausgesetzt wurde, und da der Winkel DKA nach der Konstruktion Außenwinkel und somit (nach I. 16) größer ist, als der innere gegenüberliegende Winkel DCA, der ein Rechter sein sollte. Mithin ist keine der genannten Geraden DC und BA größer als die andere, sobald die Winkel an der Verbindungslinie CD rechte sind, und daher sind sie einander gleich. Was an erster Stelle zu beweisen war.

Beweis des zweiten Teiles. Wenn aber die Winkel an der Verbindungslinie CD stumpf sind, so halbiere man AB und CD in den Punkten M und H und ziehe MH. Da nun (nach dem vorhergehenden Lehrsatze) die beiden Geraden AM und CH auf der Geraden MH
senkrecht stehen, und da der Winkel A an der Verbindungslinie AC ein Rechter sein sollte, so ist (nach Lehrsatz I) die Gerade CH nicht gleich AM, denn in C ist kein rechter Winkel vorhanden*).

Sie kam aber auch nicht größer sein. Sonst wären nämlich, wenn man auf HC das Stück KH gleich AM annähme, (nach Lehrsatz I) die Winkel an der Verbindungslinie AK gleich. Das ist aber, wie vorhin, widersinnig. Denn der Winkel MAK ist kleiner als ein Rechter, und der Winkel HKA ist (nach I. 16) größer als der innere gegenüberliegende Winkel HCA, der als stumpf vorausgesetzt wurde**). Daher bleibt nur übrig, daß CH kleiner ist als AM, sobald die Winkel an der Verbindungslinie CD als stumpf vorausgesetzt werden, und deshalb ist CD, das Doppelte der ersten Linie, kleiner als AB, das Doppelte der zweiten. Was an zweiter Stelle zu beweisen war.

Beweis des dritten Teiles. Sind endlich die Winkel an der Verbindungslinie CD spitz, so zieht man in derselben Weise (nach dem vorhergehenden Lehrsatz) die Senkrechte MH und verfährt, wie folgt:

Da die beiden Geraden AM und CH auf der Geraden MH senkrecht stehen, und da der Winkel A an der Verbindungslinie AC ein Rechter sein sollte, so ist (wie vorhin) die Gerade CH nicht gleich AM, denn in C ist kein rechter Winkel vorhanden**).

Sie kann aber auch nicht kleiner sein. Sonst wären nämlich, wenn man HC verlängerte und HL gleich AM annähme, (wie vorhin) die Winkel an der Verbindungslinie AL gleich. Das ist aber widersinnig. Denn der Winkel MAL ist nach der Konstruktion größer als MAC, der als rechter angenommen war, und der Winkel HLA ist nach der Konstruktion ein innerer gegenüberliegender Winkel und somit (nach I. 16) kleiner als der Außenzinkel HCA, der als spitz angenommen war. Daher bleibt nur übrig, daß CH größer ist als AM, sobald die Winkel an der Verbindungslinie CD spitz sind, und deshalb ist CD, das Doppelte der ersten Linie, größer als AB, das Doppelte der zweiten. Was an dritter Stelle zu beweisen war.

Demnach muß die Verbindungslinie CD gleich AB sein oder kleiner

*) [Besser wäre es, zu sagen: denn die Winkel in A und C sind nicht gleich.]

**) [Der Satz vom Außenzinkel (I. 16), der hier benutzt wird, setzt die unendliche Länge der geraden Linie voraus (vgl. die Anmerkung zu I. 16, S. 11) und ist bei der Hypothese des stumpfen Winkels nicht allgemein gültig. Deshalb sind alle hier und im folgenden gegebenen Beweise für Sätze, die bei der Hypothese des stumpfen Winkels gelten sollen, ungenügend.]
oder größer, Jenachdem die Winkel an CD rechte oder stumpfe oder 4 spitze sind. Was zu beweisen war.

Zusatz I. Enthält daher ein Viereck drei rechte Winkel und einen stumpfen oder spitzen, so ist in ihm jede dem nicht rechten Winkel anliegende Seite kleiner als die gegenüberliegende, wenn der Winkel stumpf ist, wenn er aber spitz ist, größer. Denn für die Seite CH, im Vergleich zu der gegenüberliegenden Seite AM, ist das schon bewiesen, und auf ähnliche Art zeigt man es von der Seite AC, im Vergleich zu der gegenüberliegenden Seite MH.

Da nämlicb die Geraden AC und MH auf AM senkrecht stehen, so können sie wegen der Ungleichheit der Winkel an der Verbindungslinie CH (nach Lehrsatz I) nicht gleich sein. Es kann aber auch nicht (bei der Annahme eines stumpfen Winkels in C) ein Stück AN von AC gleich MH sein, indem nämlich AC größer wäre, als diese Gerade, denn sonst wären die Winkel an der Verbindungslinie HN (wieder nach Lehrsatz I) gleich, was widersinnig ist, wie vorhin.

Nähme man aber wiederum an (wenn der Winkel im Punkte C spitz ist), daß eine auf der Verlängerung von AC gewählte Gerade AX gleich MH wäre, indem nämlich AC kleiner wäre als diese Gerade, so wären aus demselben Grunde die Winkel an HX gleich, was, ebenso wie vorhin, ganz widersinnig ist.

Dahef bleibt nur übrig, daß bei der Annahme eines stumpfen Winkels im Punkte C die Seite AC kleiner ist als die gegenüberliegende Seite MH, bei der Annahme eines spitzen Winkels aber größer. Was behauptet war.

Zusatz II. Noch viel größer aber ist CH als irgend ein Stück von AM, zum Beispiel als PM, wenn nämlich die Verbindungslinie CP mit CH auf der Seite des Punktes H einen noch spitzeren Winkel 5 und mit PM auf der Seite des Punktes M (wegen I. 16) einen stumpfen Winkel bildet*).

Zusatz III. Alles dies gilt ferner nicht bloß, wenn wir den angenommenen Loten AC und BD eine bestimmte Länge beilegen, sondern auch, wenn sie unendlich klein sind oder als unendlich klein

*) [Dieser Zusatz II des Lehrsatzes III wird später mehrfach benutzt und zwar in der Bedeutung, daß bei jedem Viereck HCPM, bei dem die Winkel in H und M rechte sind, während in C ein spitzer, in P ein stumpfer Winkel vorhanden ist, PM kleiner als CH sein muß. Aus der Fassung des Zusatzes ist das nicht ohne Weiteres klar, aber der Boccius des dritten Teiles läßt sich in der That auf jedes derartige Viereck HCPM anwenden.]
vorausgesetzt werden. Es ist zweckmäßig, sich das bei den folgenden Lehrsätzen zu merken.

Lehrsatz IV. Umgekehrt aber sind (in derselben Figur, wie bei dem vorhergehenden Lehrsatz) die Winkel an der Verbindungslinie CD rechte oder stumpfe oder spitz, je nachdem die Gerade CD gleich der gegenüberliegenden AB ist oder kleiner oder größer.

Beweis. Wenn nämlich die Gerade CD der gegenüberliegenden AB gleich ist, und nichtsdestoweniger die Winkel an ihr stumpf oder spitz sind, so beweisen gerade diese Winkel (nach dem vorhergehenden Lehrsatz), daß sie der Gegenseite AB nicht gleich ist, sondern kleiner oder größer, was gegen die Annahme verstößt.

Dasselbe gilt in gleicher Weise für die übrigen Fälle.

Die Winkel an der Verbindungslinie CD sind demnach sicher rechte oder stumpfe oder spitz, nachdem die Gerade CD der gegenüberliegenden AB gleich ist oder kleiner oder größer. Was zu beweisen war.

Erklärungen. Weil (nach Lehrsatz I) die Verbindungslinien zwischen den Endpunkten gleicher Senkrechten, die auf derselben Geraden errichtet sind (wir werden diese letztere Grundlinie nennen), gleiche Winkel mit diesen Loten bildet, so sind infolgedessen drei Hypothesen je nach der Art dieser Winkel zu unterscheiden. Und zwar werde ich die erste die Hypothese des rechten Winkels nennen, die zweite und die dritte aber die Hypothese des stumpfen Winkels und die Hypothese des spitzen Winkels.

Lehrsatz V. Wenn die Hypothese des rechten Winkels auch nur in einem Falle richtig ist, so ist sie immer in jedem Falle allein die richtige.

Beweis. Die Verbindungslinie CD (Fig. 4) bilde rechte Winkel mit irgend zwei gleichen Senkrechten AC und BD, die auf irgend einer Geraden AB errichtet sind. Dann ist (nach Lehrsatz III) CD gleich AB. Man nehme nun auf den Verlängerungen von AC und BD zwei Stücke CR und DX, die gleich AC und BD sind, und ziehe RX. Dann zeigt man leicht, daß die Verbindungslinie RX gleich AB ist, und die Winkel an ihr rechte sind. Einmal nämlich, indem man das Viereck ABDC, unter Benutzung der gemeinsamen Grundlinie CD, auf das Viereck CDXR legt. Eleganter aber verfährt man so.
Man ziehe AB und RD. Nun sind (nach I. 4) in den Dreiecken ACD und RCD die Grundlinien AD und RD und ebenso die Winkel CDA und CDR sicher gleich. Deshalb sind auch ihre Ergänzungen zu einem Rechten, ADB und RDX, gleich. Mithin ist wiederum (auch nach I. 4) in den Dreiecken ABD und RDX die Grundlinie AB gleich der Grundlinie RX. Folglich sind (nach dem vorhergehenden Lehensatz) die Winkel an der Verbindungslinie RX rechte, und wir kommen daher wieder auf die Hypothese des rechten Winkels*).

Da nun auf diese Weise, während die Grundlinie AB beibehalten wird, die Länge der Senkrechten bis ins Unendliche vermehrt werden kann**), ohne daß die Hypothese des rechten Winkels jedesmal zu bestehen aufhält, so muß noch bewiesen werden, daß diese Hypothese auch im Falle einer beliebigen Verkleinerung derselben Senkrechten immer gültig bleibt. Und das erhärtet man so.

Man nehme auf AR und BX zwei beliebige gleiche Senkrechte AL und BK und ziehe LK. Sind die Winkel an der Verbindungs- linie LK keine rechten, so sind sie doch (nach Lehrsatz I) gleich. Sie sind also auf der einen Seite, etwa auf der von AB, stumpf und auf der von RX spitz, denn die Winkel zu beiden Seiten jedes dieser Punkte sind (nach I. 13) gleich zwei Rechten. Aber auch die auf RX senkrecht stehenden Geraden LR und KX sind sicher einander gleich. Also ist (nach Lehrsatz III) LK größer als die gegenüberliegende Seite RX und kleinere als die gegenüberliegende Seite AB.

Das ist aber widersinnig, denn es ist bewiesen, daß AB und RX gleich sind. Daher bleibt die Hypothese des rechten Winkels, wenn nur die einmal angenommene Grundlinie festgehalten wird, bei beliebiger Verkleinerung der Lote unverändert erhalten.

Aber die Hypothese des rechten Winkels bleibt auch dann unverändert erhalten, wenn man die Grundlinie irgendwie verkleinert oder vergrößert, denn es ist klar, daß man als Grundlinie jede der Senkrechten BK oder BX ansehen darf, und daß man entsprechend AB und die gleiche gegenüberliegende Gerade KL, oder auch XR, als Senkrechte ansehen darf.

Somit steht fest, daß die Hypothese des rechten Winkels, wenn sie auch nur in einem Falle richtig ist, immer in jedem Falle allein die richtige ist. Was zu beweisen war.

*) [Den zweiten Beweis bezeichnet Saccheri als eleganter, weil er streng Euklidisch ist. Aber auch bei ihm muß man eine Umklappung um die Grundlinie CD vornehmen, nämlich ACD auf RCD legen, sodafs die eigentliche Schwierigkeit in Wahrheit bestehen bleibt; vergl. auch die Anmerkung zu Euklid I. 4, S. 8.]

**) [Man beachte, daafs hier die unendliche Länge der geraden Linie als etwas Selbstverständliches hingestellt wird. Vgl. die zweite Anmerkung zu S. 52.]
Saccheri, Euclides ab omni naevo vindicatus.

Lehrsatz VI. Wenn die Hypothese des stumpfen Winkels auch nur in einem Falle richtig ist, so ist sie immer in jedem Falle allein die richtige.

Beweis. Die Verbindungslinie CD (Fig. 5) bilde stumpfe Winkel mit irgend zwei gleichen Senkrechten AC und BD, die auf irgend einer Geraden AB errichtet sind. Dann ist (nach Lehrsatz III) CD kleiner als AB. Man verlängere AC und BD, nehme auf ihnen irgend zwei einander gleiche Stücke CR und DX an und ziehe RX. Jetzt untersuche ich die Winkel an der Verbindungslinie RX, die ja (nach Lehrsatz I) einander gleich sind.

Wenn sie stumpf sind, haben wir unsre Behauptung. Sie sind jedoch auch keine Rechten, weil wir dann einen Fall der Hypothese des rechten Winkels hätten und also (nach dem vorhergehenden Lehrsatz) für die Hypothese des stumpfen Winkels kein Platz übrig bliebe. Sie sind indes auch nicht spitz.

Dann wäre nämlich (nach Lehrsatz III) RX größer als AB und daher noch viel größer als CD. Dafs dies jedoch nicht eintreten kann, zeigt man so. Denkt man sich das Viereck $CDXR$ mit Geraden angefüllt, die von CR und DX gleiche Stücke abschneiden, so zieht dies nach sich, dafs man von der Geraden CD, die kleiner als AB ist, zu der größeren Geraden RX nur durch Vermittelung einer gewissen, AB gleichen Geraden ST übergehen kann*). Dafs hierin aber bei dieser Hypothese ein Widerspruch liegt, geht daraus hervor, dafs man alsdann (nach Lehrsatz IV) einen Fall für die Hypothese des rechten Winkels hätte, der (nach dem vorhergehenden Lehrsatz) für die Hypothese des stumpfen Winkels keinen Platz übrig ließe. Mithin müssen die Winkel an der Verbindungslinie RX stumpf sein.

Nimmt man weiter auf AC und BD selbst gleiche Stücke AL und BK an, so läfst sich in ähnlicher Weise zeigen, dafs die Winkel an der Verbindungslinie LK auf der Seite von AB nicht spitz sein können. Sonst wäre nämlich diese Verbindungslinie größer als AB und daher noch viel größer als CD. Hieraus aber fände man, wie vorhin, eine Zwischenlinie zwischen CD, das kleiner, und LK, das größer als AB ist, eine Zwischenlinie sage ich, die gleich AB ist, und die ließ, wie schon bekannt, für die Hypothese des stumpfen Winkels überhaupt keinen Platz. Endlich können aus demselben

* [Hierbei wird nämlich stillschweigend vorausgesetzt, dafs die Länge der Geraden bei dem Übergange von CD nach RX sich stetig ändert. Die Behauptung ist jedoch, wie Lambert gezeigt hat, von dieser Voraussetzung unabhängig.]
Grunde die Winkel an der Verbindungslinie \(LK\) keine rechten sein. Folglich sind sie stumpf.

Wenn also auf derselben Grundlinie \(AB\) die Senkrechten beliebig vergrößert oder verkleinert werden, so bleibt stets die Hypothese des stumpfen Winkels erhalten.

Dasselbe muß aber auch gezeigt werden, wenn die Grundlinie beliebig angenommen wird. Zur Grundlinie wähle man (Fig. 6) irgend eine der genannten Senkrechten, zum Beispiel \(BX\). Man halbiere \(AB\) und \(RX\) in den Punkten \(M\) und \(H\) und ziehe \(MH\). Dann steht (nach Lehrsatz II) \(MH\) senkrecht auf \(AB\) und auf \(RX\). Nun ist, nach unserer Annahme, der Winkel beim Punkt \(B\) ein rechter, der beim Punkte \(X\), wie schon bewiesen, ein stumpfer. Man mache also den Winkel \(BXP\) auf der Seite von \(MH\) gleich einem Rechten. Dann trifft \(XP\) die Gerade \(MH\) in einem gewissen Punkte \(P\), der zwischen den Punkten \(M\) und \(H\) liegt, denn erstens ist der Winkel \(BXH\) stumpf, und zweitens ist, wenn noch \(XM\) gezogen wird, (nach I. 17) der Winkel \(BXM\) spitz. Weiter aber enthält das Viereck \(XBMP\), wie schon bekannt, drei rechte Winkel und (nach I. 16) im Punkte \(P\) einen stumpfen, denn dieser ist Außenwinkel für den inneren, gegenüberliegenden rechten Winkel an der Ecke \(H\) des Dreiecks \(PHX\). Mithin ist die Seite \(XP\) (nach Zusatz I hinter Lehrsatz III) kleiner als die gegenüberliegende Seite \(BM\). Nimmt man daher auf \(BM\) ein Stück \(BF\) gleich \(XP\) an, so sind (nach Lehrsatz I) die Winkel an der Verbindungslinie \(PF\) einander gleich, und zwar stumpf, da der Winkel \(BFP\) (nach I. 16) stumpf ist wegen des inneren gegenüberliegenden rechten Winkels \(FMP\). Mithin besteht für jede beliebige Grundlinie \(BX\) die Hypothese des stumpfen Winkels.

Es gilt aber, wie vorhin, dieselbe Hypothese auch, wenn unter Beibehaltung der Grundlinie \(BX\) die gleichen Senkrechten beliebig vergrößert oder verkleinert werden. Demnach steht fest, daß die Hypothese des stumpfen Winkels, wenn sie auch nur in einem Falle richtig ist, immer in jedem Falle allein die richtige ist. Was zu beweisen war.

Lehrsatz VII. Wenn die Hypothese des spitzen Winkels auch nur in einem Falle richtig ist, so ist sie immer in jedem Falle allein die richtige.

Der Beweis ist sehr leicht. Wäre nämlich mit der Hypothese des spitzen Winkels auch nur irgend ein Fall einer der beiden Hypo-
thesen des rechten oder des stumpfen Winkels verträglich, so bleibe
(nach den beiden vorhergehenden Lehrsätzen) kein Platz für eben
diese Hypothese des spitzen Winkels, was widersinnig ist. Wenn also
die Hypothese des spitzen Winkels auch nur in einem Falle richtig
ist, so ist sie immer in jedem Falle allein die richtige. Was zu be-
weisen war.

Lehrsatz VIII. Gegeben sei irgend ein Dreieck ABD (Fig. 7), das
in B rechtwinklig ist. Man verlängere DA bis zu einem beliebigen
Punkte X und ziehe durch A, auf AB senkrecht, HAC, wo H
innerhalb des Winkels XAB liege. Ich behaupte, daß der äußere Winkel XAH
gleich dem inneren gegenüberliegenden Winkel ADB oder kleiner oder größer
als dieser ist, nachdem die Hypothese des rechten Winkels oder die des
stumpfen Winkels oder die des spitzen Winkels richtig ist. Und umgekehrt.

Beweis. Man nehme auf HC ein Stück AC gleich BD an und
ziehe CD. Dann ist bei der Hypothese des rechten Winkels (nach
Lehrsatz III) CD gleich AB. Daher ist (nach I. 8)
der Winkel ADB gleich dem Winkel DAC oder
dem (nach I. 15) ebenso großen Winkel XAH.
Was an erster Stelle zu beweisen war.

Weiter ist bei der Hypothese des stumpfen Winkels (wieder nach
Lehrsatz III) CD kleiner
als AB. Daher ist in den Dreiecken ADB und
DAC (nach I. 25) der Winkel DAC oder (sein
Scheitelwinkel) XAH kleiner als der Winkel
ADB. Was an zweiter Stelle zu beweisen war.

Endlich ist bei der Hypothese des spitzen Winkels (wieder nach
Lehrsatz III) CD größer als die Gegenseite AB. Daher ist in den
erwähnten Dreiecken (wieder nach I. 25) der Winkel DAC oder (sein
Scheitelwinkel) XAH größer als der Winkel
ADB. Was an dritter Stelle zu beweisen war.

Ist aber umgekehrt der Winkel CAD oder sein Scheitelwinkel
XAH gleich dem inneren gegenüberliegenden Winkel ADB, so ist
(nach I. 4) die Verbindungslinie CD gleich AB, und deshalb (nach
Lehrsatz IV) die Hypothese des rechten Winkels richtig.

Wenn dagegen der Winkel CAD oder sein Scheitelwinkel XAH
kleiner oder größer ist, als der innere gegenüberliegende Winkel ADB,
so ist (nach I. 24) auch die Verbindungslinie CD kleiner oder größer
als AB, und deshalb ist (nach Lehrtatsatz IV) jenachdem die Hypo-
these des stumpfen oder die des spitzen Winkels richtig. Und das
ist alles, was zu beweisen war.
Lehrsatz IX. In jedem rechtwinkligen Dreieck sind die beiden übrigen spitzen Winkel zusammengenommen gleich einem Rechten bei der Hypothese des rechten Winkels, größer als ein Rechter bei der Hypothese des stumpfen Winkels und kleiner als ein Rechter bei der Hypothese des spitzen Winkels*).

Ferner aber, ist der Winkel XAH (versteht sich, bei der Hypothese des stumpfen Winkels, nach dem vorhergehenden Lehrsatz) kleiner als der Winkel ADB, so ergiebt der Winkel ADB zusammen mit dem Winkel HAD mehr als zwei Rechte, da der Winkel XAH (wieder nach I. 13) mit diesem zusammen zwei Rechte ergiebt. Also bleibt, wenn man den rechten Winkel HAB wegnimmt, die Summe der Winkel ADB und BAD größer als ein Rechter. Das war das Zweise.

Endlich, ist der Winkel XAH (versteht sich, bei der Hypothese des spitzen Winkels, nach dem vorhergehenden Lehrsatz) größer als der Winkel ADB, so ergiebt der Winkel ADB zusammen mit dem Winkel HAD weniger als zwei Rechte, da der Winkel XAH (abermals nach I. 13) mit diesem zusammen zwei Rechte ergiebt. Also bleibt, wenn man den rechten Winkel HAB wegnimmt, die Summe der Winkel ADB und BAD kleiner als ein Rechter. Das war das Dritte.

Lehrsatz X. Steht die Gerade DB (Fig. 8) senkrecht auf irgend einer Geraden ABM, und ist die Verbindungslinie DM größer als die Verbindungslinie DA, so ist auch die Grundlinie BM größer als die Grundlinie BA, und umgekehrt.

Beweis. Zunächst sind diese Grundlinien nicht einander gleich, denn sonst wären (nach I. 4), gegen die Voraussetzung, auch AD und DM einander gleich. Es ist aber auch BA nicht größer als BM.

*) [Saccheri sagt „die beiden übrigen spitzen Winkel", indem er I. 17 benutzt, wonach die Summe zweier Dreieckswinkel stets kleiner als zwei Rechte ist. Lässt man aber die Hypothese des stumpfen Winkels zu, so gilt der Satz I. 17 nicht mehr, denn er ist ja eine unmittelbare Folge des Satzes I. 16 über den Außenwinkel. In der That beweist Saccheri später, in Lehrsatz XIV, das die Hypothese des stumpfen Winkels sich selbst zerstört, indem sie auf einen Widerspruch gegen I. 17 führt. Vergl. auch die zweite Anmerkung auf S. 52.]
Sonst wären nämlich, wenn man auf BA ein Stück BS gleich BM annähme und SD zöge, (wieder nach I. 4) die Winkel BSD und BMD gleich. Nun ist (nach I. 16) der Winkel BSD größer als der Winkel BAD. Es wäre also auch der Winkel BMD größer als dieser. Das verstößt aber gegen I. 18, da nach der Voraussetzung in dem Dreieck MDA die Seite DM größer ist als die Seite DA. Es bleibt also nur übrig, da die Grundlinie BM größer ist als die Grundlinie BA. Das war an erster Stelle zu beweisen.

Mithin ist die Behauptung durchaus richtig.

Lehrsatz XI. Eine Gerade AP (von beliebiger Länge) schneide zwei Gerade PL und AD (Fig. 9), und zwar die erste in P unter einem rechten Winkel, die zweite aber in A unter einem beliebigen spitzen Winkel, der sich nach der Seite von PL hin öffnet. Ich behaupte, daβ (bei der Hypothese des rechten Winkels) die Geraden AD und PL in einem gewissen Punkte, und zwar in endlicher oder begrenzter Entfernung, schließlich zusammen treffen werden, wenn man sie nach der Seite ver-
längert, wo sie mit der Grundlinie AP zwei Winkel bilden, die zusammen kleiner sind als zwei Rechte.

Zunächst kann DM nicht größer als DF sein. Sonst wäre nämlich (nach I. 18) der Winkel DMF kleiner als der Winkel DFM oder als der diesem gleiche Winkel XAH (nach Lehrsatz VIII, im Fall der Hypothese des rechten Winkels) oder als sein Scheitelwinkel CAD. Mithin wäre (da der Voraussetzung nach die Winkel CAM und FMA gleichen, nämlich rechte) der übrig bleibende Winkel DMA größer als der übrig bleibende Winkel DAM. Das ist aber widersinnig (gegen I. 18), weil ja DM größer als DF oder DA angenommen ist.

Es ist aber auch DM nicht kleiner als DF. Sonst wäre nämlich (auch nach I. 18) der Winkel DMF größer als der Winkel DFM oder als der ihm gleiche Winkel XAH (nach dem erwähnten Lehrsatz VIII, im Fall der Hypothese des rechten Winkels) oder als sein Scheitelwinkel CAD. Mithin wäre wiederum, wie vorhin, der übrig bleibende Winkel DMA nicht größer sondern kleiner als der übrig bleibende Winkel DAM. Das ist aber widersinnig (auch gegen I. 18), weil ja DM kleiner als DF oder DA angenommen wurde.

Da somit (wenn man auf der Verlängerung von AD die Strecke AF doppelt so groß als AD nimmt) das auf die Grundlinie AP gefällte Lot FM von AP nach P hin eine Grundlinie AM abschneidet, doppelt so groß als die Grundlinie AB, welche das von D aus gefällte Lot abschneidet, so ist klar, daß diese Verdoppelung der vorhergehenden Strecke so oft geschehen kann, daß man auf diese Art zu einem Punkte T in der Verlängerung von AD gelangt, bei welchem das von ihm auf die Verlängerung von AP gefällte Lot eine Grundlinie AR abschneidet, die größer ist als das beliebige, endliche AP.

I. Buch, I. Teil. — Lehrsatz X, XI. 61
Dies kann jedoch sicher nicht eintreten, wenn nicht vorher die Verlängerung von AD einen gewissen Punkt L von PL getroffen hat.

Wenn nämlich der Punkt T vor jenem Zusammentreffen läge, so müßte das Lot TR dieselbe Gerade PL in einem Punkte K schneiden. Dann aber befinden sich bei dem Dreieck KPR in den Ecken P und R zwei rechte Winkel, was gegen I. 17 verstößt.

Demnach steht fest, daß die beiden Geraden AD und PL (im Fall der Hypothese des rechten Winkels) einander in einem Punkte treffen werden (und zwar in einem endlichen oder begrenzten Abstande), wenn sie nach der Seite hin verlängert werden, auf der sie mit der Grundlinie AP (von beliebiger, endlicher Länge) zwei Winkel bilden, die zusammen kleiner sind als zwei Rechte. Was zu beweisen war.

15 **Lehrsatz XII.** Wiederum behaupte ich, daß auch bei der Hypothese des stumpfen Winkels die Gerade AD irgendwo auf jener Seite die Gerade PL treffen wird (und zwar in einem endlichen oder begrenzten Abstande)*).

Beweis. Ist nämlich, wie bei dem vorhergehenden Lehrsatz, DF gleich AD gemacht [Fig. 10] und sind die schon bekannten Lote gefällt, so muß ich zeigen, daß die Verbindungslinie DM größer ist als DF oder DA, und daß mithin (nach Lehrsatz X) BM größer ist als AB.

*) [Dieser Satz ist richtig, während der folgende Beweis beanstandet werden muß, da in ihm der Satz vom Außenwinkel (I. 16) verwendet wird, der bei der Hypothese des stumpfen Winkels seine Gültigkeit verliert.]
Es ist aber DM auch nicht kleiner als DF oder DA. Sonst wäre nämlich (nach I. 18) der Winkel DMF größer als der Winkel DFM und mithin (bei der gegenwärtigen Hypothese des stumpfen Winkels) noch viel größer als der äußere Winkel XAH oder sein Scheitelwinkel CAD. Mithin wäre wieder, wie vorhin, der übrigbleibende Winkel DMA viel kleiner als der übrigbleibende Winkel DAM. Das verstößt aber wieder gegen I. 18, weil ja DM kleiner sein sollte als DF oder DA.

Es bleibt also nur übrig, daß die Verbindungslinie DM größer ist als DF oder DA, und daß daher (nach Lehrrats X) BM größer ist als AB. Darauf aber kam es hier an.

Da mithin, wenn man in der Verlängerung von AD eine Strecke AE doppelt so groß als die Strecke AD nimmt, das auf die Grundlinie AP gefällte Lot FM von dieser mehr als doppelt so viel abschneidet, als das von D auf sie gefällte Lot, so kommt man bei der 16 Hypothese des stumpfen Winkels noch bei Weitem schneller als vorhin bei der Hypothese des rechten Winkels zu einer so großen Strecke, daß das von ihrem Endpunkte aus gefällte Lot eine Grundlinie abschneidet, die größer ist als die beliebig große, gegebene AP. Das kann aber, wie bei dem vorhergehenden Lehrrats, nicht eintreten, wenn nicht vorher die Verlängerung von AD einen gewissen Punkt von PL, und zwar in einer endlichen oder begrenzten Entfernung getroffen hat. Was zu beweisen war.

Lehrsatz XIII. Wenn eine Gerade XA (von beliebig großer gegebener Länge) die beiden Geraden AD und XL schneidet und mit ihnen auf derselben Seite (Fig. 11) innere Winkel XAD und AXL bildet, die zusammen kleiner als zwei Rechte sind, so behaupte ich, daß diese beiden Geraden (auch wenn keiner von jenen beiden Winkeln ein Rechter ist) endlich in einem Punkte auf der Seite jener Winkel zusammen treffen werden, und zwar in einem endlichen oder begrenzten Abstande, sobald eine der beiden Hypothesen entweder die des rechten oder die des stumpfen Winkels besteht*).

Beweis. Einer der genannten Winkel, zum Beispiel AXL, wird spitz sein. Wenn man daher vom Scheitelpunkt des andern Winkels auf XL das Lot AP fällt, so liegt es (wegen I. 17) stets im Innern

*) [Auch hier gilt, was bereits in der Anmerkung zu Lehrrats XII gesagt worden ist.]
des spitzen Winkels AXL. Da nun in dem Dreieck APX, das bei P rechtwinklig ist, die beiden spitzen Winkel PAX und PXA (nach Lehrsatz IX) zusammengenommen nicht kleiner sind als ein Rechter, sowohl bei der Hypothese des rechten als bei der des stumpfen Winkels, so wird, wenn man diese beiden Winkel von der Summe der vorgelegten abzieht, der übrig bleibende Winkel PAD kleiner als ein Rechter sein. Mithin sind wir im Falle der beiden vorhergehenden Lehrsätze, da ja eine von beiden Hypothesen, entweder die des rechten Winkels oder die des stumpfen Winkels besteht. Demnach werden (nach denselben Lehrsätzen) die Geraden AD und PL oder XL in einem Punkte von endlichem oder begrenztem Abstande auf der bekannten Seite zusammentreffen, sowohl bei der einen als auch bei der andern der vorhin erwähnten Hypothesen. Was zu beweisen war.

Anmerkung I. Hier möge ein beachtenswerter Unterschied gegenüber der Hypothese des spitzen Winkels angemerkt werden. Denn bei dieser könnte man das Zusammentreffen derartiger Geraden nicht allgemein beweisen, so oft nämlich eine Gerade, die zwei andere schneidet, auf einer Seite zwei innere Winkel bildet, die zusammen kleiner sind als zwei Rechte. Man könnte es, sage ich, nicht einmal dann direkt beweisen, wenn man bei dieser Hypothese das erwähnte Zusammentreffen allgemein zuließe, sobald einer der zwei Winkel ein Rechter ist. Denn selbst, wenn die Gerade AD [Fig. 11] auch ihrerseits auf AP senkrecht wäre, ein Fall, in dem sie wegen I. 17 sicher mit dem andern Lote PL nicht zusammentreffen könnte, so wäre trotzdem die Summe der beiden Winkel DAX und PXA, gemäß der erwähnten Hypothese, kleiner als zwei Rechte, da bei dieser (nach Lehrsatz IX) die Winkel PAX und PXA zusammen kleiner als ein Rechter sind*). Das zu bemerken war aber von Wichtigkeit.

Wie man aber die Hypothese des spitzen Winkels zerstören kann, indem man blofs das Zusammentreffen allgemein zuläßt, so lange einer der beiden Winkel ein Rechter ist, und überdies die gegebene schneidende Gerade [PA] eine beliebig kleine Länge hat, das werde ich hinter den drei folgenden Lehrsätzen zeigen.

Anmerkung II**). Mit Fleifs habe ich bei den drei soeben auf-

*) [Man hätte also einen Fall, bei dem die beiden Geraden AD und XL nicht zusammentreffen, obwohl die Summe der inneren Winkel LXA und XAD kleiner als zwei Rechte ist.]

**) [Der Sinn der folgenden Ausführungen ist der: Sind zwei Winkel gegeben, die zusammen weniger als zwei Rechte betragen, so ist es stets möglich,
gestellten Theoremen die Bedingung hinzugefügt, daß die schneidende Gerade AP oder XA von beliebig großer, gegebener Länge sein soll. Handelt es sich nämlich, ohne jedes bestimmte Maß der einfallenden Geraden, darum, genau darzulegen und zu beweisen, daß es zwei Gerade gibt, die in der Spitze eines Dreiecks zusammentreffen, dessen 18 Winkel an der Grundlinie gegeben sind (und zwar zusammen kleiner als zwei Rechte, zum Beispiel sei einer gleich einem Rechten und der andere weiche nur um zwei Grad oder, wenn man will, noch weniger von einem Rechten ab), dann kann jeder, der einige Erfahrung in der Geometrie besitzt, sofort die Sache darlegen und beweisen.

Gesetzt nämlich, es sei (Fig. 12*) ein Winkel BAP gegeben, zum Beispiel von 88 Grad. Fällt man dann (nach I. 12) von irgend einem Punkte B der Geraden AB das Lot BP auf die Grundlinie AP, so wird augenscheinlich durch das Dreieck ABP das gewünschte Zusammentreffen im Punkte B dargelegt und bewiesen.

Fordert man nun, daß auch der andere Winkel an der Grundlinie kleiner als ein Rechter sei, zum Beispiel 84 Grad, wie ihn der gegebene Winkel K darstellen mag**), so kann man (nach I. 23) auf

Dreiecke zu konstruieren, in denen diese gegebenen Winkel vorkommen. Wählt man daher die Dreiecksseite, der sie anliegen, zur Grundlinie AX, so hat man für diese Winkel das gewünschte Zusammentreffen. Es bleibt jedoch unentschieden, ob man auf diese Art auch zu jeder gegebenen Grundlinie AX gelangen, was doch zum vollständigen Beweise des Euklidischen Axioms erforderlich wäre.

*) [Saccheri benutzt in vielen Figuren denselben Buchstaben, hier X, zur Bezeichnung verschiedener Punkte, die jedoch in gewisser Beziehung mit einander gleichberechtigt sind.

Die so bequeme Methode der Indices, die bereits am Ende des siebzehnten Jahrhunderts von Leibniz vorgeschlagen worden war, ist erst in diesem Jahrhundert ein Gemeingut der Mathematiker geworden.]

**) [Daß der Winkel K in Fig. 12 statt 84 Grad etwa 30 Grad beträgt, ebenso wie nachher der Winkel K statt 91 Grad etwa 120 Grad, das stört Saccheri nicht, der, wie später noch augenfällig werden wird, seine Zeichnungen immer nur als schematisch betrachtet haben muß; man vergleiche in dieser Beziehung etwa noch die rechten Winkel in Fig. 19, S. 74.

Wir haben uns nicht für befugt gehalten, Zeichnung und Text in Übereinstimmung zu bringen und geben hier wie überall die Figuren in ihrer ursprünglichen Gestalt.]

Stäckel u. Engel, Parallellentheorie.
der Seite der Geraden AB einen ebenso großen Winkel APD an-
tragen, und dann wird AB von PD in einem Zwischenpunkte D ge-
tragen. Man hat also wieder einen Beweis für das gewünschte
Zusammentreffen im Punkte D.

Fordert man endlich, daß der eine Winkel stumpf, aber kleiner
as 92 Grad ist, damit ihn der andere gegebene Winkel BAP nicht
zu zwei Rechten ergänzt, so möge er durch einen Winkel R von
91 Grad dargestellt werden. Zu zeigen ist, daß es auf AP einen
solchen Punkt X gibt, daß die Verbindungslinie BX einen Winkel
BXA bildet, der gleich dem gegebenen Winkel R von 91 Grad ist,
sodass man also bei einer gewissen schneidenden Geraden AX das
gewünschte Zusammentreffen in dem genannten Punkte B hat. Man
verfährt dann so.

Da ja (wenn man PA bis zu irgend einem Punkte H verlängert)
der äußere Winkel BAH (wegen I. 13) gleich 92 Grad ist, wenn der
gegebene innere Winkel BAP 88 Grad beträgt, und da er wiederum,
wegen I. 16, nicht nur größer ist als der rechte Winkel BPA,
sondern auch größer als alle die, ebendeshalb stumpfen Winkel BXA,
wo der Punkt X beliebig innerhalb PA angenommen wird, und da, auch
wegen I. 16, diese Winkel um so größer sind, je näher der Punkt X
an dem Punkte A angenommen wird, so folgt augenscheinlich, daß
zwischen den beiden Winkeln, dem einen von 90 Grad im Punkte P
und dem andern von 92 Grad im Punkte A ein Winkel BXA ge-
funden werden kann, der 91 Grad beträgt und also dem gegebenen
Winkel R gleich ist$^*\)$.

Nichtsdestoweniger muß man, abgesehen von dieser letzten Be-
merkung über den stumpfen Winkel, sorgfältig beachten, daß die
Schwierigkeit bei jenem Axiom des Euklid darin besteht, daß es das
Zusammentreffen zweier Geraden fordert, und zwar stets nach der
Seite, auf welcher sie mit der schneidenden Geraden zwei Winkel
bilden, die zusammen kleiner sind als zwei Rechte, und daß es das
genannte Zusammentreffen auch dann fordert, wenn die Länge der
gegebenen schneidenden Geraden beliebig groß ist.

Übrigens werde ich (worauf ich schon in der vorhergehenden An-
merkung aufmerksam machte) jenes Zusammentreffen allgemein be-
weisen**, sobald nur das Zusammentreffen für den Fall zugelassen wird,
ßs einer der Winkel ein rechter [und der andere irgend ein be-
liebiger spitzer Winkel] ist, und zwar selbst dann, wenn es nicht für

$^*)$ [Saccheri setzt dabei voraus, daß sich der Winkel BXA stetig ändert,
wenn der Punkt X von A nach P wandert. Vergl. auch die Anmerkung S. 56.]

**) [Nämlich in Lehrsatz XVII und in Anmerkung I dazu.]
I. Buch, I. Teil. — Anmerkung II zu Lehrrsatz XIII. Lehrrsatz XIV, XV. 67
die beliebige angebbare endliche schneidende Gerade zugelassen wird, sondern nur innerhalb der Grenzen irgend einer gegebenen, sehr kleinen schneidenden Geraden.

Lehrrsatz XIV. Die Hypothese des stumpfen Winkels ist ganz und gar falsch, weil sie sich selbst zerstört.

Beweis. Indem wir die Hypothese des stumpfen Winkels als richtig annahmen, haben wir daraus bereits die Wahrheit jenes Euklidischen Axioms hergeleitet, daß zwei Gerade einander in einem Punkte auf der Seite treffen werden, auf welcher eine beliebige sie schneidende Gerade irgend zwei innere Winkel bildet, die zusammen kleiner als zwei Rechte sind. Steht aber dieses Axiom fest, auf das sich Euklid nach dem achfundzwanzigsten Satze seines ersten Buches stützt, dann ist allen Geometern klar, daß allein die Hypothese des rechten Winkels richtig ist, und daß für die Hypothese des stumpfen Winkels kein Platz übrig bleibt. Mithin ist die Hypothese des stumpfen Winkels ganz und gar falsch, weil sie sich selbst zerstört. Was zu beweisen war.

Anders und unmittelbarer. Da wir (in Lehrrsatz IX) auf Grund der Hypothese des stumpfen Winkels bewiesen haben, daß die beiden spitzen Winkel (Fig. 11) eines Dreiecks APX, das in P rechtwinklig ist, zusammen größer als ein Rechter sind, so kann man augenscheinlich einen spitzen Winkel PAD so annehmen, daß er mit den genannten beiden spitzen Winkeln zwei Rechte ausmacht. Dann aber müßte die Gerade AD (nach dem vorhergehenden Lehrrsatz, im Fall der Hypothese des stumpfen Winkels) schließlich mit PL oder XL zusammentreffen, wenn man AP als die schneidende oder treffende Gerade ansieht. Das verstößt aber augenscheinlich gegen I. 17, wenn man AX als die schneidende oder treffende Gerade ansieht.

Lehrrsatz XV. Durch irgend ein Dreieck ABC, dessen drei Winkel (Fig. 13) zusammen gleich zwei Rechten oder größer oder kleiner sind, wird der Reihe nach die Hypothese des rechten Winkels oder die des stumpfen Winkels oder die des spitzen Winkels bedingt*).

*) [Auch für den Beweis dieses Satzes gilt das in den Anmerkungen auf S. 59 und 62 Gesagte.]

Nimmt man also an, daß die drei Winkel des Dreiecks ABC zusammen gleich zwei Rechten sind, so sind augenscheinlich alle Winkel der Dreiecke ABD und CDB zusammen gleich vier Rechten, da ja die beiden rechten Winkel bei dem Punkte D hinzugekommen sind. Nunmehr wird bei keinem der eben erwähnten Dreiecke, etwa bei ABD, die Winkelsumme kleiner oder größer als zwei Rechte sein, denn alsdann wären dementsprechend die Winkel des andern Dreiecks zusammen größer oder kleiner als zwei Rechte, und infolgedessen würde (nach Lehrsatz IX) durch das eine Dreieck die Hypothese des spitzen Winkels, durch das andre die Hypothese des stumpfen Winkels bedingt, was den Lehrsätzen VI und VII widerstreitet. Also sind bei jedem der genannten beiden Dreiecke die drei Winkel zusammen gleich zwei Rechten, und dadurch wird (nach Lehrsatz IX) die Hypothese des rechten Winkels bedingt. Was an erster Stelle zu beweisen war.

Nimmt man aber an, daß die drei Winkel des vorgelegten Dreiecks ABC zusammen größer als zwei Rechte sind, so werden die Winkel der beiden Dreiecke ABD und CDB alle zusammen größer als vier Rechte, weil ja die beiden rechten Winkel beim Punkte D hinzugekommen sind. Demnach werden bei keinem der eben genannten Dreiecke die drei Winkel zusammen genau gleich zwei Rechten sein oder kleiner, denn alsdann wären dementsprechend die drei Winkel des anderen Dreiecks zusammen größer als zwei Rechte, es würde also (nach Lehrsatz IX) durch das eine Dreieck die Hypothese des rechten Winkels oder die des spitzen Winkels, durch das andere die Hypothese des stumpfen Winkels bedingt, was den Lehrsätzen V, VI und VII widerstreitet. Also sind bei jedem der genannten beiden Dreiecke die drei Winkel zusammen größer als zwei Rechte und dadurch wird (nach Lehrsatz IX) die Hypothese des stumpfen Winkels bedingt. Was an zweiter Stelle zu beweisen war.

Nimmt man aber endlich an, daß die drei Winkel des vorgelegten Dreiecks ABC zusammen kleiner als zwei Rechte sind, so werden die Winkel der beiden Dreiecke ABD und CDB alle zusammen kleiner als vier Rechte, weil ja die beiden rechten Winkel beim Punkte D hinzu-
gekommen sind. Demnach werden bei keinem der eben genannten Dreiecke die drei Winkel zusammen genau gleich zwei Rechten oder größer sein, denn alsdann wären dementsprechend die drei Winkel des andern Dreiecks zusammen kleiner als zwei Rechte, es würde also nach Lehrsatze XV durch das eine Dreieck die Hypothese des rechten Winkels oder die des stumpfen Winkels, durch das andere die Hypothese des spitzen Winkels bedingt, was den Lehrsätzen V, VI und VII widerspricht. Also sind bei jedem der genannten beiden Dreiecke die drei Winkel zusammen kleiner als zwei Rechte, und dadurch wird (nach Lehrsatze IX) die Hypothese des spitzen Winkels bedingt. Was an dritter Stelle zu beweisen war.

Mithin wird durch ein beliebiges Dreieck \(ABC\), dessen drei Winkel zusammen gleich zwei Rechten oder größer oder kleiner sind, der Reihe nach die Hypothese des rechten Winkels, die des stumpfen Winkels oder die des spitzen Winkels bedingt. Was behauptet wurde.

Zusatz. Verlängert man also irgend eine Seite eines beliebig vorgelegten Dreiecks, zum Beispiel \(AB\) bis \(H\) [Fig. 13], so ist (nach I. 18) der Außenwinkel \(HBC\) entweder gleich der Summe der beiden übrigen inneren, gegenüberliegenden Winkel bei den Ecken \(A\) und \(C\), oder kleiner oder größer als diese, nachdem die Hypothese des rechten Winkels oder die des stumpfen Winkels oder die des spitzen Winkels richtig ist, und umgekehrt.

Lehrsatz XVI. Durch jedes Viereck \(ABCD\), dessen vier Winkel zusammen gleich vier Rechten oder größer oder kleiner sind, wird der Reihe nach die Hypothese des rechten Winkels, die des stumpfen Winkels oder die des spitzen Winkels bedingt.

Beweis. Zieht man \(AC\), so sind (Fig. 14) die drei Winkel des Dreiecks \(ABC\) zusammen nicht gleich zwei Rechten oder größer oder kleiner, ohne daß auch die drei Winkel des Dreiecks \(ADC\) zusammen gleich zwei Rechten oder größer oder kleiner sind, denn sonst würde (nach dem vorhergehenden Lehrsatze) durch eines dieser Dreiecke eine Hypothese, durch das andere eine andere bedingt, entgegen den Lehrsätzen V, VI und VII.

Wenn demnach die vier Winkel des vorgelegten Vierecks zusammen gleich vier Rechten sind, so betragen augenscheinlich in jedem der eben genannten Dreiecke die drei Winkel zusammen zwei Rechte, und dadurch wird (nach dem vorhergehenden Lehrsatze) die Hypothese des rechten Winkels bedingt.
Wenn aber die vier Winkel desselben Vierecks zusammen größer oder kleiner als vier Rechte sind, so müssen in ähnlicher Weise die drei Winkel jedes jener Dreiecke zusammen beziehungsweise entweder gleichzeitig größer oder gleichzeitig kleiner als zwei Rechte sein. Deshalb wird (nach dem vorhergehenden Lehrensatz) durch diese Dreiecke beziehungsweise die Hypothese des stumpfen Winkels oder die Hypothese des spitzen Winkels bedingt.

Somit wird durch jedes Viereck, dessen vier Winkel zusammen gleich vier Rechten oder größer oder kleiner sind, der Reihe nach die Hypothese des rechten Winkels, die des stumpfen Winkels oder die des spitzen Winkels bedingt. Was zu beweisen war.

Zusatz. Verlängert man also irgend zwei Gegenseiten eines vorgelegten Vierecks [Fig. 14] nach derselben Seite, etwa AD bis H und BC bis M, so ist (nach I. 13) die Summe der beiden Außenwinkel HDC und MCD entweder gleich der Summe der beiden inneren, gegenüberliegenden Winkel bei den Ecken A und B, oder kleiner oder größer, je nachdem die Hypothese des rechten Winkels oder die des spitzen Winkels oder die des stumpfen Winkels richtig ist.

Lehrsatz XVII. Wenn auf einer beliebig kleinen Geraden AB (Fig. 15) die Gerade AH senkrecht steht, so behaupte ich, daß bei der Hypothese des spitzen Winkels nicht jede Gerade BD, die mit AB auf der Seite von AH einen beliebigen spitzen Winkel bildet, die Verlängerung von AH schließlich in einer endlichen oder begrenzten Entfernung trifft.

Da also die Seite HB im Dreieck HDB dem rechten Winkel bei D gegenüberliegt und ebenso im Dreieck BAH dem rechten Winkel bei A, und da wiederum in diesen beiden Dreiecken an derselben Seite HB gleiche Winkel liegen, namentlich im ersten Dreieck der Winkel BHD und im zweiten der Winkel HBA, so ist (nach I. 26) auch der letzte Winkel HBD im ersten Dreieck gleich dem letzten Winkel BHA im zweiten
Dreieck. Deshalb ist der ganze Winkel DBA gleich dem ganzen Winkel AHD.

Nun sind aber die genannten gleichen Winkel nicht beide stumpf, denn sonst gerieten wir (nach dem vorhergehenden Lehrsatze) auf einen Fall der schon widerlegten Hypothese des stumpfen Winkels. Sie sind aber auch nicht rechte, denn sonst gerieten wir (wieder nach dem vorhergehenden Lehrsatze) auf einen Fall der Hypothese des rechten Winkels, die (nach Lehrsatz V) für die Hypothese des spitzen Winkels keinen Raum ließe. Daher sind beide Winkel spitz.

Nunmehr beweist man folgendermassen, dass die Verlängerung der Geraden BD mit der Verlängerung der Geraden AH nach derselben Seite hin nicht in einem Punkte K zusammentreffen kann.

Anmerkung I. Das ist es gerade, was ich in den Anmerkungen
hinter dem Lehrrsatze XIII versprochen hatte, daß nämlich die Hypothese des spitzen Winkels (die nunmehr allein der allgemeinen Gültigkeit jenes Euklidischen Axioms im Wege sein kann) hinfällig wird, sobald man nur allgemein zuläßt, daß zwei Gerade auf der Seite zusammen-treffen müssen, auf der irgend eine sie schneidende Gerade, die beliebig klein sein darf, zwei innere Winkel bildet, die zusammen kleiner sind als zwei Rechte, und zwar auch dann noch, wenn verlangt wird, daß der eine der beiden Winkel ein Rechter sei.

Lehrrsatz XVIII. Durch jedes beliebige Dreieck ABC, dessen Winkel beim Punkte B (Fig. 17) in irgend einem Halbkreise mit AC als Durchmesser liegt, wird der Reihe nach die Hypothese des rechten Winkels oder die des stumpfen Winkels oder die des spitzen Winkels bedingt, je-nachdem der Winkel beim Punkte B ein rechter oder stumpfer oder spitzer ist.

Lehrrsatz XIX. Irgend ein Dreieck AH D (Fig. 18) sei in H recht-winklig. Auf der Verlängerung von AD werde das Stück DC gleich AD
I. Buch, I. Teil. — Anmerkung I u. II zu Lehrsatz XVII. Lehrsatz XVIII—XX. 73

angenommen, und auf die Verlängerung von AH das Lot CB gefällt. Ich behaupte, daß hierdurch der Reihe nach die Hypothese des rechten Winkels, die des stumpfen oder die des spitzen Winkels bedingt wird, jenachdem das Stück HB gleich AH oder größer oder kleiner ist.

Beweis. Die Verbindungslinie DB wird nämlich (nach I. 4 und nach Lehrsatz X) gleich AD oder größer oder kleiner als AD oder DC sein, jenachdem jenes Stück HB gleich AH oder größer oder kleiner ist.

Es sei nun erstens HB gleich AH, sodass also die Verbindungslinie DB gleich AD oder DC wird. Dann geht der Umfang des Kreises, der um D als Mittelpunkt mit dem Halbmesser DB beschrieben wird, sicher durch die Punkte A und C. Demnach liegt der Winkel ABC, welcher der Voraussetzung nach ein Rechter ist, in diesem Halbkreise, dessen Durchmesser AC ist, und hierdurch wird (nach dem vorhergehenden Lehrsatz) die Hypothese des rechten Winkels bedingt. Was an erster Stelle zu beweisen war.

Es sei zweitens HB größer als AH, sodass also die Verbindungslinie DB größer als AD oder DC ist. Dann wird der Umfang des Kreises, der um D als Mittelpunkt mit dem Halbmesser DA oder DC beschrieben wird, DB sicher in einem gewissen Zwischenpunkt K treffen. Demnach ist, wenn man AK und CK zieht, der Winkel AKC stumpf, denn er ist (nach I. 21) größer als der Winkel ABC, welcher, der Voraussetzung nach, ein Rechter ist, und hierdurch wird (nach dem vorhergehenden Lehrsatz) die Hypothese des stumpfen Winkels bedingt. Was an zweiter Stelle zu beweisen war.

Mithin ist die ganze Behauptung richtig.

Lehrsatz XX. Das Dreieck ACM (Fig. 19) sei in C rechtwinklig. Wird dann vom Halbierungspunkte B der Geraden AM auf AC das
Lot BD gefällt, so behaupte ich, daß dieses Lot (bei der Hypothese des spitzten Winkels) nicht größer ist, als die Hälfte des Lotes MC.

Beweis. Man mache nämlich die Verlängerung DH von DB doppelt so groß als DB selbst. Dann wäre (wenn DB größer als die genannte Hälfte wäre) DH größer als CM und deshalb gleich einer gewissen Verlängerung CMK. Man ziehe nun AH, HK, HM, MD und verfahren so:

Lehrsatz XXI. Denkt man sich, unter denselben Voraussetzungen, AM und AC ins Unendliche verlängert, so behaupte ich, daß ihr Abstand (sowohl bei der Hypothese des rechten als auch bei der des spitzten Winkels) größer wird als jede beliebige, angebbarer endliche Länge.

Beweis. Auf der Verlängerung von AM nehme man AP doppelt so groß an als AM und falle auf die Verlängerung von AC das Lot PN. Bei jeder der beiden genannten Hypothesen ist (nach dem vorhergehenden Lehrsätze) das Lot MC nicht größer als die Hälfte des Lotes PN. Daher ist PN wenigstens doppelt so groß als MC, ebenso wie MC wenigstens doppelt so groß als BD ist.

So verhält es sich nun stets, wenn auf der Verlängerung von AM das Doppelte von AP genommen und von dem Endpunkte das Lot

*) [Mit Absicht sagt Saccheri: nicht größer, weil der Satz in dieser Fassung auch für die Hypothese des rechten Winkels gilt.]

Zusatz. Da die Hypothese des stumpfen Winkels, die allein hier hinderlich sein könnte, bereits als ganz und gar falsch erwiesen ist, so folgt nunmehr die unbedingte Richtigkeit des Satzes, daß der gegenseitige Abstand der genannten Geraden, sobald sie ins Unendliche verlängert werden, größer als jede beliebige, endliche angebbare Länge wird.

Anmerkung I, worin der Versuch des Proklos geprüft wird.

Nachdem ich bis jetzt einige Theoreme ganz unabhängig von dem Euklidischen Axiom bewiesen habe, zu dessen durchaus strengem Beweise sie alle dienen sollen, glaube ich gut zu thun, wenn ich nunmehr die Bemühungen einiger bekannter Geometer, die nach denselben Ziele gestrebt haben, sorgfältig prüfe.

Ich beginne mit Proklos, von dem sich bei Clavius hinter dem 30 Satze 28 des ersten Buches folgende Behauptung findet:

Gehen von einem Punkte zwei Gerade aus, die einen Winkel mit einander bilden, so wird ihr Abstand, wenn sie ins Unendliche verlängert werden, jede endliche Größe überschreiten.

Proklos beweist nun (wie Clavius dort sehr gut bemerkt) zwar, daß zwei Gerade wie AH und AD (Fig. 20), die sich von denselben Punkte A nach derselben Seite erstrecken, um so mehr von einander abstehen, je größer der Abstand vom Punkte A wird, nicht aber auch, daß dieser Abstand über jede endliche angebbare Grenze wächst, wie es doch für seinen Zweck erforderlich wäre.

An dieser Stelle führt der eben erwähnte Clavius das Beispiel der Conchoide des Nikomedes an. Wenn sich diese nämlich von dem Punkte A aus nach derselben Seite erstreckt, wie die Gerade AH, so entfernt sie sich zwar von dieser immer mehr, jedoch so, daß ihr Abstand erst bei unendlicher Verlängerung beider gleich einer gewissen endlichen Geraden AB wird, die senkrecht steht auf den nach derselben Seite ins Unendliche verlängerten Geraden AH und BC. Warum könnte man also nicht, außer wenn ein besonderer Grund das Gegenteil fordert, von den beiden angenommenen Geraden AH und AD dasselbe behaupten?
Saccheri, Euclides ab omni naevo vindicatus.

Man darf übrigens den Clavius nicht tadeln, daß er dem Proklos diese Eigenschaft der Conchoide entgegenhält, die nur mit Hilfe mehrerer, auf dem hier strittigen Axiom beruhender Theoreme bewiesen werden kann. Denn ich behaupte, daß gerade hierdurch die Kraft der Widerlegung des Clavius verstärkt wird. Nimmt man nämlich dieses Axiom als richtig an, so folgt augenscheinlich die Möglichkeit, daß zwei ins Unendliche verlängerte Linien, von denen die eine gerade, die andere gekrönt ist, zwar immer mehr von einander abweichen, jedoch nur innerhalb einer bestimmten, endlichen Grenze; hieraus aber kann man jedenfalls Verdacht schöpfen, daß etwas ähnliches auch bei zwei geraden Linien eintreten kann, wofür nicht das Gegenteil bewiesen wird.

Man kann aber nicht etwa, nachdem ich in dem Zusatz zu dem vorhergehenden Lehrsätze die unbedingte Wahrheit der vorhin erwähnten Behauptung festgestellt habe, deshalb sofort dazu übergehen, jenes Euklidische Axiom als wahr hinzustellen. Vorher müßte nämlich noch bewiesen werden, daß jene beiden Geraden AH und BC, die mit der schneidenden Geraden AB auf derselben Seite zwei Winkel bilden, die zusammen gleich zwei Rechten sind, also etwa jeder gleich einem Rechten, nicht auch selber nach dieser Seite ins Unendliche verlängert immer mehr über jede endliche angebbare Entfemnung hinaus auseinandergehen. Macht man nämlich die Annahme, daß dies eintritt, was bei der Hypothese des spitzen Winkels durchaus richtig ist, so ist es gewiß keine erlaubte Folgerung, daß eine Gerade AD, die den Winkel HAB irgendwie schneidet, wobei dann die beiden inneren Winkel an derselben Seite, DAB und CBA, zusammen kleiner als zwei Rechte sind, — daß, sage ich, diese Gerade AD, ins Unendliche verlängert, schließlich mit der Verlängerung von BC zusammentreffen muß, wenn auch anderweitig bewiesen ist, daß der Abstand der beiden ins Unendliche verlängerten Geraden AH und AD immer größer wird, und zwar über jede endliche angebbare Grenze hinaus.

Wenn aber der schon erwähnte Clavius glaubte, die Wahrheit jener Behauptung genüge zum Beweise des hier strittigen Axioms, so entschuldigt dies das Vorurteil, das er in Betreff gerader Linien von gleichem Abstande gefaßt hatte. Hierüber werden wir jedoch bequemer in der folgenden Anmerkung sprechen.

Anmerkung II, vorin die Ansicht geprüft wird, die der berühmte Giovanni Alfonso Borelli in seinem Euclides restitutus ausgesprochen hat.

Dieser große Gelehrte klagt den Euklid an, weil er parallele
Linien als solche erklärt habe, die in derselben Ebene liegen und auf keiner von beiden Seiten zusammentreffen, selbst wenn sie ins Unendliche verlängert werden*). Als Grund für seine Anklage giebt er an, ein solches Verhalten sei unbekannt, einmal, sagt er, weil wir nicht wissen, ob es solche unendliche, nicht zusammentreffende Linien wirklich giebt, dann aber auch, weil wir die Eigenschaften des Unendlichen nicht fassen können, und daher ein solches Verhalten nicht deutlich bekannt ist.

Mit der gebührenden Ehrfurcht vor einem so großen Manne sei es gesagt: kann man etwa Euklid tadeln, weil er (um ein Beispiel unter unzähligen anzuführen) das Quadrat als eine viereckige, gleichseitige, rechtwinklige Figur erklärt hat**), während man doch zweifeln kann, ob es in Wirklichkeit eine solche Figur giebt? Billig, sage ich, hätte man ihn tadeln können, wenn er die genannte Figur als gegeben angenommen hätte, ohne vorher in Form einer Aufgabe ihre Konstruktion nachzuweisen. Euklid ist aber von diesem Fehler frei, wie deutlich daraus hervorgeht, dass er das Quadrat nicht eher als an und für sich erklärt annimmt, als nach dem Satze 46 des ersten Buches, wo er in Form einer Aufgabe lehrt und zeigt, wie man eben das Quadrat, das er erklärt hat, aus einer gegebenen Linie AB zeichnet.

Ebenso wenig darf man also Euklid tadeln, weil er die parallelen geraden Linien auf die angegebene Art erklärt hat, da er sie nicht eher bei irgend einer Aufgabe in der Konstruktion als gegeben annimmt, als nach dem Satze 31 des ersten Buches, wo er in Form einer Aufgabe zeigt, wie durch einen außerhalb einer Geraden angenommenen Punkt die ihr parallele gerade Linie zu ziehen ist, und zwar gemäß der von ihm gegebenen Erklärung der Parallelen, wonach sie, bis ins Unendliche verlängert, auf keiner Seite zusammentreffen. Und was mehr ist, gerade das zeigt er ohne die geringste Benutzung des hier strittigen Axioms. Mithin zeigt Euklid ohne jeden Zirkelschluß, dass es in Wirklichkeit zwei gerade Linien giebt, die (in derselben Ebene liegen und) nach beiden Seiten ins Unendliche verlängert niemals zusammen-treffen, und dadurch giebt er uns eine klare Erkenntnis von dem Verhalten, durch das er parallele Linien erklärt.

Gehen wir weiter, wohin uns der gewissenhafte Ankläger Euklids führt. Parallele gerade Linien nennt er irgend zwei gerade Linien AC und BD, die auf derselben Seite (bei mir Fig. 21***) auf einer Geraden AB senkrecht stehen. Ich gebe zu, dass diese Erklärung auf einem, wie er selbst sagt, möglichen und sehr deutlichen Verhalten

*) [Euklid, Elemente, Buch I, Erklärung 23.]

**) [Euklid, Elemente, Buch I, Erklärung 22.]

***) [Dieselbe Figur hat Clarinus schon 1574, Giordano da Bitonto 1680.]
Saccheri, Euclides ab omni naevo vindicatus.

beruht, da man ja (nach I. 11) auf einer gegebenen Geraden in jedem Punkte das Lot errichten kann.

Ich habe jedoch bewiesen, daß eben diese Möglichkeit und Deutlichkeit auch der Erklärung Euclids zukommt. Es bleibt daher nur übrig, jenes bekannte Axiom Euclids mit dem andern neuen Axiome zu vergleichen, das man notwendig braucht, wenn man nach jener neuen Erklärung der Parallelen weiter gehen will. In der That befindet sich dieses andere Axiom bei Clavius (auf den sich Borelli ausdrücklich beruft) in der Anmerkung hinter I. 28:

\[\text{Beweist sich eine gerade Linie, zum Beispiel } BD \text{ [Fig. 21], längs einer andern Geraden, zum Beispiel } BA, \text{ und bildet sie dabei in ihrem Endpunkte } B \text{ immer rechte Winkel [mit } BA], \text{ so wird ihr anderer Endpunkt } D \text{ auch eine Gerade } DC \text{ beschreiben, wenn nämlich } BD \text{ schließlich zur Deckung mit der anderen gleich großen Geraden } AC \text{ gelangt.}\]

Ich erkenne an, daß es möglich ist, von diesem Axiome aus zum Beweise jenes andern, Euclidischen Axioms überzugehen, auf das man schließlich die ganze übrige Geometrie stützen muß. Denn Clavius hatte vorher als Lehrsatz aufgestellt, daß eine Linie, deren Punkte sämtlich von einer angenommenen Geraden \(AB\) gleich weit abstehen, und von dieser Beschaffenheit ist ja (grade nach der Voraussetzung der erwähnten Konstruktion) die Linie \(DC\), auch ihrerseits gerade sein muß, weil sie so beschaffen ist, daß alle ihre Zwischenpunkte zwischen ihren Endpunkten \(D\) und \(C\) auf einerlei Art liegen (das ist eben die Erklärung der geraden Linie\(^*\)); auf einerlei Art liegen, sage ich, da sie alle von der angenommenen Geraden \(AB\) gleich weit abstehen, nämlich um die Länge von \(BD\) oder \(AC\).

An dieser Stelle führt Clavius als Beispiel die Kreislinie an, über die wir aber besser weiter unten sprechen werden; dort werde ich ins hellste Licht setzen, wodurch sich die gerade Linie und die krisförmige in dieser Beziehung unterscheiden.

Inzwischen sage ich nur, daß es nicht genügend einleuchtet, ob die von jenem Punkte \(D\) beschriebene Linie wirklich die Gerade \(DC\) ist, und nicht vielmehr eine gewisse Kurve \(DGC\), die nach der Seite von \(BA\) gewölbt oder hohl sein kann.

\(^*\)[Euklid, Elemente, Buch I, Erklärung 4:

\[\text{Rēcta linear est, quaecunque } ex \text{ aequō punctis in ea sitis acetur.}\]

\[\text{Recta linea est, quaecunque ex aequo punctis in ea sitis acetur.}\]

\[\text{Recta linea est, quaecunque ex aequo punctis in ea sitis acetur.}\]
Denkt man sich nämlich in dem Halbierungs punkte F von AB die Senkrechte errichtet, welche die Gerade DC in E, die genannten Curven in G und G trifft, so sind (nach Lehrsatz II) die Winkel zu beiden Seiten des Punktes E sicher rechte, wofern man sich bei jener Bewegung des Punktes D die Linie DC beschrieben denkt, und es sind außerdem (vermöge einer leicht verständlichen Aufeinanderlegung*) die Winkel zu beiden Seiten der Punkte G einander gleich, falls die eine oder die andere Curve DGC beschrieben worden sein sollte.

Nimmt man wiederum auf AB irgend einen Punkt M an und errichtet die Senkrechte, welche die Gerade DC in N und die genannten Linien in H und H treffen möge, so werde ich etwas später beweisen, daß die Winkel zu beiden Seiten des Punktes N rechte werden, sobald man voraussetzt, daß der Punkt D bei seiner Bewegung eben die Gerade DC erzeugt, oder sobald man annimmt, daß die Gerade MN gleich BD sei. Ist man aber der Ansicht, daß eine der beiden Linien DHC erzeugt wird, so beweist man mittelst der selben soeben vorgeschriebenen leichten Aufeinanderlegung, daß wieder auf beiden Seiten die Winkel MHD und MHC gleich werden, gleichgültig, wo man auf einer der beiden beschriebenen Linien den Punkt H annimmt, von dem aus man sich auf die Grundlinie AB das Lot HM gefällt denkt. Hierüber jedoch Ausführlicheres und Genaueres im zweiten Teile dieses Buches, wohin es besser paßt.

Und doch leugne ich hier nicht, daß man durch sorgfältige physikalische Versuche feststellen kann, die auf jene Weise erzeugte Linie DC könne nur für eine gerade Linie erklärt werden. Damit ich mich aber hier überhaupt auf physikalische Versuche berufen darf, will ich sofort drei physikalisch-geometrische Beweise zur Erhärtung des Euklidischen Axioms beibringen.

*) [Im Original: superpositio. Gemeint ist die Umklappung der Figur um die Gerade FG; vergl. auch die Anmerkung S. 55.]
Saccheri, Euclides ab omni naïvo vindicatus.

Dabei rede ich von keinem physikalischen Versuch, der sich ins Unendliche erstreckt und uns deshalb unmöglich ist, wie er erforderlich wäre, um zu erkennen, daß die Punkte der Verbindungsgeraden DC sämtlich gleich weit von der Geraden AB abstehen. Die nach der Voraussetzung mit DC in derselben Ebene liegt. Mir wird ein einziger besonderer Fall genügen, zum Beispiel, wenn man die Gerade DC zieht (Fig. 21), auf ihr irgend einen Punkt N annimmt, und es sich dann herausstellt, daß das auf die Grundlinie AB gefällte Lot gleich BD oder AC ist. Dann wären nämlich die Winkel zu beiden Seiten des Punktes N nach Lehrsatz I) gleich den einander entsprechenden Winkeln an den Punkten C und D, die ihrerseits (wieder nach Lehrsatz I) einander gleich wären. Deshalb werden die Winkel zu beiden Seiten des Punktes N und somit auch die beiden übrigen rechte sein. Folglich werden wir einen Fall für die Hypothese des rechten Winkels bekommen, und haben damit (nach Lehrsatz V und XIII) das Euclidische Axiom bewiesen. Dies möge der erste physikalisch-geometrische Beweis sein.

Ich gehe zum zweiten über. Es werde ein Halbkreis angenommen mit D als Mittelpunkt und AC als Durchmesser. Wenn nun (Fig. 17) auf dem Umfange irgend ein Punkt B gewählt wird, und sich herausstellt, daß die nach ihm gezogenen Geraden AB und CB einen rechten Winkel einschließen, so genügt dieser einzige Fall (wie ich in Lehrsatz XVIII bewiesen habe), um die Hypothese des rechten Winkels zu bedingen, und deshalb (nach dem eben erwähnten Lehrsatz XIII), um jenes bekannte Axiom zu beweisen.

36 Es bleibt der dritte physikalisch-geometrische Beweis übrig, den ich für den allerwirksamsten und einfachsten halte. Denn ihm liegt in jedem zugänglicher, sehr leichter und höchst bequemer Versuch zu Grunde. Legt man nämlich in einem Kreise, der den Mittelpunkt D hat (Fig. 22), drei gerade Linien CB, BL und LA an einander, jede gleich dem Halbmesser DC, und stellt es sich heraus, daß die Verbindungsgerade AC durch den Mittelpunkt D geht, so wird dies zum Beweise der Behauptung genügen.

Ziehen wir nämlich DB und DL, so werden wir drei Dreiecke bekommen, die (nach 1. 8 und 5) sowohl untereinander als auch jedes für sich lauter gleiche Winkel besitzen. Da nun die drei Winkel am Punkte D, nämlich ADD, LDB und BDC (nach I. 13) zusammen gleich zwei Rechten sind, so sind auch die drei Winkel jedes dieser
Dreiecke zusammen gleich zwei Rechten, zum Beispiel die des Dreiecks BDC. Dadurch wird aber (nach Lehrsatz XV) die Hypothese des rechten Winkels bedingt, und daher wird (nach dem schon benutzten Lehrsatz XIII) jenes Axiom bewiesen sein.

Wenn man aber, ohne einen Beweis oder eine Darstellung durch Zeichnung zu versuchen, jene beiden Axiome mit einander vergleichen will, dann gestehe ich, daß allerdings das Euklidische dunkler oder sogar fehlerhaft erscheinen kann. Aber nach der Darstellung durch Zeichnung, die ich für die spätere Anmerkung IV aufspare, wird man sehen, daß grade umgekehrt das Axiom Euklids die Würde und den Namen eines Axioms behalten kann, während man besser thut, das andre unter die Lehrrsätze zu rechnen.

Hier muß ich aber (was zu thun ich vor Kurzem versprochen habe) den augenfälligen Unterschied auseinandersetzen, der in dieser Beziehung zwischen der kreisförmigen und der geraden Linie besteht. Dieser Unterschied entspringt daraus, daß eine Linie gerade heißt in Bezug auf sich selbst, kreisförmig aber, wie zum Beispiel $MDHNM$ (Fig. 23), nicht in Bezug auf sich selbst, sondern in Bezug auf etwas andres, nämlich auf einen gewissen andern Punkt A, der mit ihr in derselben Ebene liegt: ihren Mittelpunkt.

Hieraus folgt, wie Clavius vortrefflich beweist, daß die Linie 37 $FBCL$, die in derselben Ebene liegt wie jene, und deren Punkte sämmtlich von der genannten Linie $MDHNM$ gleich weit abstehen, auch ihrerseits kreisförmig ist, das heißt, in allen ihren Punkten von dem gemeinsamen Mittelpunkte A gleichen Abstand hat. Dafs nämlich BD, die geradlinige Verlängerung von AB, das Maß des Abstandes jenes Punktes B von dieser Kreislinie $MDHNM$ ist, weiß man daher, daß sie (nach III. 7*), was von dem hier strittigen Axiome unabänderig ist) die kleinste von allen Geraden ist, die von diesem Punkte aus nach jenem Umfange gezogen werden können. Dasselbe gilt von den übrigen Geraden CH, LN und FM. Da nun auch die ganzen Geraden AM, AD und AH als Halbmesser vom Mittelpunkte A nach der angenommenen Kreislinie $MDHNM$ gleich sind, und da ebenso die Abschnitte FM, BD, CH und LN gleich sind, weil sie das Maß des gleichen Abstandes aller Punkte jener Linie $FBCLF$ von der angenommenen Kreislinie $MDHNM$ darstellen, so folgt offenbar, daß die übrigbleibenden Stücke AF, AB, AC und AL ebenfalls

*) [Vergleiche die Anmerkung auf Seite 50.]
gleich sind, und daß deshalb auch die Linie \(FBCLF \) eine Kreislinie um denselben Mittelpunkt ist.

Wird denn aber, um zu beweisen, daß die durch eine solche Bewegung von dem Punkte \(D \) erzeugte Linie \(DC \) (Fig. 21) eine gerade Linie ist, in derselben Weise der gleiche Abstand aller ihrer Punkte von der zu Grunde gelegten Geraden \(AB \) genügen? Keineswegs. Denn eine Linie heißt gerade durchaus in Bezug auf sich selbst oder an sich selbst, weil sie nämlich in der Weise auf einerlei Art zwischen ihren Punkten liegt, und namentlich zwischen ihren Endpunkten, daß sie, wenn diese unbewegt bleiben, durch eine Drehung niemals eine neue Lage annehmen kann*). Wenn man dieses Verhalten nicht auf irgend eine Art für jene Linie \(DC \) nachweist, kann man nicht sicher sein, daß sie eine Gerade ist, was man auch sonst über die Beziehung aller ihrer Punkte zu der in derselben Ebene liegenden Geraden \(AB \) annehmen oder beweisen mag. Namentlich aber dürfen wir nicht in gleicher Weise sagen, daß in jener Ebene eine Linie \([DC]\) sicher dann eine Gerade ist, wenn sie in allen ihren Punkten von der als Gerade angenommenen Linie \(AB \) den gleichen Abstand hat.

Man darf aber meine Worte nicht so auffassen, als ob ich glaubte, es ließe sich nicht zeigen, daß die so erzeugte Linie \([DC]\) selbst eine gerade Linie ist, bevor man die Wahrheit des strittigen Axioms bewiesen hat, da ich vielmehr grade vorhabe, gegen das Ende des ersten Buches das zu beweisen, um dadurch eben dieses Axiom zu bekräftigen.

Anmerkung III, worin der Versuch des Arabers Nassaradin und zugleich die Ansicht des berühmten John Wallis über dieselbe Frage geprüft wird.

Erstens, daß irgend zwei in derselben Ebene liegende gerade Linien, auf die irgend welche andre gerade Linien so treffen, daß sie immer auf einer von ihnen senkrecht stehen, die andre aber immer unter ungleichen Winkeln schneiden, nämlich auf der einen Seite stets unter einem spitzen Winkel und auf der andern Seite

*) [Saccheri deutet Euklids Erklärung der Geraden in einer Weise, die diesem durchaus fern gelegen hat, da er ja den Begriff der Bewegung sorgfältig vermeidet.]
stets unter einem stumpfen Winkel, dafs, saxe ich, die eben erwähnten Geraden, so lange sie einander nicht schneiden, auf der Seite der spitzen Winkel einander immer näher kommen sollen und umgekehrt auf der Seite der stumpfen Winkel immer mehr auseinandergehen.

Wenn ihm sonst nichts Schwierigkeiten macht, so gestehe ich meines Teils gern zu, was Nassaradin fordert, denn grade das, was bei ihm unbewiesen bleibt, habe ich, wie man erkennt, in dem Zusatze II hinter Lehrsatz III aufs Strengste bewiesen.

Die zweite Forderung Nassaradins ist die Umkehrung der ersten, es soll nämlich der Winkel immer spitz sein auf der Seite, wo die schon erwähnten Lote der Annahme nach immer kürzer werden, 39 stumpf aber auf der andern Seite, wo der Annahme nach dieselben Lote immer länger werden.

Hierin steckt aber eine Zweideutigkeit. Denn warum sollen (wenn man von einem Lote, das man als erstes angenommen hat, zu den andern fortsetzet) die Winkel der folgenden Lote, die alle auf derselben Seite spitz sind, nicht immer größer werden, bis man auf einen rechten Winkel trifft, also auf ein Lot, welches das gemeinsame Lot der beiden genannten Geraden ist? Und wenn das eintritt, da werden die listigen Zurüstungen des Nassaradin zu nichts, vermittelst deren er recht scharfsinnig, jedoch mit großer Mühe Euklids Axiom beweist.

Wenn es nun Nassaradin mit einer gewissen Berechtigung als selbstverständlich hinstellen sollte, dafs die Winkel immer auf derselben Seite spitz bleiben, warum kann man dann nicht auch (ich spreche mit Wallis) als an und für sich einleuchtend annehmen, dafs zwei Gerade, die in derselben Ebene liegen und sich einander nähern, wenn sie verlängert werden, endlich zusammen treffen müssen? (Damit meine ich zwei Gerade, mit denen eine schneidende Gerade an derselben Seite zwei Winkel bildet, die zusammen kleiner sind als zwei Rechte, zum Beispiel einen rechten und einen beliebigen spitzten.)

Ich wende mich nunmehr zu dem schon erwähnten John Wallis, der, um soviel großen Männern, allen sowohl als neueren, zu will-
Sacroceri, Euclides ab omni naevo vindicatus.

40 fahren und außerdem, weil seinem Lehrstuhle in Oxford diese Verpflichtung auferlegt war, ebenfalls die Aufgabe in Angriff nahm, das oft genannte Axiom zu beweisen. Dabei nimmt er einzig und allein Folgendes als sicher an, daß nämlich zu jeder gegebenen Figur eine ähnliche von beliebiger Größe möglich sei. Dafs man dies von jeder Figur voraussetzen dürfe (obwohl er für seinen Zweck nur das geradlinige Dreieck benützt), begründet er gut mit dem Kreise, den man, wie jeder zugiebt, mit beliebigem Halbmesser beschreiben kann. Ferner bemerkt der scharfsinnige Mann sehr vorsichtig, dieser seiner Voraussetzung stehe nicht entgegen, daß außer der Gleichheit entsprechender Winkel auch die Proportionalität aller entsprechenden Seiten gefordert werde, damit eine geradlinige Figur, zum Beispiel eine dreieckige, einer andern geradlinigen, dreieckigen ähnlich sei, da ja die Erklärung der Proportionen und damit die der ähnlichen Figuren aus dem fünften und sechsten Buche Euklids zu entnehmen sei. Denn Euklid hätte (so sagt er selbst) beide dem ersten Buche vorausschicken können. Nachdem dies feststeht (was man freilich leugnen könnte, so lange es nicht bewiesen ist), führt er sein Unternehmen mit wirklich schönen und scharfsinnigen Bemühungen zu Ende.

Aber ich will es bei dem von mir unternommenen Geschäfte an nichts fehlen lassen. Daher nehme ich zwei Dreiecke an, das eine ABC und das andere DEF (Fig. 24), beide mit denselben Winkeln: Ich sage nicht geradezu ähnliche Dreiecke, denn ich habe die Proportionalität der Seiten an gleichen Winkeln gar nicht nötig, und nicht einmal ein bestimmtes Maß der Seiten. Ich will nur nicht, daß die Dreiecke gleiche Seiten haben, denn sonst genügte schon I. 8, ohne jede weitere Voraussetzung.

Es seien also die Winkel an den Punkten A, B, C der Reihe nach gleich den Winkeln an den Punkten D, E, F. Ferner sei die Seite DE kleiner als die Seite AB, und man nehme auf AB ein Stück AG an gleich DE und ebenso auf AC ein Stück AH gleich DF; das aber DF kleiner als AC sein muß, werde ich nachher zeigen. Dann sind, wenn man GH zieht, die Winkel an den Punkten E und F (nach I. 4) gleich AGH und AHG. Da nun die eben genannten Winkel zusammen mit den andern BGH und CHG (nach I. 13) gleich vier Rechten sind, so sind die Winkel bei B und C zusammen mit denselben Winkeln BGH und CHG ebenfalls gleich vier Rechten. Mithin sind die vier Winkel des Vierecks $BGHC$ zusammen gleich vier Rechten, und dadurch wird (nach Lehrsatz XVI) die Hypothese des
rechten Winkels bedingt, und gleichzeitig (nach Lehrsatz XIII) das Euklidische Axiom.

Allerdings habe ich vorausgesetzt, daß die Seite DF oder AH, das ihr gleich angenommen war, kleiner sei als die Seite AC. Wäre sie nämlich dieser gleich, und fiele also der Punkt H in den Punkt C, dann wäre der Winkel BCA (nach der Annahme) gleich dem Winkel EFD oder GCA (in den dieser dann überginge), das Ganze dem Teile, was widersinnig ist. Wäre sie aber größer, und schnitte also die Verbindungsgerade GH die Seite BC in einem gewissen Punkte, so wäre nach der Annahme (gegen I. 16) der Außenwinkel ACB gleich dem inneren, gegenüberliegenden Winkel (der dann entstünde) AHG oder GHA).

Daher habe ich mit Recht vorausgesetzt, daß die Seite DF des einen Dreiecks kleiner ist als die Seite AC des andern Dreiecks, und diese meine Annahme ist hiermit bestätigt.

Mithin wird durch irgend zwei Dreiecke, die gleiche Winkel, aber nicht gleiche Seiten haben, das Euklidische Axiom bedingt. Und das war unser Ziel.

Anmerkung IV, worin eine gewisse Betrachtung an einer Figur auseinandersetzt wird, an die Euklid vielleicht gedacht hat, um sein Axiom als an sich einleuchtend zu erweisen.

Ich bemerke erstens, daß innerhalb jedes beliebigen spitzen Winkels BAX (man gehe auf Fig. 12 zurück) aus einem gewissen Punkte X von AX eine Gerade XB gezogen werden kann, die unter irgend einem gegebenen, wenn auch stumpfen Winkel R, der nur mit dem spitzen BAX zusammen weniger als zwei Rechte betrage, — eine Gerade XB, sage ich, kann gezogen werden, die in endlicher Entfernung mit AB in einem gewissen Punkte B zusammentrifft. Denn grade das habe ich in einer Anmerkung**) hinter Lehrsatz XIII bewiesen.

*) [Daß Saccheri I. 16 benutzt und dadurch die Hypothese des stumpfen Winkels ausschließt, ist ein wesentlicher Mangel seines Beweises, da ja die Annahme der Existenz zweier ähnlicher Dreiecke schon ausreicht, um beide Hypothesen, die des stumpfen wie die des spitzen Winkels zu beseitigen. Man vergleiche auch die Bemerkungen in der Einleitung zu Wallis (S. 19), sowie Lambert's Theorie der Parallellinien, § 79 und 80.]

**) [Nämlich in Anmerkung II.]
Ich bemerke zweitens, dass man sich diese Geraden \(AB \) und \(AX \) (Fig. 25) ins Unendliche verlängert denken kann bis zu gewissen Punkten \(Y \) und \(Z \), und dass man sich ebenso die genannte Gerade \(XB \) (die auch ins Unendliche bis zu einem Punkte \(Y \) verlängert ist) längs \(AZ \) nach der Seite des Punktes \(Z \) so bewegt denken kann, dass der Winkel beim Punkte \(X \) auf der Seite des Punktes \(A \) immer gleich dem gegebenen stumpfen Winkel \(R \) ist.

Ich bemerke drittens, dass jenes Euklidische Axiom keinem Zweifel mehr unterliegen würde, wenn die vorher genannte Gerade \(XY \) bei jener längs \(AZ \) beliebig weit fortgesetzten Bewegung \(AY \) immer in gewissen Punkten \(B, H, D, P \) schnitte, und so fort in andern von \(A \) noch weiter entfernten Punkten. Der Grund liegt auf der Hand: weil nämlich so zwei beliebige, in derselben Ebene befindliche Gerade \(AB \) und \(XH \), mit denen eine beliebige schneidende Gerade \(AX \) auf derselben Seite zwei Winkel \(BAX \) und \(HXA \) bildet, die zusammen kleiner als zwei Rechte sind, schließlich auf dieser Seite in einem und demselben Punkte \(H \) zusammenkommen müssten.

Ich bemerke viertens, dass auch über die Wahrheit der vorhergehenden hypothetischen Annahme kein Zweifel herrschen könnte, wenn die späteren unter jenen äussern Winkeln \(YHD, YDP \) und ebenso die andern beliebig folgenden entweder immer dem früheren äussern Winkel \(YBD \) gleich, oder wenigstens niemals um so viel kleiner sind, dass nicht jeder unter ihnen immer noch grösser ist, als irgend ein sehr kleiner gegebener spitzer Winkel \(K \). Wenn nämlich das feststeht, wird es sich offenbar so verhalten, dass die Gerade \(XY \) bei ihrer beliebig weit fortgesetzten Bewegung nach der Seite des Punktes \(Z \) niemals aufhören wird, die vorher erwähnte \(AY \) zu schneiden, was ja (nach der vorhergehenden Bemerkung) vollkommen ausreichend ist, um das strittige Axiom zu erweisen.

Es bleibt also einzig und allein übrig, dass ein Gegner sagt, jene äusseren Winkel würden bei grösserer und grösserer Entfernung von jenein Punkte \(A \) immer kleiner ohne irgend eine bestimmte Grenze. Daraus aber würde folgen, dass \(XY \) bei seiner Bewegung längs der Geraden \(AZ \) schließlich \(AY \) in einem Punkte \(P \) treffen müsste, ohne

\(^{(*)}\) [Dabei wird, wie sich nachher zeigt, der Linienzug \(APY \) als die Verlängerung der geraden Linie \(AB \) angesehen.]
I. Buch, I. Teil. — Anmerkung IV zu Lehrosatz XXI. Lehrosatz XXII. 87

einen Winkel mit dem Abschnitte PY zu bilden, sodass also die beiden Geraden APY und XPY auf diese Art einen Abschnitt gemeinsam hätten. Das widerstrebt aber augenscheinlich der Natur der geraden Linie*).

Wer aber den stumpfen Winkel bei jenem Punkte X auf der Seite des Punktes A unbequem findet, der darf ihn ohne Weiteres als rechten voraussetzen, sodass (da die erwähnte Gerade XY sich immer unter rechtem Winkel längs der Geraden AZ bewegt) noch deutlicher erheilt, wie die Punkte von XY sich gleichmäßig in Bezug auf die Grundlinie AZ bewegen, und dafs deshalb die schon erwähnte Gerade XY nicht aus einer, welche die andere unbegrenzte Gerade AY schneidet, in eine nicht schneidende übergehen kann, ohne sie entweder einmal in einem Punkte genau zu berühren oder sie in einem Punkte P zu treffen, wo sie mit AY einen Abschnitt PY gemeinsam hat.

Dafs aber dieses beides der Natur der geraden Linie entgegen ist, werde ich bei dem Lehrosatz XXXIII zeigen.

Lehrosatz XXII. Stehen zwei Gerade AB und CD, die in derselben Ebene liegen, auf einer Geraden BD senkrecht, und bildet die Verbindungslinie AC dieser Lote spitze innere Winkel mit ihnen (bei der Hypothese des spitzen Winkels), so behaupte ich (Fig. 20), dafs die beiden begrenzten Geraden AC und BD ein gemeinsames Lot besitzen, und zwar innerhalb der Grenzen, die durch die gegebenen Punkte A und C festgelegt sind.

Beweis. Sind nämlich AB und CD gleich, so steht (nach Lehrosatz II) die Gerade LK, die AC und BD beide halbiert, sicher auf beiden gleichzeitig senkrecht.

Ist aber eine von beiden größer, zum Beispiel AB, so falle man auf BD (nach I. 12) aus einem Punkte L von AC das Lot LK, das die andere BD in K treffe. Dieses wird sie dann in einem Punkte K treffen, der zwischen den Punkten L und C liegt.

*) [Hier ist die Möglichkeit übersehen, daß der Punkt P ins Unendliche fällt, und dann kommt man auf keinen Widerspruch.]
Saccheri, Euclides ab omni naevo vindicatus.

B und D liegt, denn sonst schneite das Lot LK (gegen I. 17) eine der beiden Geraden AB oder CD, die gleichfalls auf BD senkrecht stehen. Sind nun die Winkel an dem Punkte L keine rechten, so ist der eine von ihnen spitz und der andre stumpf. Es liege der stumpfe auf der Seite des Punktes C.

Auf ähnliche Weise zeigt man, daß es eine Gerade XK zwischen LK und CD giebt, die sowohl auf der Geraden BD als auch auf der Geraden AC senkrecht steht, wenn nämlich vorausgesetzt wird, daß der stumpfe Winkel bei L auf der Seite von A liegt.

Die Geraden AC und BD haben also sicher ein gemeinsames Lot, und zwar innerhalb der durch die gegebenen Punkte A und C festgelegten Grenzen, sobald die Verbindungsgeraden AB und CD in derselben Ebene liegen und auf BD senkrecht stehen [und mit AC spitze innere Winkel bilden]. Was zu beweisen war.

Lehrsatz XXIII. Liegen irgend zwei Gerade AX und BX***) (Fig. 27) in derselben Ebene, so haben sie (auch bei der Hypothese

*) [Auch hier macht Saccheri von dem Axiome der stetigen Änderung Gebrauch; man vergleiche die Anmerkung S. 56.]

***) [An dieser Stelle benutzt Saccheri denselben Buchstaben, X, wohl deshalb zweimal, weil er in dem Falle, wo die beiden Geraden AD und BK einander treffen, X als ihren Schnittpunkt auffaßt.]
des spitzen Winkels) entweder ein gemeinsames Lot oder sie müssen, wenn man sie nach einer gewissen, aber beide nach derselben Seite verlängert, entweder einmal in endlicher Entfernung zusammentreffen oder wenigstens einander immer näher kommen.

Da in dem Viereck $KDHK$ die Winkel bei den Punkten K rechte sind, der Winkel beim Punkte D aber spitz sein soll, so ist (nach Zusatz II hinter Lehrsatz III) die Seite DK größer als die Seite HK. Auf ähnliche Art zeigt man, dass die Seite HK größer ist als die Seite LK, und so geht es immer weiter, wenn man die Lote mit einander vergleicht, die aus immer weiter hinauf liegenden Punkten von AX auf die andre Gerade BX gefällt sind. Deshalb werden sich AX und BX auf der Seite des Punktes X einander immer mehr nähern, und dies ist die zweite unter den beiden Möglichkeiten unser Lehrsatzes.

Nach alledem ist sicher, dass irgend zwei Gerade AX und BX, die in derselben Ebene liegen, entweder (auch bei der Hypothese des spitzen Winkels) ein gemeinsames Lot besitzen, oder, wenn man sie nach einer gewissen, aber beide nach derselben Seite verlängert, entweder einmal in endlicher Entfernung zusammentreffen oder wenigstens einander immer näher kommen müssen. Was zu beweisen war.

Zusatz I. Hiernach sind bei jedem Punkte von AX, von dem aus man das Lot auf die Gerade BX fällt, die Winkel auf der Seite
der Grundlinie AB immer stumpf; sie sind immer stumpf, wiederhole ich, so oft sich jene beiden Geraden AX und BX auf der Seite der Punkte X einander immer mehr nähern. Das muß man richtig auffassen, es sind nämlich die Lote zu nehmen, die vor dem erwähnten Zusammentreffen gefüllt sind, falls etwa die eine Gerade die andre in endlichem Abstande treffen sollte.

Anmerkung. Ich sehe freilich, daß hier noch die Frage offen bleibt, auf welche Weise man das Vorhandensein jenes gemeinsamen Lotes zeigen soll, wenn irgend eine Gerade $PFHD$ (Fig. 28), welche die beiden Geraden AX und BX in den Punkten F und H trifft, auf derselben Seite zwei innere Winkel AHF und BFH bildet, die zwar keine rechten, aber zusammen gleich zwei Rechten sind. Hier folgt deshalb eine geometrische Herleitung dieses gemeinsamen Lotes.

Zusatz II. Hieraus kann ich wieder beweisen, daß jene beiden Geraden AX und BX, mit denen die schneidende Gerade $PFHD$ entweder auf derselben Seite zwei innere Winkel bildet, die zusammen gleich zwei Rechten sind, oder, was daraus (nach I. 13 und 15) folgt, gleiche äußere oder innere Wechselwinkel, oder auch, aus denselben Grunde, einen äußeren (zum Beispiel DHX), der gleich ist dem inneren gegenüberliegenden HFX, daß, sage ich, jene beiden Geraden auch bei der Verlängerung ins Unendliche nicht zusammentreffen können.

Wenn man nämlich aus irgend einem Punkte N von AX auf BX das Lot NR fällt, so wird dieses bei der Hypothese des spitzen Winkels (die uns ja allein hinderlich sein kann) größer als das gemeinsame Lot KL (nach Zusatz I hinter Lehrsatz III). Daher
können jene beiden Geraden AX und BX niemals mit einander zusammentreffen.

Ferner haben wir hiermit die Lehrsätze 27 und 28 des ersten Buches von Euklid bewiesen, und zwar ohne die vorhergehenden Lehrsätze 16 und 17 desselben ersten Buches in ihrer vollen Allgemeinheit zu benutzen. Bei diesen könnte nämlich eine Schwierigkeit entstehen, wenn sich über einer endlichen Grundlinie ein Dreieck mit unendlich großen Seiten befände, und auf ein solches Dreieck würde sich mit Recht berufen, wer glaubt, daß jene Geraden AX und BX wenigstens in unendlich großer Entfernung zusammentreffen, selbst wenn die Winkel bei der schneidenden Geraden $PFHD$ so beschaffen sind, wie wir sie voraussetzten.

Übrigens können wegen des Nachweises eines gemeinsamen Lotes KL die beiden Geraden XX und LX auf der Seite der Punkte X sicher nicht zusammenlaufen, da sonst (wegen einer leicht verständlichen Aufeinanderlegung) zugleich auf der andern Seite die übrigbleibenden unbegrenzten Geraden KA und LB zusammenliefen und infolgedessen die Geraden AX und BX einen Raum einschlossen, was gegen die Natur der geraden Linie ist.

Lehrsatz XXIV. Unter denselben Voraussetzungen*) behaupte ich, daß die vier Winkel (Fig. 27) des der Grundlinie AB näheren Vierecks $KDHK$ (bei der Hypothese des spitzen Winkels) zusammen kleiner sind, als die vier Winkel des von derselben Grundlinie entfernten Vierecks $KHLK$, und zwar gilt das sowohl, wenn die beiden Geraden AX und BX einmal in unendlicher Entfernung auf der Seite der Punkte X zusammentreffen, als auch, wenn sie einander niemals treffen, vielmehr auf jener Seite entweder einander mehr und mehr näher kommen, oder einmal ein gemeinsames Lot erhalten, von dem aus sie ja doch (nach Zusatz II zu dem vorhergehenden Lehrsatz) nach eben dieser Seite aneinanderzugehen anfingen.

Beweis. Hier setzen wir jedoch voraus, daß die Stücke KK einander gleich gewählt sind. Da nun (nach dem Vorhergehenden) die Seite DK größer ist als die Seite HK und ebenso HK größer ist als die Seite LK, so nehme man auf HK ein Stück MK gleich LK

*) [Nämlich wie beim Beweis des Lehrsatzes XXIII für den Fall, daß die Winkel ADK, AHK, und so weiter alle stumpf sind.]

Zusatz. Es ist übrigens zweckmäßig hier zu bemerken, daß die angewandte Beweisführung gültig bleibt, auch wenn — bei der Hypothese des spitzen Winkels — der Winkel beim Punkte L als rechter angenommen wird. Denn das gemeinsame Lot LK wäre (nach Zusatze I hinter Lehrlatz III) immer noch kleiner, als das andere Lot HK, und deshalb könnte man auf diesem ein Stück gleich dem erwähnten Lote annehmen. Sobald aber das feststeht, kann nichts Störendes mehr eintreten.

Anmerkung. Nichtsdestoweniger könnte man zweifeln, ob eine
Senkrechte, die in irgend einem Punkte K (der auf BX vor dem Zusammentreffen von BX mit der andern Geraden AX angenommen ist) nach der Seite von AX errichtet wird, diese Gerade in einem Punkte L treffen muß (Fig. 29), wofern man nämlich voraussetzt, daß sich jene beiden Geraden vor dem erwähnten Zusammentreffen einander immer mehr nähern*). Ich behaupte aber, daß es sich auf folgende Weise vollständig ergiebt.

Man ziehe BM. Die Seite AM ist (nach I. 20) kleiner als die beiden übrigen Seiten AB und BM zusammen. Ebenso ist die Seite BM (wieder nach I. 20) kleiner als die beiden Seiten BN und MN zusammen. Folglich ist die Seite AM viel kleiner, als die Seiten AB, BN und NM zusammen. Das aber war zu zeigen, damit sich ergäbe, daß der Punkt K zwischen die Punkte B und N fällt.

Hieraus folgt nun, daß die Senkrechte, die im Punkte K nach der Seite von AX errichtet wird, diese Gerade in einem Punkte L treffen muß, der zwischen den Punkten A und M liegt, denn sonst müßte sie (im Widerspruche mit I. 17) eine der beiden auf BX senkrechten Geraden AB oder MN schneiden. Was zu beweisen war.

Lehrsatz XXV. Wenn zwei in derselben Ebene liegende Gerade (Fig. 30) AX und BX (und zwar soll die eine in dem Punkte A einen spitzen Winkel, mit AB bilden, die andere in dem Punkte B einen rechten Winkel) auf der Seite der Punkte X einander immer näher

*) *Saccheri* will hiermit sagen, daß die beiden Geraden AX und BX erst im Unendlichen zusammentreffen sollen. Ohne diese Voraussetzung würde man in dem folgenden Beweise nicht behaupten dürfen, daß MN kleiner als AB sein muß, denn M könnte dann jenseits des Schnittpunktes der beiden Geraden liegen.]
kommen, während jedoch ihr Abstand stets grösser bleibt als eine gewisse gegebene Länge: so kommt die Hypothese des spitzen Winkels zu Falle.

neun Vierecken gebildet werden, 35 Rechte. Hieraus folgt aber, daß die Summe der vier Winkel des am weitesten von der Grundlinie entfernten Vierecks \(KHLK \) sich von vier Rechten um weniger als den neunten Teil eines Rechten unterscheidet, und zwar auch dann noch, wenn jedem einzelnen jener Vierecke der gleiche Anteil an der genannten Summe aller Winkel zukäme. Mithin wird der betreffende Unterschied sogar noch kleiner sein, da gezeigt worden ist, daß die Summe der vier Winkel jenes Vierecks \(KHLK \) im Vergleich zur Summe der vier Winkel jedes der übrigen Vierecke die allergrößte ist.

Ferner aber kann man wegen der Annahme, unter der dieser Lehrsatz gültig sein soll, die Länge von \(BK \) so groß annehmen, daß über den Grundlinien \(KK \), die jede für sich jener gegebenen Länge \(R \) gleich sind, sovielle Vierecke gezeichnet werden können, als man nur will. Daher wird sich die Abweichung der Winkelsumme des entferntesten Vierecks \(KHLK \) von vier Rechten schließlich kleiner herausstellen als ein Hundertstel und als ein Tausendstel und überhaupt als jeder noch so kleine angebbare Teil eines Rechten.

Weiter sind jedoch (nach der vorhergenannten Voraussetzung) \(LK \) und \(HK \) größer als die gegebene Länge \(R \). Wenn man also auf \(KL \) und \(KH \) Stücke \(KS \) und \(KT \) gleich \(KK \) oder der Länge \(R \) annimmt, so ist, wenn man \(ST \) zieht, (nach dem Zusatze hinter Lehrsatz XVI) die Summe der Winkel \(KST \) und \(KTS \) (bei der Hypothese des spitzen Winkels) größer als in dem Viereck \(THLS \) oder in dem Viereck \(KHLK \) die Summe der Winkel bei den Punkten \(H \) und \(L \), und deshalb sind (nach Hinzufügung der gemeinsamen rechten Winkel bei den Punkten \(K \) und \(K \) die vier Winkel des Vierecks \(KTSK \) zusammen größer als die vier Winkel jenes Vierecks \(KHLK \).

Nunmehr ist einerseits unveränderlich und gegeben das Viereck \(KTSK \), denn es wird gebildet von der Grundlinie \(KK \), die gleich der gegebenen Länge \(R \) sein sollte, ferner von den beiden Loten \(TK \) und \(TS \), die dieser Grundlinie gleich sind und endlich von der Verbindungsgeraden \(TS \), die durchaus bestimmt ausfüllt, und andererseits ist bewiesen, daß die Summe der vier Winkel jenes unveränderlichen und gegebenen Vierecks größer ist als die Summe der vier Winkel des Vierecks \(KHLK \), das von der Grundlinie \(AB \) beliebig weit absteh. Folglich fällt die Summe der Winkel jenes unveränderlichen und gegebenen Vierecks \(KTSK \) größer aus als irgend eine Summe von Winkeln, die auch noch so wenig von vier Rechten abweicht, denn es ist gezeigt worden, daß man immer ein solches Viereck \(KHLK \) angeben kann, bei dem die Winkelsumme von vier Rechten weniger abweicht als irgend ein angebbarrer noch so kleiner Teil eines rechten
Saccheri, Euclides ab omni naevo vindicatus.

Winkels. Mithin ist die Summe der Winkel jenes unveränderlichen und gegebenen Vierecks entweder gleich vier Rechten oder größer. Dadurch aber wird (nach Lehrrsatz XVI) die Hypothese des rechten Winkels oder die des stumpfen Winkels bedingt, und infolgedessen kommt (nach Lehrrsatz V und VI) die Hypothese des spitzen Winkels zu Falle.

Daher wird die Hypothese des spitzen Winkels sicher zerstört, wenn zwei in derselben Ebene liegende Gerade einander immer näher kommen, während jedoch ihr Abstand stets größer bleibt, als eine gewisse gegebene Länge. Das aber war zu beweisen.

Zusatz I. Aber (wenn einmal die Hypothese des spitzen Winkels zerstört ist) so liegt nach Lehrrsatz XIII das strittige Euklidische Axiom auf der Hand, was eben hier darzulegen, ich in der Anmerkung III hinter Lehrrsatz XXI verheißen habe, als ich den Versuch des Arabers Nassaradin besprach.

Zusatz II. Andrerseits läßt dieser Lehrrsatz und der frühere dreiundzwanzigste deutlich erkennen, daß es zur Begründung der Euklidischen Geometrie nicht genügt, wenn man die beiden folgenden Festsetzungen trifft:

Die erste besteht darin, daß man solche Gerade parallel nennt, die in derselben Ebene liegen und ein gemeinsames Lot besitzen. Die zweite besteht darin, daß alle Geraden, die in derselben Ebene liegen und kein gemeinsames Lot besitzen und daher nach der angenommenen Erklärung nicht parallel sind, sich einmal, sobald sie nach einer von beiden Seiten immer mehr verlängert werden, wenn nicht in endlicher, so doch in unendlicher Entfernung schneiden müssen. Es wäre nämlich erst noch zu beweisen, daß irgend zwei Gerade, die in derselben Ebene liegen und mit denen eine schneidende Gerade auf derselben Seite innere Winkel bildet, die zusammen kleiner als zwei Rechte sind, sonst nirgends ein gemeinsames Lot erhalten können. Es wird sich aber weiter unten*) herausstellen, daß, wenn man dieses bewiesen hat, die Euklidische Geometrie aufs Strengste begründet ist.

Lehrrsatz XXVI. Wenn die vorhergenannten Geraden AX und BX (Fig. 31) zwar zusammentreffen sollen, jedoch erst, wenn man sie nach der Seite der Punkte X ins Unendliche verlängert hat, so behaupte ich, daß man auf AB keinen Punkt T angeben kann, bei dem die nach der Seite von AX errichtete Senkrechte diese Gerade AX nicht in einem endlichen oder begrenzten Abstande in einem Punkte F trifft.

*) [Nämlich in der Anmerkung I zu Lehrrsatz XXVII.]

Daher liegt sogar bei der Hypothese des spitzen Winkels (die, wie wir wissen, hier allein noch störend sein kann) auf AB kein angebbarer Punkt T, bei dem die nach der Seite von AX errichtete Senkrechte die Gerade AX nicht in endlicher oder begrenzter Entfernung in einem Punkte F trifft. Was zu beweisen war.

Zusatz I. Hieraus folgt aber, daß, wenn man auf der Verlängerung von AB irgend einen Punkt M annimmt und von ihm aus nach der Seite der Punkte X die Senkrechte MZ zieht, diese, auch wenn sie ins Unendliche verlängert wird, nicht mit der genannten Geraden AX zusammentreffen kann, denn sonst müßte die andre Gerade BX (nach dem vorhergehenden Beweise) eben diese Gerade AX in endlichem Abstande treffen, was der gegenwärtigen Voraussetzung widerspricht.

Zusatz II. Daraus folgt ferner, daß jede Senkrechte, die in einem Punkte jener, beliebig verlängerten, Geraden AB errichtet ist, aber freilich nicht in einem unendlich entfernten Punkte, die genannte Gerade AX in endlichem Abstande treffen muß, sobald man nämlich die Annahme macht, daß sich jede solche Senkrechte der andern immer weiter verlängerten Geraden AX immer mehr ohne jede bestimmte Grenze nähert.

Zusatz III. Hieraus folgt endlich, daß BX von jener Geraden AX nicht geschnitten werden kann, auch wenn diese ins Unendliche verlängert wird, weil man sich sonst aus einem Punkte von AX jenseits des genannten Schnittes auf die Verlängerung von AB ein Lot ZM
Saccheri, Euclides ab omni naevo vindicatus.

gefällt denken könnte, woraus wiederum folgte, daß BX (gegen die eben gemachte Voraussetzung) die genannte Gerade AX nicht in einem unendlichen, sondern schon in einem endlichen Abstande trafe. Aber diese letzte Bemerkung zu machen, liegt eigentlich hier noch kein Bedürfnis vor*).

Lehrsatz XXVII. Zieht man von dem Punkte A der Geraden AB aus unter einem beliebig kleinen Winkel eine Gerade AX (Fig. 32), und muß diese schließlich (wenigstens in unendlicher Entfernung) jede Senkrechte BX treffen, die man sich in irgend einer Entfernung von dem Punkte A auf der schneidenden Geraden AB errichtet denkt, so behaupte ich, daß für die Hypothese des spitzen Winkels kein Raum mehr vorhanden ist.

Demnach errichte man [erstens] in den andern Punkten K auf AB die Lote KH, KD, KP, die (nach dem eben erwähnten Zusatze) alle die Gerade AX in gewissen Punkten H, D, P treffen; und eben dasselbe gilt für die übrigen, in gleicher Weise gewählten Punkte K nach B hin.

Zweitens sind (nach I. 16) die Winkel bei den Punkten L, H, D, P auf der Seite der Punkte X alle stumpf, und ebenso (nach I. 13) die Winkel an den genannten Punkten auf der Seite des Punktes A alle spitz. Also ist (nach Zusatz II hinter Lehrsatz III) die Seite KH größer als die Seite KL, die Seite KD größer als die Seite KH, und so immer weiter, wenn man nach den Punkten X hin wandert.

Drittens ist die Summe der vier Winkel des Vierecks KLHK

*) [Saccheri behandelt hier den unendlich fernen Schnittpunkt, als ob er ein im Endlichen liegender Punkt wäre. Sein späterer Beweis für das Euklidische Axiom (Lehrsatz XXXIII) beruht auf derselben irrtümlichen Auffassung.]
I. Buch, I. Teil. — Zusatz III zu Lehrlsatz XXVI. Lehrlsatze XXVII, Anmerkung I. 99

großer als die Summe der vier Winkel des Vierecks $KHKD$, denn das ist in einem ähnlichen Falle schon in Lehrlsatz XXIV bewiesen worden.

Viertens gilt dasselbe von dem Viereck $KHKD$ im Vergleich zu dem Viereck $KDPK$, und so immer, wenn man zu Vierecken übergeht, die von dem Punkte A weiter entfernt sind.

Da es nun (wie bei Lehrlsatz XXV) solcher Vierecke, wie sie eben beschrieben worden sind, ebensoviel wie abgesehen von dem ersten Lote LK, aus Punkten von AX auf die Gerade AB Lote gefällt sind, so ist (wenn wir annehmen, daß aufser dem ersten neun solche Lote gefällt sind) in gleicher Weise sicher, daß die Summe aller Winkel, die von jenen neun Vierecken gebildet werden, 35 Rechte übersteigt, und daß deshalb die Summe der vier Winkel des ersten Vierecks $KLHK$, das in dieser Beziehung die andern alle übertrifft, von vier Rechten um weniger abweicht, als der neunte Teil eines Rechten beträgt. Vermehrt man daher die Vierecke über jede beliebige angebbare endliche Zahl, indem man immer nach der Seite der Punkte X hin wandert, so unterscheidet sich in ähnlicher Weise (wie bei dem schon erwähnten Lehrsatze) die Summe der vier Winkel jenes festen Vierecks $KLHK$ von vier Rechten um weniger, als irgend ein beliebiger angebbarer Bruchteil eines Rechten. Also ist die Summe jener vier Winkel entweder gleich vier Rechten oder größer. Dadurch aber wird (nach Lehrlsatz XVI) die Hypothese des rechten Winkels oder die des stumpfen Winkels bedingt, und deshalb (nach Lehrlsatz V und VI) die Hypothese des spitzen Winkels zu Falle gebracht.

Daß ist sicher kein Raum für die Hypothese des spitzen Winkels vorhanden, wenn eine Gerade AX, die unter einem beliebig kleinen Winkel von dem Punkte A der Geraden AB aus gezogen ist, schließlich (wenigstens in unendlicher Entfernung) jede Senkrechte BX treffen muß, die man sich in irgend einer Entfernung von dem Punkte A auf der schneidenden Geraden AB errichtet denkt. Was zu beweisen war.

Anmerkung I. Grade dieses habe ich in dem Zusatze II hinter Lehrlsatze XXV vorausgesagt, daß nämlich für die Hypothese des spitzen Winkels kein Raum übrig bleibt, oder daß die Euklidische Geometrie aufs Strengste begründet wird, wenn irgend zwei Gerade, die in derselben Ebene liegen, zum Beispiel AX und BX, und mit denen eine schneidende Gerade AB (wo der Punkt B in beliebiger Entfernung vom Punkte A angenommen ist) auf der Seite der Punkte X zwei Winkel bildet, die zusammen kleiner sind als zwei Rechte,

Anmerkung II. Und das ist wiederum, was ich am Schlusse der Anmerkung IV hinter Lehrsatz XXI versprochen habe, wie aus meinen Worten selbst deutlich hervorgeht.

Anmerkung III. Übrigens möchte ich hier auf den Unterschied zwischen diesem Lehrsatz und dem früheren siebenten aufmerksam machen. Denn dort (man gehe auf Fig. 15 zurück) wurde die Hinfälligkeit der Hypothese des spitzen Winkels gezeigt, wenn (unter der Voraussetzung, da's die Gerade AB beliebig klein ist) jede Gerade BD, die unter einem beliebigem spitzen Winkel gezogen ist, schliesslich in einem Punkte K die Verlängerung des Lotes AH treffen mu's. Hier aber wird (umgekehrt) die Wahl eines beliebigem, äußerst kleinen spitzen Winkels bei A gestattet, während das Stück AB, auf dem das unbegrenzte Lot BX zu errichten ist, von beliebiger Länge angenommen werden darf.

Lehrsatz XXVIII. Wenn zwei Gerade AX und BX (die beide nach derselben Seite, die erste unter einem spitzen und die zweite unter einem rechten Winkel von einer beliebig großen Geraden AB aus gezogen sind) ohne jede bestimmte Grenze einander immer näher kommen, wenigstens solange man die Verlängerung nicht bis ins Unendliche erstreckt, so behaupte ich erstens, daß alle Winkel (Fig. 33) an beliebigen Punkten L, H, D von AX, von denen man auf die Gerade BX Lote LK, HK, DK gefällt hat, auf der Seite des Punktes A durchweg stumpf werden, zweitens, da's sie immer kleiner werden, je weiter sie von dem Punkte A entfernt sind, und endlich, da's diese Winkel, je weiter sie von derselben Punkte A entfernt sind, sich um so mehr, ohne jede bestimmte Grenze, der Gleichheit mit dem rechten Winkel nähern.

Beweis. Der erste Teil ist klar aus Zusatz I hinter Lehrsatz XXIII.
Der zweite Teil aber wird so erhärtet: Es sind nämlich die beiden Winkel an LK auf der Seite der Grundlinie AB (nach dem Zusätze hinter Lehrrsatz XVI) zusammen größer als die beiden inneren gegenüberliegenden Winkel an HK, wieder auf der Seite der Grundlinie AB. Es sind aber einander gleich, nämlich als rechte, die Winkel an jedem der beiden Punkte K auf der Seite der Grundlinie AB. Also ist der stumpfe Winkel bei L auf der Seite der Grundlinie AB größer als der stumpfe Winkel bei H, wieder auf der Seite der Grundlinie AB. Auf ähnliche Weise zeigt man, daß der genannte stumpfe Winkel bei H größer ist als der stumpfe Winkel bei dem Punkte D. Und so immer, wenn man nach den Punkten X hin wandert.

Der dritte Teil endlich erfordert eine längere Untersuchung. Wenn das möglich ist, so sei MNC (Fig. 34) ein gewisser gegebener Winkel von der Beschaffenheit, daß der Überschuß jedes der erwähnten stumpfen Winkel über einen Rechten größer oder wenigstens nicht kleiner ist als dieser Winkel. Nun können (nach Lehrrsatz XXI) die Seiten NM und NC, die jenen Winkel MNC einschließen, augenscheinlich so weit verlängert werden, daß das Lot MC, das aus einem Punkte M von MN auf NC gefällt ist, (auch hier bei der Hypothese des spitzen Winkels) größer wird als irgend eine gegebene endliche Länge, zum Beispiel als die genannte Grundlinie AB.

Man nehme demnach auf BX (Fig. 35) ein Stück BT gleich CN an und errichte in dem Punkte T nach der Seite von AX die Senkrechte TS, die (nach der Anmerkung hinter Lehrrsatz XXIV) AX in einem Punkte S trifft. Sodann fälle man von dem Punkte S auf AB das Lot SQ. Dieses fällt (nach I. 17) auf die Seite des spitzen Winkels SAB zwischen die Punkte A und B. Weiter ist der Winkel QST in dem Viereck $QSTB$ spitz, weil die drei übrigen Winkel rechte sind, sonst kämen wir ja (gegen Lehrrsatz V und VI) auf die Hypothese des rechten Winkels oder auf die des stumpfen Winkels.
Mithin ist die Gerade SQ (nach Zusatz I hinter Lehrsatz III) größer als die Gerade BT oder CN, und ferner der Winkel ASQ größer als der Überschuss des stumpfen Winkels AST über einen Rechten und somit größer als der Winkel MNC.

Endlich aber: Da FS (nach I. 19) größer ist als QS und daher viel größer als BT oder CN, so nehme man auf FS ein Stück IS gleich CN an und errichte auf FS in dem Punkte I die Senkrechte IR, die AS in dem Punkte R treffe. Es fällt aber der Punkt R zwischen die Punkte A und S. Fiele er nämlich in einen Punkt von AF, so hätten wir (gegen I. 17) in einem Dreieck zwei Winkel, die zusammen größer als zwei Rechte wären, ja der Winkel bei dem Punkte F auf der Seite des Punktes A schon als stumpf erwiesen ist.

Nach diesen umständlichen Vorbereitungen schliesse ich so: Da in dem Viereck $AOIR$ die Winkel an den Punkten O und I rechte sind, und da der Winkel an dem Punkte A wegen des rechten Winkels AOS (nach I. 17) spitz ist, und da ferner der Winkel IRA wegen des rechten Winkels RIS (nach I. 16) stumpf ist, so folgt hieraus endlich (nach Zusatz II hinter Lehrsatz III), daß die Seite AO größer als die Seite IR ist. Es ist aber (wenn man OQ zieht) wegen des stumpfen Winkels bei O die Seite AQ (nach I. 19) größer als die Seite AO, denn der Winkel AOS wurde ja gleich einem Rechten gemacht. Deshalb ist die Gerade AQ viel größer als die Gerade IR oder (nach I. 26) als die Gerade MC und mithin viel größer als die Gerade AB: der Teil größer als das Ganze, was widersinnig ist.

Man kann daher keinen solchen Winkel MNC angeben, da's der Überschuss jedes der genannten stumpfen Winkel über einen rechten Winkel stets größer oder doch nicht kleiner als dieser ist. Folglich müssen jene stumpfen Winkel, je weiter sie vom Punkte A entfernt sind, sich um so mehr, ohne jede bestimmte Grenze, der Gleichheit mit dem rechten Winkel nähern. Was an letzter Stelle zu beweisen war.

Zusatz. Wenn aber das feststeht, was an letzter Stelle bewiesen ist, so folgt augenscheinlich, daß jene beiden Geraden AX und BX ins Unendliche verlängert schliesslich ein gemeinsames Lot haben.
werden, entweder in zwei verschiedenen Punkten oder in ein und demselben unendlich weit entfernten Punkte \(X \).

Dafs aber jenes gemeinsame Lot nicht in zwei verschiedenen Punkten vorhanden sein kann, erheult augenscheinlich daraus, dafs sonst (nach Zusatz II hinter Lehrsatz XXIII) jene beiden Geraden als dann anfingen sich von einander zu entfernen und daher auch nicht in unendlicher Entfernung zusammenträfen, sondern (gegen die ausdrückliche Voraussetzung) auf jener Seite überhaupt nicht einander ohne jede bestimmte Grenze immer näher und näher kämen. Daher müssen sie das gemeinsame Lot in ein und demselben unendlich entfernten Punkte \(X \) besitzen.

Lehrsatz XXIX. Nimmt man wieder die Figur 33 des vorhergehenden Lehrsatzes, so behauppe ich, dafs jede Gerade \(AC \), die den Winkel \(BAX \) schneidet, einmal in endlicher oder begrenzter Entfernung (auch bei der Hypothese des spitzen Winkels) \(BX \) in einem Punkte \(P \) treffen wird, sobald nämlich \(AC \) nach der Seite der Punkte \(X \) hin immer weiter verlängert wird.

Beweis. Zunächst wird die Gerade \(AC \) (weil sie sonst mit \(AX \) einen Raum einschloß) die Geraden \(LK, HK, DK \) in endlicher Entfernung in gewissen Punkten \(C, N, M \) treffen, wenn sie nicht vorher \(BX \) (versteht sich in endlicher Entfernung, was wir eben verlangen) in einem Punkte trifft, der zwischen \(B \) und einem der Punkte \(K \) liegt. Sodann sind (nach Zusatz I hinter Lehrsatz XXIII) die Winkel \(ACK, ANK \) und \(AMK \) stumpf.

Weiter nähern sich (nach dem vorhergehenden Lehrsatz) jene Winkel, die sämtlich stumpf sind, ohne irgend eine bestimmte Grenze immer mehr der Gleichheit mit dem rechten Winkel, falls nämlich jene Gerade \(AC \) die Gerade \(BX \) erst in unendlicher Entfernung treffen sollte. Man könnte daher zu einer Ordinate \(KMD \) kommen, bei der der Überschufs des Winkels \(AMK \) über einen rechten Winkel kleiner wäre, als der Winkel \(DAC \) beträgt. Dann aber wäre der Winkel \(DAC \) oder \(DAM \) zusammen mit dem Winkel \(AMD \) größer als ein Rechter, daher ergäben, wenn man den stumpfen Winkel \(AMD \) hinzufügt, die drei Winkel des Dreiecks \(AMD \) zusammen mehr als zwei Rechte, was gegen die Hypothese des spitzen Winkels ist.

Mithin muß jede Gerade \(AC \), die jenen Winkel \(BAX \) schneidet,
schießlisch (auch bei der Hypothese des spitzen Winkels) BX in endlicher oder begrenzter Entfernung in einem Punkte P treffen. Was zu beweisen war.

Zusatz I. Wenn daher eine Gerade AZ auf der Seite der Punkte X einen spitzen Winkel bildet, der grösser ist als BAX, so kann sie niemals, weder in endlicher noch in unendlicher Entfernung, BX treffen. Falls dies nämlich stattfände, so müßte AX, das ja den Winkel BAZ teilt, (gegen die vorausgeschickte Annahme) BX in endlicher Entfernung treffen, wie das für die Gerade AC bewiesen wurde, die den Winkel BAX teilt.

Zusatz II. Die spitzen Winkel, unter denen sich durch den Punkt A gerade Linien legen lassen, die BX in endlicher Entfernung treffen, haben übrigens, wie aus dem Vorhergehenden folgt, die Eigenschaft, daß es unter ihnen keinen bestimmten gibt, der der gröfste ist. Wenn man nämlich nach der Seite der Punkte X hin irgend einen Punkt annimmt, der oberhalb des Punktes P liegt, so bildet die Verbindungsgerade zwischen dem Punkte A und diesem höher gelegenen Punkte mit AB einen Winkel, der sicher gröfser ist, als der Winkel BAP. Und so immer fort ohne jede innere Grenze*). Deshalb wird der Winkel BAX (wenn nämlich AX sich zwar der Geraden BX immer mehr und mehr nähert, aber erst in unendlicher Entfernung damit zusammentrifft) die äußere Grenze**) aller spitzen Winkel sein, unter denen sich durch den Punkt A Gerade legen lassen, welche die erwähnte Gerade BX in endlicher Entfernung treffen.

Lehrsatz XXX. Auf irgend einer begrenzten Geraden AB (Fig. 36) stehe eine unbegrenzte Gerade BX senkrecht. Dann behaupte ich erstens, daß die auf AB nach derselben Seite hin errichtete Senkrechte AY die eine Grenze, und zwar nach Innen, aller der Geraden ist, die von dem Punkte A aus nach derselben Seite gezogen (bei der Hypothese des spitzen Winkels) in zwei verschiedenen Punkten mit der andern unbegrenzten Geraden BX ein Lot gemeinsam haben**). Zweitens behaupte ich von den spitzen Winkeln, unter denen sich durch den erwähnten Punkt A gerade Linien legen lassen, die (bei der genommenen Hypothese) mit BX ein Lot in zwei verschiedenen Punkten gemeinsam haben, Folgendes: es gibt unter ihnen keinen, der von allen der kleinste ist.

*) [Im Original steht: sine ullo termino intrinsecus. Gemeint ist, ohne jede Grenze innerhalb des Winkels BAX nach AX hin.]

**) [limes extrinsecus.]

***) [Saccheri betrachtet nämlich nur die Halbstrahlen, die von dem Punkte A ausgehen, und dann haben die jenseits der Senkrechten AY liegenden Halbstrahlen, wie AZ, mit BX kein Lot gemeinsam.]

Dafs aber die genannte Gerade ND von diesem Lote AL in einem gewissen Zwischenpunkte S geschnitten wird, beweist man so:

Zunächst folgt nämlich aus I. 17 mit unbedingter Sicherheit, dafs BK von AL nicht in einem Punkte M geschnitten werden kann, weil sonst in einem und demselben Dreieck MKL in den Punkten K und L zwei rechte Winkel wären, abgesehen davon, dafs sich grade in diesem Falle unsere Behauptung über den Winkel BAN bestätigte, dafs er nämlich unter diesen Umständen nicht für den kleinsten erklärt werden darf.

Und so steht fest, daß und so weiter.

Lehrsatz XXXI. Jetzt behaupte ich, daß es für die genannten gemeinsamen Lote in zwei verschiedenen Punkten keine bestimmte Grenze gibt, sodaß man also (bei der Hypothese des spitzen Winkels) unter einem immer kleineren spitzen Winkel mit dem Scheitelpunkte A stets zu einem gemeinsamen Lot in zwei verschiedenen Punkten gelangen kann, das kleiner ist, als irgend eine gegebene Länge R.

Beweis. Wofern es sich nämlich anders verhielte, errichte man in einem Punkte K (man gehe auf Fig. 30 zurück), der auf BX in beliebig großer Entfernung von dem Punkte B angenommen ist, die Senkrechte KL und denke sich auf diese (nach I. 12) von dem Punkte A das Lot AL gefällt. Dann müßte KL größer sein als die Länge R. Der Grund dafür ist folgender: Nimmt man wieder auf BX einen höher gelegenen Punkt Q an, errichtet in ihm auf BX die Senkrechte QF und fällt (wieder nach I. 12) auf diese das Lot AF, so darf QF wiederum nicht kleiner sein als die Länge R. Es ist aber KL (nach
dem Zusatze zu dem vorhergehenden Lehrratsze) gröfser als QF. Daher wäre KL gröfser als die genannte Länge R. Und so weiter, wenn man höher hinaufgeht.

Denkt man sich nunmehr die beliebig große Gerade KB (wie in Lehrratsz XXV) in Stücke KK geteilt, die jener Länge R gleich sind, und errichtet man in diesen Punkten K Senkrechte, die AX in den Punkten H, D, M treffen, so sind die Winkel an diesen Punkten auf der Seite des Punktes L weder rechte noch stumpfe, weil sonst in einem Viereck, zum Beispiel in KLMK, die vier Winkel zusammen gleich oder gröszer als vier Rechte wären, gegen die Hypothese des spitzen Winkels, die wir zu Grunde legen. Alle diese Winkel sind also auf der Seite des Punktes L spitz, und deshalb sind wiederum alle Winkel an diesen Punkten auf der Seite des Punktes A stumpf. Somit ist (nach Zusatz I zu Lehrratsz III) KL, das am weitensten von der Grundlinie entfernt ist, unter den genannten Senkrechten die kleinste, und KM, das derselben Grundlinie am nächsten ist, die gröfste. Und von den übrigen ist die nähere immer grösser als die entferntere. Deshalb sind (nach dem früheren Lehrratsz XXIV und dem zugehörigen Zusatze) die vier Winkel des Vierecks KHLK, das von der Grundlinie AB am entferntesten ist, zusammen grösser als die Summe der Winkel jedes andern Vierecks, das der Grundlinie näher ist. Demnach würde (wie in Lehrratsz XXV) die Hypothese des spitzen Winkels hinfällig.

Daher giebt es sicher keine bestimmte Grenze der genannten gemeinsamen Lote in zwei verschiedenen Punkten, sodaß man also unter einem immer kleineren spitzen Winkel beim Punkte A (bei der Hypothese des spitzen Winkels) stets zu einem solchen gemeinsamen Lote in zwei verschiedenen Punkten gelangen kann, das kleiner ist als irgend eine gegebene Länge R. Was zu beweisen war.

Lehrratsz XXXII. Jetzt behaupte ich, daß es (bei der Hypothese des spitzen Winkels) einen bestimmten spitzen Winkel BAX gibt, unter dem gezogen AX (Fig. 33) erst in unendlicher Entfernung mit BX zusammentrifft und somit nach Innen die Grenze ist aller der Geraden, die unter kleineren spitzen Winkeln gezogen die Gerade BX in endlicher Entfernung schneiden, nach Außen aber die Grenze der andern, die unter grösseren spitzen Winkeln gezogen, bis zum Rechten, diesen eingeschlossen, mit BX ein Lot in zwei verschiedenen Punkten gemeinsam haben.

Hieraus folgt drittens, daß es (bei dieser Hypothese) einen gewissen bestimmten spitzten Winkel BAX geben muß, unter dem gezogen AX sich der Geraden BX zwar immer mehr nähert, sie jedoch erst in unendlicher Entfernung trifft.

Daß aber eben dieses AX teils nach Innen teils nach Außen die Grenze für jede der beiden genannten Arten von Geraden ist, das beweist man so:

Erstens nämlich hat sie mit jenen Geraden, die BX in endlicher Entfernung treffen, das gemeinsam, daß sie selbst einmal mit BX zusammentrifft; sie unterscheidet sich aber von ihnen, weil das erst in unendlicher Entfernung geschieht.

Zweitens stimmt sie überein mit und unterscheidet sich zugleich von den Geraden, die mit BX ein Lot in zwei verschiedenen Punkten gemeinsam haben, weil sie selber mit BX ein Lot gemeinsam hat, jedoch in ein und demselben unendlich weit entfernten Punkte X. Das zweite nämlich muß vermöge Lehrsatz XXVIII als bewiesen gelten, worauf ich in dem zugehörigen Zusätze aufmerksam gemacht habe.

Folglich giebt es (bei der Hypothese des spitzten Winkels) sicher einen bestimmten spitzten Winkel BAX, unter dem gezogen AX erst in unendlicher Entfernung mit BX zusammentrifft, und der somit teils nach Innen teils nach Außen die Grenze ist einerseits aller der Geraden, die unter kleineren spitzten Winkeln gezogen die Gerade BX in endlicher Entfernung treffen, anderseits der andern, die unter größeren spitzten Winkeln gezogen, bis zum Rechten, diesen ein-
geschlossen, mit BX ein Lot in zwei verschiedenen Punkten gemeinsam haben. Was zu beweisen war.

Lehrsatz XXXIII. Die Hypothese des spitzen Winkels ist durch und durch falsch, weil sie der Natur der geraden Linie widerspricht.

Beweis. Wie aus den vorhergehenden Theoremen hervorgeht, führt die der Euklidischen Geometrie entgegenstehende Hypothese des spitzen Winkels schließlich dahin, daß wir das Vorhandensein zweier in derselben Ebene liegender Geraden AX und BX zugeben müssen, die nach der Seite der Punkte X ins Unendliche verlängert schließlich in ein und dieselbe gerade Linie zusammenlaufen müssen, da sie nämlich in ein und demselben unendlich entfernten Punkte X ein Lot gemeinsam haben, das in derselben Ebene liegt, wie sie selbst*).

Da ich aber hier auf die allerersten Grundsätze eingehen muß, so werde ich sorgfältig darauf achten, keinen Einwurf, selbst wenn er noch so pedantisch erscheinen möchte, zu übergehen, da dies, wie mir scheint, zu einem vollkommen strengen Beweise der richtige Weg ist.

Hilfssatz I. Zwei gerade Linien schließen keinen Raum ein.

Euklid erklärt die gerade Linie als eine solche, die zwischen ihren Punkten auf einerlei Art liegt. Es sei also (Fig. 37) AX irgend eine Linie, die von dem Punkte A durch beliebige Zwischenpunkte stetig bis zum Punkte X verläuft. Diese Linie heifst dann keine Gerade, wenn sie so beschaffen ist, daß sie, während ihre beiden Endpunkte fest bleiben, um diese auf die andre Seite gedreht werden kann, zum Beispiel von der linken auf die rechte Seite. Sie heifst dann, sage ich, keine gerade Linie, weil sie nicht auf einerlei Art zwischen ihren gegebenen Endpunkten liegt; sie wird nämlich entweder nach links abweichen, wenn sie sich von dem Punkte A nach dem Punkte X durch gewisse Zwischenpunkte B erstreckt, oder sie wird nach rechts abweichen, wenn sie sich von demselben festgehaltenen Punkte A nach demselben festgehaltenen Punkte X durch gewisse Zwischenpunkte C erstreckt, die von den genannten Punkten B durchaus verschieden sind. Denn einzig und allein diejenige Linie AX darf eine Gerade genannt werden, die sich von dem Punkte A zu dem Punkte X durch solche Zwischenpunkte D erstreckt, die ihrerseits in der Anordnung, in der sie auf einander

*) [Vergleiche die Bemerkung S. 98]
Saccheri, Euclides ab omni naevo vindicatus.

folgen*), bei einer Drehung um jene beiden festgehaltenen Endpunkte A und X niemals neue und neue Lagen annehmen können.

In diesem Begriffe der geraden Linie liegt aber offenbar die angekündigte Wahrheit, daß nämlich zwei gerade Linien keinen Raum einschließen. In der That, sind zwei Linien gegeben, die einen Raum einschließen und deren gemeinsame Endpunkte die beiden Punkte A und X sind, so zeigt man leicht, daß entweder keine oder nur die eine von beiden Linien eine Gerade ist.

Von den beiden Linien, zum Beispiel $ABBX$ und $ACCX$, wird keine eine Gerade sein, wenn man sich $ABBX$ und $ACCX$ um die beiden festgehaltenen Endpunkte A und X derart gedreht denken kann, daß ihre übrigen Zwischenpunkte dazu übergehen, immer neue Lagen anzunehmen. Nur eine, zum Beispiel $ADDX$, wird eine Gerade sein, wenn man sich $ABBX$ und $ACCX$, die mit $ADDX$ auf jeder von beiden Seiten einen Raum ein schließen, derart um die festen Endpunkte gedreht denken kann, daß zwar die Zwischenpunkte von $ABBX$ und $ACCX$ dazu übergehen, immer neue Lagen anzunehmen, während dagegen alle Zwischenpunkte von $ADDX$ in derselben Lage verbleiben.

Folglich ist es unmöglich, daß zwei Linien, die dem vorher entwickelten Begriffe der Geraden entsprechen, einen Raum einschließen. Und das war behauptet.

72 Zusatz I. Hieraus folgt weiter, daß man jene Forderung des Euklid zulassen muß, wonach man von einem gegebenen Punkte nach jedem beliebig gewählten Punkte eine gerade Linie ziehen kann**). Denn man erkennt deutlich, daß sich immer ohne jede bestimmte Grenze zwei Linien mit den erwähnten Punkten A und X als Endpunkten ziehen lassen, die einander näher kommen und deshalb weniger Raum einschließen, während die eine nach der linken Seite, die andre auf gleiche Art nach der rechten Seite gezogen ist, oder die eine nach oben, die andre nach unten; es lassen sich, sage ich, Linien dieser Art ziehen, die ohne bestimmte Grenze einander immer näher kommen, die in ihrer Gestalt vollkommen mit einander übereinstimmen und deshalb auf einander folgen, wenn man sie um die festgehaltenen Endpunkte A und X gedreht denkt. Hieraus erkennt man ebenso deutlich, daß (wenn diese gleichgestalteten Linien einander immer näher und näher kommen) sie sich schließlich in eine einzige vereinigen müssen, und zwar in die Linie ADX, die eben bei einer

*) [Im Original heißt es: prout sic invicem continuata.]

**) [Euklid, Elemente, Buch I, Forderung 1.]
Drehung um jene festen Endpunkte keine neue Lage annehmen kann. Und das wird die geforderte gerade Linie sein.

Es gibt daher wiederrum sicher nur eine einzige gerade Linie, die von einem gegebenen Punkte nach einem andern beliebig gewählten Punkte gezogen werden kann.

Zusatz II. Übrigens folgt hieraus, dass man genau ebenso die andere Erklärung Euklids verstehen muss, in der er sagt, eine Oberfläche sei eben, wenn sie auf einerlei Art gegen ihre Linien liegt*).

In der That, denkt man sich eine Oberfläche, die von den vorhin genannten Linien eingeschlossen wird, nämlich [Fig. 37] von der geraden \(ADDX \) und von der andern \(ABBX \) (mag diese nun eine einfache oder eine zusammengesetzte krumme Linie sein oder mag sie aus zwei oder mehr geraden Linien, zum Beispiel aus \(AB, BB \) und \(BX \) zusammengesetzt sein), denkt man sich, sage ich, eine solche Oberfläche um \(73 \) die festgehaltene Gerade \(ADX \) gedreht, bis die Linie \(ABX \) mit der entgegengesetzt liegenden Linie \(ACX \) zum Zusammenfallen kommt, die überall vollständig gleich und ähnlich mit \(ABX \) ist und ihrerseits mit der Geraden \(ADX \) (auf derselben Seite, der obern oder der untern) eine Oberfläche einschließt, die der vorhergenannten ganz gleich und ähnlich ist, so gibt es nur zwei Möglichkeiten: entweder deckt sich die eine Oberfläche vollständig mit der andern, oder die beiden Oberflächen schließen einen Raum von dreifacher Ausdehnung ein.

Tritt das Erste ein, dann heißt die Oberfläche eben. Tritt aber das Zweite ein, dann heißt die Oberfläche nicht eben, denn man kann sich Zwischenoberflächen mit denselben Begrenzungslinien eingeschaltet denken, die einander gleich und ähnlich sind und ohne jede bestimmte Grenze einander immer näher kommen und daher auch soweit, dass jeder Zwischenraum wegfällt. Dann aber muss man diese beiden Oberflächen eben nennen, weil sie thatsächlich auf einerlei Art zwischen ihren Begrenzungslinien liegen, ohne sich nach den verschiedenen Seiten zu heben oder zu senken.

Hilfssatz II. Zwei gerade Linien können nicht ein und denselben Abschnitt gemeinsam haben.

Beweis. Wenn das überhaupt möglich ist, so sei ein und derselbe Abschnitt \(AX \) (Fig. 38) den beiden in derselben Ebene über den Punkt \(X \) hinaus verlängerten Geraden \(AXB \) und \(AXC \) gemein-*) [Euklid, Elemente, Buch I, Erklärung 7: "\(\text{Εύθείας \ εστι, κατά τέκνα \ έχουσαν κατ' \ ίσον \ ταίς \ κρ', \ κατά τής \ εὐθείας \ χείται. \)"
| Plana superficies est, quae cumque ex aequo rectis in ea sitis iacet.]
schaftlich. Dann beschreibe man um X als Mittelpunkt mit dem Halbmesser XB oder XC den Bogen BMC und ziehe durch X nach irgend einem seiner Punkte M die Gerade XM.

Die Gerade XB muß nämlich bei ihrer Verlängerung über B hinaus $APLM$ schließlich in einem Punkte L treffen. Infolgedessen schließen wieder die beiden Linien $AXBL$ und APL, die der Annahme nach Gerade sind, einen Raum ein. Wollte man übrigens annehmen, daß die Gerade XB über B hinaus verlängert schließlich entweder die Gerade XM oder die Gerade XA in einem andern Punkte trüfe, so käme man in gleicher Weise auf einen Widerspruch.

Hieraus aber folgt augenscheinlich, daß bei der gemachten Annahme die Linie AXM selber die gerade Linie ist, die von dem Punkte A nach dem Punkte M gezogen wurde, und das war die Behauptung.

Zweitens behaupte ich, daß die Gerade AXB, von der wir ausgingen (wofern man sich jene beliebig gewählte Verlängerung von dem Punkte A über X nach B beibehalten denkt$^*) $, nicht noch zwei verschiedene Lagen in derselben Ebene annehmen kann derart, daß das Stück AX bei beiden Lagen an seiner Stelle verharrt, während das andre Stück XB bei der einen der beiden Lagen (zum Beispiel) mit XC, bei der andern mit XM zusammenfüllt.

Freilich leugne ich hierbei nicht, daß man sich das Stück XB in

*) [$Saccheri$ denkt sich AX und XB starr verbunden und dieses starre System um AX gedreht.]

Dies wird nun so bewiesen: Zunächst kann nämlich jene Verlängerung AXB der Verlängerung AXC nicht durchaus ähnlich oder gleich sein, sobald man beide auf derselben Seite, auf der linken oder auf der rechten, betrachtet, weil sonst AXB und AXC unter diesen Umständen mit einander zusammenfallen müßten, was gegen die Annahme in Betreff jenes gemeinsamen Abschnittes AX ist. Sie müßten, sage ich, zusammenfallen, sobald nämlich in Bezug auf die feste Gerade AX die Verlängerungen XB und XC in der betreffenden Ebene sich beide genau in derselben Weise entweder nach links oder nach rechts erstreckten.

Ferner hindert sicher nichts, daß die genannte Verlängerung AXB auf der einen Seite, zum Beispiel auf der linken, betrachtet genau ähnlich oder gleich der Verlängerung AXC ist, wenn diese auf der entgegengesetzten Seite betrachtet wird, hier also auf der rechten, sodaß mithin AXB, ohne irgend eine Veränderung zu erleiden, in derselben Ebene mit der andern Geraden AXC zur Deckung gebracht werden kann.

Augenscheinlich geht es aber nicht an, daß die Gerade AXB ohne irgend eine Veränderung ihrer Verlängerung in derselben Ebene mit der andern Geraden AXM zur Deckung gebracht werden kann, die jenen gewissen Winkel BXC bei X teilt. Denn daß die Verlängerung AXB ganz verschieden ist von der Verlängerung AXM, wenn beide auf derselben Seite, entweder auf der linken oder auf der rechten, betrachtet werden, das ist deshalb klar, weil sonst (wie schon bei ähnlicher 76

*) [Nämlich bei der durch Drehung des starren Systems AXB um AX entstandenen neuen Lage AXC, die zu AXB symmetrisch ist.]

Stäckel u. Engel, Parallelentheorie.
Gelegenheit bemerkt worden ist) unter diesen Umständen \(AXB \) und \(AXM \) zusammenfallen müßten.

Es kann aber auch nicht aufrecht erhalten werden, daß die Verlängerung \(AXB \) auf der einen Seite betrachtet, zum Beispiel auf der linken, ganz ähnlich oder gleich sei der Verlängerung \(AXM \), wenn diese auf der entgegengesetzten Seite betrachtet wird, also zum Beispiel auf der rechten. Sonst wäre ja die Verlängerung \(AXM \) auf der rechten Seite betrachtet ganz ähnlich oder gleich der Verlängerung \(AXC \), wenn diese auch auf der rechten Seite betrachtet wird, nämlich wegen der vorausgesetzten vollständigen Ähnlichkeit oder Gleichheit zwischen der eben genannten Verlängerung und der Verlängerung \(AXB \), wenn diese auf der linken Seite betrachtet wird, unter diesen Umständen müßten aber (wie schon vorher gesagt wurde) \(AXM \) und \(AXC \) mit einander zusammenfallen, was der gegenwärtigen Annahme widerspricht.

Aus alle dem ziehe ich den Schluss: daß die angenommene gerade Linie \(AXB \) (wofern man sich ihre beliebig gewählte Verlängerung von \(A \) bis \(B \) beibehalten denkt) nicht noch zwei verschiedene Lagen in dieser Ebene annehmen kann derart, daß das Stück \(AX \) beide Male an seiner Stelle verharrt, während das andre Stück \(XB \) bei einer der beiden Lagen (zum Beispiel) mit \(XC \), bei der andern Lage mit \(XM \) zusammenfällt. Und das war die Behauptung.

Drittens behaupte ich, daß die angenommene Gerade \(AXB \) auf keine andere Weise ihre beliebig gewählte Verlängerung behalten kann, wenn man sich ihren Teil \(XB \) in neue und neue Lagen gebracht denkt, bis er in jener Ebene mit \(XC \) zusammenfällt, während das Stück \(AX \) inzwischen an derselben Stelle verharrt, sie kann, sage ich, ihre beliebig gewählte Verlängerung nicht bewahren, wenn man sich nicht vorstellt, daß das Stück \(XB \) hinauf- oder herabsteigt, um mit der festgehaltenen Geraden \(AX \) in immer neuen Ebenen zu liegen, bis es zur alten Ebene zurückkehrt und dort mit der genannten Geraden \(XC \) zusammenfällt.

Dies kann in der That schon für bewiesen gelten, weil man nämlich in derselben Ebene keine andere Lage finden kann, bei der die Gerade \(AXB \) (während das Stück \(AX \) an seinem Platze verharrt) ihre beliebig gewählte Verlängerung beibehält, außer wenn sie mit der genannten Geraden \(AXC \) zur Deckung gelangt.

Viertens behaupte ich, daß man auf dem Bogen \(BC \) einen solchen Punkt \(D \) angeben kann, daß, wenn \(XD \) gezogen wird, \(AXD \) nicht nur eine gerade Linie ist, sondern sich auch so verhält, daß die Verlängerung \(AXD \) auf der linken Seite betrachtet genau gleich
oder ähnlich derselben Verlängerung ist, wenn man sie auf der rechten Seite betrachtet.

Der zweite Teil wird so erhärtet: Wir legen dabei zwei Gerade AXB und AXC mit dem gemeinsamen Abschnitt AX zu Grunde. Ferner setzen wir voraus, daß die Verlängerung AXB auf der linken Seite betrachtet nicht vollständig ähnlich oder gleich derselben Verlängerung ist, wenn man sie auf der rechten betrachtet. Bestände nämlich eine solche vollständige Ähnlichkeit oder Gleichheit, so könnte man leicht zeigen, daß jener Abschnitt AX keiner andern Geraden angehören kann, und zwar ebenso, wie wir es nachher für die Verlängerung AXD zeigen werden. Endlich setzen wir demzufolge voraus, daß die Verlängerung AXB, bei Festhaltung des Abschnittes AX, in derselben Ebene eine solche Lage bekommen kann, dafs sie sich mit einer gewissen andern Geraden AXC deckt, wobei die Verlängerung AXC auf der rechten Seite betrachtet ganz ähnlich oder gleich ist der Verlängerung AXB, wenn diese auf der rechten Seite betrachtet wird.

Nunmehr nehme man einen Punkt M auf dem Bogen BC an und ziehe XM. Dann ist die Verlängerung AXM entweder auf der linken und auf der rechten Seite von AX sich selbst vollkommen gleich gestaltet, oder nicht.

Tritt das Erste ein, so kann ich von AXM dasselbe beweisen, was ich sogleich von jener Verlängerung AXD beweisen werde. Tritt das Zweite ein, so kann die genannte Gerade AXM in derselben Ebene eine solche Lage bekommen, dafs AX wieder unverändert bleibt, während AXM mit einer Verlängerung AXF zusammenfällt, wobei die Verlängerung AXF auf der rechten Seite betrachtet ganz ähnlich oder gleich ist der Verlängerung AXM, wenn man diese auf der linken betrachtet, und wobei wiederum die Verlängerung AXF auf der linken Seite betrachtet ganz ähnlich oder gleich ist der Verlängerung AXM, wenn man diese auf der rechten betrachtet.

Da ferner der Punkt M näher an dem Punkte B angenommen werden kann als der Punkt C, so wird der Punkt F nicht in den
Punkt C fallen. Denn sonst wäre die Verlängerung AXM auf der linken Seite betrachtet ganz ähnlich oder gleich der Verlängerung AXF oder AXC, wenn man diese auf der rechten betrachtet, und deshalb ganz ähnlich oder gleich der Verlängerung AXB, wenn man diese auf der linken Seite betrachtet, und das ist widersinnig, da die beiden Geraden XM und XB bei der Lage, die für sie angenommen wurde, nicht zusammenfallen.

Der Punkt F' liegt aber auch nicht jenseits des Punktes C in der Verlängerung des Bogens BC, weil sonst eine ähnliche Überlegung zeigte, daß auch der Punkt M, gegen die Annahme, in der Verlängerung des Bogens CB läge, und dann teilte XM links den Winkel AXB, ebenso wie XF' rechts den Winkel AXC teilen sollte. Der Punkt M, sage ich, müßte deshalb so liegen, damit AXM, während der Abschnitt AX festgehalten wird, in derselben Ebene zum Zusammenfallen mit AXF gebracht werden kann, weil die Verlängerung AXF auf der rechten Seite betrachtet ganz ähnlich oder gleich ist der Verlängerung AXM, wenn man diese auf der linken betrachtet, und wiederum die Verlängerung AXF auf der linken Seite betrachtet ganz ähnlich oder gleich ist der Verlängerung AXM, wenn man diese auf der rechten betrachtet.

Da nun der Bogen BC größer ist als sein Teil MF', und da man in gleicher Weise auf dem Stücke MF zwei andre Punkte mit kleinerem Zwischenräume angeben kann, ohne jede bestimmte Grenze, so muß, weil sich die genannten Punkte einander nähern, eine der beiden folgenden Möglichkeiten eintreten: die erste besteht darin, daß man schließlich zu ein und demselben Zwischenpunkte D gelangt und durch Verbindung von X mit D eine solche Verlängerung AXD erhält, die (wenn man die linke und die rechte Seite vergleicht) einzig und allein die Eigenschaft besitzt, sich selbst durchaus ähnlich oder gleich zu sein. Die zweite Möglichkeit besteht darin, daß man zwei verschiedene Punkte dieser Art, M und F', findet, und daß, wenn man XM und XF' zieht, zwei Verlängerungen vorhanden sind, die eine AXM, die andre AXF', von denen jede sich selbst ähnlich oder gleich ist, in der schon beschriebenen Art.

Dafs aber diese zweite Möglichkeit ausgeschlossen ist, beweise ich so: Aus dem Wortlaute [der Erklärung der geraden Linie] geht nämlich hervor, daß eine gerade Linie, die von A aus gezogen über X verlängert wird, in der Ebene nur eine einzige Lage annehmen kann, sobald die hinzugefügte Gerade XF' sich auf der rechten und auf der linken Seite der angenommenen Geraden AX ganz gleich verhält, oder nicht mehr nach ihrer linken als nach ihrer rechten Seite.
I. Buch, I. Teil. — Lehrsatz XXXIII, Hilfssatz II.

abweicht. Es wird also keine zweite Verlängerung AXM geben, die sich ebenfalls auf der linken und auf der rechten Seite von AX ganz gleich verhält. Mithin kann es sicher nicht zugleich eintreten, daß einerseits die Verlängerung AXF auf der rechten und auf der linken Seite betrachtet sich selbst ganz ähnlich oder gleich ist, und daß andererseits eine andre Verlängerung AXM (die ihrer Lage wegen von der linken Seite kleiner erscheint als die Verlängerung AXF) auf der linken Seite betrachtet wiederum gleich ist derselben Verlängerung $[AXM]$ auf der rechten Seite betrachtet, während doch diese, abermals ihrer Lage wegen, von der rechten Seite größer erscheint als die erwähnte Verlängerung AXF.

Folglicht kann man auf dem Bogen BC nicht zwei solche Punkte M und F finden, daß die Verbindungsgeraden XM und XF zwei Verlängerungen AXM und AXF liefern, die beide auf die schon erklärte Art sich selbst durchaus ähnlich oder gleich sind. Hieraus folgt endlich, daß man schließlich zu ein und demselben Punkte D gelangt, und daß dann die Verbindungslinie XD eine solche Verlängerung AXD ergibt, die einzig und allein die Eigenschaft besitzt, daß sie (wenn man die linke und die rechte Seite mit einander vergleicht) sich selbst durchaus ähnlich oder gleich ist. Was an dieser Stelle zu beweisen war.

Endlich behaupte ich fünftens, daß dieses AXD allein eine gerade Linie ist, nämlich die unmittelbare Verlängerung von A über X nach D. Wenn man nämlich auch das „auf einerlei Art“*) bei der Erklärung der geraden Linie zunächst auf die Zwischenpunkte gegenüber den Endpunkten anwenden muß, woraus wir schon folgerten, daß zwei gerade Linien keinen Raum einschließen, so muß man es doch auch bei der geradlinigen Verlängerung dieser geraden Linie hinzu denken. Daher heißt allein XD (das mit AX in derselben Ebene liegt) die geradlinige Verlängerung der genannten Geraden AX, wenn XD weder nach der rechten noch nach der linken Seite von AX abweicht, vielmehr nach beiden Seiten auf einerlei Art fortgeht, sodafs jene Verlängerung AXD auf der linken Seite betrachtet vollständlich ähnlich oder gleich ist derselben Verlängerung, wenn man sie auf der rechten betrachtet. Hieraus folgt nämlich, daß AXD allein die Eigenschaft hat, wenn AX festgehalten wird, keine andere Lage in der Ebene annehmen zu können, während (nach dem schon Bewiesenen) jene andern Linien AXB und AXM ohne jedwede Änderung ihrer Verlängerungen

*) [Im Original heift es: ly ex aequo. Die Bedeutung des Wörtchens ly haben wir nicht ermitteln können.]
bei festgehaltenem AX andre Lagen in derselben Ebene annehmen können, nämlich die Lagen AXC und AXF.

Mithin ist allein AXD, dessen Verlängerung XD nicht bloß mit AX in derselben Ebene liegt, sondern sich auch auf der linken und auf der rechten Seite der genannten Geraden AX ganz gleich verhält, nach der besprochenen Erklärung eine gerade Linie oder die *geradlinige* Verlängerung der angenommenen Geraden AX.

Aus alle dem geht schließlich die Unmöglichkeit hervor, daß es einen gemeinsamen Abschnitt von zwei geraden Linien gibt. Was zu beweisen war.

Zusatz. Es ist zweckmäßig, drei Folgerungen aus den zwei vorhergehenden Hilfssätzen anzumerken.

Die erste ist die, daß zwei Gerade, selbst wenn sie einen unendlich kleinen Abstand von einander haben, keinen Raum einschließen können. Der Grund hierfür liegt darin, daß (wie in dem ersten Hilfssatz) entweder jede von beiden, unter Festhaltung jener beiden gemeinsamen Endpunkte, durch Drehung eine neue Lage erhalten könnte, und daß daher (nach der früher mitgeteilten Erklärung der geraden Linie) keine von beiden eine gerade Linie wäre, oder daß nur die eine in ihrer Lage beharrte und daher allein eine gerade Linie wäre.

Dafs aber nicht beide in derselben Lage beharren können, solange sie einen, wenn auch unendlich kleinen, Raum einschließen, leuchtet ein, wenn man erwägt, daß die obere und die untere Seite der Ebene, in der die beiden Geraden liegen, vertauscht werden können, während übrigens jene beiden Endpunkte an derselben Stelle verbleiben.

Die zweite Folgerung besteht darin, daß keine gerade Linie sich bei beliebiger geradliniger Verlängerung in zwei spalten kann, auch nicht in solche mit unendlich kleinem Zwischenraume. Der Grund hiervon liegt darin, daß (wie bei dem vorhergehenden Hilfssatz) keine andre geradlinige Verlängerung irgend einer angenommenen einfachen Geraden AX denkbar ist, als die eine XD, die *auf einerlei Art* nach beiden Seiten, sowohl nach der linken als nach der rechten Seite der genannten Geraden AX, fortgeht, woraus folgt, daß sie bei festgehaltenem AX in dieser Ebene keine andre Lage annehmen kann, wenn sie [als Ganzes] unverändert bleiben soll.

Dafs man aber in derselben Ebene zur Linken eine andre Gerade XM angeben kann, die von XD unendlich wenig abweicht, das nützt nichts. Denn man könnte wiederum zur Rechten eine andre Gerade XF angeben, die gleichfalls unendlich wenig von XD abweicht. Deshalb ist (wie in dem schon erwähnten Hilfssatz) AXD allein eine gerade Linie, wie wir sie erklärt haben.
Die dritte Folgerung endlich ist die, daß durch den zweiten Hilfssatz unmittelbar der Satz XI. 1 bewiesen wird, daß nämlich von ein und derselben Geraden nicht ein Teil in einer unteren und ein Teil in einer oberen Ebene liegen kann.

Hilfssatz III. Wenn zwei Gerade AB und $C XD$ einander in einem Zwischenpunkte X treffen (Fig. 39), so berühren sie sich dort nicht, sondern schneiden einander.

Beweis. Es liege $C XD$, wenn das überhaupt möglich ist, ganz auf der einen Seite von AB. Man ziehe AC. Dann fällt AC nicht mit AXC zusammen, was dann als Verlängerung [von AX] aufzufassen wäre, weil sonst (gegen den vorhergehenden Hilfssatz) zwei Gerade, erstens AXC und zweitens die von vornherein gegebene DXC, ein und denselben Abschnitt XC gemeinsam hätten.

Überdies ergiebt sich derselbe oder ein noch größerer Widerspruch, wenn die Verlängerung von BA über A hinaus entweder CX in irgend einem Punkte, oder sich selbst in irgend einem Punkte ihres Stückes XB treffen sollte. Und dies gilt in ähnlicher Weise, wenn die Verlängerung von $C XD$ über D hinaus entweder XB in irgend einem Punkte oder sich selbst in irgend einem Punkte ihres Stückes CX treffen sollte.
Saccheri, Euclides ab omni naevo vindicatus.

Folglich werden zwei Gerade AB und CXD, die einander in einem Zwischenpunkte X treffen, sich dort nicht berühren, sondern einander schneiden. Was zu beweisen war.

Hilfssatz IV. *Jeder Durchmesser halbiert seinen Kreis und dessen Umfang.*

Beweis. Es sei (man kehre zu Fig. 23 zurück) $MDHNKLM$ ein Kreis, A sein Mittelpunkt, MN ein Durchmesser. Man denke sich das Stück $MNKM$ des Kreises um die festgehaltenen Punkte M und N so gedreht, daß es sich schließlich dem übrigen Stücke $MNHDM$ anfügt oder anpasst.

Dann bleibt erstens der ganze Durchmesser MAN mit allen seinen Punkten sicher in derselben Lage, weil sonst zwei gerade Linien (gegen den vorhergehenden ersten Hilfssatz) einen Raum einschloßen.

Drittens kann jeder Halbmesser MA sicher nur durch einen einzigen andern Halbmesser AN geradlinig verlängert werden, weil sonst (gegen den vorhergehenden zweiten Hilfssatz) zwei der Annahme nach gerade Linien, zum Beispiel MAN und MAH, ein und denselben gemeinsamen Abschnitt MA hätten.

Viertens schneiden sich (nach dem unmittelbar vorhergehenden Hilfssätze) alle Durchmesser des Kreises augenscheinlich in dem Mittelpunkte, und zwar halbieren sie dort einander wegen der bekannten Eigenschaften des Kreises.

Aus alle dem geht hervor, daß der Durchmesser MAN seinen Kreis und dessen Umfang ganz genau in zwei gleiche Teile teilt, und man kann dasselbe auch allgemein für jeden beliebigen Durchmesser desselben Kreises behaupten. Was zu beweisen war.

Hilfssatz V. *Unter den geradlinigen Winkeln sind alle rechten ganz genau einander gleich und zwar ohne irgend eine, wenn auch nur unendlich kleine Abweichung.*
Beweis. Euklid erklärt einen geradlinigen Winkel dann für einen rechten, \textit{wenn er seinem Nebenwinkel gleich ist*}). Er verlangt nicht, daß man ihm das Vorhandensein eines solchen Winkels zugebe, sondern er beweist es in Form einer Aufgabe in dem elften Satze des ersten Buches. Dort lehrt er nämlich, wie man in einem beliebig gegebenen Punkte A (Fig. 40) auf der Geraden BC die Senkrechte AD errichten kann, bei der die Winkel DAB und DAC einander gleich sind. Dafs aber jene Winkel ganz genau gleich sind ohne jede auch nur unendlich kleine Abweichung, das ergeben sich aus dem Zusatze hinter den beiden ersten Hilfssätzen, die ich vorausgeschickt habe, wenn nämlich AB und AC einander genau gleich gewählt sind.

Es könnte aber ein Bedenken entstehen, wenn man zwei andre rechte Winkel LHF und LHM (Fig. 41) an irgend einer andern Geraden FM mit den genannten rechten Winkeln DAB und DAC vergleicht**).

Es sei also HL gleich AD, und man denke sich die ganze spätere Figur [41] so auf die frühere [40] gelegt, daß der Punkt H auf dem Punkt A fällt und der Punkt L auf den Punkt D. Nun verfähre ich so:

Zunächst wird FHM (nach einem früheren Hilfssatze) die Gerade BC in dem Punkte A nicht genau berühren, also wird es entweder genau mit BC zusammenfallen, oder es so schneiden, daß einer der Endpunkte, zum Beispiel F, oberhalb und der andre, M, unterhalb fällt. Findet das Erste statt, so haben wir schon deutlich die behauptete ganz genaue Gleichheit zwischen allen geradlinigen rechten Winkeln. Das Zweite kann aber gar nicht eintreten, weil sonst der Winkel LHF, das ist DAF, kleiner wäre als der Winkel DAB und als der Winkel DAC, der diesem der Annahme nach durchaus gleich ist, und daher viel kleiner als der Winkel DAM oder LHM, was gegen die Voraussetzung ist.

Es hilft auch nichts anzunehmen, daß der Winkel DAF unendlich wenig von dem Winkel DAB oder von dem ihm ganz genau gleichen Winkel DAC abwiche, der wiederum unendlich wenig von dem Winkel DAM übertragen würde. Denn immer wäre, gegen die Voraussetzung,

*) [Euklid, Elemente, Buch I, Erklärung 10.]

**) Euklid verlangt in der Forderung 4 des ersten Buches ausdrücklich, daß alle rechten Winkel einander gleich seien. Vermutlich hat er diese Forderung eingeführt, weil er den Begriff der Bewegung vermeiden wollte.]
der Winkel DAF oder LHF nicht ganz genau gleich dem Winkel DAM oder LHM.

Folglich müssen alle geradlinigen rechten Winkel einander ganz genau gleich sein ohne irgend eine, wenn auch nur unendlich kleine Abweichung. Was zu beweisen war.

Zusatz. Hieraus folgt, daß die Gerade, die in einem gegebenen Punkte einer beliebigen geraden Linie in einer Ebene senkrecht zu der Geraden gezogen ist, in dieser Ebene durchaus einzig in ihrer Art ist und sich nicht in zwei spalten kann.

Nachdem ich diese fünf Hilfssätze und ihre Zusätze vorausgeschickt habe, darf ich nunmehr zum Beweise des Haupteinwandes gegen die Hypothese des spitzen Winkels übergehen.

Es ist, wie ich hier als an sich einleuchtend hinstellen darf, kein geringerer Widerspruch, daß zwei gerade Linien (sei es bei endlicher, sei es bei unendlicher Verlängerung) schließlich in ein und dieselbe gerade Linie zusammenlaufen, als daß ein und dieselbe gerade Linie (sei es bei endlicher, sei es bei unendlicher Verlängerung) sich in zwei gerade Linien spaltet, entgegen dem vorhergehenden Hilfssatze II und dem zugehörigen Zusatze. Da es also der Natur der geraden Linie (nach dem Zusatze zum letzten Hilfssatze) ebenso widerspricht, daß zwei Gerade in ein und demselben Punkte auf einer dritten Geraden in derselben gemeinsamen Ebene senkrecht stehen, so muß die Hypothese des spitzen Winkels, da sie der angegebenen Beschaffenheit [der geraden Linie] widerspricht, als durchaus falsch angesehen werden, weil nämlich bei ihr jene beiden Geraden AX und BX (Fig. 33) in ein und demselben gemeinsamen Punkte X senkrecht auf einer dritten Geraden stehen müßten, die mit ihnen in derselben Ebene liegt*). Das ist aber grade der Punkt, auf dessen Beweis es mir hauptsächlich ankam.

*) [Vergl. Lehrsatz XXXIII, S. 109 und die Anmerkung S. 98.]
Des ersten Buches zweiter Teil,

wo das Euklidische Axiom abermals durch Widerlegung der Hypothese des spitzen Winkels bewiesen wird.

Lehrsatz XXXIV, in dem eine gewisse Kurve untersucht wird, die aus der Hypothese des spitzen Winkels entspringt.

Die Gerade CD verbinde zwei gleiche Gerade AC und BD, die auf irgend einer Geraden AB senkrecht stehen. Man halbiere AB und CD in M und H (Fig. 42) und ziehe die Verbindungsgerade MH, die (nach Lehrsatz II) auf beiden senkrecht steht. Bei der gegenwärtigen Hypothese werden ferner an der Verbindungslinie CD spitze Winkel vorausgesetzt. Deshalb ist in dem Viereck $AMHC$ (nach Zusatz I hinter Lehrsatz III) MH kleiner als AC.

Wenn man jetzt auf der Verlängerung von MH das Stück MK gleich AC annimmt, so sollen die Punkte C, K und D der hier untersuchten Kurve angehören.

Weiter sind die Winkel an der Verbindungslinie CK (nach Lehrsatz VII) ebenfalls spitz, also ist die Gerade LX, die AM und CK halbiert und deshalb (nach Lehrsatz II) unter rechten Winkeln trifft, (nach Zusatz I hinter Lehrsatz III) ebenfalls kleiner als AC. Wenn man daher LF in der Verlängerung von LX gleich AC oder MK annimmt, so soll auch der Punkt F der Kurve angehören. Zieht man ferner CF und FK, so findet man in ähnlicher Weise zwei andere Punkte, die auch der Kurve angehören sollen. Und so immer fort. Es gilt aber die Vorschrift, nach der man Punkte zwischen C und K findet, in derselben Weise auch, wenn man Punkte zwischen K und D finden will.

Die Kurve CKD, die aus der Hypothese des spitzen Winkels entspringt, ist nämlich die Verbindungslinie der Endpunkte aller
gleichen Senkrechten, die auf derselben Grundlinie nach derselben Seite errichtet sind, und die man gewöhnlich Ordinaten nennt*). Sie ist, füge ich hinzu, eine Linie, die wegen der Hypothese des spitzen Winkels, aus der sie entspringt, der gegenüberliegenden Grundlinie AB stets ihre hohle Seite zukehrt.

Grade das wollte ich an dieser Stelle darlegen und beweisen.

Lehrsatz XXXV. Zieht man in irgend einem Punkte L der Grundlinie AB die Ordinate LF der Kurve CKD, so behaupte ich, daß die Gerade NFX, die auf LF senkrecht steht, beiderseits ganz auf der gewölbten Seite der Kurve liegt und daher Tangente dieser Kurve ist.

Beweis. Es liege, wenn das überhaupt möglich ist, ein Punkt X (Fig. 43) von NFX in der Höhlung dieser Kurve. Man falle von dem Punkte X auf die Grundlinie AB das Lot XP, das über X hinaus verlängert die Kurve in einem gewissen Punkte R treffe. Dann schließe ich so:

89

Lehrsatz XXXVI. Wenn irgend eine Gerade XF (Fig. 44) mit irgend einer Ordinate LF einen spitzen Winkel bildet, so liegt der Punkt X nicht außerhalb der Höhlung der Kurve, wenn nicht XF vorher die Kurve in einem Punkte O geschnitten hat.

Beweis. Man kann jedenfalls auf XF den Punkt X so nahe an dem Punkte F annehmen, daß die Verbindungslinie LX die Kurve vorher in einem [von F verschiedenen] Punkte S schneidet, denn sonst läge XF entweder nicht ganz außerhalb der Höhlung der Kurve, und dann hätten wir schon die Behauptung, oder es bildete

*) [Im Original: rectae ordinatim applicatae.]
sogar mit FL keinen spitzen Winkel, man müßte vielmehr schließen, daß XF mit LF in eine Gerade zusammenfällt.

Man falle demnach von dem Punkte S auf die Grundlinie AB das Lot SP, das (nach Lehrsatz XXXIV) gleich LF' ist. Es ist aber SP (nach I. 19) kleiner als LS. Also ist auch LF' kleiner als LS und daher viel kleiner als LX. Mithin ist in dem Dreieck LXF der Winkel bei dem Punkte X spitz, weil er (nach I. 18) kleiner ist als der Winkel LFX, der als spitz vorausgesetzt wurde.

Zusatz. Hieraus geht deutlich hervor, daß zwischen die Tangente dieser Kurve und die Kurve selbst keine Gerade [Halbstrahl] gelegt werden kann, die auf der einen oder auf der andern Seite der Tangente ganz außerhalb der Höhlung der Kurve liegt, da ja eine so gelegte Gerade (nach dem vorhergehenden Lehrsätzen) einen spitzen Winkel mit dem Lote bilden muß, das von den Berührungspunkte auf die gegenüberliegende Grundlinie gefällt ist.

Lehrsatz XXXVII. Die Kurve CKD, die aus der Hypothese des spitzen Winkels entspringt, müßte der gegenüberliegenden Grundlinie gleich sein.

Dem Beweise schicke ich folgendes Axiom voraus: Werden zwei Linien halbiert, dann ihre Hälften und wiederum ihre Viertel halbiert, und verfährt man in derselben Weise beliebig oft bis ins Unendliche, so sind die beiden Linien sicher einander gleich, so oft es sich bei
dieser bis ins Unendliche gleichmäßig fortgesetzten Teilung herausstellt oder beweisen läßt, daß man schließlich zu zwei einander entsprechenden Teilen kommen muß, von denen feststeht, daß sie einander gleich sind.

Nunmehr folgt der Beweis der Behauptung.

Man denke sich auf der Grundlinie AB nach der Kurve CKD hin (Fig. 45) beliebig viele Senkrechte NF, LF, PF, MK, TF, VF, IF errichtet, und es seien die Stücke der Grundlinie AN, NL, LP, PM, MT, TV, VI, IB einander gleich.

Zweitens geht hieraus hervor, daß die einzelnen Stücke der Kurve, die von je zwei benachbarten Senkrechten abgeschnitten werden, einander vollständig gleich sind.
Wenn also die Grundlinie \(AB \) in \(M \) halbiert und die Hälfte \(AM \) in \(L \) halbiert wird, dann das Viertel \(LM \) in \(P \) halbiert wird und so fort bis ins Unendliche, wobei man immer nach der Seite des Punktes \(M \) fortgeht, so wird drittens offenbar auch die Kurve \(CKD \) in \(K \) von der Senkrechten \(MK \) halbiert, ebenso die Hälfte \(CK \) wieder in \(F \) von der Senkrechten \(LF \) halbiert, das Viertel \(FK \) in \(F' \) von der Senkrechten \(PF \) halbiert, und so weiter bis ins Unendliche, wenn man in derselben Weise nach der Seite des Punktes \(K \) fortgeht.

Nun können wir annehmen, dass man bei dieser ins Unendliche fortgesetzten Teilung der Grundlinie \(AB \) schließlich zu einem unendlich kleinen Stück von \(AB \) gelangt, das durch die unendlich kleine Breite der Senkrechten \(MK \) dargestellt wird, und dann ergiebt sich viertens (aus dem vorangeschickten Axiome) die behauptete Gleichheit der ganzen Grundlinie \(AB \) mit der ganzen Kurve \(CKD \), wenn ich nur zeigen kann, dass das unendlich kleine Stück, das die Senkrechte \(MK \) von der Grundlinie \(AB \) abschneidet, genau gleich ist dem unendlich kleinen Stück, das dieselbe Senkrechte von der Kurve \(CKD \) abschneidet. Und dieses letztere beweise ich so:

Wenn die Gerade \(RK \) auf \(KM \) senkrecht steht, so berührt sie (nach Lehrsatz XXXV) die Kurve in \(K \), und zwar berührt sie diese in \(K \) so, dass (nach dem Zusatz hinter Lehrsatz XXXVI) zwischen die Tangente und die Kurve auf keiner von beiden Seiten eine Gerade [Halbstrahl] gelegt werden kann, welche die Kurve nicht schneidet. Mithin ist das zur Kurve gehörige, unendlich kleine Stück \(K \) genau ebenso gross, wie das zur Tangente gehörige, unendlich kleine Stück \(K \). Nun ist aber das zur Tangente gehörige, unendlich kleine Stück \(K \) weder grösser noch kleiner als das unendlich kleine, zur Grundlinie \(AB \) gehörige Stück \(M \), vielmehr ihm vollständig gleich, weil man sich nämlich die Gerade \(MK \) dadurch beschrieben denken kann, dass eben dieser Punkt \(M \) in beständig gleichmässiger Bewegung bis zu der Höhe von \(K \) hinaufrückt.

Deshalb müsste (nach dem vorausgeschickten Axiome) die Kurve \(CKD \), die aus der Hypothese des spitzen Winkels entspringt, der gegenüberliegenden Grundlinie \(AB \) gleich sein. Was zu beweisen war.

Anmerkung I. Aber vielleicht wird manchem die eben behauptete genaue Gleichheit zwischen jenen unendlich kleinen Stückchen \(M \) und \(K \) zu wenig einleuchtend erscheinen*). Um daher dieses Bedenken zu beseitigen, verfahre ich wiederum so:

*) [Saccheri scheint also selbst gefühlt zu haben, dass der eben geführte Beweis ungenügend ist.]
Auf irgend einer Geraden AB mögen in derselben Ebene zwei gleiche Geraden AC und BD (Fig. 48) senkrecht stehen. Man denke sich in derselben Ebene einen Kreis $BLDH$ mit dem Durchmesser BD, dessen halber Umfang BLD der genannten Geraden AB gleich ist. Nunmehr stelle man sich vor, dieser Kreis rolle in seiner Ebene derart über die Gerade AB hin, daß er in stetiger und gleichmäßiger Bewegung mit den Punkten seines halben Umfanges die genannte Gerade BA durchmisst oder beschreibt, bis nämlich der zu jenem halben Umfange gehörige Punkt D mit dem Punkte A zusammenfällt, wobei dann der Punkt B, der andre Endpunkt desselben halben Umfanges, mit dem Punkte C zusammenfällt.

Weiter gilt dasselbe sicher in entsprechender Weise von den übrigen Punkten des halben Umfanges BLD und den gegenüberliegenden Endpunkten der zugehörigen Durchmesser, die auf dem andern halben Umfange BHD liegen. Daher ist die Linie, die auf diese Weise von den Punkten des halben Umfanges BHD nach und nach beschrieben wird, die schon untersuchte Linie DKC, die in allen ihren Punkten von der Geraden BA denselben Abstand hat, und die infolgedessen (bei der Hypothese des spitzen Winkels) auf der Seite von AB immer hohl ist.

*) [Wenn eine Gerade einen Kreis berührt, und man vom Berührungspunkte aus senkrecht zu der berührenden Geraden eine gerade Linie zieht, so liegt auf dieser der Mittelpunkt des Kreises.]
Hieraus aber folgt, daß die Punkte M auf BA und K auf DKC als genau gleich anzusehen sind, weil sie nämlich den beiden Endpunkten L und H des zu ihnen gehörigen Durchmessers des Kreises $BLDH$ durchaus gleich sind. Da nun dasselbe von allen Punkten der Geraden BA gilt, die bei dem Rollen beschrieben wird, wenn man sie mit den andern, ihnen ebenso gegenüberliegenden Punkten jener angenommenen Kurve DKC vergleicht, so folgt offenbar, daß eben diese Kurve, die aus der Hypothese des spitzen Winkels entspringt, der gegenüberliegenden Grundlinie AB gleich zu erachten ist. Aber grade das hätte ich durch diese neue Methode wiederum zu beweisen unternommen*).

Anmerkung II. Weil man sich aber die Gerade BA bei jener immer gleichmäßigen und stetigen Bewegung nach und nach von den Punkten des halben Umfanges BLD beschrieben denkt, und weil in entsprechender Weise die Linie DKC von den zugehörigen gegenüberliegenden Punkten des andern halben Umfanges BHD beschrieben wird, so erkennt man leicht, daß die Gerade BA durch jene immer gleichmäßige und stetige Bewegung von einem einzigen Punkte B beschrieben wird, den man sich mit jenem halben Umfange (gewissermaßen abgewickelt) immer auf BA hinlaufend denken muß, während inzwischen in genau derselben Zeit durch dieselbe immer gleichmäßige und stetige Bewegung jene andre Kurve DKC von einem einzigen Punkte D beschrieben wird, nämlich von dem andern Endpunkte des zu B gehörigen Durchmessers, den man sich seinerseits (gewissermaßen abgewickelt) mit seinem andern halben Umfange BHD immer auf der genannten Kurve DKC hinlaufend denken muß. Dann aber erkennt man leichter die behauptete Gleichheit zwischen DKC und der gegenüberliegenden Geraden BA, weil beide in gleicher Zeit und durch die gleiche Bewegung von zwei einander ganz genau gleichen Punkten oder besser unendlich kleinen Stücken beschrieben werden**). Übrigens hat die ganz genaue Gleichheit der genannten Punkte offenbar auf die neue Betrachtung gar keinen Einfluss.

Lehrsatz XXXVIII. Die Hypothese des spitzen Winkels ist ganz 95 und gar falsch, weil sie sich selbst zerstört.

*) [Dieser Beweis leidet an genau denselben Gebrechen wie der vorhergehende.]

**) [Auch diese Betrachtungen sind nicht besser als die vorhergehenden. Der Kreis BHD, rollt zwar auf der Geraden AB und wickelt sich auf ihr ab, aber er rollt nicht zu gleicher Zeit auf der Kurve DKC und wickelt sich infolgedessen auch nicht auf dieser ab.]

Stäckel u. Engel, Parallelenlehre.
Beweis. Vorhin haben wir nämlich aus der Hypothese des spitzen Winkels deutlich erschlossen, daß die aus ihr abgeleitete Kurve CKD (Fig. 46) der gegenüberliegenden Grundlinie AB gleich sein muß. Jetzt aber erschließen wir aus derselben Hypothese das Gegenteil, daβ nämlich die Kurve CKD jener Grundlinie nicht gleich sein kann, weil sie unbedingt größer ist als diese.

Daß nämlich die Kurve CKD größer ist als die Gerade CD, die ihre Endpunkte verbindet, das zeigt die unmittelbare Anschauung. Man kann es allerdings auch mit Hilfe von I. 20 beweisen, wonach zwei Seiten eines Dreiecks zusammen immer größer sind als die dritte, indem man nämlich CK und KD zieht, und wiederum in ähnlicher Weise zunächst die Spitzen von zwei Abschnitten verbindet, dann von vier und so weiter ins Unendliche, wobei die Anzahl der so entstehenden Abschnitte sich immer verdoppelt, bis die ganze Kurve CKD auf diese Weise schließlich in die unendlich kleinen Sehnen oder Tangenten zerlegt ist. Indes brauchen wir uns hier blofs auf die unmittelbare Anschauung zu berufen.

Daß jedoch andererseits die Verbindungslinie CD größer ist als die Grundlinie AB, das haben wir im dritten Lehrsatz aus der innersten Natur der Hypothese des spitzen Winkels bewiesen. Daher ist die Kurve CKD, die aus der Hypothese des spitzen Winkels entspringt, gewiß größer als die Grundlinie AB, denn nach der unmittelbaren Anschauung ist sie größer als die Gerade CD, und diese ist, wie bei der Hypothese des spitzen Winkels bewiesen werden kann, größer als die Grundlinie AB. Damit ist aber nicht vereinbar, daß die Kurve CKD der Grundlinie AB gleich ist.

Mithin steht fest, daß die Hypothese des spitzen Winkels ganz und gar falsch ist, weil sie sich selbst zerstört.

Anmerkung. Ich muß noch bemerken, daß auch aus der Hypothese des stumpfen Winkels eine gewisse Kurve CKD entspringt, die jedoch auf der Seite der Grundlinie AB gewölbt ist. Denn die Halbierungslinie MH (Fig. 47) von AB und CD steht (nach Lehrsatz II) auf beiden senkrecht und ist bei der Hypothese des stumpfen Winkels (nach Zusatz I hinter Lehrsatz III) größer als AC und BD. Deshalb

Nun gebe ich zu, daß man genau auf dieselbe Weise die Gleichheit dieser Kurve mit der Grundlinie AB hätte beweisen können. Aber was wäre der Erfolg? Sicherlich gar keiner! Denn, wenn einerseits jene Kurve CKD, nach der unmittelbaren Anschauung, für grüber gelten muß als die Gerade CD, so wird anderseits (in Lehrsatz III) bewiesen, daß die Grundlinie AB größer ist als CD, sobald die Hypothese des stumpfen Winkels gilt. Es ist also hier kein Widersinn, wenn die Grundlinie AB der genannten Kurve gleich ist. Dafs es sich aber bei der Hypothese des spitzen Winkels ganz anders verhält, das geht aus dem vorhin Gesagten hervor.

Aus dieser Anmerkung nun und aus einer andern hinter Lehrsatz XIII ist zu ersehen, daß wir zur Widerlegung der beiden falschen Hypothesen, der des stumpfen Winkels und der des spitzen Winkels, zwei ganz verschiedene Wege einschlagen mußten.

Übrigens erkennt man aus dem Vorhergehenden ohne Mühe, daß nur die gerade Linie CD in allen ihren Punkten gleichen Abstand von der Grundlinie AB haben kann.

Lehrsatz XXXIX. Werden zwei gerade Linien von einer andern geschnitten, und sind die innern Winkel, die diese auf derselben Seite bilden, zusammen kleiner als zwei Rechte, so treffen die beiden Linien ins Unendliche verlängert, einander auf der Seite, wo die Winkel zusammen kleiner sind als zwei Rechte.

Das ist eben das berühmte Euklidische Axiom, das ich endlich vollständig zu beweisen unternehmen.

Zu diesem Endzwecke aber genügt es, an einige der vorhergehenden Beweise zu erinnern. Ich habe in meinen Lehrsätzen bis zum siebenten einschließlich in Bezug auf die Verbindungslinie der Endpunkte von zwei gleich langen Geraden, die in derselben

Bei der Hypothese des stumpfen Winkels ist nämlich die Sache heller als die Sonne im Mittag, weil sich ja, wenn man sie als wahr annimmt, aus ihr die vollständige und allgemeine Giltigkeit des strittigen Euklidischen Axioms erweisen läßt, und daraus kann nachher die vollständige Unrichtigkeit eben dieser Hypothese bewiesen werden, wie das aus Lehrsatz XIII und XIV hervorgeht.

Dagegen gelingt es mir nicht, die Unrichtigkeit der andern Hypothese, nämlich der des spitzen Winkels, nachzuweisen, ohne vorher zu zeigen, daß die Linie, deren Punkte alle von einer angenommenen
geraden Linie gleich weit abstehen, und die in derselben Ebene mit dieser liegt, eben dieser Geraden gleich ist.

Erkennt man nun an, daß die Gleichheit jener Kurve CKD, wie sie aus der Hypothese des spitzen Winkels entspringt, mit der Grundlinie AB auf die erste Art wirklich bewiesen ist, so bekommt man eine überzeugende Widerlegung, denn bei derselben Hypothese läßt sich offenbar nachweisen, daß CKD größer ist. Erkennt man aber an, daß die Gleichheit auf eine der beiden andern Arten bewiesen ist, so wird auch dann die Widerlegung der Hypothese des spitzen Winkels mit nichten versagen. Der Grund liegt darin, daß CD zwar sehr gut krumm und nichtsdestoweniger der Geraden AB gleich sein kann, wenn nur CD immer auf jener Seite gewölbt, und somit die Verbindungsgerade derselben Punkte C und D kleiner ist als die gegenüberliegende Grundlinie AB, was bei der Hypothese des stumpfen Winkels eintritt; daß es aber durchaus ein Widerspruch ist, wenn CD auf derselben Seite immer hohl und somit die genannte Verbindungsgerade jener Punkte C und D größer ist als die gegenüberliegende Grundlinie AB, was bei der Hypothese des spitzen Winkels eintritt. In dieser Weise ist die Sache bereits in der Anmerkung zu dem vorkommlenden Lehrsatz auseinandergesetzt worden. Freilich leuchtet ein, daß hieraus keine Widerlegung der Hypothese des stumpfen Winkels folgt, daß vielmehr auf diese Art einzig und allein die Hypothese des spitzen Winkels zerstört wird.

Vielleicht könnte aber hier jemand fragen, warum ich so besorgt bin nachzuweisen, daß die Widerlegung der beiden falschen Hypothesen unanfechtbar ist. Deshalb, erwiedere ich, weil daraus hervorgeht, daß Euclid nicht ohne genügenden Grund jenes berühmte
Axiom als an und für sich einleuchtend angenommen hat. Denn grade
darin scheint, sozusagen, der Charakter jeder Grundwahrheit zu liegen,
weis sie nur, indem die Wahrheit ihres Gegenteils gründlich widerlegt
wird, in ihr altes Recht wieder eingesetzt werden kann. Und ich darf
sagen, das mir dies von meiner Jugend an bei der Untersuchung
einiger Grundwahrheiten geglickt ist, wie aus meiner Logica demo-
strativa [1692, 1701] hervorgeht.

Nunmehr kann ich mich dazu wenden, auseinanderzusetzen, warum
ich in dem Vorwort an den Leser gesagt habe: gewisse Leute hätten
nicht ohne einen groben Verstoß gegen die strenge Logik Paare gleichweit
100 entfernter gerader Linien von vorn herein als gegeben angenommen. Dabei
muß ich ausdrücklich erklären, das ich hiermit keinen von denen
angreife, die ich in meinem Buche, wenn auch nur mittelbar, genannt
habe; denn sie sind wahrhaft große Geometer und von diesem Ver-
stoße unzweifelhaft frei.

Ich sage aber: einen groben Verstoß gegen die strenge Logik, denn
was heißt: zwei gleich weit entfernte gerade Linien als gegeben annehmen
andres, als entweder verlangen, das jede Linie, die in derselben Ebene
von einer angenommenen Geraden gleich weit entfernt ist, wieder eine
gerade Linie sei, oder wenigstens annehmen, das eine gewisse gleich
weit entfernte Linie eine gerade Linie sein kann, sodoß man also eine
solche entweder auf Grund einer Hypothese oder auf Grund einer
Forderung in der betreffenden Entfernung von der andern annehmen
darf? Unzweifelhaft kann man keins von beiden als an sich einleuchtend
einschmiegeln, den das der reine Begriff einer Linie, die in allen ihren
Punkten von einer angenommenen geraden Linie gleich weit entfernt
ist, mit dem ursprünglichen Begriffe der geraden Linie zusammenfällt,
ist keineswegs unmittelbar klar. Zwei gerade Linien für parallel zu
erklären, wenn sie gleich weit von einander entfernt sind, ist deshalb
ein Fehler, den ich in meiner Logik den der zweideutigen Erklärung
nehmen; bei einer solchen ist aber jeder Versuch, zur unbedingten
Wahrheit zu gelangen, nutzlos.

Ich finde jedoch, das noch eine Bemerkung gemacht werden muß.
Wir alle wollen zugeben, dass die Verbindungslinie der Endpunkte
aller Senkrechten, die in ein und derselben Ebene nach derselben
Seite in den einzelnen Punkten einer angenommenen geraden Linie
AB errichtet sind, sowohl der genannten Geraden AB gleich als auch
selbst eine Gerade sein muß. Ich behaupte aber: Wir erkennen
zuerst, dass sie gleich ist, und erst dann, dass sie gerade ist. Da
man sich nämlich vorstellen kann, dass die einzelnen Punkte jener
Geraden AB immer gleichmässig auf ihren Senkrechten fortschreiten,
bis sie endlich jene gewisse Linie CD bilden, so muß einleuchten, daß die so erzeugte Linie CD, wie sie auch sonst beschaffen sei, gleich AB ist, besonders wenn man die Auseinandersetzung berücksichtigt, die in der Anmerkung II hinter Lehrentzatz XXXVII enthalten ist, wo dieser Punkt auf das Deutlichste bewiesen wurde.

Indes bleibt alsdann noch eine große Schwierigkeit, nämlich zu beweisen, daß die so erzeugte Kurve CD nur eine gerade Linie sein kann. Und daher kommt es, wie mir scheint, daß man, um leichter von der Stelle zu kommen, einem allgemein verbreiteten Vorurteile nachgebend, lieber von vorn herein angenommen hat, CD sei eine gerade Linie, um daraus abzuleiten, daß es der Grundlinie AB gleich ist, und um nachher die rechten Winkel an der Verbindungsgeraden CD einzuführen.

Ich sage aber: *eine große Schwierigkeit*, denn es mussten zuerst die drei Hypothesen in Betreff der Winkel an der Verbindungsgeraden CD eingeführt werden, die rechte sind, wenn CD gleich der Grundlinie AB ist, oder stumpf, wenn es kleiner, oder spitz, wenn es größer ist. Dann aber mußte gezeigt werden, daß die krumme Linie, die (bei der Hypothese des spitzen Winkels) die Endpunkte jener gleichen Senkrechten verbindet, auf der Seite von AB nur hohl sein könne, und daß wiederum die andere Kurve, die (bei der Hypothese des stumpfen Winkels) die Endpunkte derselben Senkrechten verbindet, auf der genannten Seite nur gewölbt sein könne. Nunmehr aber mußte hieraus die Unrichtigkeit der Hypothese des spitzen Winkels nachgewiesen werden, weil die Linie, welche die Endpunkte der genannten Senkrechten verbindet, der Grundlinie AB nicht gleich, sondern vielmehr (wie die Anschauung unmittelbar lehrt) größer ist als jene Verbindungslinie CD, die nach der Beschaffenheit eben dieser Hypothese größer ist als die genannte Grundlinie AB. Dafs aber die Hypothese des stumpfen Winkels sich selbst widerspricht, mußte anderswoher gezeigt werden, so wie es in Lehrentzatz XIV geschehen ist. Aber damit sei es nun genug.

Ende des ersten Buches.
Abweichungen vom Urtext.

S. 61, Z. 7 v. o. (S. 13, Z. 14 v. o.) AP statt: AD.
S. 72, Z. 10 v. o. (S. 25, Z. 3 v. u.) XXV statt: XXVII.
S. 102, Z. 11 v. u. (S. 62, Z. 7 v. o.) NC statt: MC.
S. 119, Z. 2 v. o. (S. 82, Z. 3 v. o.) XI. 4 statt: XI. 1

Druckfehler, die bereits im Druckfehlerverzeichnisse des Originals (S. XVI) angeführt sind oder die das Verständnis des Textes nicht stören, wie die häufige Vertauschung von n und u, f und f, r und t, haben wir hier unberücksichtigt gelassen. Die in runde Klammern eingeschlossenen Seitenzahlen beziehen sich auf die Originalausgabe.
JOHANN HEINRICH LAMBERT
1728—1777.
Mit Johann Heinrich Lambert kommen wir nach Deutschland. Wir wollen daher zunächst berichten, wie sich die Entwicklung der Parallelentheorie dort gestaltet hatte.

In der Einleitung zu Wallis ist bereits der vortreffliche Euklid-Kommentar des Jesuiten Christoph Schlüssel (1574) besprochen worden. Aber erst nach einem Zeitraume von fast zweihundert Jahren begegnet uns in Deutschland wieder eine Veröffentlichung, die erwähnt zu werden verdient; denn die scharfsinnigen Bemerkungen, die Leibniz über die Grundlagen der Geometrie gemacht hatte, sind erst in diesem Jahrhunderte aus seinem Nachlaß ans Licht gezogen worden. Das Interesse für die Parallelentheorie erwacht erst wieder in der zweiten Hälfte des achtzehnten Jahrhunderts, und zwar war es Abraham Gotthelf Kaestner (1719—1800), der die Wichtigkeit der Untersuchungen über die fünfte Forderung erkannte, die Aufmerksamkeit der Mathematiker auf diesen Gegenstand lenkte und damit eine Bewegung einleitete, die erst in diesem Jahrhunderte ihren Abschluß gefunden hat.

In der Vorrede zu seinen weitverbreiteten Anfangsgründen der Arithmetik und Geometrie, deren erste Auflage im Jahre 1757 erschienen ist, erzählt uns Kaestner Folgendes:

fahre finden können, das meiner Befriedigung näher käme als das-
jenige, das ich in dem Zusatze des elften Satzes und im zwölften
Sätze gewählt habe."

Dieses Verfahren besteht darin, daß, ähnlich wie es bei Wallis
geschieht, die eine der beiden schneidenden Geraden parallel mit sich
selft verschoben wird. Liegt ihr Schnittpunkt mit der Grundlinie
in der Nähe des Schnittpunktes der zweiten Geraden mit der Grund-
linie, so findet ein Zusammentreffen der beiden schneidenden Geraden
statt. „Man sieht aber nicht“, fährt Kaestner fort, „wie blofs die
längere Grundlinie die Dreiecke unmöglich machen soll, man wird
vielmehr urtheilen, daß bei einer längeren Grundlinie nur die Seiten
bi zum Zusammentreffen weiter müssen fortgeschoben werden.“

Kaestners Interesse für die Parallelentheorie zeigte sich jedoch
nicht nur darin, daß er die betreffenden Schriften sammelte — das 1801
veröffentlichte Verzeichnis seiner Büchersammlung, die über 7000 Werke
ufmäßte, enthält fast alles, was über diesen Gegenstand etwa bis 1770
erschienen war — vielmehr entstand auch unter seiner Beihilfe eine
noch heute wertvolle Dissertation, in der zum ersten Male eine Ge-
schichtederParallelentheoriegegebenwurde. Ihr Titel lautet:

Conatuum praecipuorum theoriwm parallelarum demon-
strandii recensio, quam publico examini submittent Abrah.
Gotthelf Kaestner et auctor respondens Georgius Simon
Klügel, Göttingen 1763. 4°. 34 Seiten, 1 Figurentafel.

Ihr Verfasser, später Professor der Mathematik in Helmstedt und
in Halle, ist noch jetzt durch sein Mathematisches Wörterbuch bekannt.

Gegen dreißig Versuche, das Parallelenaxiom zu beweisen, unter
ihnen auch, wie wir schon früher erwähnten, der Versuch Saccheris,
werden hier mit sehr verständiger Kritik behandelt, und immer stellt
sich heraus, daß sie als mißlungen anzusehen sind. Es ist daher
erklärlich, daß Klügel (S. 16) zu der Ansicht gelangt: „Möglich
ware es freilich, daß Gerade, die sich nicht schneiden, von einander
abweichen. Daß so etwas widersinnig ist, wissen wir nicht in Folge
strenger Schlüsse oder vermöge deutlicher Begriffe von der geraden
der krummen Linie, vielmehr durch die Erfahrung und durch das
Urteil unserer Augen“, und daß Kaestner in einem Nachworte sich
dahin äußert, ein Beweis für das Parallelenaxiom sei nur zu erhoffen
durch eine genauere Ausbildung der Lehre von der Lage, die mit
Leibniz untergegangen sei. Gegenwärtig bleibe nur übrig, offen, wie
es Hütern der reinsten Wahrheit gezieme, die Forderung Euklids als
solche auszusprechen; niemand, der bei gesunden Sinnen sei, werde sie
ja bestreiten wollen.
Dieser Skeptizismus Kaestners scheint sich später fast noch verschärft zu haben, denn Schweikart berichtet 1807, „daß Kaestner vor vielen Jahren schon, an der Möglichkeit der Lösung verzweifelnd, mit unbegreiflicher Resignation, anstatt nach der wahren Demonstration zu forschen, ein blindes Annehmen öffentlich anrieth“.

Klugels Dissertation hat noch ein andres Interesse, sie scheint die Veranlassung gewesen zu sein, daß Johann Heinrich Lambert der Parallelentheorie seine Aufmerksamkeit zuwandte (vergl. S. 155).

„Ich stelle mir nun Eucludens Verfahren so vor:

1. Dafs Euclid seine Definitionen vorausschickt und aufhäuft, das ist gleichsam nur eine Nomenclatur. Er thut dabei weiter nichts als was z. B. ein Uhrmacher oder anderer Künstler thut, wenn er anfängt, seinem Lehrjungen die Namen seiner Werkzeuge bekannt zu machen.
Einleitung zu Lambs

2. Dabe
d es Eucliden genug, wenn man ihm einräumt, dass es solche Figuren gebe, sollte es auch nur eine seyn.

3. Hingegen fordert er die unbedingte Möglichkeit gerader Linien und Circul von jeder Größe und Lage. Et hoc si dederis, danda sunt omnia*).

4. Sogleich trägt Euclid eine Aufgabe vor, um denen, welche ihm die allgemeine und unbedingte Möglichkeit eines gleichseitigen \(\Delta \) [Triangels] in Zweifel ziehen wollten, ex concessis postulatis zu zeigen, wie sie ihn von jeder Größe machen können.

5. Vermittelst dieser ersten Aufgabe zeigt Euclid in der zweiten, wie man eine Linie von gegebener Länge hintragen könne, wohin man will.

6. Im folgenden zeigt er sodann, dass in jedem \(\Delta \) zwei Seiten grösser sein müssen, als die dritte, und dass demnach unter dieser Bedingung Triangel von jeder Gestalt und Größe möglich sind. Dieses hätte man ihm aus der blofsen Definition des \(\Delta \) nicht eingeräumt.

8. In den Beweisen braucht Euclid den Ausdruck per definitionem im geringsten nicht anders als den Ausdruck per hypothesis. Denn bis die Möglichkeit des Begriffs nicht erwiesen ist, ist die Definition nur noch eine Hypothese. Ist es für sich oder auch nur durch ein einziges Beyspiel klar, dass es wenigstens einige solcher Figuren giebt, die die Definition anzeigt, so mag die Definition vorausgeschickt werden, und zwar als eine bloße Benennung. Die Bedingungen ihrer Möglichkeit müssen aber aus Grundsätzen und Postulatis folgen. Dies ist der Fall von dem \(\Delta \) (Nr. 6). Die Definition der Parallellinien ist schlechthin eine Hypothese bis ihre Möglichkeit erwiesen wird, und da wird die Definition zum Subjekt (Alethiol. § 242**)).

Dieses ist nun meines Erachtens die Art, wie Euclid mit Definitionen und Begriffen umgeht."

Trotz sorgfältiger Nachforschungen ist es uns nicht gelungen, in

*) [Cicero, de finibus bonorum et malorum, lib. V. 83.]
**) [Gemeint ist der Abschnitt Alethiologie aus Lamberts Werk: Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrthum und Schein. Riga 1764.]
Theorie der Parallellinien.

143

Bei dem Versuche, die Bedeutung der Untersuchungen Lamberts zu kennzeichnen, werden wir naturgemäß Saccheris Euclides ab omni naevo vindicatus zur Vergleichung heranziehen; wir möchten jedoch ausdrücklich bemerken, daß nach unserer Überzeugung Lambert von diesem Werke nur das Wenige gekannt hat, was Klügel in seiner Dissertation mitgeteilt hatte.

Lamberts „Theorie der Parallellinien“ gliedert sich in drei Abschnitte sehr verschiedenen Inhalts. Der erste sehr klar geschriebene und noch heute nicht veraltete Abschnitt (§ 1—11) hat den Zweck darzulegen, was es bedeutet, wenn man von einem Beweise der fünften Forderung spricht. Grade Lambert war für solche Auseinandersetzungen mathematisch-philosophischer Art der rechte Mann, denn seine Leistungen auf dem Gebiete der Philosophie stehen den mathematischen nicht nach: Kant nennt ihn mit der größten Achtung, und Lamberts Untersuchungen über Logik werden noch heute geschätzt.

In dem zweiten Abschnitte (§ 12—26) finden wir verschiedene Ansätze zu einem Beweise des Parallelenaxioms, bei deren Durchführung jedoch immer ein Rest bleibt. C. F. Hindenburg (1741—1808) hat daher im Leipziger Magazin (Jahrgang 1786, S. 361) beim Erscheinen der Lambertschen Abhandlung zu § 21 sehr richtig bemerkt:

„Was behauptet wird, der Beweis von Euklid's Grundsätze lasse sich leicht so weit treiben, daß das, was daran noch etwa zurück bleibt, nicht nur augenscheinlich richtig ist, sondern auch allen Anschein hat, daß es nachgeholt, und der Beweis dadurch ergänzt werden könne; habe ich, aus vielfältiger Erfahrung, etwas anders gefunden, nehmlich: Das, was etwa noch zu erweisen übrig ist, scheint anfangs eine Kleinigkeit zu seyn; aber diese anscheinende Kleinigkeit, soll sie nach aller Strenge berichtigt werden, ist, wenn man genauer nachsieht, immer die Hauptsache selbst; gewöhnlich setzt sie den Satz, oder einen ihm gleichgültigen, voraus, den man eben erweisen soll."

Übrigens ist jener Rest bei Lamberts Beweisversuchen im Grunde das Axiom Bolyais: Durch drei Punkte der Ebene kann
stets ein Kreis gelegt werden, das, sobald die gerade Linie eine unendliche Länge hat, mit der Euklidischen Forderung gleichbedeutend ist. Ähnlich verhält es sich mit dem Beweisversuche, den Lambert am Schlusse des dritten Abschnittes (§ 88) mitteilt, und dessen Unzulänglichkeit Hindenburg ebenfalls erkannt hatte. Wir vermuten, „daß auch Lambert die Schwäche dieses Beweises nicht entgangen ist, und sehen hierin mit Hindenburg den Grund, der ihn bewogen hat, „die Bekanntmachung seiner Theorie aufzuschließen“.

Wir kommen nunmehr zu dem dritten und wichtigsten Abschnitte (§ 27—88), in dem Lambert seine eigentliche Theorie der Parallellinien entwickelt.

Ferner hat Lambert die beiden Hypothesen des spitzen und des stumpfen Winkels noch weiter verfolgt als Saccheri und insbesondere das Verhalten von zwei sich nicht schneidenden Geraden genauer untersucht. Aus dem Aufhören der Ähnlichkeit erschließt er, daß, wenn eine von jenen beiden Hypothesen stattfände, ein absolutes
Maafs der Länge vorhanden wäre. Dagegen spricht er den wichtigen Satz Saccheris, daß jede der drei Hypothesen allgemein giltig ist, sobald sie nur in einem Falle gilt, nur für seine erste Hypothese (§ 42 und 51) ausdrücklich aus; auch die Lobatschefskijsehen Grenzgeraden, die uns schon bei Saccheri begegnet sind, kommen bei ihm nicht vor.

Endlich finden sich bei Lambert sehr bemerkenswerte Betrachtungen über den Flächeninhalt des Dreiecks. Er erkennt, daß dieser Flächeninhalt bei der zweiten und dritten Hypothese der Abweichung der Winkelsumme des Dreiecks von zwei Rechten proportional ist. Dies veranlaßt ihn in § 82 zu folgender Bemerkung:

„Hierbey scheint mir merkwürdig zu seyn, daß die zwote Hypothese statt hat, wenn man statt ebener Triangel sphärische nimmt, weil bei diesen sowohl die Summe der Winkel größer als 180 Gr. als auch der Überschuß dem Flächenraume des Triangels proportional ist. Noch merkwürdiger scheint es, daß, was ich hier von den sphärischen Triangeln sage, sich ohne Rücksicht auf die Schwierigkeit der Parallelinien erweisen lasse, und keinen andern Grundsatz voraussetzt, als daß jede durch den Mittelpunkt der Kugel gehende ebene Fläche die Kugel in zween gleiche Theile theile. Ich sollte daraus fast den Schluss machen, die dritte Hypothese komme bey einer imaginären Kugelfläche vor. Wenigstens muß immer etwas seyn, warum sie sich bey ebenen Flächen lange nicht so leicht umstossen läßt, als es sich bey der zwoten thun liefs.“

Lambert hatte also erkannt, daß die zweite Hypothese auf der Kugel verwirklicht ist. Dieser Gedanke, die Geometrie auf der Ebene mit der Geometrie auf der Kugel zu vergleichen, ist für die neueren Untersuchungen über die Grundlagen der Geometrie von entscheidender Bedeutung geworden; es genüge hier an Riemanns Habilitationsvorlesung von 1854 zu erinnern.

Aber Lambert ist weiter gegangen, indem er die für die damalige Zeit außerordentlich kühne Vermutung aussprach, daß für die dritte Hypothese eine imaginäre Kugelfläche dasselbe leiste; diese Vermutung war, wie wir jetzt wissen, durchaus richtig. Überhaupt war Lambert ein wunderbarer prophetischer Blick eigen. Gab er doch 1767 den ersten Beweis für die Irrationalität der Zahl π und behauptete gleichzeitig die Transcendenz dieser Zahl, die zu beweisen erst mehr als hundert Jahre später gelungen ist.

Dafs Lambert das Imaginäre heranzich, kann nicht über...
Einleitung zu Lamberts

raschen, denn auch sonst hatte er, seinen Zeitgenossen vorausseilend, keine Scheu vor dem Imaginären. Bezeichnend für ihn ist die Äußerung: „Das Zeichen $\sqrt{-1}$ stellt ein nicht gedenkbares Unding dar, und doch kann es Lehrsätze zu finden gut gebräucht werden“. Sie findet sich in einem Briefe an Kant aus dem Jahre 1770 (Briefwechsel, Teil I. S. 365).

Da Lambert die imaginäre Kugel im Zusammenhange mit dem Flächeninhalt des Dreiecks nennt, so scheint es nicht ausgeschlossen, daß er in der Formel:

$$r^2(A + B + C - \pi)$$

für den Flächeninhalt eines sphärischen Dreiecks mit den Winkeln A, B, C auf einer Kugel vom Halbmesser r an die Stelle von r:

$$\sqrt{-1} \cdot r$$

gesetzt hat, denn so mußte er den Ausdruck:

$$r^2(\pi - A - B - C)$$

erhalten, der ihm zeigte, daß auf der imaginären Kugel der Flächeninhalt des Dreiecks ebenfalls der Abweichung von zwei Rechten proportional ist, und daß die Winkelsumme $A + B + C$ nicht größer als zwei Rechte ausfällt, genau ebenso, wie es die dritte Hypothese mit sich bringt.

Lobatschefskij hat 1837 seine Geometrie, die der dritten Hypothese Lamberts entspricht, Géométrie imaginaire genannt, weil ihre trigonometrischen Formeln aus denen für das sphärische Dreieck hervorgehen, wenn man die Seiten als imaginär ansieht, oder, was dasselbe ist, wie Wolfgang Bolyai 1851 hervorgehoben hat, wenn man den Halbmesser der Kugel imaginär setzt.

Gaußs sagt in einem Briefe an Schumacher vom 12. Juli 1831, in der nichteuklidischen Geometrie gelte für den Umfang eines Kreises vom Halbmesser ϱ der Ausdruck:

$$\pi r \left(e^\varrho - e^{-\varrho} \right),$$

in dem r eine Konstante bedeutet. Das ist aber nichts andres als der elementare Ausdruck für den Umfang eines Kreises vom Halbmesser ϱ auf einer Kugel vom Halbmesser r, nachdem man $\sqrt{-1} \cdot r$ an die Stelle von r gesetzt hat.

Hat Lambert auch von diesen Zusammenhängen etwas geahnt? Merkwürdig ist jedenfalls der Umstand, daß er sich mit den Werten der trigonometrischen Funktionen für ein rein imaginäres Argument eingehend beschäftigt hat, und zwar zu einer Zeit, die der Abfassung seiner Parallelentheorie
unmittelbar folgt. Im September 1766 hatte er diese Abhandlung aufgesetzt, im September 1767 (Briefwechsel, Teil I, S. 254) las er in der Berliner Akademie seine Abhandlung: Sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, und er setzte diese Untersuchungen später in den Observations trigonométriques fort.

In der ersten dieser beiden Abhandlungen zeigt Lambert, dass die Beziehungen zwischen den trigonometrischen Funktionen einen reellen Sinn behalten, wenn die Argumente rein imaginär werden. An Stelle des Kreises tritt dann die gleichseitige Hyperbel, und man gelangt so zu einer „hyperbolischen Trigonometrie“. Allerdings führte Lambert hier nur einen Gedanken aus, den bereits Vincentio Riccati und Daviet de Foncenex zu entwickeln begonnen hatten. In der zweiten Abhandlung werden die hyperbolischen Funktionen benutzt zur Lösung von Aufgaben aus der sphärischen Astronomie; sie dienen dazu, die Formeln zu vereinfachen und für die Rechnung mit Logarithmen geschickter zu machen. Freilich hat Lambert — wie wir ausdrücklich hervorheben wollen — in keiner der beiden Abhandlungen bei Formeln der sphärischen Trigonometrie den Halbmesser imaginär gesetzt, aber die Thatsache, dass diese Formeln auch bei einer solchen Annahme einen reellen Sinn behalten, würde für ihn sicher nichts Überraschendes gehabt haben.

Als Lamberts Theorie der Parallellinien im Jahre 1786 veröffentlicht wurde, war das Interesse für diesen Gegenstand in Deutschland und Frankreich bereits sehr lebhaft. Etwa seit 1781 beginnt die Zahl der Veröffentlichungen über Parallelentheorie beständig anzunehmen, und das Jahr 1786 weist in unserem Verzeichnis nicht weniger als sieben solcher Schriften auf; wenn auch die späteren Jahre meistens kleinere Zahlen aufweisen, so ist doch während des nächsten halben Jahrhunderts kaum ein Jahr vergangen, in dem nicht wenigstens ein neuer Beweisversuch zum Vorschein kam. Lamberts Abhandlung, das Bedeutendste, was, neben Saccheris Euclides ab omni naevo vindicatus, auf dem Gebiete der Parallelentheorie bis zu den Arbeiten von Lobatschefskij und Bolyai veröffentlicht worden ist, hat freilich auf diese Bemühungen keinen Einfluss gehabt; sie wird zwar in den Litteraturverzeichnissen wiederholt aufgeführt, ein genaueres Eingehen auf ihren Inhalt haben wir jedoch nur selten, eine Weiterführung von Lamberts Ideen überhaupt nicht angetroffen.

Zunächst kommt hier eine Abhandlung C. F. Hindenburgs in
Einleitung zu Lamberts

Betracht, die sich in dem Magazin für Mathematik unmittelbar an Lamberts Parallelenentheorie anschliesst; wir haben sie schon auf S. 143 ausreichend erwähnt. Dann hat C. F. A. Jacobi in seiner Dissertation vom Jahre 1824, die wir in der Einleitung zu Saccheri anführten, auf die Ähnlichkeit der Betrachtungen dieser beiden Forscher hingewiesen. Endlich verdient noch Erwähnung, dass Bessel in einem Briefe an Gaufs vom 10. Februar 1829 sich auf Lambert beruft: „Durch das, was Lambert gesagt hat und was Schweikard mündlich äufserte, ist mir klar geworden, dass unsere Geometrie unvollständig ist und eine Korrektion erhalten sollte, welche hypothetisch ist, und wenn die Summe der Winkel des ebenen Dreiecks = 180° ist, verschwindet. Das wäre die wahre Geometrie, die Euklidische aber die praktische, wenigstens für die Figuren auf der Erde."

In der späteren Zeit ist Lamberts Abhandlung gänzlich in Vergessenheit geraten*).

Wir wollen jetzt noch ein paar Worte sagen über unsern Neu- druck von Lamberts Theorie der Parallel. linien.

In dieser „Nachricht“ teilt Bernoulli weiter mit, dass er den Nachlaß Lamberts geordnet habe, und zeigt an, „zu welchen Schriften er den Gelehrten Hoffnung machen könne“. Es sind dies:

1) „ein Monatsbuch oder eine Art Tagebuch, in welchem Lambert von 1752 an bis zu seinem Ende von Monat zu Monat kurz aufzuzeichnen pflegte, mit welchen gelehrt-ten Arbeiten und Untersuchungen er sich den ganzen Monat hindurch beschäftigt hatte. Wird sehr merkwürdig und leerreich befunden werden.“

2) „Lamberts Briefwechsel mit unzähligen, zum Theil sehr berühmten Gelehrten: Philosophen, Mathematiker, Physiker, Astronomen, Litteratoren u. s. w. Wird etliche Bände betragen.“

3) „Materialien zu ein Paar Bänden philosophischer und philologischer Abhandlungen.“

4) „Vermischte Abhandlungen zu den mathematischen und physikalischen Wissenschaften gehörig, die etwa zwey Bände ausmachen werden und als eine Fortsetzung der bekannten in drei Theilen erschienenen Beyträge anzusehen sind:“

Bernoulli eröffnete nun eine Subskription auf Lamberts Hinterlassene Schriften, aber leider fand, wie er 1783 klagt, „das Unternehmen wenige Beförderer“. So sind denn „nach manchen überstandenen Hindernissen“ nur die logischen und philosophischen Abhandlungen in zwei Bänden (Berlin 1781 und 1789) und der Deutsche gelehnte Briefwechsel in fünf Bänden (Berlin 1781 bis 1787) erschienen.

Die erste dieser Abhandlungen ist die Theorie der Parallel-linien, die man in dem zweiten Stücke des Magazins für 1786, S. 137—164 und in dem dritten Stücke S. 325—358 findet. Im Folgenden geben wir einen getreuen Wiederabdruck dieser Abhandlung; nur einige unbedeutende Druckfehler haben wir verbessert.
Die Figuren, die im Original zwei Tafeln füllen, sind in den Text aufgenommen worden.

Gern hätten wir unserm Neudruck die Ursachrift Lamberts zu Grunde gelegt, und da wir überdies vermuteten, daß der nicht veröffentlichte Teil des Nachlasses, insbesondere das Tagebuch, Bemerkungen über die Parallelementheorie enthalten könnte, haben wir uns bemüht, Genaueres über den Verbleib von Lamberts Nachlasses zu ermitteln.

Litteratur.

Huber, D., *Johann Heinrich Lambert, nach seinem Leben und Wirken dargestellt*. Basel 1829, enthält:

1. Einen Vorbericht des Herausgebers über die Lambertsehr ffer zu Mühlhausen im Jahre 1828,
2. Lamberts Leben, von Matthias Graf,
3. Lamberts Verdienste um die theoretische Philosophie, von Simon Erhardt,
4. Lamberts Verdienste in den mathematischen und physikalischen Wissenschaften, von Daniel Huber.

Leibniz, G. W., *In Euclidis IP2TA* (handschriftlich auf der Königlichen Bibliothek zu Hannover), Leibnizens mathematische Schriften, Bd. 4. Halle 1858. S. 183.

Lepsius, Joh., *Johann Heinrich Lambert*. München 1881.

Theorie der Parallellinien,

von

Joh. Heinr. Lambert*).

1) Vorläufige Betrachtungen.

§. 1.

Gegenwärtige Abhandlung betrifft eine Schwierigkeit, die in den ersten Anfängen der Geometrie vorkommt, und schon seit Euklid's Zeiten denjenigen anstössig gewesen, welche die Lehren dieser Wissenschaft nicht bloß andern nachglauben, sondern aus Gründen davon überzeugt seyn, und diejenige Schärfe, die sie in den meisten Beweisen fanden, nirgends missen wollten.

Diese Schwierigkeit fällt Jedem, der Euklid's Elemente liest, gleich anfangs in die Augen, weil sie sich nicht erst unter den Lehrsätzen, sondern selbst unter den Grundsätzen findet, die Euklid dem ersten Buche vorsetzt. Von diesen Grundsätzen nimmt der 11te als etwas für sich Klares und keines Beweises bedürftiges an,

dafs, wenn zwei Linien CD, BD (Fig. I.) von einer dritten BC durchschnitten werden, und die beyden innern Winkel DCB, DBC zusammen genommen, kleiner als zween rechte Winkel sind, die beyden Linien CD, BD gegen D, oder auf der Seite, wo diese Winkel sind, zusammen laufen.

§. 2.

Dieser Grundsatz ist unstreitig lange nicht so klar und einleuchtend als die übrigen; und der Eindruck, den er natürlicher Weise

*) Aufgesetzt im Septemb. 1766.
1) Vorläufige Betrachtungen. § 1—3.

macht, ist, daß man nicht nur einen Beweis davon verlangt, sondern gewissermassen empfindet, daß er eines Beweises fähig sey, oder daß es einen Beweis davon geben müsse.

Dieses ist, soviel ich mir die Sache vorstelle, der erste Eindruck. Lieset man aber im Euclid weiter fort: so muß man nicht nur die Sorgfalt und Schärfe seiner Beweise, und eine gewisse edle Einfall in seinem Vortrage bewundern; sondern man wird über seinen 11ten Grundsatz noch um desto mehr stutzig, wenu man sieht, daß Euclid Sätze beweist, die man viel leichter würde ohne Beweis zugegeben haben.

Von diesen Schwierigkeiten oder Einwendungen sind mir solche vorgekommen, wobey ordentlich vorausgesetzt werden muß, daß man, um den Euklidischen Grundsatz zu beweisen, oder überhaupt die Geometrie festzusetzen, weder sehen noch sich von der Sache selbst eine Vorstellung machen dürfe. Es ist unstreitig, daß man bey einer solchen Forderung den 12ten Euklidischen Grundsatz, daß zwei gerade Linien keinen Raum schliessen, ebenfalls wird anfechten können.

§ 3.

Es ist aber auch eben so unstreitig, daß die Sophisten zu Euclids Zeiten minder strenge gewesen seyn, und die Vorstellung der Sache müßten zugegeben haben. Mit dieser Voraussetzung aber läßt sich

*) [Lambert denkt wohl an folgende Äußerung von Clairaut (Eléments de Géométrie, 1741, S. X): Dieser Geometer musste die hartnäckigen Sophisten überzeugen, die ihren Ruhm darin suchten, die angenscheinlichsten Wahrheiten anzugeben. Deshalb musste die Geometrie damals, ebenso wie die Logik, um Böswilligen den Mund zu stopfen, zum schulgerechten Schlussverfahren greifen. Die Sache hat sich aber geändert. Weitläufige Auseinandersetzungen über Dinge, bei denen von vornherein der gesunde Menschenverstand entscheidet, sind durchaus überflüssig und dienen nur dazu, die Wahrheit zu verdunkeln und die Leser abzuschrecken.]
Euklid’s Vortrag, wenigstens in Ermangelung eines andern und mindern Schwierigkeiten unterworfenen, ganz ordentlich rechtfertigen.

Man kann nämlich den 11ten Grundsatz aufgeschoben seyn lassen, bis man zu der Prop. XXIX des ersten Buchs könnt. Inzwischen lernt man ganz gewifs die Sache selbst, wovon in dem Grundsatze die Rede ist, kennen, und das, was an dem Grundsatze und dessen Vorstellung zu mangeln scheint, auch wenn man es nicht mit Worten ausdrücken kann, noch hinzudenken. In den beyden nächst vorhergehenden Prop. XXVII und XXVIII lernt man, dafs, wenn die Winkel

\[FCB + CBD = 180 \text{ Gr.} \]

oder die Winkel \(FCB = CBA \) sind, die Linien \(AB, CF \) weder gegen \(F \) noch gegen \(G \) zusammen laufen. Man lernt dadurch, dafs die 34ste Definition*) nicht ein Unding oder leeres Hirngespinnst angiebt; sondern dafs nichtzusammenlaufende gerade Linien im Reiche der Wahrheit wirklich vorkommen. Denn bis dahin blieb diese Definition ausgestellt; und bis dahin konnte man auch den Grundsatz ausgestellt seyn lassen, weil derselbe doch mit den Parallellinien in enger Verbindung steht, und

\[DBC + BCD < 180 \text{ Gr.} \]

Soll man sich nun die Folge, dafs \(CD, BD \) zusammen laufen, ebenfalls vorstellen: so wird allerdings erfordert, dafs man sich die Linien \(CF, CD, AD \) als gerade Linien vorstelle. Durch diese Vorstellung erhält man, dafs \(CD \) verlängert, sich nicht nur von \(CF \) immer weiter entfernt, sondern auch sich gegen \(AD \) dergestalt nähert, dafs sie dieselbe nothwendig in irgend einer Entfernung \(BD \) durchschneiden muß.

*) [In der Ausgabe von Heiberg ist es die 23ste.]
Wer hiebey den Einwurf macht, \(CD \) könnte sich vielleicht gegen \(AD \) auf eine asymptotische Art nähern, wie z. E. die Hyperbel und andere asymptotische krumme Linien, der ändert meines Erachtens das, was man in der Vernunftlehre \textit{statum quaecstormis} heißt, oder er weicht davon ab, daß bey \textit{Euclidhis} nicht von \textit{Beweisen}, sondern von der \textit{Vorstellung} und der \textit{Gedenkbarkeit der Sache} die Rede ist; weil man es \textit{Euclid} ganz sicher zutrauen kann, daß er sonst seinen Satz nicht würde unter die \textit{Grundsätze} gezählt oder gesetzt haben. Könnt es aber auf die \textit{Vorstellung der Sache} an: so sehe ich nicht, wie sich bey der Vorstellung \textit{gerader} Linien Einwürfe von Hyperbeln hernehmen lassen, weil man auf eine ganz gleiche Art würde anstehen können, ob zwo gerade Linien nicht dergestalt könnten aneinander gelegt werden, daß sie einen Raum einschließen; weil es doch mit zween gleich | grossen Cirkelbogen, wenn man ihre Hölung gegen einander kehrt, angeht.

\textbf{§. 4.}

so viel ich mir die Sache vorstelle, selbst auf Wolfens Weltweisheit einen sehr merklichen Einfluß gehabt haben.

Es liegt nicht an dem, daß Wolf nicht ganz ordentlich wußte, daß willkürlich zusammengesetzte Begriffe müssen erwiesen werden. Er schärft es in seinen beyden | Vernunftlehren, und selbst auch in seinen Vorberichten von der mathematischen Methode, ein, und erläutert es durch Beyspiele aus der Geometrie. Ich folgere aber daraus, Wolf müsse seine Definition von den Parallellinien nicht als einen willkürlichen zusammengesetzten Begriff angesehen haben, weil ich ihm zutraue, er würde sonst auf einen Beweis ihrer Möglichkeit gedacht, oder wenigstens ermuert haben, daß noch etwas zurück bleibe; oder er hätte Euklid's Verfahren beybehalten, und so wäre die Schwierigkeit wie bey Euklid in die Augen gefallen.

Untersuche ich aber, warum Wolf, ohne an etwas Willkürliches zu denken, sich begnügt habe, die Parallellinien æquidistantes zu nennen: so muß ich voraussetzen, er habe diesen Begriff nach seiner andern Methode Begriffe zu finden, das will sagen, durchs Abstrahiren aus einzelnen Beyspielen gefunden. Von solchen Begriffen und Definitionen sagt er, daß sie keines fernern Beweises bedürfen. Ich gebe es zu. Aber im Vortrage muß man sodann allerdings auch gegen die Leser die Billigkeit haben, daß man ihnen vorzeige, wie man den Begriff abstrahirt habe. Sonst können sich die Leser das Recht anmassen, zu vermuten, es möchte ein Vitium subreptionis vorgegangen oder mit untergelaufen seyn. Denn Begriffe, die man aus Beyspielen abstrahirt, sind in soferne allemal auch à posteriori; und man kann sie nur als dann à priori ansehen, wenn sie, nachdem man sie gefunden, für sich gedenkbar, das will sagen, einfach sind. Widrigenfalls muß man die Beyspiele den Lesern vorweisen, und von allen Behutsamkeiten bey dem Abstrahiren Rechnung geben, wenn man allen Verdacht eines Vitii subreptionis von sich ablehnen will.

Bilfinger*) empfand die Nothwendigkeit dieses Verfahrens sehr wohl, und war eben dadurch besser als Wolf selbst im Stande, die wider die Wolfische Weltweisheit erregten Schwierigkeiten merklich zu vermindern. Es wäre aber zu wünschen gewesen, daß Wolf selbst in den Hauptstücken seiner beyden Vernunftlehren, wo er theils vom Defniren, theils vom schriftlichen Vortrage dogmatischer Sätze handelt, die Nothwendigkeit und die Art ausführlich und mit allem Nachdrucke gezeigt hätte, wie man den Verdacht des Vitii subreptionis

bey Definitionen, die durchs Abstrahiren gefunden worden, im Vortrage derselben von sich ablehnen müsse.

§. 5.

Dieses wäre nun bey der Definition der Parallellinien schlechthin nicht angegangen. Denn so viel man sich auch solche vorzeichnen will: so bleiben doch zwo merkliche Unvollständigkeiten zurück. Einmal fehlt bey dem Vorzeichnen die geometrische Schärfe. Sodann ist es schlechthin unmöglich, sie beyderseits ins Unendliche fortzuziehen. Und so reicht man ä pos t r i o r i und mit dem Abstrahiren nicht aus; und die Definition, oder besser zu sagen, die Möglichkeit der Sache muß aus andern und einfachen Gründen erwiesen werden, die für sich gedenkbar sind.

Wolf hat unstreitig diese Betrachtungen nicht gemacht. Man findet auch bey ihm solche Spuren, woraus sich nicht undeutlich schließen läßt, daß er den Definitionen zu viel eingeräumt, und aus dem Grunde, daß er sie der Sache gemäßs einrichten wollte, die Schwierigkeiten, die in der Sache sind, in die Definitionen gebracht habe*). Dafs sie darin mehrentheils versteckter waren, als sonst in der Sache selbst, könnte man, in Absicht auf die Parallellinien, wenigstens daraus schließen, daß in solchen Zeiten, wo eine allgemeine Demonstrirsucht die herrschendste Mode war, mehr Wesens wäre daraus gemacht worden, wenn Wolf in seinen Anfangsgründen der Meßkunst den Euklidischen Vortrag beybehalten hätte.

§. 6.

Ich sagte erst, Wolf habe den Definitionen zu viel eingeräumt. Dieses ist nun vielmehr in der That selbst, als mit ausdrücklichen Worten geschehen; und es wurde bey vielen unvermerkt Mode, dafs sie von einer Sache gar keinen Begriff zu haben glaubten, daßern nicht der Name derselben definit wurde. Selbst allen Grundsätzen mußten Definitionen vorgehen, ohne welche sie nicht sollten verstanden werden. Dabei war es nun kein Wunder, wenn der Satz, dafs eine jede Definition, ehe sie bewiesen ist, eine leere Hypothese sey; wenn dieser Satz, den Euklid so genau wußte und so durchgängig beobachtete, darüber, wo nicht verloren gieng, doch sehr vergessen wurde.

Ich merke dieses hier um so mehr an, weil es in Absicht auf den Vortrag der philosophischen Wissenschaften sehr nachtheilige

*) [In einem Briefe Lambert's an Kant (Februar 1766) heisst es: "Wolf nahm Nominaldefinitionen gleichsam gratis an und schob oder versteckte, ohne es zu merken, alle Schwierigkeiten in dieselben" (Lamberts Briefwechsel, Teil I. S. 347.)]

Folgen hatte; ingleichem, weil es eben das ist, worin Wolf, als er seine Methode aus Euclidens abstrahirte, noch zurück geblieben; und endlich, weil eben die Parallellinien das augenscheinlichste Beyspiel geben, dass eine vorausgeschickte Definition, bis sie nicht selbst erwiesen ist, nichts beweise.

§ 7.

Es ist falsch, dass Euclid irgend eine seiner Definitionen, ehe er die Möglichkeit der Sache erwiesen, anders als eine blosse Hypothese gebrauchte, oder sie als ein categorisches Principium demonstrandi ansiehe. Der Ausdruck per definitionem gilt bey ihm nicht mehr als der Ausdruck per hypothesis. Sieht man auch genauer nach: so nimmt er das Categorische in seinen Lehrsätzen nicht von den Definitionen, sondern eigentlich und vornehmlich von den Postulatis. Von diesen gilt es eigentlich, wenn Cicero sagt: Si dedereis, danda sunt omnia*).

§ 8.

So z. E. glaubte Wolf mit mehrern andern, dass man die Schwie-rigkeit, die Euclids 11ten Grundsatz drückt, dadurch heben könne, wenn man seine Definition der Parallellinien änderte. Sie wird aber

*) [In geometria prima si dedereis, danda sunt omnia. De finibus bonorum et malorum, lib. V. 83.]
dadurch weder gehoben, noch vermieden, noch auf eine geschickte Art umgegangen, und gleichsam von hinten her weggehoben. Sie wird vielmehr, wenn auch Alles richtig geht, nur von dem Grundsatze weg, und in die Definition gebracht; und zwar, so viel ich sehe, ohne daß sie dadurch leichter könnte gehoben werden. In der That auch läßt sich Euklids Definition ohne Rücksicht auf seinen 11ten Grundsatz beweisen. Wolfs Definition hingegen kann entweder ohne diesen Grundsatz nicht bewiesen werden; oder wenn sie bewiesen werden kann: so ist dieser Grundsatz so gut als zugleich mit erwiesen.

Es kommt aber eigentlich auf die Definition gar nicht an. Man kann sie bey Eukliden ganz weglassen; und so wird man in der Prop. XXVII und XXVIII von selbst anstatt parallelae lineae den Ausdruck lineae sibi non coincidentes setzen. Man wird, aus Betrachtung, daß dieses ein merkwürdiger Umstand ist, sodann von selbst darauf verfallen, auf eine kurze und schickliche Benennung zu denken, oder solchen Linien, die nicht zusammen laufen, so viel man sie auch auf beyden Seiten verlängert, einen Namen zu geben. Und man wird dazu noch mehr verleitet werden, wenn man im Folgenden darauf verfällt, daß eben diese Linien noch überdies durchaus in gleicher Entfernung von einander bleiben.

Dies ist die eigentlich synthetische Art zu verfahren; und man denkt dabei erst dann auf die Benennung, wenn die Sache herausgebracht und erheblich genug ist, einen besondern Namen zu verdienen. Beyspiele davon kommen in der Mathematik unzählige vor, und sollen auch in allen denen Wissenschaften, wo man à priori gehen kann oder zu gehen gedenkt, nicht selten seyn.

§. 9.

Proclus, welchem Euklids 11ter Grundsatz ebenfalls anstößig war, fordert deswegen einen Beweis davon, weil derselbe, wenn man ihn umkehrt, erweisbar ist.

In der That findet sich der umgekehrte Satz in der Prop. XVII. Libr. I. erwiesen. Mir kommt es ebenfalls ganz richtig vor, daß es bey einem Grundsatze für sich klar seyn müsse, was es mit demselben gerade oder umgekehrt für eine Bewandtnis habe. Denn, nach aller Schärfe betrachtet, soll ein Grundsatz aus lauter einfachen, und daher für sich gedenkbaren Begriffen bestehen; und es muß, ob und wiefern sie mit einander verbunden werden können, unmittelbar aus der Vorstellung der Begriffe erhellen.

So z. E. ist der achte Euklidische Grundsatz, daß ausgedehnte Grössen, die auf einander passen, einander gleich sind; (Quae sibi
mutuo a ngrumt, sunt aequalia) dieser Satz ist für sich gedenkbar. Es ist aber auch eben so für sich gedenkbar, daß er nur bey geraden Linien und Winkeln umgekehrt gilt, bey Figuren aber noch eine Bestimmung, und zwar die von der Aehnlichkeit, hinzu kommen müsse, wenn er dabei umgekehrt anwendbar seyn soll.

§. 10.

Um nun nach diesen allgemeinen Betrachtungen näher zu der Theorie der Parallellinien zu kommen, wodurch ich sowohl die Schwierigkeiten deutlich zu machen, als auch sie zu heben gedenke: so werde ich vorerst den eigentlichen statum questionis feste setzen.

Die Frage selbst betrifft nehmlich erstlich weder die Wahrheit noch die Gedenkbarkeit des Euklidianischen Grundsatzes. Es hätte um den größten Theil der Geometrie bisher übel ausgesehen, wenn dieses die Frage seyn sollte. Ich habe in Absicht auf die Gedenkbarkeit bereits oben (§. 3.) angezeigt, nach welcher Ordnung sie bey dem Durchlesen des Euklides entstehe. Dafs der Grundsatz dadurch zugleich auch als wahr gedacht werde, ist für sich klar. Es wird aber die Wahrheit desselben auch aus allen Folgen, die in allen Absichten daraus gezogen werden, dergestalt erwiesen, einleuchtend und nothwendig, dafs man diese Folgen, zusammengenommen, als eine auf vielfache Arten vollständige Induction ansehen kann.

Sodann findet sich auch bey vielen Versuchen, die man anstellen kann, um diesen Grundsatz zu beweisen, dafs er, um bewiesen zu werden, fast immer sich selbst voraussetzt, und auf sehr vielerley Arten eine Folge von sich selbst ist, auf keine Art aber umgestossen wird.

Dieses mag auch ein Grund mit seyn, warum Euklid denselben, in Ermanglung eines Beweises, unter die Grundsätze genommen; zumal da er diejenige Definition gewählt, die ohne Rücksicht auf diesen Grundsatz erweisbar war, und sich mit demselben am | unmittelbarsten verbinden liefs. Denn man sieht ganz offenbar, dafs seine Prop. XXIX, wo dieser Grundsatz gebrucht wird, vornehmlich nur dient zu beweisen, dafs es, ausser denen in den beyden Prop. XXVII und XXVIII erwiesenen Parallellinien, keine andern mehr gebe. Und in dieser Absicht wird dadurch eine in der That sehr kleine Läcke ausgefellt, weil man sich ohne Mühe vorstellen kann, dafs nur noch solche Linien aus der Zahl der nichtzusammenlaufenden auszuschliessen blieben, die mit CF (Fig. I.) einen kleineren Winkel machen, als alle diejenigen Linien CD, Cd, deren Durchschnitt D, d gegeben werden kann, das will sagen, der eine endliche Entfernung von A hat. Denn,
wenn man CF um den Punkt C herunter gegen D dreht: so merkt Hr. Prof. Kästner mit Recht an, daß sich der erste Durchschnittspunkt nicht angeben lasse, weil, wo man ihn immer auf AD hinaus setzen wollte, noch ein entfernterer genommen werden kann. Dieses hat aber meines Erachtens den Erfolg, daß, wo die Winkel DCF, dCF sehr klein sind, die Entfernungen AD, Ad in umgekehrter Verhältnis der Winkel DCF, dCF, oder einer davon nicht viel verschiedenen Funktion derselben, zunehmen müssen. Denn in gerader Verhältnis der Winkel ACD, ACd, oder einer Funktion derselben, können sie deswegen nicht zunehmen, weil sonst CF, auch wo

$$DAC + ACF = 180 \text{ Gr.}$$

oder gar noch größer ist, die Linie AD in einer endlichen Entfernung von A schneiden müßte; welches der Prop. XXVIII. Libr. I. des Euklid zu wider wäre.

Indessen glaube ich nicht, daß sich die Sache auf diese Art erörtern lasse; umgeachtet sich's, wenn die Sache einmal berichtet ist, leicht erweisen läst, daß man, um jeden Winkel DCF zu halbiren, nur $Dd = DC$ zu machen habe. So giebt es auch noch andere Arten, sich die Sache vorzustellen.

Wer z. E. die beyden nichtzusammenlaufenden Linien CF, AD so ansieht, daß sie einen | Winkel machen, der $= 0$ ist: der wird leicht beweisen können, daß jede Linie Cd mit Ad einen Winkel mache, der > 0 ist, und daß demnach diese beyden Linien sich irgendwo schneiden. Der Beweis ist eben der, wodurch man zeigt, daß $CDA > CdA$ sey (Prop. XVI. Libr. I. Euclid.). Denn dreht man CD um den Punkt C aufwärts: so wird der Winkel CDA immer kleiner, und endlich vollends negativ, sobald CD über CF hinauf kommt. Er muß demnach irgend $= 0$ werden; und daß dieses in der Lage CF geschehe, folgt meines Erachtens aus der Vorstellung, daß AD, CF gerade Linien sind, womit die Vorstellung von einer asymptotischen Näherung nicht bestehen kann.

Ob sich aber diese Betrachtung von negativen Winkeln, und von solchen die $= 0$ sind, in das erste Buch des Euklid schicke, das ist eine ganz andre Frage, die man leicht verneinen, und behaupten wird, ein solcher Vortrag sey mehr algebraisch als geometrisch.
§. 11.

Ich mag es auch gelten lassen; und merke nun ferner an, dafs es bey den Schwierigkeiten über Euklid's 11ten Grundsatz eigentlich nur die Frage ist, ob derselbe aus den Euklidischen Postulatis mit Zuziehung seiner übrigen Grundsätze in richtiger Folge hergeleitet werden könne? Oder, wenn diese nicht hinreichend wären, ob sodann noch andre Postulata oder Grundsätze, oder Beydes könnten vorgebracht werden, die mit den Euklidischen gleiche Evidenz hätten, und aus welchen sein 11ter Grundsatz erwiesen werden könnten?

Bey dem ersten Theile dieser Frage kann man nun von Allem, was ich im Vorhergehenden Vorstellung der Sache genannt habe, abstrahiren. Und da Euklid's Postulata und übrigen Grundsätze einmal mit Worten ausgedrückt sind: so kann und soll gefordert werden, 150 dafs man sich in dem Beweise nirgends auf die Sache selbst berufe, sondern den Beweis durchaus symbolisch vortrage — wenn er möglich ist. In dieser Absicht sind Euklid's Postulata gleichsam wie eben so viele algebraische Gleichungen, die man bereits vor sich hat, und aus welchen \(x, y, z \), &c herausgebracht werden soll, ohne dafs man auf die Sache selbst zurücke sehe. Da es aber nicht ganz solche Formeln sind: so kann man allerdings die Vorzeichnung einer Figur als einen Leitfaden, um den Beweis zu führen, dabei zugeben.

Hingegen würde es bey dem andern Theile der Frage ungereimt seyn, wenn man die Betrachtung und Vorstellung der Sache dabei untersagen, und fordern wollte, die neuen Postulata und Grundsätze müfsten, ohne an die Sache zu denken, und gleichsam aus dem Stegreife gefunden werden. Ich sehe aber auch nicht, wie man gegen Euklid's billiger ist, wenn man seinen Grundsatz verwirft, ohne die Frage darüber so zu stellen, wie ich sie zu Anfang des gegenwärtigen Paragraphs gestellt habe. Denn da Euklid seinen Satz einmal unter die Grundsätze rechnet: so setzt er ungestreitig davon die Vorstellung der Sache voraus; und man kann es ihm zutrauen, daß er, wenigstens in Ermangelung des noch dermalen zu findenden Vortrages, den seinigen mit Bewufstseyn gewählt habe.

2) Vortrag einiger Sätze, die für sich betrachtet werden können.

[§. 12.]

Nach der Festsetzung dessen, was in Absicht auf den 11. Euklidischen Grundsatz eigentlich die Frage ist, könnte ich nun die Theorie der Sache selbst vortragen. Ich werde aber erst den 3. Abchnitt dieser Abhandlung dazu widmen, inzwischen aber einige Sätze beybringen, die sich, ohne Rücksicht auf diese Theorie, für sich betrachten lassen.

Ich setze dabei voraus, daß man wisse, oder wenigstens ohne Mühe finden könne, welche Sätze in dem ersten Buche der Euklidischen Elemente von dessen 11. Grundsätzen abhängen; daß z. E. bis auf die Proposit. XXIX, Alles ohne Zuziehung dieses Grundsatzes erwiesen sey, von da an aber bis zum Ende Alles mittelbar oder unmittelbar davon abhänge, wohin besonders die Bestimmung der Summe der 3 Winkel eines jeden Triangels, und Alles was von Parallelogrammen, Rectangeln und Quadraten gesagt wird, gehört.

In den folgenden Büchern trägt Euklid hin und wieder noch einige Sätze vor, die von seinem 11. Grundsätze unabhängig sind. Es sind aber auch viele von denen, die auf diesem Grundsätze beruhen, von der Art, daß, wenn sie für sich erwiesen werden können, sie den Beweis des Grundsatzes selbst nach sich ziehen, so, daß man auf diese Art bey dem Aufsuchen eines Beweises für diesen Grundsatz mehr als Eine Wahl hat, wo man anfangen könne. So z. E. ist man mit dem Beweise des Grundsatzes bald fertig, wenn man, ohne Zuziehung desselben, erwiesen kann, daß in jedem Triangel die Summe der 3 Winkel zween rechten Winkeln gleich ist; daß eine gerade Linie entweder von keiner oder von allen Parallellinien durchschnitten werde; u. s. w.

Da es unnöthig ist, das, was Euklid in seinem ersten Buche ohne Zuziehung des 11. Grundsatzes erwiesen, hier von neuem zu beweisen: so werde ich dasselbe als bekannt voraussetzen, und, wo es nöthig, die Propositionen, die ich gebrauche, citiren.

§. 13.

Es sey nun (Fig. I.) ACB ein in A rechtwinklchter Triangel; und, indem man die Seite AB verlängert, ziehe man durch C jede Linie ECD, welche AB schneide: so wird die Summe der beyden spitzen Winkel des Triangels
ACB + ABC > ACD,

und

ACB + ABC < ACE

seyn. Denn erstlich mache man \(FCB = CBA \), und ziehe \(FCG \): so ist

\(ACB + ABC = ACF \);

und die Linie \(GF \) läuft mit \(HD \) auf keiner Seite zusammen. (Prop. XXVII.) Da nun \(CD \) mit \(HD \) gegen \(D \) zusammen läuft: so ist

\(ACD < ACF \);

demnach auch

\(ACD < ACB + ABC \),

oder

\(ACB + ABC > ACD \).

Ferner trage man \(AD \) aus \(A \) in \(H \), und ziehe \(HCJ \) durch \(H \), \(C \) gerade. Da nun \(JCH \) mit \(AH \) auf der Seite \(H \) zusammenläuft, \(FCG \) aber nicht: so ist wiederum

\(GCA > HCA \);

und hingegen

\(JCA > ACF \).

Nun ist

\(ECA = JCA \),

weil, wenn man die Figur nach der Linie \(AC \) zusammenlegt, \(ECD \) auf \(JCH \) fällt. Demnach ist

\(ACF < ECA \),

und daher auch

\(ACB + ABC < ECA \).

§ 14.

Dieser Lehrsatz zeigt nun genauer, wie weit man mit der Prop. XVII. Euclid. in Absicht auf die Bestimmung der Summe der drey Winkel eines Triangels zurücke bleibt.

Denn einmal ist bey jedem rechtwinklischen Triangel \(ACB \) diese Summe grösser, als die Summe, welche entsteht, wenn man zu 90 Gr. jeden | spitzen Winkel \(ACD \)*) addirt. Hingegen ist sie kleiner, als

*) [Damit meint Lambert: jeden spitzen Winkel \(ACD \), bei dem \(AB \) von \(CD \) geschnitten wird. Diese spitzen Winkel besitzen eine obere Grenze, von der man von vorn herein nicht weiß, ob sie gleich einem Rechten ist. Entsprechend ist im Folgenden der stumpfe Winkel \(ECA \) zu verstehen.]
die Summe von einem rechten und jedem stumpfen Winkel ECA. Eben dieses gilt von jedem schiefwinklichen Dreieck bCA; jedoch mit dem Unterschied, daß die Summe seiner drei Winkel größer, als jeder spitze Winkel ACD doppelt genommen, und hingegen kleiner als jeder stumpfe Winkel ACE, doppelt genommen, gefunden wird.

Man kann sich auch leicht versichern, daß das Mittel aus diesen beiden Schranken genau 180 Gr. ist, weil $ECA + ACD = 180$ Gr., demnach das Mittel davon 90 Gr. und das Doppelte von 90 Gr. $= 180$ Gr. ist. Ferner findet sich, daß, wenn D weiter hinaus, z. E. in d genommen wird, die beiden Schranken einander, jede um gleich viel, näher kommen, und sich daher dem Mittel gleichförmig nähern. Endlich kann man sich leicht wenigstens vorstellen, daß der Winkel DCF desto kleiner wird, je weiter man den Punkt D von A hinwegrückt. Und eben dadurch erhält man Schranken, die ungleich nahe zusammen treffen; und man kann daraus schließen, daß, wenn auch die Summe der drei Winkel eines Dreiecks nicht genau 180 Gr. seyn sollte, sie dennoch bey jedem Dreieck gar nicht viel davon verschieden seyn könne.

Dieses ist aber auch Alles, was hieraus folgt; und es wird sich dabei schwerlich weiter gehen lassen. Indessen ist der Satz eben nicht ganz unerheblich.

§. 15.

Ich werde nun noch einen andern beifügen. Die Summe der Winkel eines Dreiecks mag nun genau $= 180$ Gr. oder um etwas davon verschieden seyn: so können wir dieselbe z. E. (Fig. II) bey dem Dreieck $ACB = 180 + a$ Grade setzen. Man ziehe nun durch einen der Winkel eine beliebige Linie AD: so entstehen zweien Dreieck ACD, ADB, und damit 6 Winkel. Die zweien Winkel C, B bleiben wie vorhin. A wird auf beyde Dreiecke vertheilt; und die neu hinzugekommenen | Winkel ODA, ADE machen zusammen 180 Gr. (Prop. XIII) Demnach ist in beyden Dreieck die Summe aller 6 Winkel nur $180^\circ + 180^\circ + a$. Man hätte denken sollen, sie würde $= 180^\circ + 180^\circ + a + b$ seyn. Wird von diesen Dreieck wiederum Einer, z. E. DAB durch eine Linie DE getheilt: so entstehen drey Dreieck; und die Summe ihrer Winkel ist wiederum nur $= 180 + 180 + 180 + a$ Grade.

Fährt man weiter fort: so kommt zu jedem neuen Dreieck nur immer wiederum 180 Gr. hinzu. Man sollte allerdings daraus die
Folge ziehen können, es müsse $a = 0$ seyn*). Denn da man die Linien AD, DE, &c nach Belieben und nach unendlich vielerley Abwechselungen ziehen kann: so kommt es eben so heraus, als wenn man in einer Reihe

$$A = a + bx + cx^2 + dx^3 + \&c$$

A beständig, und x veränderlich setzt. Denn da werden alle Coefficienten b, c, d, &c $= 0$; und es bleibt $A = a$, das will sagen: In jedem Triangel ist die Summe der Winkel $= 180$ Gr.

Ich führe dieses nur im Vorbeygehen an, weil daraus erhellet, daß man noch nicht alle Mittel aufgesucht hat, die Schwierigkeit der Parallellinien zu heben.

§ 16.

Ich finde ferner, daß Hr. Prof. Kästner angemerkt hat, diese Schwierigkeit komme nicht so wohl auf die Winkel, als vielmehr auf die Größe der Linien und auf die Entfernung der Parallellinien an.

Wenn z. B. (Fig. III) F ein rechter Winkel ist: so mag AGF, so wenig man will, von einem rechten Winkel verschieden, und kleiner als derselbe seyn, und es läßt sich auf GA kein Punkt angeben, aus welchem nicht sollden Perpendicularen auf GF gefällt werden können.

Ob sich aber hinwiederum durch GF keine senkrechte Linie FA ziehen lasse, die nicht auch GA in irgend einem Punkte A durchschneide, das ist allerdings eine andre Frage, welche nicht bejahet werden kann, dafern man sie nicht entweder \mid directe beweist, oder umgekehrt zeigt, daß sich aus den Punkten A der Linie GA Perpendicularen AF auf GF fallen lassen, welche in jeder beliebig Entfernung von G auffallen. Ließe sich aber für jeden Fall, wo die Summe der Winkel $AGF + GFA < 180$ Gr. ist, ohne Rücksicht auf die Größe der Linie GF, beweisen, der Winkel GAF sey > 0,

*) [Indem nämlich stillschweigend die Winkelsumme des Dreiecks als konstant, das heißt für jedes Dreieck gleich groß, angenommen wird. Ist aber die Winkelsumme variabel, so beweist diese Schlussweise nur, daß es Dreiecke gibt, deren Winkelsumme beliebig wenig von 180° abweicht.]
2) Sätze, die für sich betrachtet werden können. §. 15—18.

das will sagen, in der That ein angeblicher Winkel: so sehe ich nicht, wie man an der Wirklichkeit des Durchschneidens einen Anstand haben könnte. Denn, wie sich von selbst versteht, so fällt die Frage, ob zwo Linien sich durchschneiden, ganz weg, und findet nicht statt, sobald sich der Winkel angeben läßt, unter welchem sie sich durchschneiden. *Non entis nulla sunt praedicata.*

§. 17.

Nun kommt, so viel ich mir die Sache vorstelle, in der *Prop. XVI. Libr. III.* Etwas vor, das hieher dienen kann.

Daselbst wird, ohne Rücksicht auf den controversirten 11ten Grund- satz erwiesen, daß, wenn *Ab* (Fig. V.) auf den Diameter *AP* eines Cirkels senkrecht gezogen wird, so daß diese Linie durch den Endpunkt des Diameter gehe, dieselbe ausser den Cirkel falle, oder den Cirkel ausserhalb in einem einigen Punkte berühre; und daß zwischen der Linie *Ab* und dem Cirkelbogen *AB* keine andre gerade Linie könne durchgezogen werden, die nicht den Cirkel in zween Punkten, z. E. *A, B,* schneide, so lange der Winkel *BAb* nicht kleiner, als jeder vorgegebene Winkel ist. Denn in diesem Fall würde er = 0 seyn, und daher *AB* auf *Ab* fallen, demnach nicht zwo, sondern nur eine Linie seyn.

Der Beweis, den Euklid giebt, kommt schlechthin darauf an, daß die aus dem Mittelpunkt *O* auf *AB* fallende Perpendiculare ausser den Cirkel fallen, und demnach grósser als *AO* seyn müßte; welches seiner *Prop. XVIII. Libr. I.* zuwider ist. Demnach setzt dieser Beweis weder die Grösse des Diameters, noch die Grösse von *AB,* noch die Grösse von *AP,* sondern schlechthin nur den Satz voraus, daß die Perpendiculare auf die Seite des spitzen Winkels *OAB* falle, und daß sie nicht grósser als *AO* seyn könne, sondern vielmehr kleiner seyn müsse, so gróß oder klein alle diese Linien an sich auch immer seyn mögen.

§. 18.

Nun läßt sichs weiter gehen und zeigen, daß, so lange *BAb* nicht kleiner als jeder vorgegebene Winkel ist, auch *AOB* nicht kleiner als jeder vorgegebene Winkel seyn könne, und demnach > 0
seyn müsse. Denn da $BAb > 0$ ist: so läßt sich durch den Winkel BAb jede beliebige Linie AQ ziehen; und es wird auch $QAb > 0$ seyn. Da demnach, vermöge des erst angeführten Euklidischen Satzes, AQ nicht ausser den Cirkel fallen kann: so giebt es zwischen AB einen Durchschnittspunkt q. Dieses könnte aber nicht seyn, wenn AOB kleiner als jeder vorgegebene Winkel wäre. Demnach muß nothwendig $AOB > 0$, das will sagen, ein Winkel von angeblicher Grösse seyn. Bey $AOB = 0$ würde BO auf AO, und demnach AB auf Ab fallen; und so wäre $BAb = 0$, der Voraussetzung $BAb > 0$ zuwider.

Man sieht ohne Mühe, daß auch dieser Beweis von der Grösse des Diameters AP und der Chorde AB ganz unabhängig ist; und daß demnach der Durchchnittswinkel > 0 ist, so gros oder klein AB und der Winkel BAb immer angenommen wird, nur daß $BAb > 0$ sey, und demnach OAB ein spitzer Winkel bleibe. Da nun $OB = OA$:

so ist auch $OBA = OAB$, und demnach $OAB + OBA < 180$ Gr.

Eben so, wenn Oq auf AB senkrecht fällt, ist $Ar = rB$, und

$OAr + OrA < 180$ Gr.

Demnach mag bey dem rechten Winkel OAr der Winkel OAr, so wenig man will, kleiner als 90 Grade seyn: so wird der Durchschnittswinkel $AOAr > 0$, und daher in der That ein Durchschnitt seyn.

§. 19.

Dieses ist nun zum Beweise des Euklidischen Grundsatzes meines Erachtens mehr als hinreichend, weil es sich leicht eben so allgemein machen läßt. Ich werde es aber hier nicht ausführen, sondern nur bemerken, daß, wenn man

$OBD = ODB = ODF = OFD = &c = OBA = OAB$,

und

$BD = DF = &c = AB$

macht, dieses eben so viel ist, als wenn die Chorde AB aus B in D, aus D in F, und so weiter, im Cirkel herumgetragen wird. Man wird auf beyderley Arten nicht nur Einmal, sondern so vielmal man will, im Cirkel ganz herumkommen, weil $AOB > 0$ ist, demnach nothwendig auch ein Multiplum von $AOB > 360$ Grad, und, so viel- mal man will, grösser als 360 Grad seyn muß.
2) Sätze, die für sich betrachtet werden können. § 18—21.

§ 20.

Sind demnach (Fig. IV) die Winkel aAB, bBA einander gleich und kleiner als 90 Grad: so läßt sich auf erst angezeigte Art die gleichseitige und gleichwinklige Figur $GECABDFH$ zeichnen; und wenn man fortfährt: so wird man damit im Kreise, so vielmal man will, herum kommen. Die Punkte G, E, C, A, B, D, F, H &c werden sämtlich in dem Umkreise eines Cirkels liegen, dessen Mittelpunkt O der gemeinsame Durchschnittspunkt aller Linien $Gg, Ee, Ce, Aa, &c$ seyn wird. Demnach kommt auch hiobey die Frage, ob Aa, Bb sich durchschneiden, gleichsam zu späte und unschicklich vor.

§ 21.

Es gibt ferner mehrere Arten, einen Beweis des Euklidischen Grundsatzes so weit zu treiben, daß das, was daran noch etwan zurück bleibt, nicht nur augenscheinlich richtig ist, sondern auch allen Anschein hat, daß es nachgeholt, und der Beweis dadurch ergänzt werden könne. Einige Beyspiele werden dieses ganz offenbar machen.

Es seyn (Fig. VI) die beyden Winkel aAB, bBA spitze und einander gleich: so sollen die Linien Aa, Bb zusammen laufen und sich durchschneiden. Man mache $bBC = cCB = bBA,$ und $BC = AB$: so wird $aABb$ auf $cCBb$ passen, wenn die Figur längst der Linie bB zusammen gelegt wird. Es werde ferner AC gezogen, und $cCD = dDC = cCA,$ und $CD = CA$ gemacht: so wird ebenfalls wiederum $aACc$ auf dDc passen, wenn man sich die Figur längst der Linie cC zusammengelegt vorstellt. Man ziehe ferner AD; und wenn man eben so fortfährt, wird $aADDd$ auf $eEEd$ passen.
Man kann auch leicht beweisen, daß die Winkel $Q, R, S, \&c$ rechte Winkel sind. Daß aber von den Winkeln CAB, DAC, EAD, $\&c$ jeder doppelt so groß als der nächst vorhergehende ist, das ist zwar wahr; allein ohne die vorgängige Berichtigung des Euklidischen Grundsatzes wird es sich schwerlich erweisen lassen. Doch ich verlange hierbei nicht so viel. Es wird mir genug seyn, wenn ohne Zurückstellung des Euklidischen Grundsatzes erwiesen werden kann, daß DAC größer als CAB, und auf gleiche Art $EAD > DAC$, $\&c$ sey. So weit fällt die Sache in die Augen; und an sich betrachtet, sollte es leichter seyn zu beweisen, daß unter den Winkeln CAB, DAC, EAD, $\&c$ jeder folgende größer ist, als wenn man beweisen sollte, jeder sey genau doppelt so groß, als der nächst vorhergehende.

Sollte es sich aber, ohne Rücksicht auf die Schwierigkeit der Parallellinien, erweisen lassen, daß die Winkel CAB, DAC, EAD der Ordnung nach immer größer werden: so wird auch notwendig folgen, daß von den Linien AC, AD, AE, $\&c$ Eine anfängt ausserhalb AA zu fallen; wie denn dieses in dem Beyspiel der Figur bereits schon bey der dritten dieser Linien, AE, geschieht. Dieses hat aber den Erfolg, daß die Linien Aa, Bb, Cc, Dd, Ee, $\&c$ sich notwendig in einem Punkte durchschneiden, welcher innerhalb dem Dreieck ADE liegt. Denn so muß Aa, verlängert, notwendig die Seite ED durchschneiden; und ehe dieses geschieht, muß sie bereits schon DdS durchschnitten haben. Dafs aber alle die Linien Aa, Bb, Cc, Dd, Ee, $\&c$ sich in Einem und eben dem Punkte durchschneiden, folgt aus der Art, wie die Figur längst den Linien bB, cC, dD, $\&c$ zusammen gelegt worden, ohne Mühe; so, daß ich mich dabei eben nicht aufhalten werde.

Man sieht demnach, daß hier nur noch zu beweisen bleibt, daß wenigstens die Winkel CAB, DAC, EAD, $\&c$ immer größer werden. Uebrigens läßt sichs eben so wie vorhin zeigen, daß die Punkte A, B, C, D, E, $\&c$ samtlich in dem Umkreise eines Cirkels liegen, dessen Mittelpunkt der gesuchte Durchschnittspunkt der Linien Aa, Bb, $\&c$ ist.

§ 22.

Noch ein Beyspiel. Es seyn (Fig. VII) die Winkel aAB, bBA spitze und einander gleich. Man ziehe durch den Winkel aAB jede Linie AT; und es ist, ohne Zuziehung des oft bemeldten Euklidischen Grundsatzes, zu beweisen, daß, wenn aus der Mitte von AB die Linie Cc senkrecht aufgerichtet wird, immer der abgeschnittene Theil SR kleiner als AS sey. Kann dieses erwiesen werden: so erhält man damit so viel, daß, wenn $ST = AS$ gemacht wird, der Punkt T
2) Sätze, die für sich betrachtet werden können. §. 21, 22.

ausserhalb der Linie Bb falle. Und daraus läßt sich sodann herleiten, daß die Linien Aa, Bb einander nothwendig durchschneiden.

\[AM = Am + m M. \]
\[Md = md - m M. \]
\[= Am - m M. \]

Demnach

\[AM > Md. \]

Macht man nun MD = AM: so fällt der Punkt D ausserhalb Bb, weil MD > Md ist.

Nun beschreibt man ferner die Cirkelbogen De, Mn aus dem Mittelpunkte A. Und indem man durch e die Linie AE zieht, und NE = AN macht: so wird auf gleiche Art erwiesen, daß der Punkt E ausserhalb Bb falle, indem NE > Ne gefunden wird. Auf eben diese Art läßt sich mit Ziehung neuer Cirkelbogen Ef, Np weiter fortfahren.

Dafs nun jeder andre Punkt T, wenn ST = AS gemacht wird, ausserhalb Bb falle, wird leicht erwiesen. Denn es ist

\[As = sr. \]

Demnach

\[AS = As + sS. \]
\[SR = sr - sS - Rr. \]
\[= AS - 2.sS - Rr. \]

Und folglich

\[AS > SR; \]

und damit auch

\[ST > SR. \]

Nun bleibt noch zu beweisen, daß die, der Ordnung nach, gefundenen Linien Ad, Ae, Af, &c der Linie Aa nicht nur näher
kommen, sondern daß Eine derselben anfängt, ausserhalb \(Aa \) zu fallen. Die Sache an sich ist richtig. Aber sie muß ohne Zuziehung des 11ten Euklidischen Grundsatzes erwiesen werden. Kann dieses geschehen: so erhält man auf allen ausserhalb \(Aa \) fallenden Linien einen Punkt, der eben so wie die Punkte \(D, E, \&c \) ausserhalb \(Bb \) fällt. Und zieht man aus diesem Punkt eine Linie in \(B \): so hat man einen Triangel, welcher die beyden Linien \(Aa, Bb \), und zugleich ihren Durchschnittspunkt in sich schließt oder umgibt.

Um nun aber zu beweisen, daß die Linien \(Ad, Ae, Af, \&c \) sich in der That auf vorbemeldte Art gegen \(Aa \) nähern, und endlich ausserhalb \(Aa \) fallen, ziehe man \(AK \) mitten durch den Winkel \(DAB \); und da wird es genug seyn, wenn man zeigen kann, daß jeder der Winkel \(eAd, fAc, \&c \) grösser ist als der Winkel \(DAK \) oder \(KAB \).

Zum Behuf dieses Beweises läßt sichs noch ferner anmerken, daß jeder der Punkte \(B, D, T, E, \&c \) von \(Cc \) gleich weit entfernt ist. Dieses kann ohne Mühe erwiesen werden, weil überhaupt \(AS = ST \), \(AC = CB \), und in \(C \) ein rechter Winkel ist. Ferner läßt sich aus dem Mittelpunkte \(A \) der Cirkelbogen \(k\beta \) durch \(k \) ziehen; und so wird \(A\beta < AB \) seyn.

Ferner läßt sich aus dem Mittelpunkte \(A \) der Cirkelbogen \(k\beta \) durch \(k \) ziehen; und so wird \(A\beta < AB \) seyn.

Um nun aber zu beweisen, daß, wenn man aus jedem der Punkte \(D, E, \&c \) z. E. aus \(D \) eine Linie in \(\beta \) zieht, der Winkel \(D\beta A \) stumpf sey, und demnach die aus \(D \) an den Cirkel \(k\beta \) zu ziehende Tangente [\(Df \)] unterhalb \(\beta \) falle. Denn so wird man zween gleiche und ähnliche oder auf einander passende Triangel \(AeK \),

\[ADt \] erhalten, und daher die Winkel

\[eAk = DAT, \]

demnach

\[eAD = kAt, \]

und folglich

\[eAD > kAB \]

haben.

Ich habe aber nicht finden können, daß sichs, ohne die vorgängige Berichtigung des Euklidischen Grundsatzes, erwiesen ließe, daß \(D\beta A > 90 \) Gr. sey; ungeachtet es ohne diesen Grundsatz erweisbar ist, daß sich durch \(Cc \) eine Menge von Perpendikularen ziehen lassen, welche die Linie \(D\beta \) unter einem schiefen Winkel
2) Sätze, die für sich betrachtet werden können. §. 22—24.

schneiden, weil die aus D auf Cc fallende Perpendikulare $=CB$ und demnach $>C\beta$ ist.

§. 23.

Um dies zu zeigen, so seyn (Fig. III.) in B, D rechte Winkel, und $CB < DE$. Man ziehe die Punkte C, E durch eine gerade Linie zusammen, und richte aus der Mitten von BD die Linie FG senkrecht auf. Man mache $Dc = BC$, und ziehe Gc. Wird nun die Figur längst der Linie GF zusammen gelegt: so fällt B auf D, C auf c, demnach GC auf Gc; und es ist $cGF = CGF = JGE$. Da nun $EGc > 0$ ist: so sind die Winkel cGF, JGE, CGF sätzlich spitze. Demnach ist auf der Linie CE wenigstens ein Punkt G gefunden, wo dieselbe die Perpendikulare GF unter einem schießen Winkel schneidet.

Ich merke noch im Vorbeizugehen an, daß | sich der Satz um-162 kehren läßt, indem man, wenn $CGF < 90$ Gr. ist, leicht zeigen kann, daß $CB < DE$ sey. Denn wird die Figur längst der Linie GF zusammen gelegt: so fällt der Winkel CGF auf cGF, und CB auf De. Da nun $FGC = JGE$ kleiner als 90 Gr. ist: so ist $FGC + JGE < 180$ Gr. Demnach $EGc > 0$; demnach auch $Ec > 0$, und $ED > De$, oder $ED > BC$.

§. 24.

Wiederum seyn (Fig. VIII.) in C, c rechte Winkel, und $CB > cb$. Man trage CB aus C in A, und cb aus c in a, und ziehe die Linien Ab, Ba, Aa, Bb: so läßt sich die Figur längst der Linie CH zusammen legen; und es wird A auf B, a auf b, demnach Ab auf Ba fallen; und so muß der Durchschnittspunkt dieser beyden Linien E auf der Linie CH seyn.

Man mache ferner $CM = Ec$, und $CN = cb$, und ziehe NM: so werden die Winkel $NMC = bEc$ seyn; demnach auch $NMC = AEC$. Da nun auf diese Art die Linien NM, AE nicht zusammen laufen, und $CN < CA$ ist: so ist nothwendig auch $CM < CE$; demnach auch $Ec < EC$. Trägt man nun CE aus E in H, und zieht HJ auf CH.
senkrecht: so wird $HJ = AC$, und $EJ = EA$ seyn. Da demnach auch $HJ = CB$ ist: so darf man nur durch E die Linie FEK senkrecht ziehen, und indem man JB zieht: so wird man in K rechte Winkel haben. Denn wird die Figur längst der Linie FK zusammen gelegt: so fällt H in C, J in B, und damit KJ in KB; und es wird $JKE = BKE$ demnach $= 90\text{ Gr.}$, und so müssen die Winkel in G, so wie auch die in F, schiefe Winkel seyn. Also ist auch hierdurch wiederum ein Punkt G gefunden, wo die senkrechte Linie GE mit Bb schiefe Winkel macht. Es ist auch wiederum $HL < HJ$; folglich $HL < CB$.

Und so läßt sich der Beweis fortsetzen.

Man kann diesen Satz ebenfalls umkehren. Es sey nämlich $EGb < 90\text{ Gr.}$ so fälle man aus jedem Punkt B auf CH die Linie 163 BC senkrecht, und mache $CA = CB$. Aus A ziehe man Ab durch E, und falle aus b die Perpendikulare bc auf CH: so wird $bc < BC$ seyn. Denn setzte man $bc = BC$: so würde b in J und G in K fallen, demnach $bGE = 90\text{ Grad}$ seyn. Und eben so würde $bGE > 90\text{ Grad}$ gefunden werden, wenn man $bc > BC$ setzen wollte. Beydes der Bedingung $bGE < 90\text{ Gr.}$ zuwider.

§ 25.

Es seyn nun (Fig. IX.) in A rechte Winkel, und $DBA < 90\text{ Gr.}$ Die Linie AB werde, so viel man will, verlängert. Da nun $DBA < 90\text{ Gr.}$ ist: so fällt aus jedem Punkt E die senkrechte Linie EF auf die Seite BD. Da nun in A rechte Winkel sind: so ist EGA und damit auch $FGH < 90\text{ Gr.}$ Demnach fällt aus F die senkrechte Linie FH gegen C. Da nun $DFE = 90\text{ Gr.}$ so ist $DFH < 90\text{ Gr.}$ Wiederum, da $eBf < 90\text{ Gr.}$ ist: so fällt aus jedem Punkt e die senkrechte Linie cf auf die Seite Bf, und verlängert macht sie $egA < 90\text{ Gr.}$, weil in A rechte Winkel sind. Demnach fällt aus f die senkrechte fh zwischen Ag. Da nun $Bfg = 90\text{ Gr.}$ so ist $Bfh < 90\text{ Gr.}$

Der Anstand, als ob cf verlängert mit Ag nicht zusammen laufe, hat hiebey nichts zu sagen. Denn da fh auf Ag trifft: so wird um desto ehender noch $Bfh < 90\text{ Gr.}$
2) Sätze, die für sich betrachtet werden können. §. 24—26.

So viel also aus jeden Punkten der Linie \(eE \) Perpendikularen auf \(DI \) können gefällt werden, so viele schiefe Winkel \(DFH, Dfh \) finden sich auch, demnach allerdings unzählige. Dieses war nun, in Absicht auf das zu Ende des §. 22. gesagte, zu beweisen. Ich habe übrigens nicht finden können, da's man ohne Zuziehung des Euklidschen Grundsatzes damit ausreiche.

§. 26.

Ließ es sich aber ohne diesen Grundsatz erweisen, da's, so oft ein Winkel \(DBA < 90 \text{ Gr.} \) ist, auch jeder andere Winkel \(DFH < 90 \text{ Gr.} \) sey, wo auch immer der Punkt \(F \) auf der Linie \(DF \) angenommen wird: so kann auch ohne viele Mühe erwiesen werden; da's alle \(DBA, Dfh, \&c \) einander gleich sind.

Denn man setze, in der 3ten Figur in \(F \) seyen rechte Winkel, und \(CGF < 90 \text{ Gr.} \). Man mache nach Belieben \(BF = FD \), und richte in \(B, D \), Perpendikularen auf. Oder, indem man den Punkt \(E \) nach Belieben annimmt: so falle man aus denselben die Linie \(ED \) auf \(FD \) senkrecht, trage \(FD \) aus \(F \) in \(B \), und richte in \(B \) die Perpendikulare \(BH \) auf. Wird nun die Figur längst der Linie \(FG \) zusammen gelegt: so wird \(FB \) auf \(FD, BC \) auf \(Dc \) fallen; und es wird

\[CGF' = JGE = cGF \]
seyn. Man setze nun, die Winkel ACB, AED seyn ungleich: so sind auch GeE, GeC, und damit auch die Seiten GE, Ge ungleich. Dieses hat aber den Erfolg, daß, wenn GK durch FG senkrecht, oder welches einerley ist, nitten durch den Winkel EGc gezogen wird, die Winkel in K schief seyn werden. Damit aber würden auch die Winkel in D schief seyn. Es sind aber vermöge der Construktion, in D rechte Winkel. Denn nach geht es nicht an, daß man die Winkel ACB, AED ungleich setze; und so muß $ACB = AED$ seyn. Damit erhält man aber $Ge = GE = GC$; ungleichen $EKG = cKG = CHG = 90$ Grad, und $BHKD$ ist ein Rectangel c.

Ich setze diesen ohnehin kurz vorgetragenen Beweis nicht weiter fort, weil man leicht sieht, daß derselbe auf dem Satze beruht, daß man wo KGF, DFG rechte Winkel sind, aus dem schießen Winkel in K auf den schießen Winkel in D schließen könne. Dieses ist es aber eben, wovon noch ein von dem Euklidischen 11ten Grundsate unab- hängiger Beweis gefunden werden soll. Kann derselbe aber gefunden werden: so erhellet aus dem erstgesagten, daß damit zugleich auch die Gleichheit der Winkel ACB, AED und die Winkel eines Rectangels c bestimmt und erörtert sind.

3) Theorie der Parallel-Linien.

§. 27.

Daraus wird sichs zeigen, daß sich die ganze Sache auf eine dreyfache Hypothese reduciren läst, von welchen jede einer besonders Theorie fähig ist, und wovon zwo nur in ihren entfernten Folgen umgestoßen werden können; so daß auch von den unmöglichen Hypothesen eine ziemliche Anzahl von Sätzen können und zum Theil
müssen erwiesen werden, bis es sich zeigt, daß sie nicht bestehen. Auf gleiche Art werden selbst von der wahren Hypothese mehrere Sätze ex hypothesi erwiesen, ehe es sich zeigen läßt, daß sie wirklich die wahre ist.

In der Geometrie schien mir ein solches Verfahren sehr unerwartet. Da es aber darin vorkommt: so kann es zugleich die Art, mit physischen Hypothesen umzugehen, wie durch ein Beyspiel erläutern. In dieser Absicht kann es leicht sein, daß ich aus den beyden irrigen Hypothesen mehrere Folgen ziehe, als es, bloß um sie umzustossen, notig wäre.

§. 28.

§. 29.

Es seyn (Fig. X.) in A und B rechte Winkel; oder, indem man AC durch AB senkrecht gezogen, werde AB nach Belieben ange nommen, und der Winkel ABD ebenfalls = 90 Gr. gemacht: so sind, ver möge erstbemeldter Prop. XXVII, XXVIII; BD, AC Linien, die bey derseits, soviel man will, verlängert, nicht zusammenlaufen.

Ferner läßt sich leicht zeigen, daß, wenn die Figur längs der Linie AB zusammengelegt wird, der Winkel dBA auf DBA, in gleichen eAB auf CAB, und demnach Bd auf BD, und Ac auf AC fällt, weil in A, B alles rechte Winkel sind. Die Linien dD, cC sind dem nach auf beyden Seiten des Striches AB einander durchaus gleich und ähnlich, so daß, was von der einen Seite | erwiesen wird, mit Bey-327 behaltung eben der Bedingungen auch auf der andern Seite statt findet.

§. 30.

So z. E. wenn man Ac = AC macht, und in c, C Perpendikularen cd, CD aufrichtet: so wird cd = CD, Bd = BD, cdB = CDB seyn.
§. 31.

Eben so, wenn \(Bd = BD \) gemacht wird, und man fällt aus \(d, D \) senkrechte Linien \(dc, DC \) auf \(cc \): so wird \(cA = AC, cdB = CDB \), und \(cd = CD \) seyn.

§. 32.

Wiederum, wenn man \(cA = CA \), und \(dB = BD \) macht: so wird man ebenfalls \(cd = CD, Acd = ACD \), und \(BDC = Bdc \) haben.

§. 33.

Wenn es demnach noch mehrere Arten von nicht zusammenlaufenden geraden Linien geben sollte: so wird diejenige, wo \(A, B \) rechte Winkel sind, immer wegen der vollkommenen Gleichheit und Aehnlichkeit auf beyden Seiten von \(AB \) etwas voraus haben.

Der Umstand, daß \(dD, cC \) nicht zusammenlaufen, läßt noch unbestimmt, ob die Entfernungen \(cd, CD \) immer gleich sind, oder grösser oder kleiner werden. Wie dem aber auch immer sey: so weifs man, daß es auf beyden Seiten von \(AB \) durchaus einerly Beschaffenheit damit habe.

§. 34.

Man kann aber auch vermittelst schiefer Winkel gerade Linien ziehen, die nicht zusammenlaufen; und da ist allerdings die Frage, ob diese nicht von der erst betrachteten Art verschieden sind?

Es seyn z. E. (Fig. XI.) die Winkel \(BAC = ABE \), oder \(FAK = EBA \), oder \(EBA + FAB = 180^\circ \): so folgt aus vorhin bemeldten Prop. XXVII und XXVIII, daß die Linien \(ED, FC \) ebenfalls nicht zusammenlaufen, so viel oder wenig schieß die Winkel in \(A \) und \(B \) seyn mögen. Wollte man nun auch hier die Figur längs der Linie \(AB \) zusammenlegen: so würde man nichts Congruirendes erhalten, weil keine Linie auf die andre und kein Winkel auf den andern passen würde. Und man würde höchstens daraus schliessen können, daß sich \(EB \) gegen \(FA \) eben so, wie \(AC \) gegen \(BD \), verhalte; so daß z. E. wenn sich \(EB \) gegen \(FA \) näherte, sich eben so \(AC \) gegen \(BD \) nähern würde \(\alpha \).
§. 35.

Man theile aber AB in zween gleiche Theile AG, GB. Aus G falle man GH auf AC, und GJ auf BE senkrecht: so wird man $JG = GH$, und $AH = JB$, und $AGH = BGJ$ erhalten. Und da AGB eine gerade Linie ist: so werden $AGH = BGJ$ Scheitelwinkel, und demnach JGH auch eine gerade Linie seyn. Da nun in J, H rechte Winkel sind: so läßt sich die Figur längs der Linie JH zusammenlegen; und es wird EJ auf DJ, und FH auf CH passen. Dadurch läßt sich also diese, vermittelst der schiefen Winkel A, B, gezogene Art von nicht zusammenlaufenden geraden Linien auf die vorhin betrachtete reduiren; weil hier in Absicht auf JH eben das gilt, was bey der 10ten Figur in Absicht auf AB gesagt worden.

Man kann auch den Fall umkehren. Denn man setze, dafs $AGH = GBJ$, und $GJH = JGH$; so wird man allemaal auch $AG = GB$, und $GAH = GBJ$ erhalten.

§. 36.

§. 37.

§. 38.

Da demnach in Absicht auf die Linie JH eben das gilt, was in der 10den Figur in Absicht auf die Linie AB gesagt worden: so sind die Linien ED, FC (Fig. 11.) in der That nicht von einer von den
Linien dD, cC (Fig. 10.) verschiedenen Art. Dadurch wird aber allerdings die Theorie der Parallellinien abgekürzt, weil die Eigenschaften und Symptomata, so sich in Absicht auf die 10de Figur erweisen lassen, ohne Mühe auf die 11te Figur angewandt werden können.

§. 39.

Ich werde demnach zu der 10den Figur zurück kehren, und die Voraussetzung, daß in A, B rechte Winkel sind, beybehalten.

Es seyn nun in C ebenfalls rechte Winkel: so laufen erstlich auch AB und CD nicht zusammen. Die Frage kommt nun eigentlich auf die Winkel in D an; und da müssen wir nothwendig drey Hypothesen annehmen. Denn es könnte

I. $BDC = 90$ Gr.
II. $BDC > 90$ Gr.
III. $BDC < 90$ Gr.

Diese drey Hypothesen werde ich der Ordnung nach annehmen, und Folgen daraus ziehen. Es wird sich zeigen, daß diese Folgen ziemlich weit können und theils müssen getrieben werden, ehe man auf ein *Quod est absurdum* oder *Quod est contra hypothesin* verfällt.

330 Der dritte Ausdruck *Quod est contra Definitionem*, oder auch *per Definitionem*, wird dabei gar nicht vorkommen, weil die Definition selbst wegleibt, und, wenn man sie auch gebrauchen wollte, nichts beweisen würde.

Erste Hypothese.

§. 40.

Es seyn demnach (Fig. XII.) AC, BD, AB, CD gerade Linien, und A, B, C, D rechte Winkel: so wird $AB = CD$, und $AC = BD$ seyn.

Man theile [nämlich] AC in $AE = EC$, und richtet in E die Linie EF senkrecht auf: so läßt sich die Figur längs der Linie EF zusammenlegen, so daß EA auf EC, EAB auf ECD fällt. Setzt man nun, es seyn AB, CD nicht gleich: so ist entweder $AB < CD$, oder $AB > CD$.

Im ersten Fall mache man $Cb = AB$, und ziehe Fb: so wird $FbC = FDC = 90$ Gr.; demnach werden in dem Triangel bFD zween rechte Winkel D, b seyn, welches ungereimt ist. (Prop. XVII.) Demnach kann nicht $AB < CD$ seyn.

Auf eben diese Art wird erwiesen, daß $BD = AC$ seyn, wenn man durch die Mitten von AB eine senkrechte Linie zieht.

§. 41.

Es seyn wiederum (Fig. XIII. und XIV.) AC, BD, AB, CD gerade Linien, und in A, B, C, D rechte Winkel. Auf AC nehme man jeden beliebigen Punkt E, und richte aus demselben EF senkrecht auf: so wird $EF = AB = CD$, und in F werden rechte Winkel seyn.

In Ansehung der 14ten Figur folgt eben dieses, weil sich aus Einem Punkt L nicht zwo Linien LH, LK senkrecht auf EL ziehen lassen. Demnach muß L in F fallen; und so sind in F rechte Winkel, und es ist $EF = AB = CD$.
§ 42.
Hiedurch ist nun die erste Hypothese (§ 39.) zureichend charakterisirt, weil alle Perpendicularen $FE = AB$, und in F rechtwinklig sind, sobald irgendwo 4 rechte Winkel A, B, C, D vorkommen.

§ 43.
Es seyn nun wiederum (Fig. XV.) A, B, C, D rechte Winkel. Durch jeden Punkt K werde HKL schiefl gezogen. Aus K falle KE auf CA senkrecht; und es werde $EG = EF$ nach Belieben angenommen, und in, G, F Perpendicularen GJ, FL aufgerichtet: so werden die beyden Triangel JHK, MLK einander gleich und ähnlich seyn. Denn in J, M sind rechte Winkel (§ 41.); und JK ist $= GE = EF = KM$; und $JKH = MKL$ (§ 36. 37.).

§ 44.
Da nun hierbey ferner $GJ = EK = FM$ ist (§ 41.): so sind die Linien GH, EK, FL, jede um gleich viel länger als die nächst vorhergehende. Oder es ist

\[
EK = GH + HJ.
\]

Demnach

\[
FL = EK + LM = EK + HJ.
\]

§ 45.

§ 46.
Hieraus folgt ferner, dass, aus welchem Punkt k man auf GC eine Linie senkrecht falle, der Winkel $Hkc = HKE$ seyn werde. Denn ek, in m verlängert, durchschneidet JK rechtwinklig; und eben so sind auch in n rechte Winkel (§ 41.). Fällt man ferner ki aus k auf JG senkrecht: so ist auch $ikn = 90$ Gr. und damit $ik = Hn$. Demnach sind die Triangel ikH, nkH einander gleich und ähnlich, und folglich der Winkel $Hkc = HKE$.
§. 47.

§. 48.

Die Sache läßt sich nun folgendermassen umkehren.

Es seyn G, F, rechte Winkel, und die Winkel JHL, HLF spitze, aber einander gleich: so wird jeder Winkel

\[Hke = JHL = HLF \]

seyn. Denn man halbire GF in E. Aus E richte man EK senkrecht auf; und durch K ziehe man JK ebenfalls senkrecht: so ist erstlich GJK = FMK, und JK = MK. (§. 30.) Da nun JKH = MKL, und JHK = KLM ist: so sind die Triangel HJK, LMK einander gleich und ähnlich; demnach der Winkel HJK = LMK; demnach auch LMK = KMF = 90 Gr.

Da nun solchergestalt in J, M, G, F, rechte Winkel sind: so folgt schlechthin und durchaus Alles was vorhin (§. 43—47.) über die Figur gesagt worden. Jede Winkel Hke sind = HKE; und die Linien LH, FG, gegen G verlängert, schneiden sich unter einem Winkel, der dem Winkel JKH oder jedem Winkel ikH gleich ist.

§. 49.

Es kann ferner die Sache noch auf folgende Art umgekehrt werden.

Man setze GE = EF. In G, E, F, seyn rechte Winkel. Die Linie HL sey gerade; und es sey

\[FL - EK = EK - GH. \]

Man trage GH in FP, und EK in FM, und ziehe KM und KP: so werden die Winkel

\[HKE = QKL = PKE, \]

ungleichem die Winkel EKM = FMK, und QKM = LMK, und LM = MP seyn.

Denn HKE, QKL sind Scheitelwinkel; demnach sind sie einander gleich. Wird ferner die Figur längs der Linie EK zusammengelegt: so fällt G auf F, GH auf FP; demnach KH auf KP, und folglich EKH auf EKP; und so ist

\[EKH = EKP = QKL. \]
Dafs ferner $EKM = FMK$, und $QKM = LMK$ sey, folgt aus dem §. 30, wenn man sich eine, mitten auf EF errichtete Perpendikulare und längs derselben die Figur zusammengelegt gedenkt. Endlich ist $PM = ML$, weil

\[ML = FL - EK, \]

\[PM = EK - GH \]

ist, und weil vorausgesetzt worden, dafs

\[FL - EK = EK - GH \]

sey.

Nun sage ich ferner, dafs EKM, FKM rechte Winkel sind, und folglich damit Alles gilt, was vorhin (§. 43. und folg.) über die Figur gesagt worden. Der Beweis, dafs KF ein rechter Winkel sey, gründet sich auf einen Lehnsatz, den ich im folgenden Paragraph vortragen werde, um hier die Ordnung der Gedanken nicht zu unterbrechen.

Man setze demnach, die Winkel in M seyn schieff, z. E. $KMP < 90$ Gr.; so wird $KML > 90$ Gr. seyn. Daraus folgt aber, dafs, weil $KM = KM$- und $ML = MP$ ist, der Winkel $LMK < MKP$ sey. (§. seqq.) Dieses geht aber nicht an. Denn vermöge des vorhin erwiesenen ist $QKM = LMK$, demnach > 90 Gr.; und $EKM = KMF$, demnach < 90 Gr. Da nun also

\[QKM > EKM \]

und hingegen

\[QKL = EKP \]

ist: so bleibt, wenn man abzieht,

\[LKM > PKM. \]

Setzt man hingegen $KMP > 90$ Gr.: so wird $KML < 90$ Gr. seyn. Und damit ist auch $MKE > QKM$, und folglich, wenn man $QKL = EKP$ abzieht, bleibt $PKM > MKL$. Da nun aber $KMF > KML$ gesetzt worden, und $KM = KM$, $ML = MP$ ist; so folgt hieraus, dafs der Winkel $PKM < MKL$ seyn müfte; welches aber mit dem erst gefundenen $PKM > MKL$ nicht bestehen kann.

Demnach läfst sich weder $KMP > 90$ Gr. noch $KMP < 90$ Gr. setzen; und so müssen in M rechte Winkel seyn. Da nun $EKM = FKM$ erwiesen worden: so ist auch $EKM = 90$ Gr. Und so, weil in K, M, F, E rechte Winkel sind, gilt Alles, was §. 43. und folg. von der Figur gesagt worden. LH, FG, verlängert, laufen auf der Seite G zusammen, und durchschneiden sich unter einem Winkel, der jeden Winkeln iKH, JKH, LKM, u. gleich ist.
§. 50.

Der Lehnsatz, von welchem erst die Rede war, ist folgender.
Die Linien \(K \text{M}, P \text{L} \) (Fig. XVI.) durchschneiden sich in \(M \) schief; und es sey \(MP = ML \). Man ziehe \(K \text{L}, K \text{P} \): so wird, wenn \(K \text{M} \text{L} > 90 \text{ Gr.} \) ist, \(L \text{K} \text{M} < P \text{K} \text{M} \) seyn.

Aus \(L \) falle \(L \text{q} \) auf \(K \text{M} \) senkrecht; und eben so werde aus \(P \) die Linie \(P \text{r} \) durch \(K \text{M} \) senkrecht gezogen, und \(P \text{r} = P \text{P} \) gemacht. Da nun \(p \text{M} \text{P} = q \text{M} \text{L}, P \text{M} = ML \), und in \(p, q \) rechte Winkel sind: so sind die Triangel \(pP \text{M}, qL \text{M} \) einander gleich und ähnlich. (§. 36.)

Demnach ist
\[
L \text{q} = P \text{p} = p \text{r}.
\]

Wird also durch \(r\text{L} \) eine gerade Linie gezogen: so läuft diese mit \(K \text{M} \) auf keiner Seite zusammen. Denn zieht man durch \(M \) die Linie \(M \text{R} 335 \) auf \(K \text{M} \) senkrecht, und legt die Figur längs \(M \text{R} \) zusammen: so fällt \(p \) auf \(q \), \(p \text{r} \) auf \(q \text{L} \), und \(R \text{r} \) auf \(R \text{L} \). Demnach sind in \(R \) rechte Winkel. Damit ist nun \(r \text{K} \text{M} > L \text{K} \text{M} \). Da aber \(r \text{K} \text{M} = P \text{K} \text{M} \) ist: so ist auch \(P \text{K} \text{M} > L \text{K} \text{M} \). Und dieses war zu beweisen.

§. 51.

Man sieht aus dem bisher gesagten, daß ich nicht nur die erste Hypothese und ihre Folgen für sich betrachtet, sondern auch einige andre zugleich mitgenommen habe, welche sowohl bey derselben zugleich statt haben und eine Folge davon sind, als auch dieselbe nach sich ziehen, und in beyden Absichten, das will sagen, gerade und umgekehrt damit verbunden sind.

Man kann auch leicht voraus sehen, daß eben dadurch die beyden andern Hypothesen sehr merklich eingeschränkt und näher bestimmt werden; weil dabei nothwendig alle die Möglichkeiten ausgeschlossen bleiben, wodurch man auf die erste Hypothese verfallen würde.

Uebrigens ist bey der ersten Hypothese besonders merkwürdig, daß ein einziges Rectangel alle andre von jeder Grösse und Verhält- nis der Seiten nach sich zieht; und daß ebenfalls ein einziges Trapezium \(G \text{H} \text{L} \text{F} \) (Fig. XV.), wo \(G, F \) rechte Winkel sind, und \(I \text{H} = H \text{L} \) ist, sowohl die Rectangel als jede andre Trapezia und zusammenlaufende Linien zur Folge hat; und daß Alles dieses sich ebenfalls einfindet, wenn auch nur in Einem Fall
\[
F \text{L} = E \text{K} = E \text{K} = G \text{H}
\]

ist.
Zwote Hypothese.

§ 52.

Da es aber bey Allem, was über die erste Hypothese gesagt worden, unausgemacht bleibt, ob dieselbe möglich oder unmöglich, wahr oder falsch ist: so werde ich zu der andern Hypothese fortschreiten, und ihre Symptomata untersuchen.

Bey dieser sind in A, B, C, c (Fig. X.) rechte Winkel; BDC aber wird stumpf gesetzt. | Da nun wegen der rechten Winkel in A und B, auf beyden Seiten der Linie AB, Alles einerley Bewandtnis hat: so wird es, überhaupt betrachtet, genug seyn, die Symptomata für die eine Seite zu beweisen, und es, wo etwa beyde Seiten in Betrachtung gezogen werden müssen, ausdrücklich anzuzeigen.

§ 53.

Es seyn nun in $A, B, (\text{Fig. XVII.})$ rechte Winkel; und so auch in $C, E, G, \&c$. Der Winkel D oder BDC sey stumpf: so ist erstlich $DC < AB$. Denn man setze $CD = AB$. Man halbire AC und richte die Perpendikulare MN auf. Wird nun nach dieser die Figur zusammengelegt: so fällt A auf C, AB auf CD; demnach NB auf ND; und so wäre $NDC = NBA$; der Voraussetzung zuwider, daß B ein rechter, D ein stumpfer Winkel sey. Wollte man $CD > AB$ setzen: so würde auf eben die Art erhellen, daß $NDC < NBA$ seyn müßte; welches noch mehr der Voraussetzung zuwider wäre. Demnach ist $CD < AB$.

§ 54.

Auf eben die Art erhellet, dafs auch $BD < AC$ sey, wenn man mitten durch AB eine senkrechte Linie zieht.

§ 55.

Ferner, so viel man auch auf AG senkrechte Linien EF, GH aufrichtet, oder aus BH auf AG herunterfällt, werden sie sämtlich unter sich ungleich seyn; oder man findet nicht zwo, die einander

gleich wären. Es versteht sich, daß sie auf gleicher Seite des Striches AB genommen werden. (§. 52.)

§. 56.

Es sind aber nicht nur die Senkstriche CD, EF, GH durchaus ungleich, (§. 55.) sondern jeder von AB entferntere ist kleiner als jeder nähere.

Man setze erstlich, es sey $EF > CD$. Da nun auch $AB > CD$ ist: so giebt es zwischen AC und zwischen CE nothwendig solche Perpendikularen, die einander gleich sind; weil sonst die Linie BF sich sprungsweise von AE entfernen müßte, um in F wiederum entfernter zu seyn, als sie in D war. Nun aber ist ein solches Entfernen der Natur der geraden Linie, die Gleichheit der Perpendikularen aber dem vorhergehenden §. 55 zuwider. Demnach kann auch nicht $EF > DC$ seyn. Da nun auch $EF = DC$ nicht angeht (§. 55.): so muß $EF < DC$ seyn.

§. 57.

Ich habe diesen Beweis auf das Gesetz der Continuität gegründet, weil er sich auf diese Art am kürzesten vortragen läßt. Ich glaube auch nicht, daß er dadurch minder evident und schlüssig seyn, als wenn er auf die Euklidischen Grundsätze wäre gebaut worden. Indessen lasst er sich allerdings auch darauf gründen.

Es seyn in A, B, E, G, (Fig. XVIII.) rechte Winkel. Die Linie BH [sey] gerade; (welches sich zwar für sich versteht, aber der Umstände wegen erinnert werden muß) AB sey grüßer als EF und GH; hingesen GH grüßer als EF. Man halbire AG in N, und EG in M. Aus N, M richte man Perpendikularen Nn, Mm auf. Ferner
338 mache man \(Gb = AB \), und \(Gf = EF \), und ziehe \(nb \), in gleichem \(fm \) bis in \(p \) verlängert. Endlich ziehe man aus \(p \) die Linie \(pP \) auf \(AG \) senkrecht herunter; und indem man \(QN = NP \), und \(RM = MP \) macht, richte man in \(Q, R \), die Perpendikularen \(Qq, Rr \) auf.

Ich sage, es sey \(Qq = Rr \). Denn, legt man die Figur längs der Linie \(Nn \) zusammen: so fällt \(AB \) auf \(Gb \), und \(Qq \) auf \(Gff \), und \(Pp \) auf \(Br \) oder \(mr \) auf \(mp \), wenn man \(MG \) auf \(ME \) legt. Demnach ist \(Pp = Rr \). Da nun auch \(Pp = Qq \) ist: so ist \(Rr = Qq \). Das Übrige des Beweises ist nun wie §. 56.

§. 58.

Was nun erst in Ansehung der Senkstriche \(EF, GH, \&c. \) (Fig.XVII.) erwiesen worden, gilt auch in Ansehung der Winkel \(F, H, \&c. \) Sie sind sämtlich stumpf, durchaus ungleich, und jeder von \(B \) entferntere z. E. \(H \), ist stumpfer, als jeder nähere \(F \).

Dafs sie sämtlich stumpf sind, erhellet ohne Mühe daraus, dafs jede \(GH < AB \) ist. Auf diese Art fällt \(AB \) (Fig.XVIII.) beym Zusammenlegen [längs der Linie \(Nn \)] auf \(Gb \). In \(b \) sind, wie in \(B \), rechte Winkel. Und so ist in dem Triangel \(nbH \) der Winkel \(nHb < 90 \text{ Gr.} \). Demnach \(nHG > 90 \text{ Gr.} \).

Dafs ferner alle die Winkel \(BFE, BHG, \&c. \) von ungleicher Grösse seyn müssen, erhellet aus dem §. 48. Denn man setze z. E. \(BFE = BHG \): so sind \(JFE, JHG \) spitze und einander gleich. Damit aber laufen die Linien \(BH, AG \) gegen \(G \) zusammen; und es ist auch \(JBA = JFE \). Demnach \(JBA < 90 \text{ Gr.} \). Beydes der Voraussetzung zuwider. Demnach kann kein Winkel \(JFE \) einem andern \(JHG \) gleich seyn.

Dafs endlich jeder entferntere Winkel \(BHG \) stumpfer seyn müsse, als jeder nähere \(BFE \), folgt wiederum aus dem Gesetze der Continuität. Denn wäre \(BHG \) weniger stumpf als \(BFE \): so würden zwischen \(BF \) und \(FH \) nothwendig Winkel vorkommen, die gleich | stumpf wären; und so würden \(BH, AG \) gegen \(G \) zusammenlaufen, und in \(B \) gleich schiefeWinkel seyn. (§.48.) Demnach muß durchaus \(BHG > BFE \) seyn.*

(Lamberts Zusatz zu §. 58 auf einem besonderen Blatte)

*) „Der eigentliche Beweis ist folgender: „\(BFE \) (Fig.XVIII.) sey stumpfer als \(B \) und \(H \). Man lege die Figur wie §. 57. „zusammen: so fällt \(q \) in \(f \) unter \(H \). Ferner \(B \) in \(b \) überger \(F\); (es mag nun
Man kann dieses Letztere auch auf folgende Art beweisen. Auf HD (Fig. XIX) nehme man die Distanzen HG, GF, FE, EA, AB, BC, CD, &c gleich und so klein man will. Aus allen diesen Punkten richte man Perpendikularen auf, und ziehe RP durch EJ rechtwinklig: so werden, unsrer zwoten Hypothese zufolge, die Winkel JMA, JNB, JQC, JPD, &c in gleicher Weise auf der andern Seite die Winkel JKF, [JLG], JRH, &c rundlich stumpf, und die auf beyden Seiten von EJ gleich entfernten gleich seyn. (§. 30.) Man ziehe nun durch M die Linie rp auf AM senkrecht: so ist ebenfalls EiM = MnB, FkM = MqC, GIM = MpD, &c. Da nun MJE ein rechter Winkel ist: so ist MjE, und damit auch MnB und MNB noch mehr stumpf. Nun ist MNB = MLG; daher MLG = MpD noch mehr stumpf als MNB. Und eben so MPD noch mehr stumpf als MpD; folglich noch viel mehr als MnB, &c. Ferner, da MKF > 90 Gr. ist: so ist auch MkF = MqC noch stumpfer. Und da MQC > MqC: so ist auch MQC noch viel mehr stumpf, und damit auch MRH = MQC, und um so mehr noch MrH, &c.

Man sieht leicht, dass auf eben die Art immer fortgeschlossen werden kann, und demnach die Winkel M, N, Q, P, &c desto mehr stumpf sind, je mehr sie von J entfernt sind. Dafs eben dieses von 340 jeden zwischen M, N, Q, P, &c fallenden Winkeln gelte, folgt daraus, dass AB, BC, CD, &c so klein angenommen werden können, als man will.

§. 60.

Es ist ferner merkwürdig, das diese in Einem fortgehende Vermehrung der stumpfen Winkel M, N, Q, P, &c nicht nur von der absoluten Länge der Linien EA, EB, EC, ED, &c sondern auch von der absoluten Länge der Perpendikularen EJ, AM, BN, &c abhängt.

Um dieses noch zu zeigen: so seyn in A, B, C, D, E (Fig. XX.) rechte Winkel, und AB = BC = AD = DE. Demnach sind, ver-

Über oder unter H seyn.) Demnach sind (eben so wie §. 57.) PP = RR = QQ; welches die Hypothese umstöfst. ic."

"Auf eine ähnliche Art wird §. 69. verfahren." [Es scheint, dass Lambert auch hier versucht hat, den Beweis unabhängig von dem Gesetze der Continuität zu führen. So wie der Zusatz lautet, ist er uns freilich unverständlich geblieben.]

§ 61.

Auf gleiche Art wird man $FJ > EF$ finden. Hingegen ergibt sich $FJ < GF$ daraus, dafs $JF = JH$, $GF = GH$, und $FGH < FJH$ ist. So wird man auch, wenn man AG, GC zieht, die Winkel DAG, GAB, GCB einem halben rechten Winkel gleich, und hingegen $AGC = DGB > 90$ Gr. finden. \ddagger.

Ich halte mich aber bey solchen Folgen, die leicht noch weiter können getrieben werden, nicht mehr länger auf, sondern werde die bisher betrachtete Hypothese nun von der widersprechenden Seite zu zeigen vornehmen.

§ 62.

Diese widersprechende Seite liegt nicht blofs darin, dafs die von AB (Fig. XVII.) entferntern Senkstriche EF, GH immer kürzer werden. Denn man könnte gedenken, dafs sie auf eine asymptotenmäßige Art sich verkürzen, ohne jemals $= 0$ oder gar negativ zu werden. Hingegen thun die immer stumpfer werdenden Winkel F, H mehr zur Sache. Denn daraus wird erhehlen, dafs sich BH gegen AG ungeträch eben so wie ein Cirkelbogen nähern müßte, dessen Mittelpunkt unter A ist, und dessen Diameter bis in B reicht. Ein solcher Cirkelbogen nehmlich durchschneidet notwendig die Linie AG. Eben dieses wird sich nun auch von der Linie BH erweisen lassen. Da nun wegen der rechten Winkel in B, A

kein solcher Durchschnitt statt haben kann: so folgt für sich, dafs unsre zwote Hypothese dadurch werde ad absurdum gebracht seyn. Die Art, wie dieses geschehen kann, ist nun folgende.

§ 63.

Es seyn in A, B, (Fig. XXI.) rechte Winkel. Auf AG nehme man nach Belieben drey Punkte E, F, G, so dafs EF = FG sey, und richte aus denselben die Linien EH, FJ, GK senkrecht auf: so ist zu beweisen, dafs allemal EH — FJ < FJ — GK oder FJ — GK > EH — FJ sey, wenn die bisher betrachtete zwote Hypothese wahr ist.

Nun sind, dieser Hypothese zufolge, die Winkel BHE, BJF, BKG nicht nur stumpf; sondern es ist BKG > BJF, und BJF > BHE. Zieht man demnach durch J die Linie LM senkrecht auf JF; so geht sie unter H und über K durch; und es ist EL = GM. (§ 30.) Man mache nun GN = EH, und ziehe JN: so wird, wenn man die Figur längs der Linie FJ zusammenlegt, FE auf FG, EL auf GM, EH auf GN, demnach JL auf JM und JH auf JN fallen; und die Winkel HJL, MJK, NJM werden gleich seyn. Da nun BHE < BKG: so ist EHJ > JKN. Es ist aber EHJ = JNK. Demnach ist JNK > JKN. Damit aber ist auch JK > JN.

Man mache Jn = JK, und ziehe Mn: so ist der Winkel JMK = JMN. Demnach ist JMK stumpf. Demnach, ebenfalls vermöge der zwoten Hypothese, GM = EL kleiner als FJ. Ferner, da JNG = JHE ein spitzer Winkel ist: so ist nNM stumpf; und damit ist Mn > MN. Es ist aber Mn = MK. Demnach ist auch MK > MN; und eben so, weil MN = LH ist: so ist auch MK > LH. Demnach

\[GM - GK > EH - EL. \]

Nun aber ist

\[GM = EL. \]

Dennach

\[GM - GK > EH - GM. \]

Es ist aber, vermöge des erst erwiesenen,

\[FJ > GM. \]

Folglich

\[2 \times FJ > 2 \times GM. \]
Demnach, wenn man addirt,
\[GM + 2 FJ - GK > 2 GM + EH - GM. \]
Und folglich
\[2 FJ - GK > EH; \]
Oder
\[FJ - GK > EH - FJ, \]
Und dieses war zu beweisen.

§. 64.

Die Perpendikel \(EH, JF, KG, \) &c nehmen demnach nicht etwan nur gleichförmig, sondern immer stärker ab. So klein demnach auch die Abnahme seyn mag: so muf, wenn man fortfährt in gleichen Entfernungen \(EF, FG \), Perpendikularen aufzurichten, die Summe der Abnahmen nothwendig einmal anfangen grösser als \(AB \) zu werden. Und da dieses nicht geschehen kann, es sey denn, daß die Linie \(BK \), bis dahin verlängert, sich unter die ebenfalls verlängerte \(AG \) herabsenke: so wird dadurch offenbar der Satz, daß \(BK, AG \) wegen der rechten Winkel in \(A, B \) nicht zusammenlaufen, umgestossen. Da sich aber dieser Satz nicht umstossen läßt: so fällt die zwote Hypothese ins Unmögliche. Sie wird aber | noch viel unmittelbarer dadurch ungereimt, daß die Linie \(BK \) auf beyden Seiten des Senkstriches \(AB \) sich unter die Linie \(GA \) herabsenken, und demnach die zwei Linien \(BK, AG \) einen Raum schließen müßten.

Läßt uns nun noch sehen, was aus der dritten Hypothese werden wird.

Dritte Hypothese.

§. 65.

Man kann nun nach der Betrachtung der beyden ersten Hypothesen voraus vermuthen, daß bey der dritten immer spitzere Winkel und immer grösser werdende Perpendikularen zum Vorschein kommen werden. Hingegen läßt es sich eben daher auch nicht voraussehen, wie diese Hypothese in Absicht auf die Möglichkeit werde geprüft werden können. Ich werde demnach die Sache beschreiben, wie ich sie gefunden habe.

§. 66.

Es seyn wiederum in \(A, B, C \), (Fig. XVII.) und so auch in jeden Punkten \(E, J, G \), &c rechte Winkel: so ist bey der dritten Hypothese der Winkel \(D \) oder \(BDC \) spitz. (§. 39.) Die erste Folge, die wir daraus ziehen, ist, daß \(DC > AB \) ist. Denn wäre \(CD = AB \): so
würde eben so wie §. 53. folgen, daß BDC ein rechter Winkel wäre. Und dieses würde der Voraussetzung zuwider seyn. Wollte man aber $CD < AB$ annehmen: so würde, wenn man die Figur längs der mittleren Perpendikulare MN zusammenlegt, A auf C, B aber über D hinauf fallen; und damit würde $NDC > 90$ Gr. seyn; welches der Voraussetzung noch mehr zuwider wäre. Demnach ist $CD > AB$.

§. 67.

Auf gleiche Art ist auch $BD > AC$.

§. 68.

Ferner sind jede andere Perpendikulare EF, GH, nicht nur größer als AB; sondern es ist keine der andern gleich, und jede entferntere GH ist größer als jede nähere EF.

Ich habe hierbey ebenfalls wiederum wie oben (§. 56.) das Gesetz der Continuität gebraucht. Will man aber lieber den Beweis auf die Euklidischen Grundsätze bauen: so kann dieses auf eine der im §. 57. angegebenen durchaus ähnliche Art geschehen. Denn man wird finden, daß für gegenwärtigen Fall, in der 18den Figur, b unterhalb, f aber oberhalb H, und damit auch p unter Fm kommt, und dadurch an dem Satze $Qq = Rr$ nichts geändert wird.
§ 69.

In Ansehung der Winkel $D, F, H, &c$ (Fig. XVII.): so sind hier nicht nur alle spitze, sondern auch alle ungleich; und jeder entferntere H ist spitzer als jeder nähere F.

Dafs alle spitze sind, folgt daraus, daβ alle Perpendikularen größer als AB sind, ohne Mühe, wenn man, z. E. in Absicht auf den Winkel F die Figur so zusammenlegt, daβ E auf A falle. Denn so wird F oberhalb B fallen; und da in B rechte Winkel sind: so muß $BFE < 90$ Gr. seyn.

Endlich kann auch nicht $H > F$ seyn. Denn wo dieses wäre: so würden zwischen BF und zwischen FH Winkel vorkommen, die einander gleich wären; und damit würde auch $F = H$ seyn. (§. 48.) Demnach muß $H < F$ seyn.

Man kann, um dieses ohne Zuziehung des Gesetzes der Continuität zu beweisen, eben so wie §. 59 verfahren, wenn man in der 19den Figur in i rechte Winkel, und $iMA < 90$ Gr., JMA aber $= 90$ Gr. setzt. Denn so wird $EJM = MNB$ spitze, und damit $MnB = MIG$ noch kleiner, und eben dadurch $MLG = MPD$ noch mehr kleiner. zc.

§ 70.

Aus dem aber, daβ die entferntern Winkel immer spitzer werden, folgt nun ferner, daβ die Perpendikularen mit der Entfernung von A (Fig. XVII.) nicht etwa nur gleichförmig, sondern immer mehr größer werden, so daβ sich BH, verlängert, von AG, ebenfalls verlängert, dergestalt entfernt, daβ die Perpendikularen größer werden, als jede gegebene Grösse.

Es seyn in A, B (Fig. XXII.) rechte Winkel. Man nehme nach Belieben die Punkte E, F, G, so daβ $EF = FG$ sey, und richte aus denselben die Perpendikularen EH, FJ, GK auf: so sind, vermöge unserer dritten Hypothese BHE, BJF, BKG spitze Winkel, und

\[\text{Fig. XXII.} \]

\[GK = GM > EL - EH. \]

Nun aber ist

\[GM = EL. \]

Demnach

\[GK - GM > GM - EH. \]

Da nun, vermöge des erst erwiesenen,

\[GM > FJ, \]

und

\[2GM > 2FJ; \]

so ist, wenn man addirt,

\[GK + 2GM > GM + 2FJ - EH. \]

Folglich

\[GK > 2FJ - EH; \]

oder

\[GK - FJ > FJ - EH. \]

Demnach wächst bey gleich zunehmenden Entfernungen AE, AF, AG, die Perpendikulare GK in Absicht auf FJ um ein mehrers
als FJ in Absicht auf EH. Da nun dieses von jeden folgenden Entfernungen gilt: so wird die Summe aller Zunahmen oder Incrementen endlich grösser als jede gegebene Gröfse.

§. 71.

Dadurch fällt nun der Unterschied zwischen einer geraden und krummen Linie eben so weg, wie bey der zwoten Hypothese. (§. 64.) Indessen, da es sich bey der zwoten Hypothese dadurch erweisen liess, dass sich die Linie BK auf beyden Seiten des Senkstriches AB unter die Linie AG herabzog: so hat man bey der dritten, wo sich BK von AG auf beyden Seiten unendlich entfernt, nichts dergleichen zu befahren. Es macht aber eben dieses Entfernen, das, wenn man ja

noch einen andern Beweis | der Unmöglichkeit der dritten Hypothese verlangt, derselbe auf eine andre Art gefunden werden mufs.

Demnach fallen alle Einwendungen weg, die sich auf ein asymptotisches Annähern oder auf ein asymptotisches Entfernen gründen würden; wobey nehmlich die Entfernungen EH, JF, GK, &c sich einer gewissen Gröfse immer mehr näherten, ohne sie jedoch zu erreichen.

Eben so fallen auch diejenigen Einwendungen weg, wobey die zwote Hypothese zum Grunde liegen oder vorausgesetzt würde; wie z. E. wo zu drey rechten Winkeln A, B, C der vierte H stumpf, demnach die Summe > 360 Gr. oder in einem Triangel die Summe der drey Winkel > 180 Gr. angenommen würde, π weil die zwote Hypothese an sich wegfällt.

§. 72.

In Ansehung des immer mehrern Entfernens, so bey der dritten Hypothese vorkommt, konnte man anstehen, ob die aus jeden Punkten E, F, G, &c aufgerichteten Perpendikularen die Linie BK alle noch schneiden, so gross man auch AE, AF, AG, &c annehmen würden. Nun sehe ich zwar nicht, wie bey diesem Anstände BK eine gerade
Linie bleiben könnte. Indessen wenn es auch wäre: so hat es auf die vorhergehenden Sätze keinen Einfluß. Die Vergrößerung, oder das Anwachsen der Perpendikularen, so weit diese nehmlich aus jeden Punkten $H, J, K, \&c$ auf AG können gefällt werden, wird dadurch nicht nur nicht angefochten, sondern noch um desto merklicher. Und eben dieses findet auch in Ansehung der Winkel H, J, K statt, welche dadurch nicht nur bis auf einen bestimmten Grad sondern vollends bis auf 0 kleiner werden würden.

§. 73.

Bey der dritten Hypothese ist in jedem Triangel die Summe der drey Winkel kleiner als 180 Gr. Da sich jeder Triangel in zween rechtwinklichte zerfallen läßt, weil bey jedem nothwendig wenigstens zween Winkel spitze sind: so werde ich diesen Satz erstlich von den rechtwinklichten Triangeln erweisen.

Es say ein solcher BAE. Man ziehe HB auf BA, und HE auf EA rechtwinklicht: so ist $BH > AE$, und $EH > AB$. (§. 66. 67.)

![Fig. XXII.](image)

Trägt man demnach den Triangel BHE in EaB, so daß BH in Ea, und EH in Ba falle: so fällt aB ausserhalb ABH, und aE ausserhalb AEH. Demnach ist der Winkel $aBE > ABE$,

und $aEB > AEB$.

Folglich, wenn man addirt,

$$aBE + aEB > ABE + AEB.$$

Es ist aber die Summe dieser vier Winkel $= 180$ Gr. Demnach ist

$$aBE + aEB > 90 \text{ Gr.}$$

Folglich

$$ABE + AEB + BAE < 180 \text{ Gr.}$$

Die Besorgnifs, als möchten BH, EH einander nicht schneiden, hat hier ebenfalls nichts zu sagen; weil, wenn es auch wäre, die
Linien Ba, Ea nur um so mehr noch ausserhalb BAE fallen würden.

§. 74.

Nun seyn in jedem Triangel AGC (Fig. XX.) die Winkel A, C spitze. Aus G falle GB auf AC senkrecht: so ist

\[AGB + GAB + ABG < 180 \text{ Gr.} \]
\[CGB + GCB + CBG < 180 \text{ Gr.} \]

Demnach die Summe

\[AGC + GAC + GCA + ABG + CBG < 360 \text{ Gr.} \]

Es ist aber

\[ABG + CBG = 180 \text{ Gr.} \]

Demnach

\[AGC + GAC + GCA < 180 \text{ Gr.} \]

§. 75.

Da in einem gleichseitigen Triangel ABC (Fig. XXIII.) die Winkel A, B, C gleich sind: so ist, bey der dritten Hypothese, jeder derselben kleiner als 60 Gr.

§. 76.

Man ziehe nun in einem gleichseitigen Triangel ABC aus jedem Winkel senkrechte Linien auf die gegenüber stehende Seite: so werden sowohl die Winkel als die Seiten halbirt; und die Perpendikularen haben einen gemeinsamen Durchschnittpunkt D. Alles dieses läßt sich durch das Zusammenlegen der Figur längs jeder Perpendikulare leicht erweisen. Und eben daraus wird auch gefolgt, daß die Winkel in D sämtlich gleich, und demnach jeder $= 60$ Gr. ist. Ferner, da der Winkel $ACG < GAC$: so ist auch $AG < GC$, oder $GC > AG$. Hingegen wegen des rechten Winkels in G, ist $AC > GC$. Demnach ist die Perpendikulare zwar kleiner als jede Seite, aber grösser als die Hälfte einer Seite.

§. 77.

Man beschreibe nun auf BD noch einen gleichseitigen Triangel BDD. Da nun auch in diesem jeder Winkel < 60 Gr. ist; (es versteht sich bey der dritten Hypothese:) so fällt die Seite Dd innerhalb
BDF, weil $BDF = 60$ Gr. ist; und so muß die aus B auf Dd fallende Perpendikulare Bf ausserhalb ABC fallen. Demnach ist $Df > Dg$. Es ist aber, wegen des rechten Winkels in F, $Dg > DF$; demnach, um desto mehr $Df > DF$. Da nun $Df = \frac{1}{2} Dd = \frac{1}{2} DB = \frac{1}{2} DA$ ist: so ist $\frac{1}{2} DA > DF$, und $DA > 2 DF$; demnach auch $AF > 3 DF$, oder $DF < \frac{1}{3} AF$. Dieses hat bey der dritten Hypothese statt. Denn bey der ersten läßt sich leicht erweisen, daß $DF = \frac{1}{3} AF$ sey. Die zwöte Hypothese, wobey $DF > \frac{1}{3} AF$ seyn würde, fällt an sich weg. Und demnach kann DF wenigstens nicht größer als $\frac{1}{3} AF$ seyn.

§ 78.

Ferner ist, bey der dritten Hypothese, in jedem Triangel KLM (Fig. XVI.) die Summe zweener Winkel $LKM + KLM$ kleiner als der aussen an dem dritten liegende Winkel LMq. Denn es ist

$LMK + LKM + KLM < 180$ Gr.

Hingegen

180 Gr. $= LMK + LMq$.

Demnach

$LKM + KLM < LMq$.

Und wenn $KM = ML$ ist: so ist LKM kleiner als die Hälfte von LMq.

§ 79.

Man sieht leicht, daß sich auf diese Art bey der dritten Hypothese noch weiter gehen läßt; und daß sich ähnliche Sätze auch bey der zwöten finden lassen, doch mit ganz entgegengesetztem Erfolge. Ich habe aber vornehmlich bey der dritten Hypothese solche Folgsätze aufgesucht, um zu sehen, ob sich nicht Widersprüche äußern würden. Aus Allem sah ich, daß sich diese Hypothese gar nicht leicht umstossen läßt. Ich werde demnach noch einige solcher Folgsätze anführen, ohne darauf zu sehen, wiefern sie auch bey der zwöten Hypothese mit gehöriger Veränderung gezogen werden können.

Die erheblichste von solchen Folgen ist, daß, wenn die dritte Hypothese statt hätte, wir ein absolutes Maafs der Länge jeder Linie, des Inhalts jeder Flächenräume und jeder körperlichen Räume haben würden. Dieses stößt nun einen Satz um, den man ohne Bedenken
unter die Grundsätze der Geometrie rechnen kann, und woran bisher noch kein Mensch gezweifelt hat, daß es nehmlich kein solches absolutes Maafs gebe. Es machte zwar Wolf einen Lehrsatz daraus, indem er die Definition der Grösse (Quantitas) so einrichtete, daß er im Folgenden daraus herleiten konnte: Quantitas dari sed non per se intelligi potest. | Allein dieser Lehrsatz muß, so wie die Definition, geändert werden, weil es unstreitig Größen gibt, die für sich kenntlich sind, und eine bestimmte Einheit haben. Bey Linien, Flächen und körperlichen Räumen gilt derselbe allerdings; und da glaube ich nicht, daß man, um ihn in der Geometrie anzubringen, erst eine Definition dazu zurechte machen müßte.

§ 80.

Um aber die erst erwähnte Folge zu beweisen; so seyn in A, B, C, D, E (Fig. XX.) rechte Winkel; und es werden, bey der dritten Hypothese, G, F, H, J spitze, und zwar $H < G$, und $J < H$; und eben so $F < G$ und $J < F$ seyn. Nun sage ich, der Winkel G sey das Maafs des Viereckes $ADGB$, wenn nehmlich $AB = AD$ ist; und eben so sey der Winkel J das Maafs des Viereckes $ACJE$, wenn $AC = AE$ ist.

Demnach ist der Winkel G das absolute Maafs des Viereckes $ADGB$. Da die Winkel ein für sich kenntliches Maafs haben: so dürfte man z. E. wenn $AB = AD$ ein Pariser Fuß, und dabey der Winkel $G = 80$ Gr. wäre, nur sagen, man soll das Viereck $ADGB$ so groß machen, bis der Winkel $G = 80$ Gr. würde: so werde man die absolute Länge eines Pariser Fußes auf $AB = AD$ haben.

Diese Folge hat etwas Reizendes, welches leicht den Wunsch abbringt, die dritte Hypothese möchte doch wahr | seyn!

Allein ich wünschte es, dieses Vorteils unerachtet, dennoch
nicht, weil unzählliche andre Unbequemlichkeiten dabei mit seyn würden. Die trigonometrischen Tafeln würden unendlich weitläufig; und die Aehnlichkeit und Proportionalität der Figuren würde ganz wegfallen; keine Figur ließe sich anders als in ihrer absoluten Größe vorstellen; um die Astronomie wäre es übel bestellt; u. s. w.

§ 81.

Jedoch dies sind Argumenta ab amore & inuidia ducta, die aus der Geometrie, so wie aus allen Wissenschaften, ganz wegblicken müssen.

Ich wende mich demnach wiederum zu der dritten Hypothese. Bey dieser ist nicht nur, wie wir vorhin gesehen haben, in jedem Triangel die Summe der drey Winkel kleiner als 180 Gr. oder zween rechte Winkel; sondern der Unterschied von 180 Gr. wächst schlecht-hin nach dem Flächenraume des Triangels; das will sagen: wenn von zween Triangeln der eine einen grösseren Flächenraum hat, als der andre: so ist in dem erstern die Summe der drey Winkel kleiner als sie in dem andern ist.

Ich werde diesen Satz hier nicht so ausführlich beweisen, als ich ihn vortrage, sondern von dem Beweise nur so viel anführen, daß sich das Üebrige daraus überhaupt begreifen läßt.

Es sey z. E. in dem Triangel ACB (Fig. XXIII.) der Triangel EFG, so daß des Letztern Ecken auf die Seiten des erstern stossen. Da auf diese Art EFG ganz in ABC ist: so ist der Raum des erstern unstreitig kleiner als der Raum des Letztern. Nun ist die Summe der Winkel:

\[EFG + EGF + GEF = 180 \text{ Gr.} - a. \]
\[EGA + EAG + AEG = 180 \text{ Gr.} - b. \]
\[FGB + GBF + GFB = 180 \text{ Gr.} - c. \]
\[FCE + FEC + EFC = 180 \text{ Gr.} - d. \]

Hingegen

\[EGA + EGF + FGB = 180 \text{ Gr.} \]
\[AEG + GEF + FEC = 180 \text{ Gr.} \]
\[EFC + EFG + GFB = 180 \text{ Gr.} \]

Ziehet man die Summe dieser drey letztern Gleichungen von der Summe der vier erstern ab: so bleibt

\[CAB + ABC + BCA = 180 \text{ Gr.} - a - b - c - d. \]
Da demnach hier nicht nur a, sondern $a + b + c + d$ von 180 Gr. abgezogen werden muß: so sieht man, daß sich bey dem Triangel ABC alle Defecte a, b, c, d der vier Triangel AEG, ECF, FBG, GEF zusammenhäufen, und demnach die Summe seiner drey Winkel um so viel mehr kleiner als 180 Gr. ist.

Kann das kleinere Dreieck nicht ganz in das grösse gelegt werden: so steht etwas davon voraus, und dieses wird abgeschnitten und in das hervorstehende des grössem Dreieckes gelegt, und allenfalls so fortgefahren, bis das nunmehr in Theile zerschnittene kleinere Dreieck ganz im grössem liegt. Der im grössem unbedeckt bleibende Raum wird in Triangel zerfällt. So viel nun die Summe aller Winkel in diesen Triangeln kleiner ist als eben so vielmal 180 Gr. um eben so viel ist die Summe der drey Winkel des grössem vorgegebenen Dreieckes kleiner als die Summe der drey Winkel des vorgegebenen kleinern Dreieckes.

§. 82.

Wenn es bey der dritten Hypothese möglich wäre, mit gleichen und ähnlichen Triangeln einen grössem Triangel zu bedecken: so würde es sich auch leichte darthun lassen, daß bey jedem Triangel der Ueberschufs von 180 Gr. über die Summe seiner drey Winkel dem Flächenraume des Triangels proportional wäre. Indessen da sich dieser Ueberschufs nach dem Raume richtet: so läßt sich dennoch eine solche Proportionalität auf eine andre Art gedenken.

Man setze z. E. zween Triangel. Der eine habe doppelt so viel Flächenraum als der andre: so wird ersterer, so viel man will, zerschnitten, doppelt auf den andern gelegt werden können. Und wenn der kleinere um a Gr. in Absicht auf die Summe seiner Winkel von 180 Gr. abgeht: so wird der grösse um $2a$ Gr. davon abgehen. —

Ich werde nun noch folgende Anmerkung beyführen. Bey der zweoten Hypothese kommen ganz ähnliche Sätze vor, nur daß dabey in jedem Triangel die Summe der drey Winkel grösser als 180 Gr. wird. Der Ueberschufs proportionirt sich ebenfalls nach dem Flächenraume des Triangels.

Hierbey scheint mir merkwürdig zu seyn, daß die zwote Hypothese statt hat, wenn man statt ebener Triangel sphärische nimmt, weil bey diesen sowohl die Summe der Winkel grösser als 180 Gr. als auch der Ueberschufs dem Flächenraume des Triangels proportional ist.

Noch merkwürdiger scheint es, daß, was ich hier von den sphärischen Triangeln sage, sich ohne Rücksicht auf die Schwierigkeit
3) Theorie der Parallel-Linien. Dritte Hypothese. §. 81—83. 203
der Parallel-Linien erweisen lasse, und keinen andern Grundsatz voraus-
setzt, als daß jede durch den Mittelpunkt der Kugel gehende ebene
Fläche die Kugel in zweeen gleiche Theile theile.
Ich sollte daraus fast den Schluß machen, die dritte Hypothese
könne bey einer imaginären Kugelfläche vor. Wenigstens muß
immen Etwas seyn, warum sie sich bey ebenen Flächen lange nicht
so leicht umstossen läßt, als es sich bey der zwoten thun lies.

§. 83.
Was ich erst von den Triangeln sagte, gilt auch von den vier-
eckichten Figuren. Weil jede sich in zweeen Triangel zerfallen läßt:
so beträgt, bey der dritten Hypothese, die Summe der vier Winkel
eines Viereckes weniger als 360 Gr. und der Unterschied ist dem
Flächenraume des Viereckes proportional.
Es seyn nun (Fig. XIX.) in $H, r, G, F, E, A, &c$ rechte Winkel,
und $HG = GF = FE = EA = &c$, so sind bey der dritten Hypo-
these die Perpendikularen $Hr, Gl, Fk, Ei, | AM, Bn, &c$ nicht nur 355

![Fig. XIX.]

der Ordnung nach grüson, sondern sie nehmen immer um mehr zu.
Dieses macht, daß auch der Flächenraum, die Vierecke $HrlG, GlkF, FkiE, &c$ immer grüson, und eben so wie die Perpendikularen immer
um mehr grüson werden. Demnach ist die Summe der 4 Winkel
nicht nur immer kleiner, sondern immer um mehr kleiner als 360 Gr.
Da nun die Linien rp, HD gerade sind: so lassen sich die sämtlichen
Vierecke, oder so viel deren hintereinander liegend genommen werden,
in Eines zusammennehmen; und da die an einander stossenden Winkel
in $l, k, i, &c G, F, E, &c$ immer zusammen $= 180$ Gr. sind: so
werden bey jedem neu addirten Vierecke von der Summe der Winkel
360 Grade weggeworfen. Und so ist z. E. die Summe der Winkel

$$H, r, l, G = 360 \text{ Gr. } - \alpha.$$
$$H, r, k, F = 360 \text{ Gr. } - 2\alpha - \beta.$$
$$H, r, i, E = 360 \text{ Gr. } - 3\alpha - 2\beta - \gamma.$$
$$H, r, M, A = 360 \text{ Gr. } - 4\alpha - 3\beta - 2\gamma - \delta.$$
$&c$ $&c$ $&c$
Kann man nun damit immer fortfahren: so wird nothwendig folgen, daß man zuletzt auf Vierecke verfällt, in welchen die Summe der vier Winkel kleiner als drey rechte Winkel sind. Es sey $HrpD$ ein solches Viereck. Da nun bereits in H, r, D drey rechte Winkel sind: so ist

$$H + r + D + p > 270 \text{ Gr.}$$

Und dieses stößt die Folge, und mit derselben entweder die ganze dritte Hypothese, oder den Satz um, daß die aus $G, F, E, A, B, \&c$ errichtete Perpendikularen irgend aufhören, die Linie rp zu schneiden*). Allein, wenn auch dieses wäre: so würden die Ordinaten demnach bis ins Unendliche wachsen, und demnach der Raum des letzten Viereckes so vielmals den Raum des ersten $HrLG$ fassen, daß die Summe der Winkel kleiner als 270 Gr. wäre.

Indessen werde ich darauf nicht bestehen, weil man allerdings 356 vorerst die Vermuthung heben müßte, es möchten die Vierecke gerade aufhören möglich zu sein, wo die Summe der vier Winkel $= 270 \text{ Gr.}$ würde. Es kommt demnach vielmehr darauf an, ob die aus den Punkten $G, F, E, A, B, \&c$ errichteten Perpendikularen die Linie rp sämtlich schneiden?

§. 84.

Da es aber die Frage ist, ob sich, ohne Zuziehung neuer Grundsätze, die dritte Hypothese vermittelst der übrigen Euklidischen Grundsätze umstossen lasse: so bleiben bey der gegenwärtigen Betrachtung noch zween Wege zu versuchen.

Der erste, wenn sichs aus der dritten Hypothese selbst folgern ließe, daß die Perpendikularen $Gl, Fk, Ei, \&c$ sämtlich die Linie rp schneiden müssen. Könnte dieses geschehen: so würde, vermöge des vorhin erwiesenen, die Hypothese sich selbst umstossen. Ich habe

*) [Wir sind geneigt zu glauben, daß Lambert nicht „irgend“ sondern „nirgend“ geschrieben hat; wenigstens giebt der jetzige Wortlaut keinen Sinn. Das Folgende bezieht sich ja offenbar auf den Fall, daß die Perpendikularen aufhören, rp zu schneiden; man vergleiche dazu §. 72.]
es nicht versucht, weil es mir sehr wenig wahrscheinlich vorkam, und dabei immer Ausflüchte bleiben.

Der andre Weg ist, wenn sich erstbemeldtes Durchschneiden aus den übrigen Euklidischen Grundsätzen herleiten läßt. Auch hierüber habe ich nichts gefunden, das mir völlig Genügen gethan hätte; ungeachtet sich die Sache vielfältig auf solche Sätze reduciren läßt, die ganz augenscheinlich wahr sind.

Es seyn z. E. in A, D, C (Fig. XX.) rechte Winkel; und man steht an, ob CH, DH sich schneiden. Es sey $AC > AD$: so trage man AC aus A in E, und ziehe EJ auf AE senkrecht: so ist erstlich für sich klar, daß, wenn EJ, CJ sich schneiden, der Durchschnitt H notwendig auch statt habe. Setzt man nun auf EC einen gleichseitigen Triangel, wovon jede Seiten $= EC$ sind: so wird EJC allemal innerhalb dem gleichseitigen Triangel fallen.

Allein den Beweis dazu habe ich nicht finden können.

Hingegen liefs es sich beweisen, daß, wenn man den gleichseitigen Triangel umlegt, EAC ganz in denselben fällt, weil man weiß, daß A ein rechter Winkel ist.

Wiederum sey $AB = AD$; in A, D, B rechte Winkel; und man steht an, ob DG, BG sich schneiden? Trägt man nun AD aus D in E, und beschreibt auf AE einen gleichseitigen Triangel: so wird allemal der Durchschmittspunkt G in denselben fallen.

Hier wäre nun nur zu beweisen, daß in jedem gleichseitigen Triangel jeder Winkel größer als 45°, das will sagen, größer als der Winkel $GAD = GAB$ ist. Dafs jeder größer sey als der Winkel GEA, wenn nehmlich $AC = AE$ gemacht wird, das kann bey der dritten Hypothese leicht erwiesen werden.

Wiederum, wenn man ansteht, ob EJ, CJ sich schneiden: so darf man nur AG mitten durch A ziehen, so daß $GAD = GAB = 45$ Gr. sey. Fällt man nun aus jedem Punkt G eine senkrechte GD auf AE, und man kann beweisen, daß AD größer als die
Hälfte, oder auch nur grösser als $\frac{1}{3}$, $\frac{1}{4}$, x von AG sey: so wird der Durchschnitt J ebenfalls erwiesen seyn, weil AJ kleiner als das 2, 3, 4, x fache von AE seyn wird. Dafs es Fälle giebt, wo $AD > \frac{1}{2} AG$ ist, wird leicht erwiesen.

§ 87.

In dem Cirkel AC (Fig. XXIV.) seyn AE, EB, BF, FC, &e Octanten. Man ziehe die Vierecke $ABCD$, $EFHG$: so werden die Durchschnittspunkte J, K, L ebenfalls in einem concentrischen Cirkel herumliegen, und die Winkel $JMK, KML, &c$ Octanten seyn. Man ziehe nun JL: so wird leicht bewiesen, dass $MP > PK$, demnach $MP > \frac{1}{2} MK$ oder $MP > \frac{1}{2} MJ$ ist. Denn $ERK = 90$ Gr. Demnach $EKR < 90$ Gr. Folglich $JKL > 90$ Gr.; $JKM > 45$ Gr. Da nun $JKLM 45$ Gr. ist: so ist $PM > PK$.

Auf diese Art lässt sichs von jedem Cirkel auf einen kleinern schliessen. Man müfste nur auch beweisen können, dass, wenn man jenen, so viel man will, vergrössert, dieser nicht zurücke bleibe. Und dieses wird man erhalten, sobald man erweisen kann, dass entweder $ER = RK$, oder auch nur $ER < JK$, oder $ER < RM$, oder, ohne Rücksicht auf den äussern Cirkel, der Winkel JKL stumpf ist.

§ 88.

Man sieht aus Allem diesem, dass, so leicht die zwote Hypothese umzustossen war, es noch ganz im Gegentheil mit der dritten viel härter halte. Ich übergehe noch mehrere solcher Versuche; und werde nun

(Fig. XIX.) $AB = BC = CD = &c$ und in $A, B, C, D &c$ rechte Winkel, und $AM = BN = CQ = DP = &c$ setzen. Davey sind nun
die Winkel $AMN = MNB = BNQ = NQC = CQP = QPD = \&c$, zufolge der dritten Hypothese, sämtlich spitze, und $MN = NQ = QP = \&c$. Das will nun sagen: $MNQP$ ist nicht eine gerade Linie, sondern ein Theil eines regulären Vieleckes, das sich in einen Cirkel beschreiben läßt, dessen Mittelpunkt unterhalb M auf jeder der Linien $MA, NB, QC, PD, \&c$ ist. (§. 20.) Da nun damit $B, C, D, \&c$ nicht mehr rechte Winkel seyn können: so wird dadurch die Voraussetzung und mit derselben die dritte Hypothese umgestossen.
Abweichungen vom Original.

S. 172, Z. 22, 21, 18, 17, 16, 15, 3 und 1 v. u., Seite 173, Z. 2 v. o. (S. 161, Z. 5, 5, 8, 8, 9, 10, 18, 21 und 23 v. o.) \(b \) statt \(\beta \).
S. 174, Z. 19 v. u. (S. 163, Z. 1 v. o.) aus \(B \) statt: aus \(b \).
S. 175, Z. 2 v. o. (S. 163, Z. 11 v. u.) \(D F h \) statt \(D F H \).
S. 184, Z. 6 v. u. (S. 334, Z. 16 v. o.) \(K \) statt \(M \).
S. 187, Z. 6 v. o. (S. 336, Z. 4 v. u.) \(H \) statt \(K \).
S. 188, Z. 12 v. o. (S. 338, Z. 9 v. o.) \(G F \) statt \(G f \).
S. 199, Z. 8 v. o. (S. 350, Z. 1 v. o.) \(AF < \frac{1}{3} DF \) statt: \(DF > \frac{1}{3} AF \).
S. 204, Z. 4, 6, 12 v. o. (S. 355, Z. 11, 10, 3 v. u.) \(R \) statt \(r \).

In Figur V ist \(b \) für \(\beta \) gesetzt worden, um sie mit dem Texte in Übereinstimmung zu bringen; ferner ist der Buchstabe \(O \) ergänzt.

In Figur VII des Originals ist \(D \beta t \) eine gerade Linie, während nach dem Texte \(K \beta t \) ein Cirkelbogen ist, der die Gerade \(D t \) in \(t \) berührt; dem entsprechend musste die Figur geändert werden.

In Figur XIII ist der Punkt zwischen \(A \) und \(E \), dem Texte entsprechend, mit \(G \) statt mit \(C \) bezeichnet.

Die in runde Klammern eingeschlossenen Seitenzahlen beziehen sich auf die Originalausgabe im Leipziger Magazin für Mathematik, Jahrgang 1786.
CARL FRIEDRICH GAUSS
1777—1855.
In der Einleitung zu Lambert's Theorie der Parallellinien hatten wir berichtet, daß etwa vom Jahre 1780 an die Frage nach dem Beweise der fünften Forderung die Aufmerksamkeit der Mathematiker immer mehr und mehr zu fesseln beginnt. Nunmehr wollen wir diese Bewegung in großen Zügen darstellen.

„Die Erklärung und die Eigenschaften der geraden Linie, sowie der parallelen Geraden, sind die Klippe und sozusagen das Ärgerniß der Elementargeometrie“, hatte d'Alembert in einem bemerkenswerten Aufsätze über die Elemente der Geometrie 1759 ausgerufen und hatte hinzugefügt, man könne allerdings parallele Gerade als solche erklären, die auf einer dritten Geraden senkrecht stehen, dann aber sei unbedingt erforderlich, zu beweisen, daß der Abstand der beiden Geraden immer gleich dem gemeinsamen Lote sei. In ähnlicher Weise äußerte sich d'Alembert in dem Artikel Parallèle der Encyclopédie; der betreffende Band ist erst nach seinem Tode, 1789, erschienen.

Fourier schlug 1795 neue Erklärungen der Geraden und der Ebene vor, bei denen er von dem Begriffe der Bewegung ausging und mit der Kugel begann; es ist das ein Gedanke, der sich in neueren Untersuchungen über die Grundlagen der Geometrie als sehr fruchtbar erwiesen hat.

Dafs auch Lagrange die fünfte Forderung beweisen wollte, wissen wir aus einer Mitteilung von Lefort, die Houël in seinen Essai critique (1867) aufgenommen hat: „Lagrange hatte erkannt, daß die Formeln der sphärischen Trigonometrie von dem elften Axiome unabhängig sind, und hoffte hieraus einen Beweis dieses Axioms zu gewinnen. Alle anderen Beweisversuche betrachtete er als ungenügend. So hat er sich in seinen Unterhaltungen mit Biot ausgedrückt.‡"
Einleitung zu den Außerungen von Gaußs

Auf diesen Beweisversuch dürfte sich wohl folgende Erzählung de Morgans beziehen:

„Lagrange verfaßte am Ende seines Lebens eine Abhandlung über die Parallellinien. Er begann sie in der Akademie zu lesen, aber plötzlich hielt er inne und sagte: Il faut que j’y songe encore; damit steckte er seine Papiere wieder ein."

In engem Zusammenhange mit der Parallelentheorie stehen auch Untersuchungen über das Parallelogramm der Kräfte, die Daviet de Foncex 1759 veröffentlichte; ihre Grundgedanken hatte wahrscheinlich der junge Lagrange seinem Freundemitgeteilt.

In der Einleitung zu Wallis haben wir darauf hingewiesen, daß Laplace sich ebenfalls mit der Begründung der Euklidischen Geometrie beschäftigt hat; die betreffenden Bemerkungen in der Exposition du système du monde stammen aus dem Jahre 1824.

Am folgenreichsten für die Geschichte der Parallelentheorie wurden jedoch die Arbeiten von Adrien Marie Legendre (1752—1833).

In der ersten Auflage seiner Elemente der Geometrie vom Jahre 1794 zeigte Legendre, daß die fünfte Euklidische Forderung gleichbedeutend ist mit dem Lehrsatz, daß die Winkelsumme des Dreiecks zwei Rechte beträgt, und gab für diesen Lehrsatz einen analytischen Beweis, dessen wir schon in der Einleitung zu Wallis gedacht haben. Dieser Beweis geht davon aus, „daß die Wahl der Längeneinheit für die Richtigkeit des zu beweisenden Lehrsatzes gleichgültig ist“, an Stelle des Parallelaxioms tritt also, wie bei Wallis, das Axiom von der Existenz ähnlicher Figuren.

In der zwölften Auflage von 1823 behauptete er, endlich auch diesen bisher vermißten Beweis geben zu können. Er gebrauchte jedoch dabei
über die Parallelentheorie.

Eine zusammenfassende Darstellung seiner Untersuchungen über die Parallelentheorie hat Legendre im Jahre 1833 gegeben. Hier hat er auch gezeigt, daß die Winkelsumme des Dreiecks stets zwei Rechte beträgt, sobald das bei einem einzigen Dreieck der Fall ist. Wir wissen, daß dieser Satz bereits hundert Jahre früher von Saccheri bewiesen worden ist, und bemerken noch, daß auch die Art des Beweises bei Legendre im Wesentlichen dieselbe ist wie bei Saccheri.

Wenn Legendre am Schlüsse der Abhandlung von 1833 sagt, daß die Parallelentheorie durch seine Untersuchungen nach zweitausend Jahren vergeblicher Bemühungen endlich zu einem befriedigenden Abschluß gekommen sei, so war er in einem verzeihlichen Irrtum befangen: weder die Ergebnisse seiner Untersuchungen noch die Methoden, die ihn zu diesen Ergebnissen führen, können als ein wesentlicher Fortschritt gegenüber den Leistungen von Wallis, Saccheri und Lambert bezeichnet werden. Andererseits muß hervorgehoben werden, daß die große Verbreitung, deren sich Legendres Elemente — und gewiß mit Recht — in Frankreich wie in Deutschland erfreut haben, wesentlich dazu beigetragen hat, das Interesse für die Parallelentheorie zu beleben, und daß Legendre insofern in der Geschichte der Parallelentheorie eine hervorragende Rolle spielt; rein äußerlich zeigt sich das schon darin, daß in den zahlreichen Parallelentheorien der ersten Hälfte dieses Jahrhunderts immer wieder auf Legendre Bezug genommen wird, während jene älteren Versuche ganz in Vergessenheit geraten waren.

Während desselben Zeitraumes waren auch England und Italien der Schauplatz ähnlicher Bestrebungen, wie das unser Litteraturverzeichnis am Schlusse des Werkes nachweist; Genaueres können wir freilich nicht mitteilen, weil uns die betreffenden Schriften größtenteils unzugänglich geblieben sind.

Wie stand es unterdessen in Deutschland? Auch hier begegneten wir angestrengter Bemühung, das Parallelaxiom zu beweisen, finden wir die innige Überzeugung, das erlösende Wort gesprochen zu haben,
aber daneben sehen wir, daß Klügels Skepticismus und Kaestners Resignation Nachfolge gefunden hatten. Sehr bezeichnend für diesen Standpunkt ist eine Besprechung in dem Stück der Göttingischen gelehrten Anzeigen vom 9. März 1801 (S. 407—408), die wir wortgetreu wieder abdrucken:

„Hamburg.

Demonstratio theorematis parallelarum. Ex officina Schniebesiana 1799. 30 S. in Octav.

Für den Verfasser dieser anonymer Besprechung halten wir K. F. Seyffer (1762—1822), der von 1789 bis 1804 außerordentlicher Professor der Astronomie und Direktor der Sternwarte in Göttingen war. Das unmittelbar vorhergehende Stück der Anzeigen vom 7. März 1801 enthält nämlich auf S. 377—387 eine sehr interessante Besprechung des Tentamen novae parallelarum theoriae von Schwab, die mit der vom 9. März desselben Jahres nach Stil und Inhalt die größte Ähn-
über die Parallellentheorie.

Ähnliche Ansichten über den Beweis der fünften Forderung scheint Pfaff gehabt zu haben; er meinte, wie Hessling 1818 richtet, das einzige, was sich noch thun ließe, sei, das Parallelaxiom durch ein einfacheres zu ersetzen, es zu „simplificieren."

Wie Gauß an Schumacher schreibt, hat er erst im Jahre 1831 einiges über seine Untersuchungen aufzuschreiben angefangen: „ich wünschte nicht, dafs es mit mir unterginge“, und als ihm sein Jugendfreund Wolfgang Bolyai das „Tentamen“ übersandt hatte, in dessen Appendix die nichteuklidische Geometrie von Wolfgangs Sohn, Johann Bolyai enthalten war, antwortet Gauß 1832 in einem leider noch nicht veröffentlichten Briefe*), „daß er überrascht war,

*) So erzählt Wolfgang Bolyai in seinem Kurzen Grundriss von 1851.
gethan zu sehen, was er begonnen hatte, um es unter seinen Papieren zu hinterlassen."

Gaußs hatte nicht nur die Erfolglosigkeit aller bisherigen Bemühungen, die fünfte Forderung zu beweisen, erkannt, sondern er wußte auch, daß es notwendig so sein mußte, weil sich eine von dem Parallelenaxiom unabhängige, in sich folgerichtige Geometrie aufbauen läßt. Aber alles das hat man erst nach seinem Tode erfahren.

Zuerst veröffentlichte im Jahre 1856 Sartorius von Waltershausen, Professor der Mineralogie in Göttingen, der in persönlichem Verkehr mit Gaußs gestanden hatte, Äußerungen, die Gaußs über die "Antieuklidische" Geometrie gemacht habe:

"Die Geometrie betrachtete Gaußs nur als ein consequentes Gebäude, nachdem die Parallelintheorie als Axiom an der Spitze zugegeben sei; er sei indes zur Überzeugung gelangt, daß dieser Satz nicht bewiesen werden könne, doch wisse man aus der Erfahrung, zum Beispiel aus den Winkeln des Dreiecks Brocken, Hohenhagen, Inselsberg, daß er näherungsweise richtig sei. Wolle man dagegen das genannte Axiom nicht zugeben, so folge daraus eine andere, ganz selbständige Geometrie, die er gelegentlich ein Mal verfolgt und mit dem Namen Antieuklidische Geometrie bezeichnet habe."

Der Nachlaß von Gaußs ist Eigentum der Königlichen Gesellschaft der Wissenschaften zu Göttingen. —

Im Folgenden geben wir eine, wie wir hoffen, vollständige Sammlung aller bis jetzt gedruckten Äußerungen von Gaußs über die Parallelintheorie. Wir haben geglaubt, sie nach der Zeit ihrer Entstehung ordnen zu sollen; nicht als ob es dadurch möglich wäre, ein Bild von dem Entwickelungsgange der Gaußs'schen Ideen zu ge-
winnen — dazu reicht das vorliegende Material nicht aus, es ist jedoch auf diese Weise immerhin erleichtert, die Bedeutung der Gedanken von Gaußs gegenüber den gleichzeitigen Arbeiten in der Parallelentheorie zu würdigen.

Wir geben also im Folgenden:

II. Eine Besprechung in den Göttinger gelehrten Anzeigen vom 20. April 1816 (S. 617—622); wieder abgedruckt in Gaußs' Werken, Bd. IV, Göttingen 1873, S. 364—368.

Zwei noch nicht gedruckte Äußerungen von Gaußs über die Parallelenfrage, die aus den Jahren 1820 und 1824 stammen, werden wir in dem letzten Abschnitte unseres Werkes mitteilen.
Litteratur.

Bolyai, W., *Tentamen juventutem studiosam in elementa matheseos ‏...‏ introducendi*. Bd. I. Maros Vásárhely 1832.
1.

Es thut mir sehr leid, daß ich unsere ehemalige größere Nähe*) nicht benutzt habe, um mehr von Deinen Arbeiten über die ersten Gründe der Geometrie zu erfahren; ich würde mir gewiß dadurch manche vergebliche Mühe erspart haben und ruhiger geworden sein als jemand, wie ich, es sein kann, solange bei einem solchen Gegenstande noch so viel zu wünschen übrig ist.

Ich selbst bin in meinen Arbeiten darüber weit vorgerückt (wie mir meine anderen ganz heterogenen Geschäfte wenig Zeit dazu lassen) allein der Weg, den ich eingeschlagen habe, führt nicht so wol zu dem Ziele, das man wünscht, als vielmehr dahin, die Wahrheit der Geometrie zweifelhaft zu machen. Zwar bin ich auf manches gekommen, was bei den meisten schon für einen Beweis gelten würde, aber was in meinen Augen so gut wie nichts beweiset.

Zum Beispiel, wenn man beweisen könnte, daß ein geradlinigtes Dreieck möglich sei, dessen Inhalt größer wäre, als eine jede gegebene Fläche, so bin ich im Stande, die ganze Geometrie völlig streng zu beweisen.

Die meisten würden nun wol jenes als ein Axiom gelten lassen; ich nicht; es wäre ja wol möglich, daß, so entfernt man auch die drei Eckpunkte des Dreiecks im Raume von einander annähme, doch der Inhalt immer unter einer gegebenen Grenze wäre.

Dergleichen Sätze habe ich mehrere, aber in Keinem finde ich etwas Befriedigendes.

*) [Bolyai hat von 1796 bis 1799 in Göttingen studiert; am 5. Juni 1799 reiste er von Göttingen nach seiner Heimat ab. Gauß hatte Göttingen bereits 1798 verlassen und sich dann teils in Braunschweig, teils in Helmstedt aufgehalten.]
II.

Stuttgarth.

Maynz.

Es wird wenige Gegenstände im Gebiete der Mathematik geben, über welche so viel geschrieben wäre, wie über die Lücke im Anfange der Geometrie bei Begründung der Theorie der Parallel-Linien. Selten vergeht ein Jahr, wo nicht irgend ein neuer Versuch zum Vorschein käme, diese Lücke auszufüllen, ohne daß wir doch, wenn wir ehrlich und offen reden wollen, sagen könnten, daß wir im Wesentlichen irgend weiter gekommen wären, als Euklides vor 2000 Jahren war. Ein solches aufrichtiges und unumwundenenes Geständnifs scheint uns der Würde der Wissenschaft angemessener, als das eitle Be mühen, die Lücke, die man nicht ausfüllen kann, durch ein unhaltbares Gewebe von Scheinbeweisen zu verbergen.

Diese Beweisart ist in der vorliegenden neuen Schrift wiederholt, ohne daß wir sagen könnten, daß sie durch die eingewebten philosophischen Betrachtungen an Stärke gewonnen hätte. Der Behaup-
Eine Besprechung aus dem Jahre 1816.

221

Ein großer Theil der Schrift dreht sich um die Behauptung gegen Kant, daß die Gewifsheit der Geometrie sich nicht auf Anschauung, sondern auf Definitionen und auf das Principium identitatis und das Principium contradictionis gründe. Dafs von diesen logischen Hilfsmitteln zur Einkleidung und Verkettung der Wahrheiten in der Geometrie fort und fort Gebrauch gemacht werde, hat wohl Kant nicht läugnen wollen: aber dafs dieselben für sich nichts zu leisten vermögen, und nur taube Blüthen treiben, wenn nicht die befruchtende lebendige Anschauung des Gegenstandes selbst überall waltet, kann wohl niemand verkennen, der mit dem Wesen der Geometrie vertraut ist. Herrn Schwabs Widerspruch scheint übrigens zum Theil nur auf Mißverständnifs zu beruhen: wenigstens scheint uns, nach dem 16ten Paragraph seiner Schrift, welcher von Anfang bis zu Ende gerade das Anschauungsvermögen in Anspruch nimmt, und am Ende beweisen soll, „postulata Euclidis in generaliora resolui posse, non sensu et intuitione, sed intellectu fundata", dafs Hr. Schwab sich bei diesen Benennungen verschiedener Zweige des Erkenntnifsvermögens etwas anderes gedacht haben müsse, als der Königsberger Philosoph.

Obgleich der Verfasser der zweiten Schrift seinen Gegenstand
auf eine ganz andere und wirklich mathematische Art behandelt hat, so können wir doch über das Resultat derselben nicht günstiger urtheilen. Wir haben nicht die Absicht, hier den ganzen Gang seines versuchten Beweises darzulegen, sondern begnügen uns, dasjenige hier herauszuheben, worauf im Grunde alles ankommt.

Man denke sich zwei im Puncte N unter rechten Winkeln einander schneidende gerade Linien, und färbe von einem Puncte S, der außerhalb dieser geraden Linien aber in derselben Ebene liegt, senkrechte auf dieselben ST und SM. Es kommt nun darauf an zu beweisen, dafs MST ein rechter Winkel wird. Der Verf. sucht diefs apagogisch zu beweisen; zuvörderst nimmt er an, MST sei spitz, füllet von T auf MS das Perpendikel TP, und beweiset, dafs p zwischen S und M fallen muß. Hierauf füllet er wieder aus p auf NT das Perpendikel pq, wo q zwischen T und N fallen wird. Dann füllet er abermals aus q auf MS das Perpendikel qp', wo p' zwischen p und M liegen wird. Sodann abermals aus p' auf NT das Perpendikel $p'q'$ u. s. w.

Diese Operationen lassen sich ohne Aufhören fortsetzen, und so werden von der Linie MS nach und nach die Stücke Sp, pp' u. s. w. abgeschnitten, die jedes eine angebliche Größe haben, und deren Zahl unbegrenzt ist. Der Verfasser meint nun, dafs diefs widersprechend sei, weil auf diese Weise nothwendig MS zuletzt erschöpft werden müssste. Es ist kaum begreiflich, wie er sich auf eine solche Weise selbst täuschen konnte. Er macht sich sogar selbst den Einwurf, dafs die Summe der Stücke Sp, pp' u. s. w., wenn diese Stücke immer kleiner und kleiner werden, doch, ungeachtet ihre Anzahl ohne Aufhören zunehme, nicht über eine gewisse Grenze hinaus wachsen könne, und meint diesen Einwurf damit zu heben, dafs jene Stücke, auch wenn sie immer kleiner und kleiner werden, doch immer größer bleiben, als eine angebliche Größe; nämlich jene Stücke sind Katheten von rechtswinkligsten Dreiecken, und folglich immer größer als der Unterschied zwischen Hypotenuse und der anderen Kathete. Fast scheint es, dafs eine grammatische Zweideutigkeit den Verf. irre geleitet hat, nämlich der zwiefache Sinn des Artikels eine angebliche Größe. Der Schlufs des Verf. würde nur dann richtig sein, wenn sich zeigen liese, dafs die Stücke Sp, pp' u. s. w. immer größer bleiben, als Eine bestimmte angebliche Größe, z. B. als der Unterschied zwischen der Hypotenuse pT und der Kathete ST. Aber das läßt sich nicht beweisen, sondern nur, dafs jedes Stück immer größer bleibt, als eine angebliche Größe,
die aber selbst für jedes Stück eine andere ist, nämlich Sp größer als der Unterschied zwischen pT und ST, ferner pp' größer als der Unterschied zwischen qp' und qp u. s. w. Hiemit verschwindet nun aber die ganze Kraft des Beweises.

Auf dieselbe Art, wie er seinen Beweis führen zu können geglaubt hat, könnte er auch beweisen, daß in einem ebnen Dreiecke ABC, worin B ein rechter Winkel ist, C nicht spitz sein könnte; er brauchte nur aus B ein Perpendikel BD auf die Hypotenuse AC zu fällen, dann wieder das Perpendikel DE auf AB und so ohne Aufhören die Perpendikel EF, FG, GH u. s. w. wechselsweise auf AC und AB. Die Stücke CD, DF, FH u. s. w. sind immer größer als der angebliche Unterschied zwischen Hypotenuse und einer Kathete desjenigen rechtwinkligten Dreiecks, worin jede der Reihe nach die andere Kathete ist, demungeachtet erschöpft ihre Summe offenbar die Hypotenuse, AC nie, so groß auch ihre Anzahl genommen wird.

Wir müßten fast bedauren, bei so bekannten und leichten Dingen so lange verweilt zu haben, wenn nicht diese Schrift, deren Verf. es übrigens wirklich um Wahrheit zu thun zu sein scheint, durch die Art wie sie schon vor ihrer Erscheinung in öffentlichen Blättern angekündigt wurde, eine mehr als gewöhnliche Aufmerksamkeit auf sich gezogen hätte. Wir bemerken daher hier nur noch, daß der Verf. nachher auf eine ganz ähnliche, und daher eben so nichtige Art beweisen will, daß der Winkel MST nicht stumpf sein kann: allein hierbei ist doch ein wesentlicher Unterschied, weil in der That die Unmöglichkeit dieses Falles in aller Strenge bewiesen werden kann, welches weiter auszuführen aber hier nicht der Ort ist.

III.

Marburg.

Theorie der Parallelen, von Carl Reinhard Müller, Doctor der Philosophie, außerordentlichem Professor der Mathematik u. s. w. 1822. 40 S. in 4.

Rec. hat bereits vor sechs Jahren in diesen Blättern seine Überzeugung ausgesprochen, daß alle bisherigen Versuche, die Theorie der Parallellinien streng zu beweisen, oder die Lücke in der Euklidischen Geometrie auszufüllen, uns diesem Ziele nicht näher gebracht haben,
Aufserungen von Gauß über die Parallelentheorie.

und kann nicht anders, als dies Urtheil auch auf alle späteren ihm bekannten gewordenen Versuche ausdehnen. Inzwischen bleiben doch manche solcher Versuche, obgleich der eigentliche Hauptzweck verfehlt ist, wegen des darin bewiesenen Scharfsinns den Freunden der Geometrie lesenswert, und Rec. glaubt in dieser Rücksicht die vorliegende bei Gelegenheit einer Schulprüfung bekannt gemachte kleine Schrift besonders auszeichnen zu müssen. Den ganzen sinnreichen Ideengang des Verf. hier ausführlich darzulegen, wäre für unsere Blätter zu weitläufig und auch überflüssig, da die Schrift selbst gelesen zu werden verdient; aber sie hat ihre schwache Stelle, wie alle übrigen Versuche, und diese herauszuheben, ist der Zweck dieser Anzeige.

Wenn jeder Winkel an der Grundlinie ON eines gleichschenkligen Dreiecks größer ist, als der Winkel an der Spitze A, und man setzt in O an die Seite OA einen Winkel von der Größe des Winkels A, dessen anderer Schenkel OL die AN in dem Punkte L zwischen A und N trifft, schneidet alsdann von AO ein Stück OM = NL ab und zieht ML; wenn man ferner in M an MA abermals einen Winkel von der Größe des Winkels A setzt, dessen anderer Schenkel MC die AN in dem Punkte C zwischen A und L trifft, hierauf von AM ein Stück MB = LC abschneidet und BC zieht, und sodann diese Construction auf ähnliche Art fortsetzt, so daß auf der Linie OA die Punkte O, M, B, E, G, K u. s. w., auf der Linie NA hingegen die Punkte N, L, C, D, F, H u. s. w. liegen, so wird behauptet, daß die Stücke OM, MB, BE, EG, GK u. s. w. oder die ihnen resp. gleichen NL, LC, CD DF, FH u. s. w. eine abweichende Progression bilden.

Den Beweis dieses Lehrratszes sucht der Verfasser apagogisch so zu führen, daß er die übrigen möglichen Fälle, wenn der Lehrratsz
Eine Besprechung aus dem Jahre 1822.

nicht wahr wäre, aufzählt, und die Unstatthaftigkeit eines jeden zu erweisen versucht. Der Verf. behauptet nemlich, daß unter jener Voraussetzung einer von folgenden fünf Fällen Statt finden müßte. Die auf einander folgenden Stücke, von \(OM \) an gerechnet, wären:

1) alle einander gleich, oder
2) jedes nachfolgende größer als das vorhergehende, oder
3) einige einander gleich und das darauf folgende größer oder kleiner, oder
4) einige auf einander folgende nähmen fortschreitend ab, und die darauf folgenden fortschreitend zu oder
5) sie würden abwechselnd größer und kleiner.

In dieser Aufzählung ist der mögliche Fall übergangen, daß die Stücke anfangs fortschreitend zu und dann fortschreitend abnehmen, und nach Rec. eigener Überzeugung (deren tiefer liegende Gründe hier aber nicht angeführt werden können) wäre dessen Erledigung gerade die Hauptsache und die eigentliche Auflösung des Gordischen Knotens. Inzwischen kann man zugeben, daß diese Auslassung hier in so fern wenig auf sich hat, als die Beweis-art des Verf. für die Unstatthaftigkeit des dritten Falles, wenn sie zulässig wäre, auch auf diesen Fall von selbst erstreckt werden könnte. Allein eben diesem angeblichen Beweise der Unstatthaftigkeit des dritten Falls können wir keine Gültigkeit zugestehen. Der Verf. stellt die Sache so vor.

Wenn z. B., in dem dritten Falle angenommen wird, die beiden ersten Stücke seien gleich, das dritte aber größer, so wäre \(DC \) also größer als \(CL \). Da nun aber \(AML \) gleichfalls ein gleichschenkligtes Dreieck ist, dem dieselbe Grundbedingung zukommt, wie dem ursprünglichen Dreieck \(AON \), so müßte, wenn jener dritte Fall mit seiner angenommenen Unterabtheilung der gültige wäre, \(DC = CL \) sein, in Widerspruch mit dem vorher gefundenen.

Wir haben, wie wir glauben, bei diesem Moment des Beweises, das worauf es ankommt, noch etwas klarer und bestimmter nach der Ansicht des Verf. angedeutet, als er es selbst gethan hat, wodurch dann aber auch die Schwäche desselben, wie uns scheint, leichter erkannt wird. Denn offenbar ist hier ganz willkürlich angenommen, daß bei allen gleichschenkligen Dreiecken mit dem Winkel \(A \) an der Spitze und größern Winkel an der Basis, wenn mit ihnen die im Lehrsatz angezeigte Construction vorgenommen wird, die Folge der abgeschnittenen Stücke in Rücksicht auf ihr Gleichbleiben, größer oder kleiner werden, allemal, unabhängig von der Größe der Seiten, nothwendig dieselbe sein müsse, eine Annahme, die doch unmöglich als von selbst evident betrachtet werden darf. Da sich nun aber
hierauf allein der versuchte Beweis der Unstatthafthigkeit des dritten (wie auch vierten und fünften) Falls stützt, und der ganze Artikel auch keine andere Ressourcen zum Beweise der Unstatthafthigkeit des übergangenen Falls darbietet, so glauben wir hierdurch das oben ausgesprochene Urtheil hinlänglich gerechtfertigt zu haben, wobei wir aber gern der ganzen übrigen sinnreichen Durchführung in den folgenden Artikeln volle Gerechtigkeit widerfahren lassen.

IV.

Gaußs und Bessel.

(Briefwechsel S. 490.)

*) [R. Baltzer sagt in seinen Elementen der Mathematik (Bd. 2, zweite Auflage, Leipzig 1867, S. 5): „Deahna (Demonstratio theorematis, esse superficiem planam. Dissertatio inauguralis. Marburg 1837) konstruiert die Ebene durch Rotation eines Winkels um einen seiner Schenkel mit der Bedingung, daß eine concentrische Kugelfläche in zwei congruente Teile zerschnitten werde. Gaußs ist der Meinung gewesen, daß Deahna’s Darstellung von einigen Mängeln, die in ihr anzutreffen sind, sich
(Briefwechsel S. 493.)

Ich würde sehr beklagen, wenn Sie sich „durch das Geschrei der Boeote“ abhalten ließen, Ihre geometrischen Ansichten aus einander zu setzen. Durch das was Lambert gesagt hat, und was Schweikardt mündlich äußerte, ist mir klar geworden, daß unsere Geometrie unvollständig ist, und eine Correction erhalten sollte, welche hypothetisch ist, und wenn die Summe der Winkel des ebenen Dreiecks \(= 180^\circ\) ist verschwindet. Das wäre die \textit{wahre} Geometrie, die Euklidische die \textit{praktische}, wenigstens für Figuren auf der Erde.

(Briefwechsel S. 497.)

Wahre Freude hat mir die Leichtigkeit gemacht, mit der Sie in meine Ansichten über die Geometrie eingegangen sind, zumal da so wenige offenen Sinn dafür haben. Nach meiner innigsten Überzeugung hat die Raumlehre zu unserem Wissen a priori eine ganz andere Stellung wie die reine Größenlehre; es geht unserer Kenntnifs von jener durchaus \textit{diejenige} vollständige Überzeugung von ihrer Nothwendigkeit (also auch von ihrer absoluten Wahrheit) ab, die der letzteren eigen ist; wir müssen in Demuth zugeben, daß wenn die Zahl \textit{blofs} unseres Geistes Product ist, der Raum auch außer unserm Geiste eine Realität hat, der wir a priori ihre Gesetze nicht vollständig vorschreiben können.

V.

Gaußs und Schumacher.

1831.

(Briefwechsel, Bd. 2, S. 255.)

Ich bin so frei Ihnen anbei einen Versuch zu senden, ohne Parallellinien und ohne [ihre] Theorie zu gebrauchen, den Satz zu beweisen,
daß die Summe aller drei Winkel eines gradlinichten Dreyekes = 180°
sey, aus dem dann der Beweis des Euclidischen Axioms folgen würde.
Ich setze nichts voraus, als daß die Summe aller um einen Punct
liegenden Winkel = 360° = 4R, und daß die Scheitelwinkel sich
gleich sind.

Da ich aus Erfahrung weifs, wie sonderbar blind man (ich wenig-
stens) mitunter in Bezug auf eigene Arbeiten ist, so fürchte ich sehr,
daß eine petitio principii dabei zum Grunde liegt. Ich bin aber jetzt
nicht im Stande sie zu entdecken, und erwarte Belehrung von Ihnen.

[Beilage.] Man verlängere die Seiten eines gradlinichten Dreiecks
\(ABC \) unbestimmt, oder man betrachte ein System von drei graden
Linien in einer Ebene, deren Durchschnitte das Dreyeck \(ABC \) bilden,
so geben die drei Winkelpuncte uns die Gleichungen:

\[
\begin{align*}
2a + 2a &= 4R, \\
2b + 2\beta &= 4R, \\
2c + 2\gamma &= 4R,
\end{align*}
\]

also

\[
\alpha + \beta + \gamma = 6R - (a + b + c).
\]
als in ihrer vorigen Lage mit EH macht oder, da dieser Winkel beliebig ist, überhaupt nur so, daß sie innerhalb des Winkel a fällt, so haben wir

\[a + b + c = 4R \]

also

\[\alpha + \beta + \gamma = 2R. \]

Kann man dagegen sagen, daß freilich

β (1ste Figur) $= \beta$ (2te Figur)

nach der Annahme, daß aber der Satz

c (1ste Figur) $= c$ (2te Figur)

dann bewiesen werden müßte?

Mir scheint bei der Willkürlichkeit der Winkel dieser Beweis nicht nothwendig.

Dies sind die Grundzüge des Beweises und ich erwarte Ihre Entscheidung. Ich füge nur, um meinen Beweis zu rechtfertigen, hinzu, daß freilich durch die zweite Operation das Dreieck ABC verschwindet, aber nicht die Winkel des Dreiecks. Wie die Linien auch liegen, so ist immer

\[J\hat{B}H = \beta, \quad G\hat{F} = \gamma, \quad D\hat{A}E = \alpha \]

im endlichen, so wie im verschwindenden Dreieck, mitunter die Summe

\[JAH + GAF + DAE \]

immer gleich der Summe der Winkel eines gradlinichten Dreiecks.

Soll man also den Satz von einem beliebigen Dreiecke (dessen Winkel A, B, C) beweisen, so zieht man die Linien DG, EH, so daß

$\alpha = A$,

man nimmt ferner den Winkel $J\hat{A}H = B$, $G\hat{A}F = C$.
Äußerungen von Gauß über die Parallellentheorie.

Ist dann \(JAF' \) keine gerade, sondern eine gebrochene Linie \(JAF' \), so ist freilich der Winkel \(c \) dadurch um \(dc \) kleiner, der Winkel \(b \) aber um ebensoviel größer geworden, mithin ihre Summe unverändert geblieben, oder wir haben was zur Bringung des Beweises gehört

\[
b + c \quad (\text{Fig. 1}) = b + c \quad (\text{Fig. 2}).
\]

(Briefwechsel, Bd. 2, S. 260.)

Bei dem, was Sie über die Parallellinien schreiben, haben Sie, genau besuchen in Ihren Syllogismen einen Zwischensatz gebraucht, ohne ihn ausdrücklich auszusprechen, der so lautet müßte:

Wenn zwei einander schneidende gerade Linien (1) und (2) mit einer dritten (3), von der sie geschnitten werden, respective die Winkel \(A' \), \(A'' \) machen, und dann eine vierte (4) in derselben Ebene liegende Gerade von (1) gleichfalls unter dem Winkel \(A' \) geschnitten wird, so wird (4) von (2) unter dem Winkel \(A'' \) geschnitten werden.

Allein dieser Satz ist nicht blofs eines Beweises bedürftig, sondern man kann sagen, daß er im Grunde der zu beweisende Satz selbst ist*).

Von meinen eignen Meditationen, die zum Theil schon gegen 40 Jahre alt sind, wovon ich aber nie etwas aufgeschrieben habe, und daher manches drei- oder viermal von neuem auszusinnen geeignet gewesen bin, habe ich vor einigen Wochen doch einiges aufzuschreiben angefangen. Ich wünschte doch, daß es nicht mit mir unterginge**).

(Briefwechsel Bd. 2, S. 261.)

Ich falle Ihnen, mein theuerster Freund! noch einmal mit der Parallellentheorie beschwerlich.

Man verlängere die Seiten des gradlinichten Dreiecks unbestimmt, und nehme einen Radius \(R \) so groß, daß \(\frac{a}{R}, \frac{b}{R}, \frac{c}{R} \) kleiner, als jede gegebene Größe werden. Mit diesem Radius beschreibe man

*) [Er besagt nämlich, daß in dem Viereck \((1), (2), (3), (4) \) die Winkelsumme gleich vier Rechten ist.]

**) [Hoüel machte zu dieser Stelle im Jahre 1867 folgende Anmerkung, die wir im Jahre 1895 nur wiederholen können:

"Als wir das Verzeichnis der Gegenstände durchsahen, die der vierte Band der Ausgabe der Werke von Gauß enthalten soll, welche gegenwärtig von der Akademie zu Göttingen veröffentlicht wird, haben wir keinen Artikel angezeigt gefunden, der sich auf den hier von dem großen Geometer angekündigten Plan bezieht. Es wäre sehr bedauerlich, wenn diese so vielen und originellen Untersuchungen mit ihm untergegangen wären."]
Aus Briefen von Gauß und Schumacher, 1831.

aus C den Halbkreis $DEFG$. Weil in Bezug auf diesen Halbkreis a, b, c als verschwindend zu betrachten sind, also die Puncte $A, B,$

als in C fallend, so ist dieser Halbkreis das Maafs der drei Winkel des Dreiecks, die mithin weniger als jede gegebene Gröfse von 180° differiren*).

Mir scheint, wenn man den Begriff des endlos wachsenden nicht ausschließt, so zeigt dieser Beweis sehr einfach, daß in jedem endlichen gradlinichten Dreiecke die Summe der Winkel $= 180^\circ$ ist, oder eigentlich, daß die Constante die, wenn Euclid's Geometrie nicht wahr wäre, zu der Summe der Winkel kommt, um die Gleichheit mit 180° zu bewürken, kleiner als jede gegebene Gröfse ist, und da sich dies für jedes Dreieck beweisen läßt, so kann diese Constante ebensowenig von der Gröfse des Dreiecks abhängen.

(Briefwechsel Bd. 2, S. 267.)

Nur etwas habe ich in Ihrem Briefe vermißt — Ihr Urtheil über meinen Beweis, daß die Summe der Winkel in einem gradlinichten Dreiecke nur um eine Gröfse, die kleiner als jede gegebene ist, von 180° verschieden sey. Sie können leicht denken, daß mir Ihr Urtheil sehr wichtig ist, da Sie jede Schwäche eines Beweises so leicht entdecken. Außer Ihnen, meinen Gehülfen, und Professor Hansen vom Seeberg habe ich noch Niemanden etwas mitgetheilt. Keiner von uns kann einen Paralogismus entdecken.

Sollte jemand den Satz, daß man die Winkelpuncte eines Dreiecks als coincidirende Mittelpuncte eines Kreises von unendlichem (brevitatis causa unendlich genannt) Halbmesser betrachten könne,

*) [Dasselbe Beweisverfahren hat bereits der Theologe Antoine Arnaud (1612—1694) angewandt (vergl. A. Transon, Comptes rendus, t. 73. 1871. S. 368). Später haben es Bertrand (1778) und Schulz (1784) benutzt.]

(Briefwechsel, Bd. 2, S. 268.)

Was die Parallellinien betrifft, so würde ich Ihnen mein Urtheil sehr gern schon auf Ihren ersten Brief geschrieben haben, wenn ich nicht hätte voraussetzen müssen, daß Ihnen mit demselben ohne vollständige Entwickelungen wenig gedient sein würde. Zu solchen vollständigen Entwickelungen, wenn sie wahrhaft überzeugend sein sollen, würden aber vielleicht bogenlange Auseinandersetzungen in Erwiderung auf das, was Sie in wenigen Zeilen im Grunde nur angedeutet haben, nöthig sein, zu welchen Auseinandersetzungen mir abegegenwärtig die erforderliche Geistesheiterkeit fehlt*). Um Ihnen jedoch meinen guten Willen zu betätigen, will ich folgendes hersetzen.

Die eigentliche Pointe richten Sie sogleich auf jedes Dreieck; allein Sie würden im Grunde Ihr nemliches Raisonnement anwenden, wenn Sie das Geschäft zuerst auf den einfachsten Fall anwendeten und den Satz aufstellten:

1) In jedem Dreieck, dessen eine Seite endlich, die zweite und folglich auch die dritte hingegen unendlich ist, ist die Summe der beiden Winkel an jener $= 180^\circ$.

Beweis nach Ihrer Manier: Der Kreisbogen CD ist eben so gut das Maafs des Winkels CAD als CBD, weil bei einem Kreise von unendlichem Halbmesser eine endliche Verrückung des Mittelpunkts für 0 zu achten ist. Also $CAD = CBD$,

$$CAD + CBA = CBD + CBA = 180$$

Das Übrige ergibt sich leicht von selbst. Es ist nemlich: nach diesem Lehrsatze:

$$\alpha + \beta + \delta = 180$$

$$180 = \varepsilon + \delta$$

$$\gamma + \varepsilon = 180$$

Also addendo

$$\alpha + \beta + \gamma = 180.$$

*) [Gauß' Frau war damals krank. Sie ist im September des Jahres gestorben.]
Was nun aber Ihren Beweis für 1) betrifft, so protestire ich zuvörderst gegen den Gebrauch einer unendlichen Größe als einer Vollendeten, welcher in der Mathematik niemals erlaubt ist. Das Unendliche ist nur eine Façon de parler, indem man eigentlich von Grenzen spricht, denen gewisse Verhältnisse so nahe kommen als man will, während anderen ohne Einschränkung zu wachsen verstattet ist. In diesem Sinne enthält die Nicht-Euclidische Geometrie durchaus nichts Widersprechendes, wenn gleich diejenigen viele Ergebnisse derselben anfangs für paradox halten müssen, was aber für widersprechend zu halten nur eine Selbsttäuschung sein würde, hervorgebracht von der früheren Gewöhnung, die Euklidische Geometrie für streng wahr zu halten.

In der Nicht-Euclidischen Geometrie gibt es gar keine ähnliche Figuren ohne Gleichheit, zum Beispiel die Winkel eines gleichseitigen Dreiecks sind nicht blofs von \(\frac{2}{3} R \), sondern auch nach Maßgabe der Größe der Seiten unter sich verschieden und können, wenn die Seite über alle Grenzen wächst, so klein werden, wie man will. Es ist daher schon an sich widersprechend, ein solches Dreieck durch ein kleineres zeichnen zu wollen, man kann es im Grunde nur bezeichnen. Die Bezeichnung des unendlichen Dreiecks in diesem Sinne wäre am Ende *)

In der Euklidischen Geometrie gibt es nichts absolut großes, wohl aber in der Nicht-Euklidischen, dies ist gerade ihr wesentlicher Charakter, und diejenigen, die dies nicht zugeben, setzen eo ipso schon die ganze Euklidische Geometrie, aber wie gesagt, nach meiner Überzeugung ist dies bloße Selbsttäuschung.

Für den fraglichen Fall ist nun durchaus nichts widersprechendes darin, daß wenn die Punkte \(A, B \) und die Richtung \(AC \) gegeben sind, während \(C \) ohne Beschränkung wachsen kann, daß dann obgleich so \(DBC \) dem \(DAC \) immer näher kommt, doch der Unterschied nie unter eine gewisse endliche Differenz heruntergebracht werden könne.

*) [Die Figur soll wohl andeuten, daß die Winkel gleich Null sind.]
Ihre Hineinziehen des Bogens CD macht allerdings den Schluss um viel captiöser, allein wenn man, was Sie nur angedeutet haben, klar entwickeln will so müfste es so lauten:

Es ist:

$$CAB : CBD = CD : CD' = ECD : E'CD'$$

und indem AC in's unendliche wächst, kommen CD und CD' andererseits und ECD, $E'CD'$ andererseits der Wahrheit immer näher.

Beides ist in der Nicht-Euklidischen Geometrie nicht wahr, wenn man darunter versteht, dass ihre geometrischen Verhältnisse der Gleichheit so nahe kommen, wie man will. In der That ist in der Nicht-Euklidischen Geometrie der halbe Umfang eines Kreises, dessen Halbmesser $= r$:

$$= \frac{1}{2} \pi k \left(e^r - e^{-\frac{r}{k}} \right)$$

wo k eine constante ist, von der wir durch Erfahrung wissen, dass sie gegen alles durch uns meßbare ungeheuer groß sein muss. In Euklids Geometrie wird sie unendlich.

In der Bildersprache des Unendlichen würde man also sagen müssen, dass die Peripherien zweier unendlicher Kreise, deren Halbmesser um eine endliche Größe verschieden sind, selbst um eine Größe verschieden sind, die zu ihnen ein endliches Verhältnis hat.

Hierin ist aber nichts Widersprechendes, wenn der endliche Mensch sich nicht vermisst, etwas Unendliches als etwas Gegebenes und von ihm mit seiner gewohnten Anschauung zu Umspannendes betrachten zu wollen.

Sie sehen, dass hier in der That der Fragepunkt unmittelbar an die Metaphysik streift.

(Briefwechsel Bd. 2, S. 272.)

Meinen herzlichsten Dank statte ich Ihnen, mein theuerster Freund, für Ihren letzten Brief ab. Ich kann nicht sagen, dass er mich schon überzeugt hätte. Ich glaube die unendliche Größe nicht als geschlossen gebraucht zu haben. Mir scheint man kann zeigen, dass mit dem Wachsen des Halbmessers die Differenz der Winkelpunekte des Dreyecks immer mehr verschwindet, und sich der Gränze des Zusammen-
aus Briefen von Gaufs und Schumacher, 1831 und 1846.

fallens, so viel man immer will, nähert. Sagt man also, der Kürze halber, sie fallen für einen unendlichen Radius wirklich zusammen, so wird dies ebenso wie gewöhnlich verstanden, und es folgt daraus, dafs in Bezug auf die Peripherie, die von den graden Linien interscapierten Bögen, sich ohne Gränze dem Maafse der Winkel nähern.

Indessen gebe ich gern zu, dafs ich mich täusche, und werde theils selbst die Sache reiflicher durchdenken, theils und vorzüglich den Augenblick erwarten, wo mündliche Belehrung von Ihrer Seite mög- lich wird. Warum man bei Linien nicht, wie bei allgemeinen Gröfsen, Schlüsse brauchen soll, die sich auf ohne Ende wachsende Gröfsen gründen, sehe ich nicht ein, vorausgesetzt, dafs man die Gränzen be-stimmen kann, denen man sich dabei, so weit man will, nähert.

1846.

(Briefwechsel Bd. 5, S. 246.)

*) Früher in Marburg, jetzt Professor der Jurispr. in Königsberg. [Diese An- merkung rührt von Gau/f's her.]
Abweichungen von den Originalabdrücken.

S. 220, Z. 1 v. u. (Gött. gel. Anz. 1816, S. 618, Z. 5 v. u.). Im Urtext steht „Die“ statt „Der“.

S. 221, Z. 3 v. o. (a. a. O. S. 618, Z. 1 v. u.) „welchen“ statt „welchem“.

S. 222, Z. 14 v. u. (a. a. O. S. 621, Z. 12 v. o.) „ihre“ statt „ihrer“.

S. 223, Z. 6 v. o. (a. a. O. S. 622, Z. 1 v. o.) „in einen ebnen“ statt „in einem ebnen“.

S. 228, Z. 4 u. 13 v. o. (Briefwechsel zwischen Gauß und Schumacher, Bd. 2, S. 256, Z. 4 v. o. und 6 v. u.) „Wechselwinkel“ statt „Scheitelwinkel“ und „und“ statt „uns“.

S. 235, Z. 18 v. o. (ebenda Bd. 5, S. 247, Z. 1 v. o.) „Parallellinie“ statt „Parallel- linien“.

Die Figuren auf Seite 229 und 231 sind gegenüber den Originalfiguren etwas verändert: bei der ersten ist c im Original kein Kreisbogen mit dem Mittelpunkte A, bei der zweiten fällt der Mittelpunkt des Kreises im Original nicht in den Punkt C, was doch nach dem Texte der Fall sein muß.

In einem Briefe an Schumacher, vom 2. Januar 1836 (Briefwechsel Bd. 2, S. 431) berührt Gaußs einen Beweisversuch von Lübsen, der sich wohl auch auf die Parallelentheorie bezog. Die Stelle ist jedoch an und für sich kaum verständlich und auch zu unbedeutend, um mitgeteilt zu werden.

Ebensowenig haben wir es für nötig gehalten, solche Äußerungen von Gaußs mitzuteilen, die sich bloß auf den Raumbegriß im Allgemeinen beziehen, ohne auf die Parallelentheorie insbesondere Licht zu werfen.
FERDINAND KARL SCHWEIKART
1780—1857.

FRANZ ADOLPH TAURINUS
1794—1874.

In der Periode von 1780 bis 1830 waren alle Beweisversuche gescheitert, und man war schließlich dahin gelangt, die Beschäftigung mit der „berühmtesten“ fünften Forderung als Vorrecht unklarer Köpfe anzusehen und mit den Bemühungen um die Quadratur des Kreises und um das Perpetuum mobile auf eine Stufe zu stellen. Dieses Vorurteil war so stark, daß, um mit Hööel zu reden, selbst ein Mann von so imposanter Autorität wie Gauß mit seinen Untersuchungen nicht hervortrat, „weil er das Geschrei der Böoter scheute.“

Jetzt wurde es anders, und zwar war es R. Baltzer, der in der zweiten Auflage seiner Elemente auf Gauß' Ansicht über die Paralleleneinteorie hinwies und die bis dahin nicht beachteten Untersuchungen von Nikolaus Lobatschefskij und Johann Bolyai nach Verdienst würdigte.

Da Lobatschefskij und Bolyai als die eigentlichen Begründer der nichteuklidischen Geometrie anzusehen sind, wollen wir über ihre Arbeiten einiges mitteilen. Genauer auf deren Inhalt einzugehen, ist
an dieser Stelle nicht möglich; wohl aber können wir auf Grund neuerer Forschungen des Baumeisters Fr. Schmidt in Budapest und des Professors A. Wassiljef in Kasan eine geschichtliche Darstellung geben, die über das bis jetzt Bekannte hinaus geht.

Nikolaus Lobatschefskij (1793—1856) hat bereits in den Jahren 1815 und 1816 an der Universität zu Kasan Vorlesungen über Geometrie gehalten. Ein von Wassiljef Anfang 1894 gefundenes Heft enthält drei verschiedene Versuche, die Parallelenentheorie zu verbessern. „In dem einen wird der Begriff der Richtung als der fundamentale vorausgesetzt; im zweiten werden die Betrachtungen über die unendlichen Zweiecke eingeführt [Bertrand 1778, Schulz 1784]; der dritte Beweis schließt sich an den Legendre’schen Beweis an, daß die Summe der Winkel des Dreiecks nicht größer und nicht kleiner als zwei Rechte ist. Man sieht also, daß bei Lobatschefskij eine langjährige Denkarbeit der Veröffentlichung von 1826 seiner eigentümlichen Anschauungen über die Parallelenentheorie vorausgegangen ist.“ Soweit Wassiljef.

Alle diese Schriften sind jetzt in den Gesammelten geometrischen Werken vereinigt; der erste Band (1883) enthält die in russi-
scher Sprache, der zweite (1886) die in deutscher und französischer Sprache verfassten Schriften; ihnen geht eine Lebensbeschreibung voraus.

In einer nicht veröffentlichten Selbstbiographie, deren Abfassungszeit Fr. Schmidt in die fünfziger Jahre setzt, schreibt Johann Bolyai:

Dieses gegenwärtig recht selten gewordene Tentamen war ein zweibändiges Lehrbuch der Mathematik, dessen vollständiger Titel lautet: Tentamen juventutem studiosam in elementa matheseos purae, elementaris ac sublimioris, methodo intuitiva, evidentiaeque huic propria, introducendi. Cum appendice triplici. Band I; Maros Vásárhely 1832. 8°. In dem dritten Anhange, der nur 28 Seiten umfaßt, hat Johann Bolyai seine neue Geometrie entwickelt; der Titel lautet:

Appendix scientiam spatii absolute veram exhibens: a

*) Der Brief Johanns ist ursprünglich in magyarischer Sprache geschrieben; die deutsche Übersetzung, die wir mitteilen, verdanken wir Herrn Baumeister Fr. Schmidt in Budapest.
veritate aut falsitate Axiomatis XI Euclidei (a priori haud unquam decidenda) independentem; adjecta ad casum fāsil-
tatis, quadratura circuli geometrica. Auctore Johanne Bolyai
de eadem, Geometrarum in Exercitu Caesareo Regio Austriaco
Castrensium Capitaneo.

Die ungarische Akademie der Wissenschaften hat mit der Herstellung
eines Neudrucks begonnen, der hoffentlich bald zu Ende geführt sein wird.

Einen Auszug aus dem Tentamen gibt das 1851 zu Maros Vásár-
 hely erschienene, ebenfalls recht seltene Werkchen Wolfgang Bolyais:

Kurzer Grundrifs eines Versuchs

I. Die Arithmetik, durch zwekmässig konstruirte Begriffe, von
eingebildeten und unendlich-kleinen Grössen gereinigt, anschaulich und
logisch-streng darzustellen.

II. In der Geometrie, die Begriffe der geraden Linie, der Ebene,
des Winkels allgemein, der winkellosen Formen, und der Krummen,
der verschiedenen Arten der Gleichheit u. d. gl. nicht nur scharf zu
bestimmen; sondern auch ihr Seyn im Raume zu beweisen: und da die
Frage, ob zwey von der dritten geschnittene Geraden, wenn
die summe der inneren Winkel nicht = 2 R, sich schneiden
oder nicht? niemand auf der Erde ohne ein Axiom (wie Euklid
das XI) aufzustellen, beantworten wird; die davon unabhängige Geo-
metrie abzusondern; und eine auf die Ja-Antwort, andere auf das
Nein so zu bauen, daß die Formeln der letzten, auf einen Wink
auch in der ersten gültig seyen.

Nach einem lateinischen Werke von 1829.*) M. Vásárhely, und
eben daselbst gedruckten ungrischen.

Maros Vásárhely 1851. 8°, 88 Seiten.

Was endlich das Verhältnis von Lobatschefskij und Bolyai
to Gauls betrifft, so sagt F. Klein in seinen Vorlesungen über
Nicht-euklidische Geometrie (1889/90): „Es ist keinem Zweifel
unterworfen, daß Gauls durch seinen Einfluß die Unter-
suchungen von Lobatschewsky und Bolyai angeregt hat.“ Er
beruft sich dabei auf die Thatsache, daß Gauls und Wolfgang
Bolyai Universitätsfreunde waren, und zwischen Gauls und Lobat-
schefskij will er einen Zusammenhang daraus herleiten, daß Lobat-
schefskij Schüler von Bartels (1769—1836) gewesen ist, über dessen
freundschaftliche Beziehungen zu Gauls uns Sartorius von Walters-
hausen berichtet hat.

*) Gemeint ist das Tentamen, dessen Druckerlaubnis vom 12. Oktober 1829
datiert, dessen 1. Band jedoch erst 1832 erschienen ist.
Eine Entscheidung über die Richtigkeit dieser Vermutungen wird kaum möglich sein, solange der Nachlaß von Gaufs der Forschung unzugänglich ist.

Später hat Schweikart Untersuchungen angestellt, die mit denen von Saccheri und Lambert auf eine Linie zu stellen sind, und ist schließlich unabhängig von Gaufs zur Entwicklung einer nicht-euklidischen Geometrie gelangt.

Als Beleg für die eben ausgesprochenen Behauptungen kann zunächst ein Brief dienen, den Gerling (1788—1864), ein Schüler von Gaufs, seit 1817 Professor der Astronomie in Marburg, am 31. Oktober 1851 an Wolfgang Bolyai zum Dank für die Übersehend des Kurzen Grundrisses geschrieben hat. In diesem bemerkenswerten Briefe, von dem wir eine Abschrift der Güte des Bau- meisters Fr. Schmidt in Budapest verdanken, sagt Gerling:

*) Diese selten Schrift besitzen von den größeren Büchersammlungen Deutschlands nur die Königliche Universitätsbibliothek in Kiel und die Königliche Hof- und Staatsbibliothek in München.

Gerling meint hier die Bearbeitung des Lorenzschen Grundrisses der reifen Mathematik, die er 1820 besorgt hatte; die im Briefe erwähnte neueste Ausgabe war 1851 erschienen. An der betreffenden Stelle heißt es: „Dieser Beweis [des Parallelenaxioms] ist auf mannigfaltige Weise von scharfsinnigen Mathematikern versucht, aber bis jetzt noch nicht vollkommen genügend aufgefunden worden. Solange er fehlt, bleibt der Satz, sowie alles, was sich auf ihn stützt, eine Hypothese, deren Gültigkeit für unser Leben freilich hinlänglich durch die Erfahrung dargethan wird, deren allgemeine, nothwendige Richtigkeit aber ohne Absurdität bezweifelt werden könnte.“

Gerling fährt fort:

„Wir hatten gegen diese Zeit [1819] hier einen juristischen Professor Schweikart, welcher ehemals in Charkow gewesen war, und auf ähnliche Ideen gekommen war, indem er ohne Hilfe der euklidischen Axiome eine Geometrie, die er Astralgeometrie nannte, in ihren Anfängen entwickelte. Was er mir darüber mittheilte, schickte ich Gaußs, der dann mittheilte, wieviel man schon auf diesem Wege gekommen und später auch sich über den großen Gewinn erklärte, der in dem Appendix zu Ihrem Buche den wenigen Sachkennern dargeboten ist.“

Dieser Brief von Gerling zeigt, daß der noch nicht veröffentlichte Briefwechsel zwischen Gaußs und Gerling wertvolle Aufschlüsse über die Geschichte der nichteuklidischen Geometrie enthalten muß.

Am 18. November 1824 schreibt Schweikart von Königsberg aus an seinen Neffen Taurinus in Köln:

„Du nimmst an, dafs $bd = df = fh$, das wäre mir unbedenklich, wenn Du von d, f, h Lothe auf die entgegengesetzte Linie fallen ließest; allein Du läßt von c, e, g Lothe auf bh fallen, — wie willst Du es nun machen, dafs diese gerade nach d, f kommen? Du bedarfst eines Axioms, das auf gleiche Art eines Beweises bedarf, wie das Euclidische, nämlich entweder das: wenn man in einem Punkt**$ d$, der Linie bh ein Loth errichtet, so muss es hinlänglich verlängert die ag schneiden; oder das: wenn man auf der Linie ag einen überaus entfernten Punkt i annimmt & von da eine Linie ik unter einem rechten Winkel auf die bh fallen läßt, so ist bk größer, als eine gegebene Linie bh. Allein es ist möglich, dass die Punkte f, h, k, ob sie gleich alle hinter d kommen einem gewissen Punkte z. B. C sich immer mehr nähern, ohne ihn jemals zu erreichen.

„Nach der neuen Geometrie, die ich, wie ich Dir einst nach Göttingen schrieb, gefunden habe, verhält sich die Sache wirklich so. Es gibt eine gewisse constante Linie bC, welche alle Lothe von der, noch so weit verlängerten ag auf bh, nicht überschreiten können. Die Winkel im Dreyeck sind immer kleiner als $2\ R$ und um so kleiner, je größer das Dreyeck ist. Aus der Summe der Winkel läßt sich jedenfalls der Inhalt des Dreyecks bestimmen und umgekehrt. Der Satz, dafs $ac + bd$ verlängert zusammentreffen müssen, wenn $bac + abd < 2\ R$, ist unwahr. Es hängt davon ab, wie gros ab ist. Eben so giebt es eine Constante für den Flächeninhalt geradliniger Figuren, die sie, man mag ihre Seiten noch so gros machen, nie erreichen können.

„Auf eine Notiz hierüber, die ich vor länger als 5 Jahren meinem
Freunde Gerling in Marburg & dieser Gaufsen mitgetheilt hatte, antwortete letzterer unter andern:

"Die Notiz von H_t Pr. Schw. hat mir ungemein viel Vergnügen gemacht, und ich bitte ihm darüber von mir recht viel Schönes zu sagen. Es ist mir fast alles aus der Seele geschrieben.

"Nur blos bey dem einen Artikel, der so anfängt: ist diese Constante für uns die halbe Erdaxe & — & — &. Ich vermute, dafs die Schw. mit allem diesem einverstanden seyn wird, was mich bey dem gänzlichen Zusammentreffen seiner Ansicht mit der meinigen sehr freuen wird.

Ich will hinzufügen, dass ich die Astralgeometrie (so hatte ich sie zum Unterschiede genannt) so weit ausgebildet habe, dass ich alle Aufgaben vollständig lösen kann, sobald die Constante C gegeben wird. &—&. Die Grenze für den Inhalt eines jeden Dreiecks ist dann: $\frac{\pi CC}{(\log.\,\text{hyp.}(1 + \sqrt{2}))^2}$, & also für das Polygon $\frac{(n - 2) \pi CC}{(\log.\,\text{hyp.}(1 + \sqrt{2}))^2}$.

Über das Leben von Taurnus haben wir Folgendes ermittelt:

Franz Adolph Taurinus ist am 15. November 1794 zu König im

*) [Das cursiv Gedruckte ist unsre Ergänzung, da der Originalbrief leider an der betreffenden Stelle beschädigt ist. Sollten wir auch den Wortlaut der Gauß'schen Äußerungen nicht genau getroffen haben, so kann doch über ihren Sinn kein Zweifel bestehen. — Die Bemerkung in runden Klammern ist offenbar ein Zusatz von Schweikart.]
Gaufs über Schweikart. — Taurinus. Aus der Vorrede zu den Elementa. 247

Veröffentlicht hat Taurinus nur wenig: 1825 erschien seine Theorie der Parallellinien, Köln am Rhein, 102 S. 8°. 4 Tafeln und im folgenden Jahre als Fortsetzung die Schrift: Geometriae prima elementa, Coloniae Agrippinae, 76 S. 8°. 2 Tafeln.

In dem Vorwort zu den Elementa hat Taurinus auf Seite IV—VI den Ursprung und Verlauf seiner Untersuchungen über die Parallelentheorie folgendermaßen geschildert:

„Der erste, der mich auf das neue System der Geometrie auf-merksam gemacht hat, war ein mit mir verwandter und eng befreundeter Mann, Schweikart, Professor der Rechte an der Universität zu Königsberg. Dieser schrieb mir vor vier Jahren ungefähr folgendermaßen: Durch emsiges Studium der Geometrie sei er zu der Überzeugung gelangt, dass es eine gewisse neue Geometrie gebe — er nannte sie Astralgeometrie —, bei der die Winkelsumme im Dreieck kleiner als zwei Rechte sei, und er habe zu seiner Freude erfahren, dass der berühmte Gauß, dem seine Entdeckung mitgeteilt worden war, schon lange mit demselben Gegenstande beschäftigt gewesen und darin noch weiter gekommen sei.

„Da jedoch unser Briefwechsel nicht fortgesetzt wurde, und da ich selbst damals keine Zeit zur Beschäftigung mit der Geometrie hatte, so kam es, dass ich meine Aufmerksamkeit diesem Gegenstande nicht eher wieder zuwendete, als bis mir die 1807 in Jena erschienene Schrift desselben Schweikart über die Parallellinien in die Hände fiel.

„Dieses Buch war mir deshalb höchst willkommen, weil ich daraus den Sinn und die Schwierigkeit des Problems gründlich kennen lernte, sowie auch alle die Methoden zum Beweise der Parallelentheorie, die bis dahin bekannt geworden waren.

„Bei der Ausarbeitung der von mir bereits herausgegebenen Theorie habe ich nämlich, wie ich gestehen muss, nur sehr wenige Bücher benutzt, hatte ich doch ausser der Ausgabe des Euklid von Lorenz*).

*) Johann Friedrich Lorenz hatte 1773 das erste bis sechste sowie das elfte und zwölfte Buch der Elemente in deutscher Übersetzung herausgegeben; diese

„Zur Abfassung des vorliegenden Büchleins bin ich um so lieber geschritten, als meine Theorie, der ich nur ziemlich wenig Zeit gewidmet hatte, noch nicht öffentlich besprochen worden ist**), und außerdem vieles enthält, was mir selbst bereits nicht mehr gefällt. Übrigens ging meine Absicht besonders dahin, die Analogien zwischen den verschiedenen Geometrien deutlicher hervortreten zu lassen. Ob mir das einigermassen gelungen ist, das zu entscheiden überlasse ich dem Urteile erfahrener Männer, die, wie ich zuversichtlich hoffe, wenigstens meine eifrigen Bemühungen, die Wissenschaft der Geometrie zu fördern, anerkennen und mir gewogen sein werden.

„Köln am Rhein, den 1. December 1825.“

Dafs Taurinus zu seinen Untersuchungen über die Parallelentheorie durch Schweikart angeregt worden ist, bestätigt einmal eine Stelle seiner Theorie der Parallelillnien, die wir S. 261 mitteilen werden, noch deutlicher jedoch ein Brief, den Schweikart am 1. Oktober 1820 aus Marburg an Taurinus abgehen ließ, der damals in Göttlingen Jura studierte. In diesem Briefe heißt es:

„Was die Mathematik betrifft, so überzeugte mich das, was Du

Enkliid-Übersetzung ist wiederholt neu aufgelegt worden und war in Deutschland sehr verbreitet."

*) [Euclidis Elementa graece et latine, ed. Camerer et Hauber. Bd. I. Berlin 1824. Der Excursus ad Elementorum I. 29 enthält eine wertvolle Geschichte der Versuche, die fünfte Forderung zu beweisen; für das Folgende kommen besonders die Ausführungen auf S. 423—426 in Betracht.]

**) [Eine wohlwollende Besprechung der Parallelentheorie von Taurinus ist im September 1827 in der Allgemeinen Deutschen Litteraturzeitung erschienen.]
Aus der Vorrede zu den Elementa. Schweikart und Gauß an Taurinus. 249

schrriebst, daß ich mich auch in diesem Punkte nicht in Dir geirrt
hatte. —

„Durch meine vieljährigen Studien bin ich zuletzt zu der Einsicht
gelangt, daß unsere Geometrie nur eine relative Wahrheit habe, und
daß es eine höhere, welche ich die Astralgeometrie nenne, gebe, nach
welcher z. B. die Winkel im Dreiecke kleiner als 2 rechte sind und
immer mehr abnehmen, jemehr der Inhalt wächst, ja daß mit der
Größe der Winkel auch der Inhalt und umgekehrt gegeben ist.

„Zu meiner Freude erfuh ich, daß der berühmte Gauß schon
lange auf demselben Wege un der darauf schon weit vorgeschritten ist.
In kurzer Zeit würde ich Dich in diese Ansicht einführen können
und Deinem Erfindungstriebe ein weites Feld eröffnen."

Es folgt eine Einladung an Taurinus, nach Königsberg zu
kommen, die jedoch abgelehnt wurde.

Erst seit dem Jahre 1824 scheint Taurinus sich eingehender
mit der Parallellentheorie beschäftigt zu haben. Die Ergebnisse, zu
denen er kam, hat er dann Schweikart und Gauß vorgelegt.
Das Antwortschreiben Schweikarts vom 18. November 1824 ist
schon auf Seite 245—246 mitgeteilt. Wir lassen nunmehr auch das
Schreiben von Gauß folgen:

„Ewr. Wohlgelborn

gedölliges Schreiben vom 30 Oct. nebst dem beigefügten kleinen
Aufsatz habe ich nicht ohne Vergnügen gelesen, um so mehr, da ich
sonst gewohnt bin, bei der Mehrzahl der Personen, die neue Versuche
über die sogenannte Theorie der Parallellinien [machen,] gar keine
Spur von wahren geometrischen Geiste anzutreffen.

„Gegen Ihren Versuch habe ich nichts (oder nicht viel) anderes
zu erinnern als daß er unvollständig ist. Zwar lässt Ihre Darstellung
des Beweises, daß die Summe der drei Winkel eines ebnen Dreiecks
nicht grösser als 180° seyn kann in Rücksicht auf geometrische
Schärfe noch zu desideriren übrig. Allein dies würde sich ergänzen
lassen, und es leidet keinen Zweifel daß jene Unmöglichkeit sich auf
das allerstrengste beweisen läßt. Ganz anders verhält es sich aber
mit dem 2. Theil, daß die Summe der Winkel nicht kleiner als 180°
seyn kann; dies ist der eigentliche Knoten, die Klippe woran alles
scheitert. Ich vermute, daß Sie sich noch nicht lange mit diesem
Gegenstande beschäftigt haben. Bei mir ist es über 30 Jahr, und
ich glaube nicht, daß jemand sich eben mit diesem 2. Theil mehr
beschäftigt haben könne als ich obgleich ich niemals etwas darüber
bekannt gemacht habe. Die Annahme, daß die Summe der 3 Winkel
kleiner sei als 180°, führt auf eine eigne von der unsrigen (Euclidi-
schen) ganz verschiedene Geometrie, die in sich selbst durchaus consequent ist, und die ich für mich selbst ganz befriedigend ausgebildet habe, so das ich jede Aufgabe in derselben auflösen kann mit Ausnahme der Bestimmung einer Constante, die sich a priori nicht ausmitten läst. Je grösser man diese Constante annimmt, desto mehr nähert man sich der Euclidischen Geometrie und ein unendlich großer Werth macht beide zusammenfallen. Die Sätze jener Geometrie scheinen zum Theil paradox, und dem Ungeübten unregiert; bei genauerer ruhiger Überlegung findet man aber, das sie an sich durchaus nichts unmögliches enthalten. So z. B. können die drei Winkel eines Dreiecks so klein werden als man nur will, wenn man nur die Seiten gross genug nehmen darf, dennoch kann der Flächeninhalt eines Dreiecks, wie gross auch die Seiten genommen werden, nie eine bestimmte Grenze überschreiten, ja sie nicht einmahl erreichen. Alle meine Bemühungen einen Widerspruch, eine Inconsequenz in dieser Nicht-Euclidischen Geometrie zu finden sind fruchtlos gewesen, und das Einzige was unserm Verstände darin widersteht, ist das es, wäre sie im Raum eine an sich bestimmte (obwohl uns unbekannte) Lineargrösse geben müsste. Aber mir deucht, wir wissen, trotz der Nichts Sagenden Wort-Weisheit der Metaphysiker eigentlich zu wenig oder gar nichts über das wahre Wesen des Raumes, als das wir etwas uns unnatürlich vorkommendes mit Absolut Unmöglich verwechseln dürfen. Wäre die Nicht-Euclidische Geometrie die wahre, und jene Constante in einigem Verhältnisse zu solchen Grössen die im Bereich unsrer Messungen auf der Erde oder am Himmel liegen, so liess sie sich a posteriori ausmitten. Ich habe daher wohl zuweilen im Scherz den Wunsch geäußert, dass die Euclidische Geometrie nicht die Wahre wäre, weil wir dann ein absolutes Maass a priori haben würden.

"Mit Hochachtung verharre ich

Göttingen den 8 November
1824.

Ewr Wohlgeboren
ergebenster Diener
CFGauß.
Wir glauben nicht fehlzugehen, wenn wir annehmen, daß der Aufsatz, den Taurinus an Schweikart und Gauß gesandt hat, im Wesentlichen das enthielt, was die ersten 87 Seiten der Theorie der Parallellinien ausmacht. Diese Untersuchungen bezwecken, die Euklidische Geometrie als die einzig zulässige nachzuweisen. Dass es möglich sei, diesen Nachweis zu führen, sobald man nur das Axiom der geraden Linie voraussetzt, das heißt fordert, daß die Gerade durch zwei Punkte vollständig und eindeutig bestimmt ist, davon ist Taurinus fest überzeugt gewesen. Freilich zeigt die Nachschrift (S. 88—93) und noch mehr der Nachtrag (S. 95—102) zu seiner Theorie der Parallellinien, daß er schon 1825 nicht umhin konnte, die innere Konsequenz des „dritten Systems der Geometrie“ anzuerkennen, das heißt, des Systems, bei dem die Summe der Dreieckswinkel weniger als zwei Rechte beträgt. Aber er suchte die Euklidische Geometrie auch jetzt noch zu retten, indem er an der unendlichen Menge derartiger geometrischer Systeme Anstoss nahm, denn diese Systeme sind ja eben so zahlreich, wie die Systeme sphärischer Geometrien.

Auch die 1825 verfassten und 1826 veröffentlichten Geometriae prima elementa bedeuten in dieser Hinsicht keinen Fortschritt: Taurinus stellt sich auch hier noch durchaus auf den Boden der Euklidischen Geometrie. Dies ist um so wunderbarer, als er die Widerspruchslösigkeit des dritten Systems oder, wie er jetzt sagt, der logarithmisch-sphärischen Geometrie, klar erkannt und sogar die zugehörige Trigonometrie entwickelt und auf eine Reihe von elementaren Aufgaben mit Erfolg angewandt hatte. So tiefe Wurzeln hatte die zweitausendjährige Autorität Euklids!

einige wenige Exemplare der auf eigene Kosten gedruckten Elementa an Freunde verschenkt sowie mathematischen Autoritäten übersandt und hat später aus Unmut darüber, daß seine Bestrebungen keine Anerkennung fanden, den Rest der Auflage den Flammen überliefert.

Fassen wir schließlich die Ergebnisse unserer Nachforschungen zusammen, so können wir sagen, daß Schweikart und Taurinus ein bis jetzt nicht beachtetes, jedoch sehr beachtenswertes Mittelglied bilden zwischen Saccheri und Lambert einerseits und Gaußs, Lobatschewskij und Bolyai andererseits.

Schweikarts Leistung besteht darin, daß er selbständig die Möglichkeit und die Berechtigung einer nichteuklidischen Geometrie klar erkannt und ausgesprochen hat, und in dieser Beziehung ist er mit Gaußs gleichberechtigt. Da er jedoch in der Ausbildung seiner neuen Geometrie nicht über die Anfänge hinaus gekommen zu sein scheint, so können wir ihn nicht mit Gaußs, Lobatschewskij und Bolyai in eine Linie stellen.

Litteratur

Halsted, Georg Bruce, *Geometrical Researches on the theory of parallels by Nicho-

laus Lobatschevsky*. Austin [1891].

Halsted, Georg Bruce, *Science Absolute of Space of Johann Bolyai*. Austin [1891.]

Justi, K. W., *Grundlage zu einer Hessischen Gelehrten-, Schriftsteller- und Künstler-
geschichte vom Jahre 1806 bis zum Jahre 1830*. Marburg 1831. S. 622.

Poggendorff, Artikel *Schweikart* in dem Biographisch-litterarischen Handwörter-

THEORIE

DER

PARALLELLINIIEN

VON

F. A. TAURINUS.

Quid verum euro et rogo.

HORAT.

MIT DREI STEINTAFELN.

KOEHN AM RHEIN.
GEDRUCKT UND ZU HABEN BEI JOHANN PETER BACHEM.

1825.
Was die hier aufgestellte Theorie der Parallellinien betrifft, so (81) giebt gleich der 51. Satz zu einer äußerst interessanten Bemerkung Anlaß. In diesem Satze wird bewiesen, daß, unter der Voraussetzung, die Summe der Winkel eines Vierecks könne größer sein, als vier 82 Rechte (oder, was auf eins hinausläuft, die Summe der Dreieckswinkel größer, als zwei Rechte) alle Linien, die auf einer andern senkrecht stehen, sich in zwei Puncten in gleicher Entfernung zu beiden Seiten schneiden. Daraus ergiebt sich der offenbarste Widerspruch mit dem Axiom der geraden Linie†), und ein solches geometrisches System kann nicht geradlinig sein: weiter aber erstreckt sich auch die Unmöglichkeit nicht: man gelangt vielmehr zu der klarsten Ueberzeugung, daß ein consequentes System der Art nichts anderes ist und nichts anderes sein kann, als ein System von größten Kreisen auf der Oberfläche einer Kugel oder eine sphärische Geometrie.

Wenn es ein Mittel gäbe, sich zu überzeugen, daß die Linien, die man zeichnet oder sich denkt, alle gerade und in einer Ebene befindlich wären, so müßte nach unserer Einsicht sich ohne Mühe ergeben haben, daß die Euklidische Geometrie die einzige ebene geradlinige Geometrie sein kann und die Theorie der Parallellinien würde nie die mindeste Schwierigkeit gemacht haben. Allein es ist nicht möglich, bei allen denkbaren Constructionen die Anschauung der Ebene festzuhalten, und so kann es geschehen, daß man der geraden Linie Eigenschaften beilegt, die sie nicht hat, und der Widerspruch sich nicht sogleich an den Tag legt. Bogen eines und desselben Kreises haben alle Eigenschaften gerader Linien; sie sind sich ähnlich in allen ihren Theilen und bringen ähnliche Erscheinungen hervor, ob sie sich gleich nicht in jeder Lage decken. In der That wird man sich leicht 83 überzeugen, daß zu der Möglichkeit eines consequenten geometrischen Systems nichts gehört, als ein System von gleichen Linien in einer zusammenhängenden ebenen oder gekrümmten Fläche.

Es wäre zu wünschen, daß in dem entgegengesetzten Falle, wenn die Winkel des Dreiecks zusammen weniger als zwei Rechte aus-

machen — und wenn dies bei einem einzigen statt fände, so könnte es bei allen Dreiecken nicht anders sein — der Widerspruch mit dem Axiom der geraden Linie sich eben so leicht aufdecken ließe: allein dies scheint mit weit größerer Schwierigkeit verbunden. Wir wollen indessen den Weg nachweisen, der unserer Einsicht nach zu dem gewünschten Ziele führen könnte.

[Taurinus führt (S. 83—86) folgende Gründe an:

1) Es wäre alsdann die Folge, daß (gerade) "Linien teils zusammenfallen und dann auseinanderlaufen würden, was bei geraden Linien doch gewiß nicht der Fall sein kann"; es ist das genau die Widerlegung der Hypothese des spitzen Winkels, die man bei Saccheri (Seite 122) findet.

2) "Es gibt (in der Ebene) nur zwei Arten von Linien, die sich in allen ihren einzelnen Theilen gleich und ähnlich sind: die geraden Linien und Bogen eines und desselben Kreises: eine solche Ähnlichkeit der Linien wird aber zur Möglichkeit eines geometrischen Systems notwendig vorausgesetzt." Nun können es keine Kreisbogen sein, „und sind sie gerade Linien, so folgt unwidersprechlich, daß das Euklidische System das einzige ebene und geradlinige, jedes andere aber uneben und krummlinig sei."]

Dafs in einem geradlinigen Viereck die Summe der Winkel größer als vier Rechte sei, ist absolut unmöglich: dagegen können in einem unebenen geradlinigen Vierecke sehr wohl drei rechte und ein spitzer Winkel sein, aber man überzeugt sich sogleich, daß ein solches unebenes Viereck nicht die Grundlage eines geometrischen Systems sein kann, daß dazu wenigstens eine regelmäßige zusammenhängende Fläche gehört.

Wir haben gegen die Annahme eines solchen Systems als geradlinig noch folgendes einzuwenden:

1. Es widerspricht aller Anschauung. Es ist wahr, ein solches System würde im Kleinen die némlichen Erscheinungen darbieten können, wie das Euklidische: allein, wenn die Vorstellung des Raumes als die bloße Form der äußern Sinne betrachtet werden darf, so ist unstreitig das Euklidische System das wahre und es läßt sich nicht annehmen, daß eine beschränkte Erfahrung eine sinnliche Täuschung erzeugen könne.

2. Das Euklidische System ist die Grenze des ersten (wo die Dreieckswinkel mehr als zwei Rechte ausmachen): mit dieser Grenze
hört der Widerspruch, der sich mit dem Axiom der geraden Linie findet, auf.

3. Wäre das dritte System das wahre, so gäbe es überhaupt keine Euklidische Geometrie, da doch ihre Möglichkeit nicht geläugnet werden kann.

4. Es findet sich bei der Voraussetzung eines solchen Systems als geradlinig kein stetiger Übergang: die Winkel eines Dreiecks könnten nur mehr oder weniger, als zwei Rechte ausmachen.

5. Dieses System würde ganz paradoxe Folgen haben, die allen Vorstellungen geradezu widersprechen: man wird geneigt, dem Raum Eigenschaften beizulegen, die er nicht haben kann.

6. Alle vollkommene Ähnlichkeit der Flächen und Körper fällt weg, und doch scheint dieser Begriff in der Anschauung gegründet und ein wahres Postulat zu sein.

7. Das Euklidische System ist auf jeden Fall das vollkommenste und schon deshalb spricht die höchste Wahrscheinlichkeit dafür, daß es auch das wahre sei.

Was das dritte System nun eigentlich sei, ob etwa ein System von Linien auf der Oberfläche einer Kugel, die durch ebene Schnitte entstehen — ob es Linien enthalte, die gleich sein können, ohne dabei allemal ähnlich zu sein und sich zu decken — oder ob es vielleicht auf etwas Unmögliches führe ††), lassen wir dahin gestellt sein und sprechen zum Schlusse unsere Überzeugung dahin aus, daß es ein solches System allerdings gebe; daß wir aber zweifeln, ob es eine geradlinige und eine ebene Geometrie sein werde.

[Aus der Nachschrift teilen wir folgende Stelle mit:]

Es läßt sich sehr leicht zeigen, daß ein geometrisches System, in welchem weniger als zwei Rechte im Dreieck enthalten sind, an sich nicht bestimmt ist, sondern eine besondere Bestimmungsgröße oder Constante erfordert. Hieraus ergiebt sich sogleich, daß es a priori gar keine andere Geometrie, als die Euklidische für uns 90

†) [Diesen Einwand hat Taurinus später fallen lassen; vergleiche S. 96 seiner Theorie der Parallellinien, hier S. 261 unten.]
††) [Man erinnere sich an Lamberts imaginäre Kugel (S. 145 dieses Werkes.)]
Man denke sich im Raum drei feste Punkte, die nicht in gerader Linie liegen, durch Linien verbunden. Einer jeden willkürlichlichen Annahme der Winkelsumme in dem so entstandenen Dreieck entspricht auch eine besondere Natur der drei Linien; denn die Winkel hängen durchaus von der Natur der Linien ab und die Konstante, die dem geometrischen System zum Grunde liegt, hat unmittelbar nur auf die Beschaffenheit der Linien Einfluss. Die Linien des Dreiecks sind also, so lange es noch einer Konstante bedarf, durch die zwei Punkte, zwischen welchen sie liegen, nicht bestimmt; daher sind sie, wenn sie auch gerade Linien sein könnten, doch nicht von der Art, wie diejenige, die die Grundlage unserer Geometrie ausmacht: denn diese soll durch zwei Punkte vollkommen bestimmt sein. Nun bedarf es nur in dem Falle keiner Konstante, wenn die Dreieckswinkel zwei Rechte ausmachen; also kann auch nur in diesem Falle die gerade Linie schon durch zwei Punkte bestimmt sein oder die Euklidische Geometrie entspricht allein unserm Axiom von der geraden Linie.

In derselben ist die Summe der Winkel von der Größe der Seiten unabhängig und in allen Dreiecken gleich groß.

Darf man voraussetzen, daß ein consequentes System, in welchem weniger als zwei Rechte im Dreieck enthalten sind, nur einer Konstante bedürfe, wie die sphärische Geometrie, so könnte man daraus schließen, daß es nur ein System von Bogen eines Kreises sein könne: denn durch eine Konstante kann außer den zwei Punkten, zwischen welchen eine Linie liegt, nur noch ein dritter Punkt bestimmt werden: drei Punkte aber bestimmen einen Kreis. Allein eine solche Voraussetzung scheint sich nicht rechtfertigen zu lassen††).

In der sphärischen Geometrie hat man

\[C = f\left(A, B, \frac{m}{2p r}\right), \]

wo \(A, B, C \) die drei Tangenten-Winkel, \(m \) die von den Winkeln \(A, B \) eingeschlossene Seite, \(p \) die Ludolphische Zahl, \(r \) den Halbmesser bezeichnet. Da man für ein geometrisches System, in welchem weniger als zwei Rechte im Dreieck enthalten sind, die Größen \(A, B, m, r \) die nennlichen sein lassen kann, so wären für \(C \) bei gleichen Be-

†) [Dies wird von Taurinus auf S. 101, hier S. 265 genauer ausgeführt.]

††) [In der That wird nach Ausschlufs der Hypothese des stumpfen Winkels, wie W. Bolyai gezeigt hat, durch das Axiom: Drei Punkte bestimmen einen Kreis die Euklidische Geometrie bedingt.]
stimmungsröfsen zweierlei Werthe möglich, welches doch dem wider-

spricht, dafs C eine determinirte Function von A, B, m, r sein soll.

Die Idee einer Geometrie, in welcher die Summe der Dreiecks-

winkel kleiner als zwei Rechte wäre, ist mir schon vor vier Jahren

mitgetheilt worden;*) ich habe mich aber nicht damit befreunden

können und kann es jetzt noch viel weniger. Wenn es ein solches

System gäbe, so wäre unter den unzählig vielen möglichen nur eines

das wahre: allein es ist mir viel wahrscheinlicher, dafs alle diese

Systeme zugleich existiren, so wie es unzählig verschiedene sphä-

rische Geometrien giebt, weil man sich Kugeln von unzählig ver-

schiedenen Halbmessern denken kann.

[Aus dem Nachtrag:]

Der Satz, bei welchem die Eigenschaft der geraden Linie [durch zwei Punkte eindeutig bestimmt zu sein] am meisten in Betracht

kommt, dessen Beweis daher der ganzen Geometrie die eigentliche

Gestalt giebt, ist der Satz von der Summe der in einer ebenen gerad-

linigen Figur enthaltenen Winkel. Die gründlichste Methode, den

Beweis zu führen, ist ohne Widerrede die, wenn man die drei mög-

lichen, ganz verschiedenen, geometrischen Systeme hinreichend ent-

wickelt, um die Uebereinstimmung oder den Widerspruch mit dem

Axiom der geraden Linie aufzudecken. Eine Geometrie, in welcher

mehr als zwei Rechte im Dreieck enthalten sind, führt auf einen

offenbaren Widerspruch mit dem Axiom der geraden Linie; denn in

jedem System der Art würden die geraden Linien sich in zwei Puncten

schneiden, ohne zusammenzufallen.

In dem umgekehrten Falle scheint sich auf den ersten Blick eine

große Schwierigkeit zu erheben: allein die Wahrheit liegt meiner

Einsicht nach doch bei weitem nicht so tief, als man zu glauben ge-

neigt sein möchte und ich mich anfangs selbst überredet habe. Jede

Geometrie, in welcher die Winkelsumme im Dreieck kleiner, als zwei

Rechte, angenommen wird, enthält in sich selbst — dem Begriff nach

— keinen Widerspruch mit dem Axiom der geraden Linie und ich

nehme meine Vermuthung, dafs ein solcher sich möchte auffinden lassen,
ganz zurück. Es ist dies eine nothwendige Folge des Axioms, dafs

zwischen zwei Puncten nur eine gerade Linie möglich sei, welches

eine solche Geometrie gewissermassen nicht ausschliesst. Der Wider-

spruch muß darin gesucht werden, dafs es nicht ein, sondern eine

*) Von meinem Oheim Prof. S[chweikart] in K[önigsberg], damals noch in M[arburg]. [Brief vom 1. October 1820, Seite 248 f. dieses Buches.]
unendliche Menge von Systemen der Art gibt, von welchen jedes auf Gültigkeit gleichen Anspruch haben würde; daß es daher zwischen zwei Puncten im Raume unendlich viele gerade Linien gäbe, da es doch nach unserm Axiom nur eine einzige, durch zwei Puncte vorkommen bestimmte geben soll. Die Linien eines Dreiecks, das weniger als zwei Rechte enthält, sind also nicht gerade und können sich nicht in jeder Lage decken; höchstens dürfte man voraussetzen, daß dies in gewissen Lagen statt finden möchte.

(97) Indessen läßt sich ein System der Art vielleicht vollständig entwickeln und bietet immer einen interessanten Gegenstand der Untersuchung dar. Ich vermuthe, daß es auch nicht ohne Bedeutung in der Mathematik sein werde.

Wenn in einem ebenen geradlinigen Vierecke drei rechte und ein spitzer Winkel sein können, so läßt sich folgendes beweisen:

1. In jedem Dreiecke sind weniger, als zwei rechte Winkel.

Denn es seien in dem \(\triangle abc \) (Fig. II.) zwei Rechte, oder mehr als zwei Rechte. Fälle (22.) von \(a \) auf \(bc \) das Loth \(ad \), so müssen, da in den \(\triangle \triangle ab\), \(ade \) die Summe der Winkel bei \(d \) um zwei Rechte vermehrt ist, in dem einen oder dem andern gleichfalls zwei, oder mehr als zwei Rechte sein. Es sei dies in \(\triangle ade \) der Fall: beschreibe (34.) demselben über \(ac \) ein gleiches \(aec \), so daß \(ac = dc \): alsdann ist \(eac = acd \), \(eca = dac \), daher \(ead = ecd \) und da \(a[\text{angenommener}] \) M[\text{afsen}] \(dac + aed = R \) oder \(> R \), so ist auch \(ead (= ecd) = R \) oder \(> R \). Errichtet man daher (16.) in \(a, e \) Lothe, so würden sie im ersten Fall mit \(ae, ec \) zusammenfallen und es entstande ein Rechteck \(aedc \): allein alsdann würden auch alle Linien, die auf einer andern senkrecht stehen, parallel sein. Denn verlängere (21.) \(ad \) nach \(f, dc \) nach \(g \), errichte (16.) in \(f, g \) Lothe, die sich in \(h \) schneiden, verlängere auch \(ec \) nach \(i, ae \) nach \(k \), so ist, weil \(aedc \) ein Rechteck (46.) \(fi = ae \), folglich (41.) \(fiae \) ein Recht-
die Stücke aus der Theorie der Parallellinien. 1825.

263

1. Wenn von einem Puncte aus nach einer Linie andere Linien gezogen werden, so können die Winkel, die die letzten mit der ersteren machen, kleiner als jede angebliche Grösse werden.

Denn es sei a (Fig. III.) ein Punct, ans welchem nach der bc Linien ad, ae gezogen sind. In dem \(\triangle ade \) sind die Winkel zusammen \(< 2R \).

Mache (7.) \(ef = ae \), ziehe af, so ist (8.) \(eaf = afe \) und \((eaf + afe + aef) < 2R \).

Aber (17.) \(aef + aed = 2R \), daher \(aed > (eaf + afe) \) und \(afe < \frac{1}{2} aed \). Da man von der bc Stücke, so groß wie man nur will und ohne Ende nehmen kann, weil sich für ihre Verlängerung keine Gränze absenkt, so muß man (wie die Arithmetik lehrt) einmal auf einen Winkel kommen können, der kleiner ist, als jeder angebliche.

3. Wenn zwei Linien von einer dritten unter gleichen Wechselwinkeln geschnitten werden, so gibt es eine andere, die auf den beiden ersten lothrecht steht, welche sich alsdann nicht schneiden können.

Denn es seien ab, cd (Fig. IV.) zwei Linien, die von der cf so geschnitten werden, dafs bcf = cfe. Halbire (13.) cf in g, fälle (22.) gh, gi. In den \(\triangle egi \), ghf ist a[ngenommener] M[ässen] ieg = gfh, d[urch] C[onstruction] eg = gf, eig = ghf, daher (33.) \(\triangle egi = \triangle ghf \). Eig = hgf. Aber (17.) eig + igf = 2R, daher auch igf + fgh = 2R, folglich (20.) ig, gh in gerader Linie, die sowohl auf ab als cd senkrecht steht: daher (48.) ab, cd zu beiden Seiten von ih divergirend.
4. Zwei Linien schneiden sich oder eine dritte kann auf beiden senkrecht stehen.

Es seien ab, cd (Fig. V.) zwei Linien, die sich nicht schneiden, ef ein Loth auf cd und $bef < R$: ziehe eg. Wäre $beg > egf$, so wird es immer eine Linie eh von der Lage geben, daß $beh = ehf$, alsdann giebt es nach dem vorigen Beweis auch eine Linie, die auf ab und cd senkrecht steht. Wäre $beg < egf$, so giebt es eine Lage ei, in welcher die von e aus gezogenen Linien die cd nicht mehr treffen werden.

Allein die von e nach der cd gezogenen Linien können, nach dem obigen Beweis, mit derselben Winkel bilden, für deren Abnahme es keine Grenze gibt, während der Winkel bei immer eine angebliche Größe behalten wird: daher giebt es gewiß eine Linie zwischen e und der cd, die die Lage hat, daß sie mit ab, cd gleiche Wechselwinkel bildet, folglich auch eine andere, die auf beiden lotrecht steht.

5. Nun seien ab, ac (Fig. VI.) zwei Linien, die unter dem spitzen Winkel bac zusammentreffen. Errichte (16.) in dem beliebigen Punct e das Loth cd, so sind in dem $\triangle aed$ weniger, als zwei Rechte. Mache (7.) $ef = ae$, ziehe df, so ist (6.) $\triangle def = \triangle dae$. Errichte in f das Loth fg. Da in dem $\triangle gdf$ höchstens zwei Rechte sein können, so sind, wenn D den Unterschied zwischen zwei Rechten und den im $\triangle dae$ enthaltenen Winkeln bezeichnet, in den $\triangle dae$, def, gdf höchstens $6R - 2D$, und, wenn $2R$ bei d, $2R$ bei e abgezogen werden, in $\triangle gaf$ höchstens $2R - 2D$. Aber $\triangle gaf$ hat mit $\triangle dae$ den Winkel bac und einen Rechten gleich; folglich ist es nur der Winkel agf, der um den Unterschied D abgenommen hat. Wird dem $\triangle gaf$ ein gleiches verzeichnet, indem man $fh = af$ macht, so ist es einleuchtend, daß das in h aufgerichtete Loth, bis zur ab verlängert, mit dieser einen Winkel bilden würde, der wenigstens um den doppelten Unterschied D kleiner wäre, als
Stücke aus der Theorie der Parallellinien. 1825.

265

agf, und da man die Construction gleicher Dreiecke ohne Ende fortsetzen kann, weil es für die Verlängerung der ac keine Gränze giebt, so wird zuletzt die Summe der Winkel, wie gering auch der Unterchied D gedacht werden mag, so klein als man will und = 0 101 werden können. Dieses ist aber, da allen Dreiecken der Winkel bac und der rechte Winkel, den das auf ac aufgerichtete Loth bildet, gemein ist, gar nicht möglich. Daher bleibt nichts übrig, als anzunehmen, daß es auf der ac einen Punct 'gebe, wo das aufgerichtete Loth die ab nicht mehr trifft.

6. Schließen die geraden ba, ac (Fig. VII.) einen rechten Winkel bac ein, der durch die ad in zwei gleiche Theile getheilt wird, so giebt es nach den vorigen Beweisen immer eine auf ad senkrechte Linie feg, welche die Asymptote sowohl von ab als ac, oder die Gränze ist, welche ab, ac nie erreichen können, obgleich sie sich derselben ohne Ende bis zu einer unangeblichen Entfernung nähern. Man wird aber auch eg als die letzte Linie betrachten können, die durch den Punct e geht, ohne die ac zu treffen: alsdann giebt es nach dem obigen Beweis eine Linie, die auf eg und ac zugleich senkrecht steht: ebenso darf ef für die letzte Linie genommen werden, die durch den Punct e gehend, die ab noch schneidet, folglich mit derselben einen Winkel von nicht mehr angeblicher Größe bildet. Werden daher von der feg Lothe auf die ac herabgefallt, so werden sie mit der ersten jeden möglichen Winkel, von einem rechten durch alle Zwischenstufen hindurch bis zum kleinsten bilden können, die Figur baceyef stellt also die Asymptoten für jeden Winkel, unter welchem Linien zusammentreffen können, dar.

Die Linie ac kann die Bestimmungsgröße (Parameter, Axe, Potenz) des geometrischen Systems genannt werden und es erheilt von selbst, daß man sie willkürlich annehmen kann.

Wäre ac als Grundlinie eines Dreiecks und gca = R, cac = ½ R 102 gegeben, so würde die Summe der Winkel des Δ age, da der Winkel bei g verschwindet, = ½ R sein: aber für den Parameter ah würde die Summe, weil das in l errichtete Loth die ac noch trifte und einen angenhlichen Winkel mit derselben machte, größer sein.
Da aber (31.) ein Dreieck durch die Grundlinie und die anliegenden Winkel bestimmt ist, so könnte, wenn ein geometrisches System, das weniger als zwei Rechte im Dreiecke enthält, das geradlinige sein sollte, von allen möglichen nur eines das wahre sein, es müsste irgend einer absolute Linie demselben zu Grunde liegen und von dieser würde dann, wenn drei Puncte als Eckpunkte eines Dreiecks gegeben wären, die Summe der Winkel desselben, also auch die Gestalt der Linien abhängen. Aber es läßt sich gar kein Grund einsehen, dem einen System vor allen andern eine ausschließlichliche Gültigkeit beizulegen, man muß vielmehr die gleichzeitige Möglichkeit aller Systeme annehmen und es wären also, wenn man sie als geradlinig betrachten wollte, zwischen zwei Puncten unendlich viele gerade Linien denkbar.

Aber zwischen zwei Puncten soll es überhaupt nur eine einzige gerade Linie geben: daher können die Linien einer Geometrie, in welcher alle Dreiecke weniger, als zwei Rechte enthalten, nicht gerade Linien sein.

Anmerkung. Wenn man das Axiom der geraden Linie so ausdrücken will, daß die gerade Linie durch zwei Puncte absolut bestimmt sei, so kann keine Geometrie, in welcher weniger als zwei Rechte im Dreiecke sind, geradlinig sein, weil die Linien derselben außer den zwei Puncten, zwischen welchen sie liegen, ihrer Gestalt nach auch noch von dem Parameter des geometrischen Systems abhängen würden. Man sieht daraus, daß es auf keinen Fall nöthig ist, wie manche glauben, entweder das Euklidische 11. Axiom beizubehalten, oder ein anderes an dessen Stelle zu setzen.
GEOMETRIAE

PRIMA ELEMENTA.

RECENSUIT

ET NOVAS OBSERVATIONES ADJECIT

FRANC. ADOLPH. TAURINUS.

CUM TABULA LITHOGRAPHICA.

COLONIAE AGRIPPINAE.

TYPIS J. P. BACHEMILL.

MDCCCXXVI.
Es bleibt mir noch übrig, einiges Wenige über die neue Geométrie hinzuzufügen, die uns bei Gelegenheit dieses Satzes*) entgegentritt.

Der Flächeninhalt der Dreiecke wird, ebenso wie in der sphärischen Geometrie, durch die Winkelsumme bestimmt. Hat man nämlich ein Dreieck, das eine beliebige Winkelsumme besitzt, und zerlegt es durch im Innern gezogene Linien in lauter Dreiecke, so wird die Summe der Winkel aller so entstehenden Dreiecke, vermindert um so viel mal zwei Rechte, als die Anzahl dieser Dreiecke weniger eins beträgt, gleich der Winkelsumme des ganzen Dreiecks sein. Haben daher zwei Dreiecke gleichen Flächeninhalt, so werden sich entweder beide in eine gleiche Anzahl gleicher Dreiecke zerlegen lassen, und es wird auch die Winkelsumme in beiden gleich sein, oder, wenn das 57 nicht angeht, wird man doch in beiden Dreiecken eine gleiche Anzahl gleicher Dreiecke annehmen können, und die überschließenden Flächenräume werden so klein sein, daß man sie vernachlässigen darf. Ebenso wird jedes sehr kleine Dreieck fast genau zwei Rechte enthalten, da es ja eine um so größere Winkelsumme hat, je kleiner es ist. Dahin wird man behaupten dürfen, daß gleiche Dreiecke gleiche Winkelsumme haben, und daß sich die Inhalte der Dreiecke so verhalten wie die Unterschiede zwischen zwei Rechten und den jeweiligen Winkelsummen der einzelnen Dreiecke.

Hieraus folgt eine allgemeine Formel für den Flächeninhalt des Dreiecks. Es seien a und A die Flächeninhalte zweier Dreiecke, d und D die Unterschiede ihrer Winkelsummen von zwei Rechten, dann ist:

$$a : A = d : D$$

und daher:

$$a = \frac{d}{D} A.$$

Aus dieser Formel lassen sich verschiedene Folgerungen herleiten. Zum Beispiel müssen die Unterschiede entweder beide positiv oder beide negativ sein, damit \(\frac{d}{D} \) positiv wird, denn sonst hat die Proportion oder die Gleichung gar keinen Sinn. Ist aber bei ungleichen Oberflächen beide Male der Unterschied gleich Null, so wird \(\frac{d}{D} \) gleich 0, das heisst, \(a \) ist unbestimmt, was in der ebenen Geometrie eintritt. Sind dagegen beide Unterschiede negativ, so kann keiner von ihnen grösser als zwei Rechte werden, und es ist somit das Dreieck, dessen Winkelsumme gleich Null ist, die Grenze aller Dreiecke oder das grösste von allen. Demnach kann die Fläche des Dreiecks ein bestimmtes Maß des Inhaltes nicht überschreiten, und dasselbe gilt auch für jede geradlinige Figur, die man als aus solchen Dreiecken zusammengesetzt anzusehen hat.

58 Daß es übrigens unmöglich ist, der Geometrie, bei der im Dreieck weniger als zwei Rechte sind, einen Widerspruch mit dem Axiome der geraden Linie nachzuweisen, geht daraus hervor, daß man, um zu einem solchen Nachweise zu gelangen, erhärten müßte, daß zwei gerade Linien einander in zwei Punkten schneiden, ohne zusammenzufallen; so oft nämlich zwei Linien einander [in dieser Weise] schneiden, hat, wie wir gezeigt haben, jedes Dreieck mehr als zwei Rechte. Mithin besteht, soweit es auf die Begründung der Parallelen-theorie ankommt, zwischen der sphärischen Geometrie und dieser Geometrie der Unterschied, daß die erste dem Axiom der geraden Linie durchaus widerstreitet, während hingegen bei der zweiten der Widerspruch nur eine Folge der Vielheit der [möglichen] Systeme ist*).

(64) Dies war bereits gedruckt, und es blieb mir nur noch übrig, meine Ansicht über das wahre Wesen dieser Geometrie vorzubringen, da gelangte ich endlich zu der Gewißheit, daß sich diese meine Ansicht wirklich beweisen läßt. Von Anfang an hatte ich nämlich die Vermutung gehegt, daß eine solche Geometrie gewissermaßen die Umkehrung der sphärischen sei, daß sie Logarithmen mit sich bringe und sich aus der allgemeinen Formel der sphärischen Geometrie herleiten lasse, und ich würde mich darüber wundern, daß ich eine Sache, die so klar ist und die für jedermann auf der Hand

*) [Es folgt ein Versuch, für die neue Geometrie eine Trigonometrie aufzubauen, der jedoch als mißglückt anzusehen ist.]
liegt, nicht früher durchschaute habe und so große Weitläufigkeiten nötig hatte, wenn ich mich nicht erinnerte, daß gerade Dinge, die ganz selbstverständlich scheinen, oft sogar bedeutenden Männern lange verborgen geblieben sind. Übrigens habe ich geglaubt, an alle dem, was vorher aus analytischen Formeln hergeleitet wurde, nichts ändern zu sollen, da sich das nur auf das Verständnis jener Geometrie bezicht und bei bloßer Änderung der Formeln vollständig gültig bleibt.

Betrachten wir also die allgemeine geometrische Formel*)

\[A = \arccos \frac{\cos \alpha - \cos \beta \cos \gamma}{\sin \beta \sin \gamma} \]

oder auch die folgende einfachere für das gleichseitige Dreieck:

\[A = \arccos \frac{\cos \alpha}{1 + \cos \alpha}. \]

Wird hierin \(\alpha = 0 \) gesetzt, so ist der ganze Cosinus gleich \(\frac{1}{2} \), und daher der Winkel \(A \) gleich \(\frac{\pi}{3} \), denn die drei Winkel können [hier] nicht kleiner als zwei Rechte sein. Aber \(\alpha \) kann nicht größer als \(\frac{2\pi}{3} \) sein, denn wäre es ein größerer Bogen, so würde der Cosinus des Winkels \(A \) kleiner als \(-1\), das heißt unmöglich.

Man setze jedoch**):

\[\cos \alpha = y. \]

Dann ist

\[d\alpha = \frac{dy}{\sqrt{1 - 4y + 5y^2 - 2y^3}} \]

und

\[d\alpha \cdot \arccos \frac{\cos \alpha}{1 + \cos \alpha} = \frac{dy \cdot \arccos y}{\sqrt{1 - 4y + 5y^2 - 2y^3}}. \]

Diese Differentialfunktion ist integrabel, auch wenn \(y \) kleiner als \(-1\) ist, denn sie geht in die folgende über:

\[dy \cdot \log \frac{y - \sqrt{y^2 - 1}}{y + \sqrt{y^2 - 1}} = \frac{1}{2\sqrt{2}y^2 - 5y^2 + 4y - 1}. \]

Wenn dagegen \(y \) größer als \(\frac{1}{2} \) ist, dann scheint die Formel weder Kreisbogen noch Logarithmen auszudrücken.

Setzt man jedoch

\[\cos \alpha = 1 + x, \]

*) [\(A \) bedeutet einen Winkel, und \(\alpha, \beta, \gamma \) sind den Seiten des Dreiecks proportional.]

**) [Der Zweck der folgenden Differentiation ist uns nicht verständlich.]
wobei ich mir x positiv denke, so wird der Winkel A kleiner als $\frac{\pi}{3}$, und zwar um so kleiner, je größer $\cos x$ ist. Man setze daher an Stelle des Bogens α den imaginären Bogen $\alpha \sqrt{-1}$, dessen Cosinus größer als die Einheit ist, so hat man nach einer den Analytikern wohl bekannten Formel:

$$\alpha \sqrt{-1} = \frac{1}{2 \sqrt{-1}} \log \frac{\cos (\alpha \sqrt{-1}) + \sqrt{\cos^2 (\alpha \sqrt{-1}) - 1}}{\cos (\alpha \sqrt{-1}) - \sqrt{\cos^2 (\alpha \sqrt{-1}) - 1}}$$

oder:

$$\alpha = \frac{1}{2} \log \frac{\cos (\alpha \sqrt{-1}) - \sqrt{\cos^2 (\alpha \sqrt{-1}) - 1}}{\cos (\alpha \sqrt{-1}) + \sqrt{\cos^2 (\alpha \sqrt{-1}) - 1}}$$

und diese Formel*) enthält nichts Unmögliches, da man für den Cosinus des imaginären Bogens $\alpha \sqrt{-1}$ jede Zahl einsetzen darf, die größer als die Einheit ist.

Aus dieser Gleichung geht hervor:

$$\cos (\alpha \sqrt{-1}) = \frac{1}{2} (e^\alpha + e^{-\alpha})$$

$$\sin (\alpha \sqrt{-1}) = \frac{1}{2} (e^\alpha - e^{-\alpha}) \sqrt{-1},$$

und da sich diese Formeln von den in der Geometrie schon längst gebräuchlichen nur dadurch unterscheiden, daß hier α an die Stelle des Exponenten $\alpha \sqrt{-1}$ gesetzt ist, so gilt offenbar Alles, was man von den trigonometrischen Linien zu beweisen pflegt, eben so gut auch für die hier auftretenden imaginären. Zum Beispiel wird sein:

$$\sin (\varphi \sqrt{-1} + \psi \sqrt{-1}) = \sin (\varphi \sqrt{-1}) \cos (\psi \sqrt{-1}) +$$

$$+ \sin (\psi \sqrt{-1}) \cos (\varphi \sqrt{-1}),$$

und ebenso bei allen übrigen Formeln.

Mithin wird die Formel**):

$$A = \arccos \frac{\cos (\alpha \sqrt{-1}) - \cos (\beta \sqrt{-1}) \cos (\gamma \sqrt{-1})}{\sin (\beta \sqrt{-1}) \cdot \sin (\gamma \sqrt{-1})}$$

oder:

$$A = \arccos \frac{\cos (\beta \sqrt{-1}) \cos (\gamma \sqrt{-1}) - \cos (\alpha \sqrt{-1})}{\sqrt{\cos^2 (\beta \sqrt{-1}) - 1} \sqrt{\cos^2 (\gamma \sqrt{-1}) - 1}}$$

*) [Sie läßt sich auch in der Form

$$\alpha = \log \left(\cos (\alpha \sqrt{-1}) - \sqrt{\cos^2 (\alpha \sqrt{-1}) - 1}\right)$$

schreiben, die im Folgenden ebenfalls benutzt wird.]

**) [Hierzu heisst es im Druckfehlerverzeichnis Seite 76: „Es hätte bemerkt werden sollen, dass, wenn die Cosinus negativ und kleiner als −1 werden, die allgemeine Formel S. 65 umgekehrt wird und die Seite durch die Winkel, jedoch negativ, ausdrückt. Dies scheint den Sinn zu haben, dass die Winkel, die hier größer als 120° sind, nicht die Winkel des Dreiecks, sondern ihre Ergänzungen zu zwei Rechten bedeuten.“]
eine Geometrie bestimmen, bei der alle Dreiecke weniger als zwei 67
Rechte enthalten, wenn nämlich für den imaginären Cosinus oder besser
den Cosinus des imaginären Bogens irgend eine Zahl gesetzt wird,
die größer als die Einheit ist. Dabei müssen jedoch von den Zahlen
\(\alpha, \beta, \gamma \) je zwei zusammen größer als die dritte sein: ich denke mir
nämlich, daß diese Zahlen die durch eine gewisse konstante Linie \(R \)
geteilten Seiten eines Dreiecks sind\(^*\). Gleichzeitig erheilt, daß es
unzählig viele Systeme gibt, da ja, wenn die Linien \(a, b, c \), die Seiten
des Dreiecks, gegeben sind, die Zahlen \(\alpha, \beta, \gamma \) größer oder kleiner
ausfallen, je nachdem man \(R \) kleiner oder größer annimmt.

Da ferner bei einem sphärischen Dreieck die Abweichung der
Winkelsumme von zwei Rechten gleich:

\[
2 \arccos \frac{1 + \cos \alpha + \cos \beta + \cos \gamma}{4 \cos \frac{1}{2} \alpha \cdot \cos \frac{1}{2} \beta \cdot \cos \frac{1}{2} \gamma}
\]

ist: so wird in der logarithmisch-sphärischen Geometrie der
Unterschied — der von zwei Rechten abzuziehen ist — gleich:

\[
2 \arccos \frac{2 + e^\alpha + e^{-\alpha} + e^\beta + e^{-\beta} + e^\gamma + e^{-\gamma}}{(e^{\frac{1}{2} \alpha} + e^{-\frac{1}{2} \alpha}) (e^{\frac{1}{2} \beta} + e^{-\frac{1}{2} \beta}) (e^{\frac{1}{2} \gamma} + e^{-\frac{1}{2} \gamma})}.
\]

Setzt man also \(\alpha, \beta, \gamma \) gleich \(\frac{1}{\infty} \), so wird der Unterschied gleich
Null sein, denn in einem sehr kleinen Dreieck ist die Winkel-
summe gleich \(\pi \). Sind dagegen \(\alpha, \beta, \gamma \) gleich \(\infty \), so ist der Unter-
schied gleich \(\pi \), denn die Winkelsumme des größten Dreiecks ist
gleich Null. Wenn endlich \(\alpha \) und \(\beta \) gleich \(\infty \) gesetzt werden, \(\gamma \) aber
sehr klein ist, so wird der Unterschied, wie es sein muß, gleich Null.
Auf diese Weise leitet man leicht noch vieles Andre her.

Läfst man diese Geometrie zu, so zeigt sich bei der Winkel-
summe des Dreiecks eben die ununterbrochene Stetigkeit, welche die
Wissenschaft der Geometrie zu erfordern scheint. Geht man nämlich
von dem größten Dreieck der logarithmisch-sphärischen Geo-
metrie aus, so ist diese Summe gleich Null, und je kleiner der Inhalt
des Dreiecks wird, um so mehr wächst die Summe, bis sie den asym-
ptotischen Wert, nämlich zwei Rechte, erreicht. Wenn anderseits die
Summe volle zwei Rechte beträgt, so entsteht die ebene Geometrie, es
bei der alle Dreiecke zwei Rechte enthalten. Diese liegt in der Mitte
zwischen den sphärischen Geometrien. Wenn in dem Dreieck mehr
als zwei Rechte sind, so nimmt die Summe mit wachsendem Flächen-
inhalt zu, bis sie gleich \(3 \pi \) wird, und die Seiten in eine Linie, näm-

\(^*\) [Die Konstante \(R \) nennt Tuurinus später die Basis des Systems.]
lich in einen [größten] Kreis zusammenfallen; dies tritt ein, wenn der Inhalt gleich der halben Kugeloberfläche ist.

Auf einen Punkt muß ich noch zum Schlusse die Geometer aufmerksam machen: sie dürfen bei dem Beweise der Parallelenentheorie fernerhin keine Schwierigkeit mehr suchen, denn eine solche ist meiner Ansicht nach ganz und gar nicht vorhanden. Eine Linie sehen wir nämlich als gerade an, wenn sie durch zwei Punkte bestimmt ist, und zum Beweise des elften Euklidianen Axioms ist außer dieser Erklärung nichts erforderlich; die Beweise, die ich in der von mir früher herausgegebenen Theorie veröffentlicht habe (einige unwesentliche Punkte sind darin freilich noch zu verbessern), genügen mir auch heute noch.

Die Untersuchung der Frage, was nun das wahre Wesen der logarithmisch-sphärischen Geometrie ist, ob sie etwas Mögliches enthält oder ob sie nur imaginär ist, wäre zwar für die höchste Gelehramkeit eine würdige Aufgabe, überschreitet jedoch sicher die Grenzen der Elemente.

Anhang

mit den Lösungen für die bemerkenswertesten Aufgaben der logarithmisch-sphärischen Geometrie.

1. Gegeben ist das größte Dreieck ABC (Fig. I); zu finden ist das von [einem Punkt] der einen Seite AB auf die andre BC gefüllte Lot, zum Beispiel DE, wenn der Winkel EDB gegeben ist.

In dem Dreieck DEB ist der Winkel DEB oder α) gleich R [90°], gegeben ist der Winkel EDB oder β, und DBC oder γ ist gleich Null, denn BC ist Asymptote der Linie AB. Wird noch DE mit C und die Basis des geometrischen Systems mit R bezeichnet, und

$$\frac{C}{R \sqrt{-1}} = c$$

gesetzt, so ist nach der Formel:

$$\cos c = \frac{\cos \gamma + \cos \alpha \cdot \cos \beta}{\sin \alpha \cdot \sin \beta}$$

[bei dem Dreieck DEB]:

$$\cos c = \frac{1}{\sin \beta}$$

a) [Man beachte, daß hier und im Folgenden abweichend von der früheren Bezeichnung α, β, γ für die Winkel, A, B, C für die Seiten des Dreiecks gebräuchlich wurde]
Es ist aber
\[\cos c = \frac{1}{2} \left(e^{\sqrt{-1}} + e^{-e^{\sqrt{-1}}} \right) \]
und daher*)
\[c = \frac{1}{\sqrt{-1}} \log \cotang \frac{1}{2} \beta. \]

Es sei zum Beispiel \(\beta = 90^\circ \), dann ist
\[\cot \frac{1}{2} \beta = 1 \] und \(c = 0; \)
in der That muß die Linie \(C \) verschwinden, wenn sie auf \(BC \) und auf \(AB \) senkrecht stehen soll.
Es sei \(\beta = 0 \), dann ist \(C = \infty \), denn das Lot \(AF \) wird unendlich grofs.
Setzt man \(\beta = 45^\circ \) so wird
\[C = R \log (1 + \sqrt{2}). \]
Diese Linie \(FG \) haben wir den Parameter genannt, da von ihr das ganze geometrische System abhängt**). Wenn also \(P \) der Parameter ist, so ist die Basis:
\[R = \frac{P}{\log (1 + \sqrt{2})}. \]
Umgekehrt ist:
\[\cotang \frac{1}{2} \beta = e^{\sqrt{-1}}, \]
und wenn man \(e = -\sqrt{-1} \) setzt, \(\cotang \frac{1}{2} \beta = e \) und \(C = R \). Die Basis \(R \), oder besser \(R \sqrt{-1} \), hat man sich übrigens im Mittelpunkte \(x \) des grössten Dreiecks \(ABC \) (Fig. II. [S. 278]) senkrecht zu dessen Ebene oder zu der im Punkte \(x \) berührenden Ebene vorzustellen.

*) [Es ist (vergleiche die erste Anmerkung auf Seite 272):
\[c = \sqrt{-1} \log (\cos c - \cos^2 c - 1), \]
woraus für
\[\cos c = \frac{1}{\sin \beta} \]
der angegebene Wert von \(c \) hervorgeht. Mithin ist:
\[C = R \log \cotang \frac{1}{2} \beta. \]

**) [Taurinus bezieht sich hier auf seine Theorie der Parallellinien von 1825, S. 101, bei uns S. 265.]
In gleicher Weise ist jede Linie, zum Beispiel HJ (Fig. I.), welche die beiden Seiten $[AC$ und $BC]$ des größten Dreiecks unter den Winkeln $CHJ = \alpha$ und $CJH = \beta$ schneidet, gleich:

$$R \log \cot \frac{1}{2} \alpha \cot \frac{1}{2} \beta.$$

Diese Formel ist für den Beweis des elften Euklidischen Axioms von Wichtigkeit. Es mögen nämlich zwei Linien mit einer dritten sie schneidenden A auf derselben Seite der letzteren die Winkel α und β bilden. Nun hat man, wenn $\alpha + \beta = 180^0$ ist:

$$\log \cot \frac{1}{2} \alpha \cdot \cot \frac{1}{2} \beta = 0,$$

sollten also die Linien einander schneiden, so müßte $A = 0$ sein, und zwar bei beliebiger Größe der Konstanten R. Mithin schneiden die Linien einander nicht, auch nicht in der ebenen oder Euklidschen Geometrie; wenn nämlich $R = \infty$ ist, geht die logarithmisch - sphärische Geometrie in die Euklidsche über.

Ist aber $\alpha + \beta < 180^0$, so wird

$$\cot \frac{1}{2} \alpha \cdot \cot \frac{1}{2} \beta > 1$$

und daher

$$A = R \log (\cot \frac{1}{2} \alpha \cdot \cot \frac{1}{2} \beta)$$

um so größer, je größer die Constante R ist. Mithin schneiden die Linien einander, wenn die schneidende kleiner als

$$R \log \cot \frac{1}{2} \alpha \cdot \cot \frac{1}{2} \beta$$

ist, und in der Euklidschen Geometrie, wenn sie beliebig groß ist.

Ist dagegen $\alpha + \beta > 180^0$, so wird der Logarithmus negativ, und die Linien treffen auf der andern Seite zusammen.

Auch die Hypotenuse $[A]$ und die andre*) Kathete $[B]$ eines rechtwinkligen Dreiecks, bei dem ein Winkel gleich Null ist, findet man aus der Formel

$$\cos a = \frac{\cos \alpha + \cos \beta \cdot \cos \gamma}{\sin \beta \cdot \sin \gamma},$$

*) [Die Kathete, die dem verschwindenden Winkel gegenüberliegt, ist ja schon in Nr. 1 des Anhangs bestimmt.]
indem man $\gamma = 0$ und $\alpha = 90^0$ setzt. Es wird nämlich wegen

$$a = \frac{A}{R\sqrt{-1}}$$

und wegen $\alpha = 90^0$] die Hypotenuse:

$$A = R \log \left(\cot \beta \cot \gamma + \sqrt{\cot^2 \beta \cot^2 \gamma - 1} \right),$$

oder, da $\cot \gamma = \infty$ sein soll:

$$= R \log (2 \infty \cot \beta) = R \left(\log 2 + \log \infty + \log \cot \beta \right).$$

Ebenso wird die andre Kathete

$$B = R \left(\log 2 + \log \cos \beta + \log \infty \right),$$

und mithin der Unterschied zwischen Hypotenuse und Kathete gleich:

$$- R \log \sin \beta \).$$

Wenn daher $\beta = 90^0$ ist, so verschwindet der Unterschied, und die Hypotenuse wird ebenso wie die andre Kathete gleich Null; demnach wird eine Linie, die auf zwei von den Seiten des grössten Dreiecks senkrecht steht, in das Ende dieser Seiten fallen, die freilich unendlich sind.

Setzt man $\beta = 45^0$, so wird der Unterschied zwischen der Hypotenuse A und der Kathete B gleich $R \frac{1}{2} \log 2$, und, wenn $\beta = 0$ ist, wird der Unterschied gleich ∞.

Aus solchen Unterschieden kann man auch die Linien finden, die von zwei Loten abgeschnitten werden**).

*) [Das Ergebnis ist richtig. Um es in aller Strenge herzuleiten, hat man in den Formeln:

$$A = R \log \left(\cot \beta \cot \gamma + \sqrt{\cot^2 \beta \cot^2 \gamma - 1} \right)$$

$$B = R \log \left(\frac{\cos \beta}{\sin \gamma} + \sqrt{\frac{\cos^2 \beta}{\sin^2 \gamma} - 1} \right)$$

den Winkel γ als sehr klein anzunehmen und $A - B$ nach Potenzen von γ zu entwickeln. Dann wird

$$A - B = - R \log \sin \beta + (\gamma),$$

wo (γ) für $\gamma = 0$ verschwindet.]

***) [Wahrscheinlich hat Taurinus hier Folgendes gemeint: Werden von zwei Punkten D und D' der Seite AB des grössten Dreiecks ABC die Lote DE und $D'E'$ auf die Seite BC gefällt, so entstehen zwei rechtwinklige Dreiecke BDE und $BE'D'$, die beide in B den Winkel Null haben. Die beiden Lote schneiden also von AB eine Linie $D'D'$ ab, die gleich dem Unterschiede der beiden Hypotenuser BD' und BD, also gleich

$$R \log \frac{\cot BD'E'}{\cot BD'E},$$

ist. Ebenso ist

$$R \log \frac{\cos BD'E'}{\cos BD'E},$$

der Ausdruck für die Länge der Linie EE'. Von dieser Formel wird später, am Ende der Seite 72 des Originals (hier S. 280), Gebrauch gemacht.]
2. Man soll die Seiten und die Winkel des gleichseitigen Dreiecks finden, das innerhalb des größten Dreiecks so gezeichnet ist, daß seine Ecken auf dessen Seiten liegen.

In dem größten Dreieck ABC (Fig. II.) seien AD, BE, CF die Lote, die einander in dem Mittelpunkte x des Dreiecks schneiden. Man ziehe FE, FD, ED, sodann das gleichseitige Dreieck FED entsteht. Da für jedes gleichseitige Dreieck die Formel gilt:

$$\cos \alpha = \frac{\cos a}{1 + \cos a}$$

und da der Winkel EDC gleich $90^\circ - \frac{1}{2} \alpha = \arccos (\sin \frac{1}{2} \alpha)$ ist, so wird*)

$$\cos \alpha = \frac{3 - \cos \alpha}{1 + \cos \alpha} = \frac{3 + 2 \cos \alpha}{1 + 2 \cos \alpha},$$

und aus dieser Gleichung ergibt sich die Seite des Dreiecks

$$A = R \log \frac{\sqrt{5} + 3}{2};$$

ferner ist $\cos \alpha = \frac{3}{2}$ und $\cos \alpha = 0,6$.

Der Inhalt des größten Dreiecks sei gleich \mathcal{M}. Wir haben schon bewiesen, daß sich die Flächeninhalte von Dreiecken wie die Unterschiede ihrer Winkelsummen von zwei Rechten verhalten. Nun ist der

*) [Das Dreieck EDC hat nämlich die Winkel $0^\circ, 90^\circ - \frac{\alpha}{2}, 90^\circ - \frac{\alpha}{2}$, und es ist $DE = A$. Folglich hat man nach der allgemeinen Formel S. 274, Z. 6 v. u.

$$\cos \alpha = \frac{1 + \sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2}} \cdot \frac{3 - \cos \alpha}{1 + \cos \alpha}.$$
Unterschied, wenn die Seiten \(a, b, c\) gegeben sind\(^*)\), deren halbe Summe gleich \(S\) sei, gleich:

\[
2 \arcsin \sqrt{\frac{\sin \frac{S}{2} \cdot \sin \frac{S-a}{2} \cdot \sin \frac{S-b}{2} \cdot \sin \frac{S-c}{2}}{\sqrt{1-R}}}
\]

und diese Formel hat man, um den Inhalt zu finden, mit \(M\) zu multiplizieren und durch \(\pi\) zu dividieren.

Wenn aber das Dreieck gleichseitig ist und sehr kleine Seiten hat, so sind die Winkel ungefähr gleich zwei Rechten, und der Inhalt des Dreiecks ist gleich dem Inhalte des ebenen Dreiecks, das von denselben Seiten gebildet wird. Nun ist:

\[
\sin \frac{S}{2} \sqrt{1-R} \approx \frac{1}{2}\left(\frac{S}{R} - \frac{S}{R^2}\right)
\]

und so weiter, man erkennt daher leicht, dass der Inhalt des Dreiecks dem Werte:

\[
\frac{a^2\sqrt{3}}{4\pi} \cdot \frac{M}{R^2}
\]

sehr nahe kommt\(^**\)), der seinerseits dem Werte [für das ebene Dreieck]:

\[
\frac{a^2\sqrt{3}}{4}
\]

gleich sein muss. Mithin ist:

\[
M = \pi R^2,
\]

oder, da der Parameter

\[
P = R \log \left(1 + \sqrt{2}\right)
\]

ist:

\[
M = \frac{\pi P^2}{(\log (1 + \sqrt{2}))^2}.
\]

Zu derselben Gleichung kann man auch auf folgende Art unmittelbar gelangen:

Es mögen \(AB, CD\) (Fig. III.) zwei Lote sein, die man in einem größten Dreieck von einer Seite auf die andre gefällt hat, und zwar seien sie so klein, dass der Winkel \(ECD\) einem Rechten nahe kommt. Alsdann darf man den Flächenraum \(ABCD\) dem Inhalt der ebenen

\(^*\) [Folgerichtig müssten die Seiten \(A, B, C\) genannt werden.]

\(^**\) [Ist \(a = b = c\) und \(a\) sehr klein, so darf man in der Formel für den Dreiecksinhalt die Cosinus durch 1, die Sinus durch ihre Bogen ersetzen. Dann erhält man

\[
\frac{2M}{\pi} \cdot \frac{1}{2} \sqrt{\frac{3}{2}} \cdot \left(\frac{1}{2} \frac{a}{R} \right)^3 = \frac{a^2\sqrt{3}}{4\pi} \frac{M}{R^2}
\]

als Wert für den Inhalt des gleichseitigen Dreiecks.]
Figur gleich setzen, die von denselben Linien eingeschlossen wird, und dasselbe gilt für den ganzen Raum zwischen den unendlichen Linien CE und DE, die sich auf der Seite von E einander immer mehr nähern. Ist aber BD sehr klein, so ist es gleich

$$R \cdot d \log \cos ECD$$

oder, wenn ECD mit φ bezeichnet wird, gleich*)

$$- R \frac{\sin \varphi}{\cos \varphi} \, d\varphi.$$

Ferner ist**)

$$CD = R \log \frac{\cos \varphi + 1}{\sin \varphi}.$$

Folglich ist der ganze Flächeninhalt bis zum Lote CD gleich:

$$S = R^2 \int \frac{\sin \varphi}{\cos \varphi} \log \frac{\cos \varphi + 1}{\sin \varphi} \, d\varphi.$$

Solange nun φ beinahe ein Rechter ist oder sin φ nahezu gleich Eins, ist der Logarithmus gleich

$$\log (\cos \varphi + 1)$$

und, da $\cos \varphi = \frac{1}{\infty}$ ist, gleich

$$\cos \varphi,$$

mithin die ganze Differentialfunktion gleich $- R^2 d\varphi$ oder der ganze Inhalt gleich

$$(90^\circ - \varphi) R^2,$$

und das größte Dreieck gleich***)

$$\pi R^2.$$

Wir denken uns ein Dreieck, das von zwei Halbmessern a und von der Sehne b des zwischen beiden liegenden Winkels φ gebildet wird. Nach der Formel:

*) [Setzt man in der zweiten Anmerkung auf S. 277

$$BD'E' = \varphi + d\varphi, \quad BDE = \varphi,$$

so erhält man für die gesuchte Linie:

$$R \log \frac{\cos (\varphi + d\varphi)}{\cos \varphi} = R \cdot d \log \cos \varphi.]$$

***) [In Nr. 1 des Anhangs war ja gefunden: $C = R \log \cot \frac{1}{2} \beta.$]

****) [Da das Dreieck ECD den Flächeninhalt $(90^\circ - \varphi) R^2$ besitzt, während seine Winkelsumme $90^\circ + \varphi$ beträgt, so gilt die Gleichung:

$$(90^\circ - \varphi) R^2: M = (90^\circ - \varphi): \pi,$$

und es wird daher, wie im Texte richtig angegeben ist: $M = \pi R^2.$]
\[
\cos \left(\frac{b}{R\sqrt{1 - 1}} \right) = \sin^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) \cos \varphi + \cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right)
\]

wird:

\[
\cos \left(\frac{b}{R\sqrt{1 - 1}} \right) = (1 - \cos \varphi) \cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) + \cos \varphi.
\]

Wenn daher der Winkel \(\varphi \) sehr klein ist, und man für \(\cos \varphi \):

\[
1 - \frac{1}{2} \sin^2 \varphi
\]

setzt, so ist:

\[
\frac{2b}{e^R + 1} = \frac{1}{2} \sin^2 \varphi \left(\cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) - 1 \right) + 1
\]

und:

\[
b = R \log \left(\sqrt{1 \sin^4 \varphi \left(\cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) - 1 \right)^2 + \sin^2 \varphi \left(\cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) - 1 \right)} + 1 \right)
\]

Man setze \(\sin \varphi \) gleich seinem Bogen, gleich \(\frac{\pi}{n} \), wo \(n = \infty \). Vernachlässigt man sodann die Glieder, die \(\sin^2 \varphi \) enthalten, so wird der Logarithmus gleich:

\[
\log \left(\frac{\pi}{n} \sqrt{\cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) - 1 + 1} \right)
\]

oder, da \(n = \infty \) ist, gleich

\[
\frac{\pi}{n} \sqrt{\cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) - 1}.
\]

Mithin wird der ganze Umfang gleich \(*) \):

\[
2n R \frac{\pi}{n} \sqrt{\cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) - 1} = 2 \pi R \sqrt{\cos^2 \left(\frac{a}{R\sqrt{1 - 1}} \right) - 1}.
\]

Man setze zum Beispiel \(\cos \left(\frac{a}{R\sqrt{1 - 1}} \right) = \sqrt{2} \) oder \(a = R \log (1 + \sqrt{2}) \),

\(*) \) [Setzt man in diesem Ausdruck an die Stelle von \(\cos \left(\frac{a}{R\sqrt{1 - 1}} \right) \) seinen Wert

\[
\frac{1}{2} \left(e^R + e^{-\frac{a}{R}} \right),
\]

so erhält man für den Umfang genau den Ausdruck:

\[
\pi R \left(e^R - e^{-\frac{a}{R}} \right),
\]

den Gaußs 1831 in dem einen seiner Briefe an Schumacher angegeben hat (s. S. 234).]
so ist der Umfang gleich $2R\pi$. Oder, wenn
$$\cos \left(\frac{a}{R\sqrt{1-d}} \right) = 1 + d,$$
wo d sehr klein ist, so ist der Umfang gleich $2\pi R\sqrt{2d}$, und der Halbmesser $[a]$ gleich
$$R \log \left(1 + d + \sqrt{(1 + d)^2 - 1} \right) = R\sqrt{2d}.$$
Bei sehr kleinen Kreisen verhält sich daher der Umfang zum Halbmesser ebenso, wie in der Euklidischen Geometrie. Ist dagegen
$$\cos \left(\frac{a}{R\sqrt{1-d}} \right) = \infty,$$
so ist der Umfang im Verhältnis zum Halbmesser unendlich groß.

Auf ähnliche Weise findet man den Inhalt des Kreises, wenn der Halbmesser a gegeben ist. Er ist nämlich gleich $^8)$:
$$2\pi \left(\cos \left(\frac{a}{R\sqrt{1-d}} \right) - 1 \right) R^2$$
oder, da
$$a = R \log \left(\cos \left(\frac{a}{R\sqrt{1-d}} \right) + \sqrt{\cos^2 \left(\frac{a}{R\sqrt{1-d}} \right) - 1} \right)$$
ist, gleich
$$2\pi \left(\cos \left(\frac{a}{R\sqrt{1-d}} \right) - 1 \right) a^2 \left[\log \left(\cos \left(\frac{a}{R\sqrt{1-d}} \right) + \sqrt{\cos^2 \left(\frac{a}{R\sqrt{1-d}} \right) - 1} \right) \right]^2.$$

Ist zum Beispiel $\cos \left(\frac{a}{R\sqrt{1-d}} \right) = \sqrt{2}$, so ist der Inhalt des Kreises gleich:
$$\frac{2\pi (\sqrt{2} - 1) a^2}{\log (1 + \sqrt{2})^2},$$
während der Umfang desselben Kreises gleich:
$$\frac{2\pi a}{\log (1 + \sqrt{2})}$$
ist.

Die Oberfläche$^8)$ der Kugel findet man gleich:

$^8)$ [In seiner Géométrie imaginaire (Crellesches Journal Bd. 17, S. 307 und 309, Geometrische Werke Bd. 2, S. 596 und 598) findet Lobatschefskij für den Flächeninhalt des Kreises vom Halbmesser r den Wert
$$\pi (e^{\frac{r}{2}} - e^{-\frac{r}{2}})^2$$
und für Oberfläche und Rauminhalt der Kugel vom Halbmesser r die Werte:
$$\pi (e^r - e^{-r})^2$$ und $\frac{1}{2} \pi (e^{2r} - e^{-2r} - 4r)$;

die von Taurinus anggebenen Ausdrücke gehen für $R = 1$, $a = r$ in die Lobatschefskijschen über.]
Stücke aus den Geometriae prima elementa. 1826.

\[4\pi \left(\cos^2 \left(\frac{a}{R\sqrt{1-r}} \right) - 1 \right) R^2 \]

und ihren Rauminhalt gleich:

\[4\pi R^3 \cdot \frac{1}{2} \left(\sqrt{\cos^2 \left(\frac{a}{R\sqrt{1-r}} \right) - 1} \cdot \cos \left(\frac{a}{R\sqrt{1-r}} \right) - \frac{a}{R} \right); \]

und ebenso beweist man mit leichter Mühe noch vieles Andre.

Zum Schluß sei noch Folgendes bemerkt: In der logarithmisch-sphärischen Geometrie sind zwar die Sinus alle unmöglich, aber die trigonometrischen Formeln enthalten trotzdem nichts Unmöglicheres, da die Sinus immer in solchen Verbindungen vorkommen, daß ihr Produkt möglich wird. Das ist auch gar nicht wunderbar, weil alle Verbindungen der trigonometrischen Linien aus der Ähnlichkeit von Dreiecken hergeleitet werden, und daher Alles, was von den wahren trigonometrischen Linien bewiesen wird, ebenso auch von den imaginären gilt.
Abweichungen vom Urtext.

S. 271, Z. 17, 10 v. u. (S. 65, Z. 9, 4 v. u.) Im Urtext steht: ≥ -1 statt: < -1. Das wiederholt sich auch im Druckfehlerverzeichnis S. 76, Z. 6 v. u., bei uns S. 272, Z. 5, 4 v. u.

S. 271, Z. 11 v. u. (S. 65, Z. 6 v. u.). $d\alpha \cos \alpha \frac{1 + \cos \alpha}{\cos \alpha}$ statt $d\alpha \cos \alpha \frac{\cos \alpha}{1 + \cos \alpha}$.

S. 271, Z. 7 v. u. (S. 65, Z. 2 v. u.) $y < \frac{1}{2}$ statt: $y > \frac{1}{2}$, was übrigens schon Taurinus selbst im Druckfehlerverzeichnis (S. 76, Z. 8 v. u.) verbessert hat.

S. 272, Z. 6, 8 v. o. (S. 66, Z. 7, 8 v. o.). Taurinus hat diese Formeln offenbar aus der vorher benutzten richtigen Gleichung:

$$\arccos y = \frac{1}{2\sqrt{-1}} \log \frac{y - \sqrt{y^2 - 1}}{y + \sqrt{y^2 - 1}}$$

durch die Substitution: $y = \cos (\alpha\sqrt{-1})$ abgeleitet; bei den so entstehenden Formeln muß aber:

$$\sqrt{\cos^2 (\alpha\sqrt{-1}) - 1} = -\sqrt{-1} \sin (\alpha\sqrt{-1})$$

gesetzt werden, was unbequem ist und zu Verwechselungen Anlaß gibt. Wir haben deshalb in beiden Formeln der rechten Seite das entgegengesetzte Vorzeichen erteilt, als bei Taurinus.

S. 272, Z. 5—1 v. u. (S. 76, Z. 7—1 v. u.). Die Anmerkung lautet im Urtext folgendermaßen:

"pag. 66. notandum erat, si cosinus feren negativi, ≥ -1, formulam generalem p. 65. converti eaque etiam exprimi latus per angulos, negative tamen; quod eum sensum habere videtur, ut anguli (qui hic sunt $> 120^\circ$) non sint anguli trianguli, sed eorum complementa ad duos rectos."

S. 274, Z. 18—16 v. u. (S. 69, Z. 1—4 v. o.). Die Überschrift lautet im Urtext: "Additamentum | solutiones problematum geometriae logarithmo- | sphaericae insigniorum continens. | (Cum adjecta tabula.)"

S. 275, Z. 2—4 v. o. (S. 69, Z. 15 v. o.). Im Urtext steht: "sed $\cos c = e^c + e^{-c}$,

itaque $c = \log \cotan \cdot \frac{1}{4} \beta^4$, während nachher für $\beta = 45^\circ$ richtig:

$C = R \log \left(1 + \sqrt{2}\right)$ angegeben ist.

S. 275, Z. 14, 13 v. u. (S. 70, Z. 1 v. o.). "Vice versa cotang. $\frac{1}{4} \beta$ est e^c et posito $c = 1^c$."

F. A. Taurinus.
Abweichungen vom Urtext der Elementa.

S. 276, Z. 4 v. o. (S. 70, Z. 8 v. o.). Der Faktor \(R \) fehlt im Urtext, während er nachher, bei der Betrachtung des Falles \(\alpha + \beta < 180^\circ \), angegeben ist.

S. 276, Z. 6, 5 v. u. (S. 70, Z. 5, 4 v. u.) „Hypotenusae quoque et alteri catheti trianguli rectani ... inveniuntur.“

S. 277, Z. 10 v. o. (S. 71, Z. 5 v. o.). Der Faktor \(R \) fehlt.

S. 278, Z. 14, 15 v. o. (S. 71, Z. 7 v. u.). „angulus \(\text{EDC} = 90^\circ - \frac{1}{2} \alpha, = \text{arc. sin.} \frac{1}{2} \alpha^\circ."

S. 279, Z. 3 v. o. (S. 72, Z. 5 v. o.). Im Urtext fehlt bei \(S, a, b, c \) der Faktor

\[\frac{1}{R\sqrt{-1}} \]

den wir hier wie im Folgenden überall hinzugefügt haben.

Man könnte allerdings annehmen, daß Taurinus wie früher auch hier unter \(a, b, c \) die durch \(R\sqrt{-1} \) dividierten Seiten versteht, aber selbst dann hätte eine ganze Anzahl von Formeln geändert werden müssen. Taurinus hat offenbar den ganzen Anhang sehr schnell geschrieben und sich dabei gewisser Abkürzungen bedient, wie man das in Aufzeichnungen für den eignen Gebrauch zu thun pflegt; zum Beispiel hat es ganz den Anschein, daß er die Zeichen \(\cos c \) und \(\sin c \) in ähnlicher Bedeutung benutzt, wie man heutzutage den hyperbolischen \(\cos \) und \(\sin \) benutzt. Da er immer den richtigen Weg angibt und auch zu richtigen Endergebnissen gelangt, so unterliegt es keinem Zweifel, daß die Ungenauigkeiten des Urtextes durch das Gesagte zur Genüge erklärt sind. Wir haben uns bestrebt, alle diese Ungenauigkeiten zu beseitigen und den Text unmittelbar verständlich zu machen, werden aber im Folgenden, wie immer, von jeder, auch noch so kleinen Abweichung vom Urtext Rechenschaft geben.

S. 279, Z. 9, 10 v. o. (S. 72, Z. 11, 12 v. o.). „Et cum sit sin. \(S = e^S - e^{-5} \) etc.“

S. 279, Z. 13 v. o. (S. 72, Z. 13 v. o.). Im Nenner fehlt der Faktor \(R^2 \), während nachher richtig: \(M = \pi R^2 \) gefunden wird.

S. 280, Z. 5, 8, 10 v. o. (S. 72, Z. 3, 2, 2 v. u.). Bei allen drei Formeln fehlt der Faktor \(R \).

S. 280, Z. 12, 18 v. o. (S. 73, Z. 1, 4 v. o.). Bei den Differentiausdrücken fehlt beide Male der Faktor \(R^2 \), während er in der endgültigen Formel für den Flächeninhalt: \((90^\circ - q)R^2 \) angegeben ist.

S. 281, Z. 1, 3 v. o. (S. 73, Z. 11, 12 v. o.). Bei \(a \) und \(b \) fehlt wiederum der Faktor

\[\frac{1}{R\sqrt{-1}} \]

S. 281, Z. 7, 9, 10, 14, 16, 18 v. o. (S. 73, Z. 11, 10, 9, 6, 5, 4 v. u.). Dem Vorhergehenden entsprechend stehen im Urtext \(a \) und \(b \) statt:

\[\frac{a}{R\sqrt{-1}} \text{ und } \frac{b}{R}. \]

S. 281, Z. 8 v. u. (S. 73, Z. 4 v. u.). In beiden Ausdrücken fehlt der Faktor \(R \).

S. 281, Z. 7 v. u. und S. 282, Z. 1, 2 v. o. (S. 73, Z. 3, 2, 1 v. u.). „Donatur v. g. \(\cos. a = \sqrt{2}, \) vel \(a = \log. \left(1 + \sqrt{2}\right), \) peripheria erit = \(R\pi; \) vel si \(\cos. a \) sit. \(= 1 + d, \) ubi \(d \) exiguum sit, circumferentia erit = \(\sqrt{2}d^\circ.\)"
S. 282, Z. 4 v. o. (S. 74, Z. 1, 2 v. o.) fehlt in beiden Ausdrücken der Faktor R.
S. 282, Z. 7, 11, 13, 15, 16 v. u. (S. 74, Z. 3, 7, 8, 9, 10 v. o.). Überall $\cos \alpha$ statt $\cos \left(\frac{\alpha}{R \sqrt{1 - 1}} \right)$.
S. 283, Z. 1, 3 v. o. (S. 74, Z. 12, 11 v. u.). $\cos \alpha$ und α statt:
$$\cos \left(\frac{\alpha}{R \sqrt{1 - 1}} \right) \text{ und } \frac{\alpha}{R}.$$
Die in runde Klammern eingeschlossenen Seitenzahlen beziehen sich auf die Originalausgabe der Geometriae prima elementa, Köln 1826.
VERZEICHNIS

VON

SCHRIFTEN ÜBER DIE PARALLELENTHEORIE,

DIE BIS ZUM JAHRE 1837 ERSCHIENEN SIND.
Bei der Aufstellung des folgenden Verzeichnisses von Schriften über die Parallelentheorie haben wir eine Reihe wertvoller Vorarbeiten benutzen können, die am Ende dieser Einleitung in chronologischer Reihenfolge aufgezählt sind.

Obgleich die Anzahl der Schriften unser Verzeichnisses bis auf 253 angewachsen ist, können wir keinen Anspruch auf unbedingte Vollständigkeit machen. Wir hoffen indes, nichts Wesentliches übersehen zu haben. Damit man erkennt, was wir als wesentlich ansehen, wollen wir die Grundsätze darlegen, die uns bei der Aufstellung des Verzeichnisses geleitet haben.

Eine große Schwierigkeit lag darin, daß es unmöglich ist, eine scharfe Grenze zwischen den Schriften zu ziehen, welche die Parallelenentheorie im engern Sinne und denjenigen, welche die Grundlagen der Geometrie überhaupt behandeln. Von der überaus großen Zahl der Euklid-Kommentare haben wir daher nur die aufgenommen, in denen die Parallelentheorie ausführlicher behandelt wird. Dasselbe gilt von den ebenso zahlreichen Lehrbüchern der elementaren Geometrie. Wir erkennen nicht, daß die Entscheidung über die Aufnahme oft

Hinter dem chronologisch geordneten Verzeichnisse der Schriften über die Parallelentheorie findet man die Autoren, so weit das möglich war mit Angabe ihrer Lebenszeit, in alphabetischer Folge angegeben.

Zum Schlusse richten wir an die Leser unseres Buches die Bitte, Lücken oder Ungenauigkeiten, die sie in unserem Verzeichnis bemerken, der Verlagsbuchhandlung mitteilen zu wollen; jede, auch die kleinste Verbesserung werden wir mit Dank entgegennehmen.
Bibliographische Quellen in chronologischer Folge.

Hinter jeder dieser Quellenschriften ist in kleiner Schrift das Stichwort angegeben, durch das sie im Folgenden bezeichnet wird.

Klügel, G. S., Conatuum praecepiuorum theoriam parallelarum demonstrandi recensio. Dissertation. Göttingen 1763. 4°.

Murhardt, F. W. G., Litteratur der mathematischen Wissenschaften. Band 1, Leipzig 1797, Band 2, 1798. 8°.

Voit, P. Chr., Percursio conatuum demonstrandi parallelarum theoriam de iisque judicium. Dissertation. Göttingen 1802. 8°.

Müller, J. W., Repertorium der mathematischen Literatur. Augsburg und Leipzig. 3 Teile. [1822 bis 1825]. 8°. Müller, Repertorium.

Rogg, J., Handbuch der mathematischen Literatur, Erste Abteilung. Tübingen 1830. 8°.

Hill, C. J., Conatuum theorium linearum parallelarum stabiliendi praecepiuorum brevis recensio. Pars 1. Lund 1835. 4°.

Bibliographische Quellen in chronologischer Folge.

1482.
Euclid, Preclarissimus liber elementorum Euclidis etc. Venedig (Erhard Ratdolt). fol. *(Erster Druck.)*

1533.
Proklos, Εὐκλείδου στοιχείων βιβλ. ἑκ τῶν Θεών συνοψίων. Εἰς τὸν αὐτὸν τὸ πρῶτον ἐξηγημέτων Πρόκλου βιβλ. δ'. Basel (Joh. Herwag). fol. *(Editio princeps.)*

1557.

1560.
Barozzi, Francesco, Procli Diadochi Lycii philosophi platonici et mathematici probatissimi in primum Euclidis Elementorum librum commentariorum ad universam mathematicam disciplinam principium eruditionis tradentium libri IIII summa opera a Francisco Barocio Patritio Veneto expurgati Scholiis et Figuris aucti primum iam romanae linguæ venustate donati et nunc recens editi. Padua. fol.

1569.

um 1570.
Belli, Silvio, Gli Elementi Geometrici.
In seinem Trattato della proportione et proportionalità communi passioni del quarto libri tre, Venedig 1573 sagt Belli (Blatt 5), daß er am Ende seiner Elementi Geometrici einen Beweis der fünften Forderung gegeben habe. Diese Elemente werden jedoch weder bei Poggendorff noch bei Riccardi angeführt, noch sind sie auf den uns zugänglichen Bibliotheken vorhanden.

1574.
Verzeichnis von Schriften

1587.
*Patricio, Francesco, Della nuova geometria libri XV. Ferrara. 4°. Riccardi, Biblioteca 2, 252.

1594.

1603.

1604.

†Kepler, Johann, Ad Vitellionem paralipomena, quibus astronomiae pars optica traditur. Frankfurt. 4°. (*Opera omnia ed. Frisch. Vol. II. S. 185—188.) Hagen, Synopsis, 2, 7.

Oliver of Bury, Thomas, De rectarum linearum parallelismo et concursu doctrina geometrica. Wallis, Opera, t. II, S. 669.

um 1613.
Valerio, Luca, Trattato sulla quinta dimanda del primo d'Euclide. Von Valerio in einem Briefe an Galilei vom 31. August 1613 erwähnt: La deduzione si estende per molte proposizioni e passi difficili, ma però con facilità e chiarezza dimostrati. (Le Opere di Galileo Galilei, prima edizione completa, t. VIII. Firenze 1851. S. 283.) Ein solcher Trattato wird jedoch weder bei Poggendorff noch bei Riccardi angeführt, noch ist er auf den uns zugänglichen Bibliotheken vorhanden.

1621.

1637.

1639.
über die Parallelentheorie, bis zum Jahre 1837.

1641.

1654.
†Tacquet, Andrea, Elementa geometricae planae et solidae, quibus accedunt selecta ex Archimede theoremata. Antwerpen. 4°. (*Amsterdam 1701.)

1655.

1656.
†Hobbes, Thomas, Six lessons to the professors of the mathematics, one of geometry, the other of astronomy, in the chairs set up by the noble and learned Sir Henry Savile, in the university of Oxford. London. (*The english Works of Thomas Hobbes, edited by Sir William Molesworth, Vol. VII. London 1845. 8°. S. 205—206.)

1658.
*Borelli, Jo. Alphons, Euclidis restitutus sive prisca geometricae elementa brevius et facilius contexta. Pisa. 4°.

1667.
†[Arnauld, Antoine], Nouveaux Éléments de Géométrie. Paris. 4°. (*Haag, 1690. 8°).

1671.
*Guarini, Guarino, Euclides adauctus et methodicus. Turin. fol.

1680.

1686.
1693.

1710.

1715.

1731.

1733.

Saccheri, Girolamo, Euclides ab omni naevo vindicatus; sive conatus geometricus quo stabiliuntur prima ipsa geometriae principia. Mailand. 4°. *Klügel.*

1734.

1739.

†*Segner, Johann Andreas*, Elementa arithmeticae geometricae et calculi geometrici. Göttingen. 8°. (*Halle 1756. 8°.*)

1741.

1744.

über die Parallelentheorie, bis zum Jahre 1837.

1746.
Poggendorff 1, 1338. Vom erwähnt die [vierte] *Ausgabe von 1755.

1747.
*Segner, Johann Andreas, Deutliche und vollständige Vorlesungen über die Rechenkunst und Geometrie. Lemgo. 4°.

1750.

1751.
Hanke, F. G., Principia theoriae de infinito mathematico et demonstrationem possibilitatis parallelarum publice eruditorum examini subjiciunt Fredericus Gottlob Hanke et Benjamin Gottlob Binder. Breslau. 4°. 19 S.

1752.
†Boscovich, Ruggiero Giuseppe, Elementorum universae mathe- seos ad usum studiosae juventutis Tomus I. Rom. 8. (Die König- liche Bibliothek zu Berlin besitzt Ausgaben von *1754 und *1759.)

*Kraft, G. W., De numero pari, rectis parallelis et principio actionis minimae. Tübingen.
Poggendorff 1, 1368 hat 1766.

1753.
*Kraft, Georg Wolfgang, Institutiones geometriæ sublimioris. Tübingen. 4°.

1756.
†Simson, Robert, The Elements of Euclid, viz. The first six books, together with the eleventh and twelfth. In this Edition Errors by which Theon, or others, have long ago vitiated these books are corrected and some of Euclid's Demonstrations are restored. Glasgow. 4°. (*2. edition, Glasgow 1762. 8°.)
1758.

1759.

1760.

1761.
Hagen, Johann Jacob von, Dissertatio mathematica sistens linearum parallelarum proprietates nova ratione demonstratas, quam publicae eruditorum disquisitioni subjiciunt Fredericus Daniel Behn et respondens Johann Jacob de Hagen. Jena. 4°. 28 S. Klügel.

1763.

1770.
*Scherffer, Karl, Institutionum geometricorum pars prior sive geometria elementaris. Wien. 4°.

1771.
über die Parallelen-theorie, bis zum Jahre 1837.

1772.

1775.

Simson, Robert, The elements of Euclid etc. To this fifth Edition also annexed Elements of plain and spherical trigonometry. Edinburg. 8°.

1778.

1780.

1781.

Austin, William, An examination of the first six books of Euclid's elements. London. Murhardt 2, 44.

Felkel, Anton, Neu eröffnetes Geheimniss der Parallellinien. Wien. 8°. 6 Bogen. 1 Tfl. Murhardt 2, 89.

1783.

1784.

Venturi, Giambattista, Memoria intorno alle linee parallele. (In seinem Lehrbuche: Proposizione di geometria piana.) Modena. 4°. Riccardi.

1786.

*Eichler, Caspar, De theoria parallelarum Schulziana. Dissertation Leipzig. 4°. 25 S. 4 Fig. Ersch. Hilt.

1787.

1788.

1789.

über die Parallelenentheorie, bis zum Jahre 1837.

Lindquist, Johann Hendrik, Dissertatio sistens theoriam linearum parallearum. Aboe. 16 S. 1 Tfl.

Voigt, Johann Heinrich, Dissertatio mathematica exhibens tentamen ex notione distincta et completa lineae rectae axiomatis XI Euclidis veritatem demonstrandi. Jena. 4°. 34 S. 1 Tfl.

1790.

Cagnazzi, Lucca, Memoria sulle curve parallele. Neapel.

*Schötteringk, M. W. von, Demonstratio theorematis parallelarum. Hamburg. 8°. 30 S.

*Swinden, Jan Hendrik van, Grundbeginsels der Meetkunde. Amsterdam. 8°.

1791.

*Lorenz, Johann Friedrich, Grundriss der reinen und angewandten Mathematik. Helmstedt. 8°. 2 Teile.

Voigt, Johann Heinrich, Die Grundlehren der reinen Mathematik. Jena. 8°. 2 Tfln.

1792.

*Ebert, Johann Jacob, Programma academicum de lineis rectis parallelis. Wittenberg. 4°. 14 S. 1 Tfl.

1793.

*Hauff, Johann Karl Friedrich, Programma academicum quo duas vexatissimas matheseos purae elementaris theorias enodare inque luce dudum desiderata collocare conatur. Marburg. 4°. 33 S.

1794.

Pagnini, Joseph Maria, Epistola in qua continentur castigationes ac supplementa libelli Parmae anno MDCCLXXXIII editi. Parma. 8°.

1795.

Mansion, Annales de la Société scientifique de Bruxelles, Année 1888/89. S. 57.

1796.

1797.

1798.

über die Parallelentheorie, bis zum Jahre 1837.

Schötteringk, M. W. von], Demonstratio theorematis parallelarum. Hamburg. 8°. 30 S.

1800.

1801.

Gumaelius, S., Dissertatio sistens novam theoriam linearum parallelarum. Lund.

1802.

1803.

Verzeichnis von Schriften

Kircher, Adolf, Nouvelle théorie des parallèles, avec un appendice contenant la manière de perfectionner la théorie des parallèles de A. M. Legendre. Paris. 8°. 64 S. 1 Taf.

Hoffmann, Critik. Wiederholt irrtümlich als Abhandlung von Legendre angeführt, zum Beispiel bei Poggendorff 1, 1807.

†Lacroix, Sylvester François, Élémens de Géométrie à l’usage de l’école centrale des quatre nations. Paris. (†Paris 1830. 8°)

Hofmann, Critik.

1804.

Bolzano, Bernhard, Betrachtungen über einige Gegenstände der Elementargeometrie. Prag. 8°. X u. 63 S.

Schweikart.

1805.

Riccardi.

1806.

Geldern, Jacob van, Handleiding tot de beschouwende werkdadige Meetkunde. Amsterdam. 4°.

Hessling 1818, S. XV.

1807.

Müller. Poggendorff 2, 876 hat 1808.
über die Parallelentheorie, bis zum Jahre 1837.

1808.

*Ouvrier, Carl Siegmund, Theorie der Parallelen, als Ankündigung eines neuen Versuches über das Erkenntnissvermögen. Leipzig. 8°. 55 S. 1 Tfl.

*Schwab, Johann Christian, Essai sur la situation pour servir de supplément aux principes de la géométrie. Stuttgart. 50 S. Riccardi.

1809.

Abreu, João Manuel de, Supplément à la traduction de la géométrie d'Euclide de Peyrard, publiée en 1804, et la géométrie de Legendre, suivi d'un essai sur la vraie théorie des parallèles. Paris et Bordeaux. 8°. 76 S. 1 Tfl.

1810.

Gelderu, Jacob van, Beginselen der Meetkunst. Amsterdam. 8°. Hestling 1818, S. XV.

1811.

*Neubig, Andreas, Vindiciae Euclidis. 2 Hefte. Erlangen. 8°.

1812.

1813.

Stäckel u. Engel, Parallelentheorie.
Verzeichnis von Schriften

Sohnke. Riccardi führt diese Abhandlung unter Hoffmann irrtümlich noch einmal an.

1814.

*Schwab, Johann Christian, Commentatio in primum elementorum Euclidis Librum, qua veritatem geometriae principiis ontologicis niti evincitur omnesque propositiones, axiomatum geometricorum loco habitae, demonstratur. Stuttgart. 8°. 61 S. Müller.

1815.

1816.

1817.

über die Parallellinen- und Parallellinien-Theorie, bis zum Jahre 1837.

*Ohm, Georg Simon, Grundlinien zu einer zweckmässigen Behandlung der Geometrie. Erlangen. 8. 91 S. 2 Tfl. 307

Wachter, Friedrich Ludwig, Demonstratio axiomatis geometrici in Euclideis undecimi. Danzig. 8. 15 S.

1818.

Exley, Thomas, The theory of parallel lines perfected, or the twelfth axiom of Euclids Elements demonstrated. London. 8. Riccardi.

[Hellwag, Christoph Friedrich], Euklids eiltert Grundsatz als Lehrsatz bewiesen. Hamburg. 4. 8 S. Müller, Sohake.

Rogg. S. 308.

1819.

Hauff, Johann Karl Friedrich, Nova rectarum parallelarum theoria. Gandae. 4.

1820.

Fräsch. Schuhke. 20*
Verzeichnis von Schriften

*Gerling, Christian Ludwig, Johann Friedrich Lorenz' Grundriss der reinen und angewandten Mathematik, neu herausgegeben von Ch. L. Gerling. Helmstedt. 8°. 2 Teile. (*Ausgabe von 1851.)*

Struve, K. L., Theorie der Parallellinien. Königsberg. 8°. 36 S. Müller.

1821.

1822.

Müller, Carl Reinhard, Theorie der Parallelen. Marburg. 4°. IV u. 40 S. 1 Tfl. Hill.

1823.

über die Parallelentheorie, bis zum Jahre 1837.

309

*Wahl, Friedrich Wilhelm Ludwig, Dissertatio mathematica, symbolas ad epicerin theoriarum parallelas spectantium continens. Particula 1. Insunt IV theoriae earumque censura. Jena. 4°. VIII u. 44 S. 1 Tfl.

1824.

Bensemann, Johann David, Dissertatio de undecimo axiomate elementorum Euclidis, pro facultate legendi. Halle a. S. 8°. 50 S. 1 Tfl. Sohnek.

*Jacobi, Carl Friedrich Andreas, De undecimo Euclidis axiomate judicium, cui accedunt paucà de trisectione anguli. Jena. 8°. 54 S. 1 Tfl. Hitt.

1825.

1826.

Müller, Johann Wolfgang, Neue Beiträge zu der Parallellentheorie, den Beweisen des Pythagoräischen Lehrrates und den Berechnungsarten der Pythagoräischen Zahlendreiecke. Augsburg und Leipzig. 8°. 71 S. 2 Tfl.

*Taurinus, Franz Adolph, Geometriae prima elementa. Köln 1826. 8°. 76 S. 2 Tfl. (Universitätsbibliothek in Bonn.)

1827.

1828.

1829.

†Lobatschefskij, Nikolaj Iwanowitsch, O natschalach geometrii (Über die Anfangsgründe der Geometrie). Kasaner Bote 1829 und 1830. (*Gesammelte geometrische Werke Bd. 1. S. 1—67.)
über die Parallelentheorie, bis zum Jahre 1837.

1830.

1831.

1832.

*Bolyai, Johann, Appendix scientiam spatii absolute veram exhibens: a veritate aut falsitate Axiomatis XI Euclidei (a priori haud unquam decidenda) independentem; adjecta ad casum falsitatis, quadratura circuli geometrica. 8°. 28 S. Anhang zu: Wolfgang Bolyai, Tentamen juventutem studiosam in elementa matheseos ... introducendi. T. 1. Maros Vásárhely.

1833.

Thompson, Thomas Perronet, *Geometry without axioms*, or the first books of Euclid's elements with alterations and notes; and an intercalary book, in which the straight line and plane are derived from properties of the sphere, with an appendix containing notices of methods proposed for getting over the difficulty in the 12th axiom of Euclid. London. 8°.

1834.

1835.

†Lobatschefskij, N. I., Woobrashajemaja geometrija (Imaginäre Geometrie). Gelehrte Schriften der Universität Kasan. 1835. (*Gesammelte geometrische Werke Bd. 1, S. 71—120.)

1836.

über die Parallelenentheorie, bis zum Jahre 1837.

Hennig, Karl August, Neue Begründung der Parallelenentheorie. Nürnberg. 4°. 16 S. 2 Tfl.

Lampredi, Urbano, Tentativo di una nuova teorica elementare delle linee perpendiculare, obblique e parallele. Seconda edizione. Neapel. 32 S. 1 Tfl.

Henrić, Karl August, Neue Begründung der Parallelenentheorie. Nürnberg. 4°. 16 S. 2 Tfl.

Lampredi, Urbano, Tentativo di una nuova teorica elementare delle linee perpendiculare, obblique e parallele. Seconda edizione. Neapel. 32 S. 1 Tfl.

Van Tenac, Nouvelle théorie des parallèles. Annales maritimes et coloniales. Mai 1836.

1837.

Alphabetisches Verzeichnis

der im Litteraturverzeichnis vorkommenden Autoren.

Hinter jedem Autor ist zunächst, soweit sie sich ermitteln ließ, die Lebenszeit angeführt. Die darauf folgenden kursiv gedruckten Zahlen bedeuten die Jahre des Erscheinens der einzelnen Schriften.

Abreu, Joao Manuel de (1754—1815) 1809.
Alembert, Jean le Rond d’(1717—1783) 1759, 1789.
[Anders] 1796.
Arnauld, Antoine (1612—1694) 1667.
Austen, William (1754—1793) 1781.
Barozzi, Francesco (*1538) 1560.
Behn, Daniel 1761 siehe Hagen.
Belli, Silvio (†1575) um 1570.
Bendavid, Lazarus (1762—1832) 1786.
Bensemann, Johann David (Gymnasiallehrer in Cöslin) 1834.
Bertrand, Louis (1731—1812) 1778, 1812.
Bezout, Etienne (1730—1783) 1770.
Binder, Benjamin Gottlob 1751 siehe Hanke.
Boehm, Andreas (1720—1790) 1771.
Bolyayi, Johann (1702—1806) 1832.
Bolziano, Bernhard (1781—1848) 1804.
Bonnycastle, John (1750—1821) 1789.
Borelli, Giovanni Alfonso (1608—1679) 1658.
Boscovich, Ruggiero Giuseppe (1711—1787) 1752.
Bossut, Charles (1730—1814) 1775.
Brunacci, Vincenzo (1768—1818) 1811.
Bürger, J. A. P. 1816, 1820, 1833, 1834, 1835.
Büsch, Johann Georg (1728—1800) 1775.
Cagnazzi, Lucca 1790.
Camerer, Johann Wilhelm (1763—1847) 1824.
Camus, Charles Étienne Louis (1699—1768) 1750.
Carnot, Lazare Nicolaus Marguerite (1753—1823) 1803.
Castillon (Castiglione), Giovan (1708—1791) 1792.
Cataldi, Pietro Antonio (†1626) 1603, 1603, 1604.
Clairaut, Alexis Claude (1713—1765) 1741.
Clavius, Christoph (1537—1612) 1574.
Colburn, W. 1825.
Creizenach, M. 1821.
Crelle, Angust Leopold (1780—1855) 1816, 1835.
Desargues, Girard (1593—1662) 1639.
Doppler, Christian (1803—1853) 1832.
Duttenhofer, Jacob Friedrich 1813.
Ebert, Johann Jacob (1737—1805) 1792.
Eichler, Caspar 1786.
Ekstrand, Johan (1787—1862) 1833.
Euklid (um 300 v. Chr.) 1482.
Exley, Thomas 1818.
Falck, Henrik (1791—1866) 1831.
Fellkel, Anton (†1740) 1781.
Flauti, Vincenzo 1818.
Foex 1824.
Fourier, Jean Baptiste Joseph (1768—1830) 1795.
Franceschini, Francesco Maria (1756—1840) 1787.
Fries, Jacob Friedrich (1773—1843) 1822.
Gaudain 1836.
[Gaufs, Carl Friedrich] (1777—1855) 1816, 1832.
Geldern, Jacob van (1785—1848), 1806, 1810.
Gensichen, J. F. 1786.
Gergonne, Joseph Diez (†1771) 1812.
Gerling, Christian Ludwig (1788—1864) 1820.
Gestrin, Martin (1594—1648) 1637.
Gilbert, Ludwig Wilhelm (1769—1824) 1798.
Giordano da Bitonto, Vitale (1633—1711) 1650, 1686.
Grät, Carl 1837.
Grashof, Friedrich Carl August 1806.
Guarini, Guarino (1624—1683) 1671.
Guldin, Paul (1677—1643) 1641.
Gumaelius, Samuel (1776—1849) 1801.
Guntz 1815.

Hagen, Johann Jacob von 1761.
Hanke, F. G. 1751.
Hauber, Carl Friedrich (1775—1851) 1820.
Hauff, Johann Karl Friedrich (1766—1846) 1793, 1799, 1803, 1807, 1819, 1821.
Hauser, Christian August (1693—1743) 1734.
Hauser, Matthias 1780.
Hegenberg, F. A. 1825.
Hessling, C. W. 1818.
Hof, Carl Johan Danielsson (1793—1875) 1830, 1835.
Hindenburg, Karl Friedrich (1741—1808) 1781, 1786, 1799.
Hobbies, Thomas (1588—1679) 1655, 1656.
Hoffmann, Johann Joseph Ignaz (1777—1866) 1801, 1807, 1816, 1826.
Hofmann 1786.
Horn 1837.
Huber, Daniel (1768—1829) 1823.
Idec, Johann Joseph Anton (1775—1806) 1803.
Jacobi, Carl Friedrich Andreas (1795—1855) 1824, 1834 siehe Swinden.
Jacques, Matthieu Joseph (1736—1821) 1804.
Kaesnner, Abraham Gotthelf (1719—1800) 1758, 1763 siehe Klügel, 1790, 1796.
Kaiser, Ignaz 1836.
Karsten, Wenceslaus Johann Gustav (1732—1787) 1758, 1760, 1778, 1786.
Kepler, Johann (1571—1630) 1604.
Kesaer, Franz Xavier von (1740—1804) 1778.
[Kircher, Adolf] 1803.
Kjellin, Carl Erik (1776—1844) 1815.
Klügel, Georg Simon (1739—1812) 1763, 1808.
Knar, Joseph 1827, 1828.
Koch, Christian Adolph 1827.
Koenig, C. G. 1758.

Koenig, Georg Ludwig (1766—1849) 1819.
Kraft, Georg Wolfgang (1701—1754) 1752, 1753.
Krause, Karl Christian Friedrich (1781—1832) 1802.
Küster, J. C. 1821.

La Chapelle, de (1710—1792) 1746.
Lacroix, Sylvester François (1765—1833) 1803, 1805.
Lambert, Johann Heinrich (1728—1777) 1786 (1766)
Lamprodi, Urbano (1761—1838) 1828, 1836.
Langsdorf, Karl (1757—1834) 1797, 1802, 1818 siehe Mayer.
Laplace, Pierre Simon (1749—1827) 1824.
Legendre, Adrien Marie (1752—1833) 1794, 1823, 1833.
Lemmann, Jacob Wilhelm Heinrich (1790) 1831.
Lepinier 1836.
Lindquist, Johann Henrik (1743—1798) 1789.
Lobatschefskij, Nikolaj Iwanowitsch (1793—1856) 1829, 1835, 1835, 1836, 1837.
Lorenz, Johann Friedrich (1738—1807) 1791.
Ludolfe, August Friedrich (1748—1822) 1816, 1817, 1819, 1820, 1822.
Luno, Francesco (1740—1792) 1772.
Malézieu, Nicolaus de (1650—1727) 1715.
Mayer, Johann Tobias (1753—1830) 1797 siehe Langsdorf, 1818.
Mettternich, Matthias (1758—1825) 1815, 1822.
Metzing, S. 1834.
Minarelli, C. 1826.
Moebius, August Ferdinand (1790—1868) 1827.
Mönich, B. F. 1821.
Montucla, Jean Étienne (1725—1799) 1758, 1799.
Müller, Carl Reinhard (1774) 1822
Müller, Johann Wolfgang (1766) 1819, 1826.

Nasir-Eddin (1201—1274) 1594, 1693 (1651).
Neubig, Andreas (1780) 1811, 1827.
Niesert, J. 1806 siehe Simson.

Ohm, Martin (1792—1872) 1819.
Ohm, Georg Simon (1787—1854) 1817.
Oliver of Bury, Thomas 1604.
Olivier, Louis 1826.
Ouvrier, Carl Sigmund 1808.
Alphabetisches Verzeichnis der Autoren.

Pagnini, Joseph Maria 1783, 1794.
Pardies, Ignace Gaston (1636—1673) 1671.
Patricio, Francesco (1529—1597) 1587.
Paucker, Magnus Georg (1787—1855) 1823.
Peletier, Jacques (1517—1582) 1557.
Peyrard, François (1760—1822) 1814.
Playfair, John (1748—1819) 1797.
Proklos (410—485) siehe Barozzi.
Paganini, Joseph Maria 1783, 1794.
Pardies, Ignace Gaston (1636—1673) 1671.
Patricio, Francesco (1529—1597) 1587.
Paucker, Magnus Georg (1787—1855) 1823.
Peletier, Jacques (1517—1582) 1557.
Peyrard, François (1760—1822) 1814.
Playfair, John (1748—1819) 1797.
Proklos (410—485) siehe Barozzi.

Ramus, Petrus (1515—1572) 1569.
Reder, J. M. 1806 siehe Simson.
Rehnbeck, J. H. 1795.
Reinhold, H. J. 1829.
Rosenback siehe Lindquist.

Saccheri, Girolamo (1667—1733) 1733.
[Saladini, Girolamo] (1731—1813) 1795.
Sauveur, Joseph (1653—1716) 1753.
Savile, Henry (1549—1622) 1621.
Scheibel, Johann Ephraim (1736—1809) 1807.
Scherffer, Karl (1716—1783) 1770.
Schmidt, Georg Gottlieb (1768—1837) 1797.
Schütteringk, M. W. von 1790, 1799.
Schübler, Christian Ludwig (1754—1820) 1788.
Schultz, Johann (1739—1805) 1780, 1784, 1814.
Schwab, Johann Christian 1801, 1808, 1814.
Schweikart, Ferdinand Karl (1780—1859) 1807.
Scorza, Giuseppe (1781—1844) 1828.
Segner, Johann Andreas (1704—1777) 1739, 1747.
Servois 1825.
[Seyffer, Karl Friedrich] (1762—1822) 1801.

Simson, Robert (1687—1768) 1756, 1775, 1806.
Stein, Johann Peter Wilhelm (1795—1831) 1824.
Steiner, Jacob (1796—1863) 1832.
Strömer, Märtens (1707—1770) 1744.
Struve, K. L. 1820.
Suzanne, P. H. 1810.
Swinden, Jan Hendrik van (1746—1823) 1790, 1834.
Tacquet, Andrea (1612—1660) 1654.
Taurinus, Franz Adolph (1794—1874) 1825, 1826.
Terquem, Oly (1782—1862) 1828.
Thibault, Bernhard Friedrich (1775—1832) 1809.
Thompson, Thomas Perronet (1783—1869) 1833, 1836.
Valerio, Luca (1552?—1618) um 1613.
Van Tenac 1836.
Varignon, Pierre (1654—1722) 1731.
Venturi, Giambattista (1746—1822) 1784.
Vermehren, Carl Christian Hermann 1816.
Voigt, Johann Heinrich (1751—1823) 1789, 1791.
Voit, Paul Christian 1802.
Wachter, Friedrich Ludwig 1817.
Wahl, Friedrich Wilhelm Ludwig (1795—1831) 1823.
Wallis, John (1616—1703) 1693 (1663), 1693.
Wiessner, Gottfried 1833, 1837.
Wildt, Johann Christian Daniel (1770—1844) 1795, 1809.
Wolf, Christian (1679—1754) 1710, 1715, 1797 siehe Langendorf, 1818 siehe Mayer.
Verfasser unbekannt oder zweifelhaft: 1799, 1818, 1819, 1821, 1824.
Nachträge und Berichtigungen.

Euklid.
S. 4, Z. 9 v. o. sind hinter: „Er machte selbst einen Versuch,“ die Worte einzuschalten: „dessen Mangelhaftigkeit schon Saccheri (Seite 75—76 dieses Buches) dargethan hat. Noch weiter von Euklid entfernte sich Ptolemaeus“. S. 5 ist am Ende der Litteratur hinzuzufügen:
Tannery, P., La géométrie grecque. Comment son histoire nous est parvenue et ce que nous en savons. Paris 1887.

Wallis.
S. 17, Z. 6 v. u. muss es heißen „Kaestner“ statt „Kästner“. S. 18, Z. 14 v. o. ist die Anmerkung hinzuzufügen:
„Dafs Ramus auf die Bedeutung des Euklidkommentars von Proklos aufmerksam macht, während er Untersuchungen über die Grundlagen der Geometrie verwirrt, könnte als ein Widerspruch erscheinen. In Wahrheit ist beides die Folge seines Bestrebens, die Fesseln der Überlieferung zu brechen. Ramus konnte für seinen Grundsatz: Nulla auctoritas rationis, sed ratio auctoritatis regina dominaque esse debet (Scholae mathematicae lib. III) sich sehr gut auf Proklos berufen: hatte doch hier schon einer der Alten Euklid zu tadeln gewagt, dessen Autorität zu Ramus‘ Zeiten als unantastbar galt. Auf der andern Seite schien aber bei der unmittelbaren Gewifsheit, die der anschaulichen geometrischen Erkenntnis zukommt, die ratio, der gesunde Menschenverstand, zu verlangen, dafs man seine Zeit nicht an so selbstverständliche Dinge verschwende."
S. 18, Z. 17 v. u. ist einzuschalten:
S. 19. Bei der Litteratur ist einzuschalten:
Nachträge und Berichtigungen.

Günther, S., Geschichte des mathematischen Unterrichtes im deutschen Mittelalter bis zum Jahre 1525. Berlin 1887.

Saccheri.

S. 35, Z. 14 v. o. Das Komma muf nach „procul“ stehen, nicht nach „Tempore“.
S. 37, Z. 14 v. u. ist die Anmerkung hinzuzufügen:
„Dafs Saccheri von der unbedingten Richtigkeit der euklidischen Geometrie überzeugt war, zeigt besonders der Appendix seines Werkes (S. 139 bis 142), wo er zu beweisen versucht, dafs das Verhältnis von Figuren in der Ebene, also — fügen wir hinzu — auch der Inhalt einer solchen Figur, sich nur dann ermitteln lasse, wenn vorher das Parallelenaxiom begründet sei."
Wir führen noch einige Stellen aus dem Appendix an:

(139) „Hier möge noch die Bemerkung Platz finden, dafs man durch die Analysis nicht ermitteln kann, in welchem Verhältnisse eine beliebig gegebene Figur, selbst wenn sie geradlinig ist, zu irgend einer andern gegebenen geradlinigen Figur steht, so lange man nicht voraussetzt, dafs jenes Euklidische Axiom, von dem die Lehre von den Parallelen abhängt, schon begründet worden ist.
„Beweis. Ich schicke voraus, dafs die Analysis und die gewöhnliche Arithmetik alle Regeln der Addition, Subtraktion, [Multiplikation,] Division und Wurzelausziehung gemeinsam haben, sobald man nämlich die niedrigste Art des Seienden begründet hat und sich dann ganz auf diese Art beschränkt. Will man jedoch von einer Art zu einer andern übergehen, zum Beispiel (durch Multiplikation, das heisst durch Verknüpfung*) irgend einer geraden Linie mit einer andern geraden Linie) von der blofsen Länge zu der ebenern Fläche, darauf in ähnlicher Weise von dieser (indem man sie wiederum mit einer geraden Linie multipliziert) zu einem Körpersum de von drei Abmessungen und, indem man so aufsteigt, durch neue Multiplikationen zu den denkbaren höheren Stufen von noch mehr Abmessungen**), wobei Entsprechendes für die Division gilt, vermittelt deren man zu den niedrigeren Stufen herabsteigt — dann bin ich fest überzeugt, dafs die Analysis keinen Grundsatz liefern kann, auf den sich die Rechnungen stützen lassen, die sie vorschreibt, damit man das richtige Ergebnis erhält.“

Saccheri denkt sich zuerst in den Endpunkten einer Grundlinie von der Länge 1, darauf in den Endpunkten einer Grundlinie von der Länge 2 jedesmal Lote von der Länge 1 errichtet und die Endpunkte durch Gerade verbunden, und bemerkt, man könne nur dann zeigen, dafs sich diese Figuren wie ihre Grundlinien verhalten, wenn jene Verbindungsgeraden mit dem Orte der Punkte gleichcr Entfernung von den Grunlinien zusammenfallen. Wir teilen hier nur noch den Schlufs seiner Auseinandersetzungen mit:
„Darum halte ich schliesslich dafür, dafs man immer die Geometrie zu

*) [Im Original steht: „per multiplicationem sen ductum."]
**) [Im Original heißt es: „ad altiores conceptibiles gradus plurimum dimensionum."
Hilfe nehmen muß, die ja, sobald jenes Euklidische Axiom begründet ist, die Beschaffenheit solcher [Verbindungs-]Linien feststellt."

S. 38, Z. 11—14 v. o. muß lauten:

„und der Grenzgeraden, das heißt der Geraden, die zwischen den schnei
denden und den nicht schneidenden die Grenze bilden, in aller Strenge nach
gewiesen. Er hat auch schon den Ort der Punkte betrachtet, die von einer
Geraden gleichweit entfernt sind." Die Worte: „und ist . . . gelangt" sind
tilgen.

S. 40. Bei der Litteratur ist einzuschalten:

Coreara, Giulio Cesare, Vita del padre Tomaso Ceva in den: Vite degli
Arcadi illustri, t. V. Rom 1751. S. 142—143.

Halsted, George Bruce. Die Übersetzung des Euclides ab omni naevo vin
dicatus ist inzwischen in dem Jahrgange 1895 des American Mathematical
Monthly S. 10, 42—43, 67—69, 108—109, 144—146 bis Lehrlatz XVIII (im
Urtex bis S. 26) fortgeschritten.

S. 53, Z. 1 v. u. fehlt hinter „anwenden" die eckige Klammer.

S. 109, Z. 1 v. u. fehlt hinter „S. 98" der Punkt.

S. 117, Z. 1, 2 v. u. Weitere Nachforschungen, bei denen wir uns der gültigen
Unterstützung des Herrn Hofrat Förstemann in Leipzig zu erfreuen hatten,
haben Folgendes ergeben. In dem Werke: Micraelius, J., Lexicon Philo
sophicum. Jena 1653 heifst es S. 608:

„Ly est terminus scholasticerum, quo denotatur acceptio vocis materialis:
ut Ly Mus est monosyllabum, Nos dicimus το Mus est monosyllubum."

Die Entstehung dieser Bezeichnung ist damit freilich noch nicht erklärt.

Lambert.

S. 147, Z. 13 v. u. statt „sieben" lies „acht".

S. 148, Z. 6 v. o. ist hinzuzeugen:

„und auch C. F. Camerer, den wir dort ebenfalls erwähnten, hat dieselbe
Bemerkung gemacht."

S. 148, Z. 16 v. o. ist hinzuzeugen:

„Jedoch hat F. A. Taurinus in seinen Geometriæ prima elementa
(Köln 1826), ohne Lamberts Theorie der Parallellinien zu kennen, bemerkens-
werte Untersuchungen angestellt, in denen Lamberts Vermutung in betreff
der imaginären Kugel ihre Bestätigung findet."

S. 151. Bei der Litteratur ist einzuschalten:

Camerer, C. F., Euclidis elementa graece et latine, commentariis instructa,

S. 188, 189 Anm. Der Beweis für das immer stumpfer werden der Winkel läßt
sich im Lambertschen Stile folgendermaßen führen:

In Fig. XIX (S. 189) seien in E, B, D und J rechte Winkel, zu beweisen
ist, daß JPD > JNB. Man mache EG = EB und ziehe durch G die
Senkrechte GL, dann ist JLG = JNB und LG = NB (§. 52). Halbiert
man GD in A, richtet AM senkrecht auf und legt die Figur längs AM zu-
sammen, so fällt L in p über P, da $GL = BN > DP$ ist (§. 57), demnach wird $MPD > MPD$ und also auch $JPD > JNB$. Auf eine ähnliche Art wird in §. 69 verfahren.

Gaußs.

S. 213, Z. 15 v. o. ist die Anmerkung hinzuzufügen:

S. 217, Z. 1 v. u. statt „letzten“ lies: „nächsten“.
S. 222, Z. 8 v. u. statt „anderen“ lies: „andern“.
S. 231, Z. 3 v. u. statt „Arnaud“ lies „Arnauld“.
Verzeichnis

der im Texte erwähnten oder besprochenen Autoren*).

Die curie gedruckten Seitenzahlen beziehen sich auf die Litteraturangaben am Schlusse

der Einleitungen zu den hier mitgeteilten Schriften und auf die Nachträge.

d’Alembert, J., nennt die Parallelelen-

theorie das Ärgernis der Elementargeometrie 211, 218.

Anding, E., über Lambert 151.

Apollonius benutzt Euklid als Grund-
lage 45.

Archimedes benutzt Euklid als Grund-
lage 45.

Arnould, A., verwendet Winkelräume
zum Beweise der fünften Forderung 231.

Backer, Augustin und Alois de, über
Saccheri 40.

Baltzer, R. erwähnt eine noch nicht
veröffentlichte Abhandlung von Gaus’s
über die Erklärung der Ebene 226,
macht auf Bolyai und Lobatschefskij
aufmerksam 239, 253; erwähnt New-
tons Erklärung paralleler Geraden
317.

Barozzi, F. übersetzt Proklos 17.

Barrow, J., Bezeichnung in den Figuren
65, bekämpft Ramus 317.

Bartels, J. M. C., mit Gauß befreundet,
Lehrer von Lobatschefskij 242, 253.

Battaglini G. übersetzt J. Bolyai 239, 253.

Beez, R., imaginäre Kugel 151.

Beltrami, E., Saccheri precursore di
Lobatschefskij III, 39, 40.

Bernoulli, Daniel, Briefwechsel mit
Lambert verloren gegangen 150.

Bernoulli, Johann I, Bezeichnung in
den Figuren 65.

Bernoulli, Johann III, giebt Lam-
berts Theorie der Parallelinien heraus
141, kauft Lamberts Nachlafs 148,

Subskription auf Lamberts hinter-
lassene Schriften 149, begründet mit
C. F. Hindenburg das Magazin für
die reine und angewandte Mathematik,
IV, 149.

Bernoulli, Paul, einziger Enkel von
Johann III: 150.

Bertrand, L., verwendet Winkelräume
zum Beweise der fünften Forderung
231, 240.

Bessel, F. W., erwähnt Lambert 148,
227, Gauß und B., Briefe 1829 und

Bilfinger, D. G., verbessert Chr. Wolff
156.

Biot, J. B., Unterhaltungen mit La-
grave 211.

Bolyai, Johann, Schöpfer der nicht-
euklidschen Geometrie III, 215, 218,
B. und Saccheri 37, Leben und
Schriften 241—243, B. und Taurinus
246, 252.

Bolyai, Wolfgang, Axiom 143, 260;
imaginäre Kugel 146, 151: 213, 217,
Brief von Gaus an B. 219, Leben
und Schriften 241—243.

Borelli, J. A., neue Erklärung der
Parallelen 33, Einfluss auf Saccheri
38, von Saccheri geprüft 76—82.

Bunjakofskij, Kritik Legendres 218.

Caesar, Caius Julius, Saccheri mit Ca-
sar verglichen 40.

Camerer, J. W., erwähnt Saccheri 39,
40, erwähnt Saccheri und Lambert
218, 319.

Cantor, M., über Euklid 5, über Wal-
lis und Nasir Eddin 29, über G. Ceva

*) Die im Litteraturverzeichnis, S. 293—313, angeführten Autoren sind
hier nicht aufgenommen, da von ihnen bereits S. 314—316 ein alphabetisches Ver-
zeichnis gegeben worden ist.

Stäckel u. Engel, Parallellentheorie.

21
Verzeichnis der im Texte erwähnten oder besprochenen Autoren.

und J. A. Borelli 340, über Kaestner 151.

Carnot, L., ersetzt das Parallelaxiom durch das Princip der Ähnlichkeit 19, 318.

Ceva, Giovanni, Verkehr mit Saccheri 34, Vorläufer von Moebius 36.

Ceva, Tommaso, Verkehr mit Saccheri 34, 319, besingt Saccheri 35, 40, regt Saccheri's Neostatica an 36.

Cicero, Marcus Tullius, von Lambert erwähnt 142, 158.

Clairaut, A., gründet die Elementargeometrie auf das Rechteck 18, 19; Euklid und die Sophisten 153.

Clavius, Chr., Euklid-Kommentar 17, 19, 45, 159; merkwürdige Figur 17 f.; widerlegt Proklos 75 f.; sein Axiom 78, von Saccheri geprüft 81—82.

Cordara, G. C., über Saccheri 319.

Coste, Frediger in Leipzig, widerlegt Hausen 139.

Crelle, A. L., über die Erklärung der Ebene 227.

Deahna, über die Erklärung der Ebene 226.

Delhebruf, J., über das Princip der Ähnlichkeit 19, 19.

Desargues, G., neue Erklärung der Parallelaxen 18, 20, 317.

Erb, über die Erklärung der Ebene 227.

Erdmann, B., über die Axiome der Geometrie 218.

Erhardt, S., über Lambert 151.

Euler, L., VI.

Ferrari, G., über Saccheri 40.

Fürstmann unterstützt unsre Nachforschungen über die Bedeutung von „Ly“ (S. 117) 319.

Focenex, Daviet de, hyperbolische Trigonometrie 147, 151; Parallelogramm der Kräfte 212, 218.

Fordney, J. H. S., 3 Briefe Lamberts an F. 150, Rede auf Lambert 151.

Fourier, J., neue Erklärungen der Geraden und der Ebene 211, 218.

Franceschini, Fr., versucht die fünfte Forderung zu beweisen 214.

Friedlein, E., gibt Proklos heraus 5.

Frischauf, J., bearbeitet die nichteuklidische Geometrie J. Bolyais 239, 253.

Führer, A., Stiefbruder von Taurinus, überlässt uns zwei Briefe von Schweikart und einen von Gauss an Taurinus, macht uns auf die Elementa des Taurinus aufmerksam VI f., 244, 251 f.

Galilei, G., von T. Ceva und Saccheri angegriffen 36.

Gambaranas, Fr., Aufzeichnungen über Saccheri VI, 84—36.

Genocchi, A., über Focenex 218.

Gerling, Ch. L., über die Erklärung der Ebene 227, Brief von G. an W. Bolyai über Schweikart (1851) 243—244, Brief von Gauss an G. über Schweikart (1819) 246.

Giordano da Bitonto, V., merkwürdige Figur 18, verlangt, daß man das Vorhandensein äquidistanter Geraden beweise 33—34, 38, 40; seine Figur auch bei Saccheri 77.

Graf, M., über Lambert 151.

Grafsmann, H., VII.

Grunert, J., über Gauss, Lobatschefskij und Bolyai 253.

Guldin, P., Neue Formulierung des Axioms von Clavius 33, 40.

Günther, S., über Riccati, Focenex und Lambert 151, über Focenex und Lagrange 218, über Seyffert 218; Euklid im Mittelalter 318.

Hagen, J., erwähnt Keplers Erklärung paralleler Geraden 317.

Halfsted, B. G., beginnt Juni 1894 eine

Hausen, Ch., versucht die fünfte Forderung zu beweisen 139.

Heiberg, J. L., neue Euklidansgabe 4, 5; 164.

Heilbronner, J. Chr., erwähnt Saccheri 39.

Helmholtz, H., Über die Thatsachen, die der Geometrie zu Grunde liegen: III.

Hessling, C. W., über Pfaffs Ansicht in betreff des Parallelenaxioms 215, 218.

Hindenburg, C. F., IV, über Lamberths Theorie der Parallelillien 143—144, 147, gibt mit J. Bernoulli das Magazin für die reine und angewandte Mathematik, allein das Archiv für reine und angewandte Mathematik heraus 149; 151.

Holland, G. J. von, Brief von Lambert an H. 141.

L'Hospital über Saccheri als Geometer 36.

Huber, D., über Lambert 151.

Justi, K. W., über Schweikart 253.

Kaeestner, A. G., über Clavius' Euklid-komentar 17, sein Interesse für die Parallelentheorie 139, regt Klügels Dissertation an 140, spätere Resignation 141, 214.

Kant, J., Bedeutung für die Parallelentheorie VI, über Lambert 143, Brief Lamberts an K. über das Imaginäre 146, Brief Lamberts an K. über Wolffs Nominaldefinitionen 157, Schwab bekämpft K.s Ansichten über die Gewifsheit der Geometrie 221.

Kepler, J., Erklärung paralleliger Geraden 317.

Klein, F., über das Verhältnis von Lobatscheffskij und Bolyai zu Gaufs 242, 253.

Lagrange, J. L., versucht die fünfte Forderung zu beweisen 211—212, beinflußt seinen Freund Foncnenex 212.

Lambert, César, Schrift über Parallelentheorie (1859) 148.

Lambert, Johann Heinrich, IV—VI, setzt euklidfeste Leser voraus 4, über das Prinzip der Ähnlichkeit 19, 85, 199 ff.; zeigt, daß man das Axiom der Stetigkeit vermeiden kann 56, 144, 187 f., 193, 319; Einleitung und Litteratur 139—151; Lebenslauf 141; Theorie der Parallelillien 1766 verfalscht 141—143, über Euklids Verfahren 141—142; Unzulänglichkeit des L.schen Beweises 143—144; Verhältnis zu Saccheri 141—145; Geometrie auf der Kugel 145, 202; imaginäre Kugel 145—147, 203, 259, 351; seine Parallelentheoriespäter fast ganz vergessen 147—148, Schicksale von Lamberths Nachlaß 148—150; Theorie der Parallelillien 152—208; 211, L. über Klügel 153, über Chr. Wolff 155—159, über Proklos 159; L. und Legendre 212—213; 215; von Bessel erwähnt 148, 227, 243; von Camerer erwähnt 248; 252, 259.

Laplace, P. S., Prinzip der Ähnlichkeit 19, 20; 212, 218.

Lefort, P. A. F., Mitteilung an Hoüel über Lagrange 211.

Legendre, A. M., analytischer Beweis für den Satz von der Winkelsumme 19, 20; 218; Verhältnis zu Saccheri 37—38, zu Wallis, Saccheri und Lambert 212, Bedeutung für die Geschichte der Parallelentheorie 213; Satz über die Summe der Drieckswinkel schon 1808 gefunden 320.

Leibniz, G. W., Indicesbezeichnung 65, Geometrie der Lage von Kaeestner erwähnt 140; Untersuchungen über Parallelentheorie aus dem Nachlaß 159, 151.

Lepsius, J., über Lambert 151.

Lie, Sophus, IV.

Lindemann, F., über das erste Buch von Euklids Elementen 5.

21*

Oliver of Bury, Th., zweite Schrift über die Parallellentheorie als solche 18.

Schwab, J. Ch., sein Tentamen (1801) von Seyffer besprochen 214, seine Commentatio (1814) von Gaußs besprochen 220—221.

Schweikart, F. K., IV, von Bessel erwähnt 148, 227; erzählt von Kaestners Resignation 251; seine Astralgeometrie von Gauß erwähnt 235, Leben und Schriften 243, Bibliotheken, in denen s s Parallellentheorie vorhanden ist 243, Gauß an Gerling über S. 244, Brief an seinen Neffen Taurinus (1824) 245—246; Gauß an Gerling über Schweikart 246; regt Taurinus an 246, 247 ff., 261, Brief an Taurinus (1820) 248—249; inwiefern mit Gauß gleichberechtigt 252.

Scriba, H. E., über Schweikart und Taurinus 254.

Simpson, R., Beweisversuch von Seyffer erwähnt 214.

Simson, Th., Beweisversuch von Seyffer erwähnt 214.

Steiner, J., seine Erklärung paralleler Geraden 18.

Steinschneider, M., Euklid bei den Arabern 20.

Tannery, P., über Euklids Elemente 5, 317.

Thiermann erwähnt Saccheri 39, 40.

Transon, A., erwähnt Arnaulds Beweisversuch 231.

Ventimiglia, R., stellt 1692 sechs geometrische Aufgaben, die Saccheri 1693 löst 35 f.

Verci, G., über Saccheri 40.

Veronese, G., über Saccheri 40.

Voit, P. Ch., angeregt durch Seyffer, Dissertation, Skepticismus 215.

Waddington, über Ramus, 318.

Winter, über Schweikart 254.

Wolf, R., forschte nach Lamberts Nachlaß 150; über Lambert 151.

Wolff, Chr., von Lambert angegriffen 155—159.

Zeller, E., über Bilsinger 156.
Ehr. Wohlgeboren

gefährtiges Schreiben vom 30 Oct. nebst dem beigefügten kleinen Anhang habe ich nicht ohne Vergnügen gelesen, um so mehr, da ich sonst gewohnt bin, bei der Mehrzahl der Personen, die neue Versuche über die sogenannte Theorie der Parallel linien gar keine Spur von wahren geometrischen Geistes anzutreffen.

Gegen Ihren Versuch habe ich nichts (oder nicht viel) anderes zu, erinnern als daß er unvollständig ist. Zweifel an der Darstellung des Beweises, daß die Summe der drei Winkel eines ebene Dreiecks nicht größer als 180° sich kann in Rücksicht auf geometrische Schäfle doch zu deuten im übrigen. Allein dieser wurde sich organiser lassen, und es liefet keinen Zweifel daß jene Umfanglosheit sich auf das allensbrücke beweisen lohnt.

Kann mit Ausnahme der Bestimmung einer Länge, die in a priori nicht ausmittelbar gelegt, in große manchmal diese zweite Annahme, die mehr nahen man sich der Euklidischen Metrik und ein unendlich große Werth macht beide zu manfallen. Die Satz dieser Geometrie scheint zum Paradox und dem Irrtum angereicht, bei genauerer Überlegung fand aber, daß sie in sich durchs eine unendliche unumgängliche enthalten. So z.B. können die drei Winkel eines Dreiecks so klein werden als man nur will, wenn man nur die Seiten groß genug nimmt, dann aber kann die Flächeninhalt eines Dreiecks, wie groß auch die Seiten geworden, nie eine bestimmte Grösse überschreiten, so sie a einmale erreichen. Alle meine Versuche, einen Widerspruch oder ein Gegenteil in dieser Nicht-Euklidischen Geometrie zu finden, sind fruchtlos gewesen, um das einzige, was aus meiner Vorstehende darin widerspricht, ist, daß es, wie sie waren, nur eine an sich bestimmte (obwohl unbekannte) lineargrossen maßgebte. Aber mir dient, wie wissen, ist der Nicht-Euklidische Wert-Wechsel der Metaphysiiker objektiv zu wenig oder gar nicht über das andere Wesen des Raumes, als daß er, wie es uns manchmal vorkommend schien, mit Absicht unmöglich versehentlich diese. Wäre die die Nicht-Euklidische Geometrie wahre, und jene Konstante in einigen Verhältnisse so Grössen, die im Bereiche unserer Messungen auf der Erde oder am Himmel liegen, so ließe sie sich a posteriori ausnehmen. Jedoch wäre nach welcher im Schwach geäußert, daß Euklidische Geometrie nicht die Wahrheit wäre, weil war dann
ein absolutes Maß a priori haben würden.

Vor seinem Name, der sich als eines denkenden katholischen Bürgers zeigt, hat, fand sich nicht, daß er das Vorscheidereignis hätte, werde, auf jeden Fall aber
haben die er nur als eine Privat-Merkmale anschie
de auf keine Weise ein öffentliches oder zur Öffentlichkeit
freien können es Gebrauch zu machen ist. Vielleicht würde
ich, wenn ich ein wenig mehr Mutte gewonne, als in meinem
gegenwärtigen Verhältnissen, selbst in Zukunft meine Unterschr
ungen bekannt machen.

Mit Herkunft verharrt ich

Göttingen den 8. November
1824.

Für Wohlgemerck

A. Gauss
<table>
<thead>
<tr>
<th>QA</th>
<th>Stäckel, Paul Gustav</th>
</tr>
</thead>
<tbody>
<tr>
<td>685</td>
<td>Die Theorie der</td>
</tr>
<tr>
<td>S76</td>
<td>Parallellinien von Euklid</td>
</tr>
<tr>
<td></td>
<td>bis auf Gauss</td>
</tr>
</tbody>
</table>

P&A Sci.

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY