A MANUAL

OF

VEGETABLE MATERIA MEDICA.

BY

Analytical and Consulting Chemist. Lecturer on Chemistry, Physics, and Materia Medica, at the Westminster College of Chemistry and Pharmacy, London.

With Coloured Habitat Map.

SIXTH EDITION.

London:

SIMPKIN, MARSHALL & Co.,
And at the Office of the COLLEGE, Trinity Square, S.E.

1883.

Entered at Stationers' Hall.
PREFACE.

THIS manual is intended to supply a want long felt by gentlemen preparing for the various Examinations in Materia Medica; it comprises a thorough description of all the drugs obtained from the vegetable kingdom, and in another book now published (Wills' Elements of Pharmacy) will be found an account of the preparations of these drugs used in medicine. The work is rendered more particularly useful by containing the following specialities:

1st.—A map of the world, by reference to which the habitat of a drug, and the geographical position of that habitat may be ascertained in a few moments.

2nd.—A tabulated list of the natural orders, with the botanical names of the drugs belonging to the various orders.

3rd.—105 Coloured Illustrations of the most important Barks, Roots, Leaves, Gums, &c., showing their principal characteristics.

4th.—A tabulated list of the different adulterations, and the various drugs so adulterated.

5th.—A tabulated list of the per centages of the active principles contained in the different drugs.

6th.—The different methods for the extraction of the B.P. alkaloids.

7th.—The numbers attached to the names of the drugs refer to the numbered specimens in the Materia Medica Museum at Westminster College, and to the coloured illustrations.

8th.—A collection of 800 questions is inserted, in order to afford an indication of the style and scope of examination in the subject of Materia Medica, after a careful study of which, a candidate is absolutely certain of success in that subject.

9th.—The work is interleaved with blank paper to enable students to make their own MSS. notes.
In this system plants are classified according to their essential organs.

The Vegetable Kingdom

1. Phanerogamia.
Flowering or Cotyledonous Plants, propagated by seeds, having a visible embryo, divided into 2 classes.

1. Endogens or Monocotyledones.
Containing one cotyledon, germination endorhizal, parallel veined leaves, parts of the flower arranged in "threes."
These are divided into:

1. Glumaceae.
Leaves permanent, no petals or calyx, flowers enclosed in bracts called glumes or paleae.
2. Petaloideae.
Leaves permanent, perianth verticillate, sometimes absent.
This sub-class has 3 subdivisions:

1. Epigynæ.—Flowers hermaphrodite, perianth adherent, ovary inferior.
2. Hypogynæ.—Flowers hermaphrodite, perianth free, ovary superior.
3. Diclines.—Flowers unisexual, perianth either absent or consisting of scales.

3. Dictyogeneæ.
Leaves reticulated, deciduous floral envelope, verticillate, wood arranged in the roots in a concentric manner.

2. Exogens or Dicotyledones.
Containing two cotyledons, germination exorhizal, reticulated leaves, parts of the flower arranged in "fours" or "fives."
These are divided into:

1. Gymnospermae.
Ovules naked or not enclosed in an ovary, and are fertilized directly by the action of the pollen on the ovules.
Example.—Coniferæ.
2. Angiospermae.
Ovules enclosed in an ovary, and fertilized indirectly by the action of the pollen on the stigmas.
This is divided into 4 subclasses:

1. Thalamifloræ.
2. Calycifloræ.
3. Corollifloræ.

(For the description of these, see next page.)
NATURAL SYSTEM.

Growth of the stems, and the number of their cotyledons or seed-leaves.

Divided into 2 sub-kingdoms.

2. Cryptogamia.

Flowerless or Acotyledonous Plants, propagated by spores instead of seeds, no cotyledons, germination heterorhizal, leaves with furcate venation, divided into 2 sub-classes.

1. Thallozæ

Which have no distinction between stems and leaves, and have no stomata.

2. AcroŒæ

Which have a distinguishable stem, and possess stomata.

1. Thalamifloræ

Calyx and corolla, corolla distinct, petals on thalamus, stamens hypogynous, or adherent to the sides of the ovary.

2. Calycifloræ

Calyx and corolla, petals usually distinct, inserted on the calyx, stamens perigynous or epigynous.

This is divided into 2 sub-divisions.

1. Perigynæ

Calyx free. Stamens perigynous, ovary superior.

2. Epigynæ

Calyx adherent, ovary inferior, stamens epigynous.

3. Corollifloræ

Usually both sepals and petals, petals united, stamens inserted on the corolla or ovary, or free and arising from the thalamus.

This sub-class is divided into 3 sub-divisions.

1. Epigynæ. — Calyx adherent, ovary inferior.

2. Hypostamineæ. — Stamens hypogynous, ovary superior.

3. Epipetalæ. — Corolla hypogynous, stamens epipetalous, ovary superior.

No petals, sepals only, these sometimes absent.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petaloïdea.</td>
<td></td>
</tr>
<tr>
<td>Gymnacées.</td>
<td></td>
</tr>
<tr>
<td>Monochlamyde.</td>
<td></td>
</tr>
<tr>
<td>Corollifère.</td>
<td></td>
</tr>
<tr>
<td>Calyfosère.</td>
<td></td>
</tr>
<tr>
<td>Thalamifère.</td>
<td></td>
</tr>
<tr>
<td>Anacardiacées.</td>
<td></td>
</tr>
<tr>
<td>Amiacées.</td>
<td></td>
</tr>
<tr>
<td>Cucurbitacées.</td>
<td></td>
</tr>
<tr>
<td>Canellacées.</td>
<td></td>
</tr>
<tr>
<td>Guttifère.</td>
<td></td>
</tr>
<tr>
<td>Megnéciacées.</td>
<td></td>
</tr>
<tr>
<td>Malvacées.</td>
<td></td>
</tr>
<tr>
<td>Menispermacées.</td>
<td></td>
</tr>
<tr>
<td>Papountainsacées.</td>
<td></td>
</tr>
<tr>
<td>Polygalacées.</td>
<td></td>
</tr>
<tr>
<td>Rutacées.</td>
<td></td>
</tr>
<tr>
<td>Ranunculacées.</td>
<td></td>
</tr>
<tr>
<td>Simaroubacées.</td>
<td></td>
</tr>
<tr>
<td>Zygophyllacées.</td>
<td></td>
</tr>
<tr>
<td>Official and Non-Official Names</td>
<td>Obtained From</td>
<td>Natural Order</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Balsamum Peruvianum</td>
<td>Myroxylon Pereiræ</td>
<td>Leguminosæ.</td>
<td></td>
</tr>
<tr>
<td>Balsamum Tolutanum</td>
<td>Myroxylon Toluifera</td>
<td></td>
</tr>
<tr>
<td>Bladder Senna ...</td>
<td>Colutea Arborescens</td>
<td></td>
</tr>
<tr>
<td>Cassia Pulpa ...</td>
<td>Cassia Fistula</td>
<td></td>
</tr>
<tr>
<td>Catechu Nigrum</td>
<td>Acacia Catechu</td>
<td></td>
</tr>
<tr>
<td>Copaiba ...</td>
<td>Copaifera Multijunga</td>
<td></td>
</tr>
<tr>
<td>Foenugreek Seeds</td>
<td>Trigonella Fenum Græcum</td>
<td></td>
</tr>
<tr>
<td>Glycyrrhiza Radix</td>
<td>Glycyrrhiza Glabra</td>
<td></td>
</tr>
<tr>
<td>Hæmatoxyli lignum</td>
<td>Hæmatoxylum Campechianum</td>
<td></td>
</tr>
<tr>
<td>Indigo ...</td>
<td>Indigofera Tintoria</td>
<td></td>
</tr>
<tr>
<td>Kino ...</td>
<td>Pterocarpus Marsupium</td>
<td></td>
</tr>
<tr>
<td>Physostigmatis Faba</td>
<td>Physostigma Venenosum</td>
<td></td>
</tr>
<tr>
<td>Pterocarpi Lignum</td>
<td>Pterocarpus Santalinus</td>
<td></td>
</tr>
<tr>
<td>Scoparii Cacumina</td>
<td>Sardoamnus Scoparius</td>
<td></td>
</tr>
<tr>
<td>Senna Alexandrina</td>
<td>Cassia Lanceolata</td>
<td></td>
</tr>
<tr>
<td>Senna Indica</td>
<td>Cassia Obovata</td>
<td></td>
</tr>
<tr>
<td>Tamarindus</td>
<td>Cassia Elongata</td>
<td></td>
</tr>
<tr>
<td>Tragantha</td>
<td>Tephrosia Apollinea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tamarindus Indica</td>
<td></td>
</tr>
<tr>
<td>Aconitum ...</td>
<td>Aconitum Napollius</td>
<td></td>
</tr>
<tr>
<td>Baneberry</td>
<td>Actea Spicata</td>
<td></td>
</tr>
<tr>
<td>Podophylli Radix</td>
<td>Podophyllum Peltatum</td>
<td></td>
</tr>
<tr>
<td>Hellebori Nigri Rhiizoma</td>
<td>Helleborus Niger</td>
<td></td>
</tr>
<tr>
<td>Stavesacre Seeds</td>
<td>Delphinium Staphysagria</td>
<td></td>
</tr>
<tr>
<td>Aloe Barbadensis</td>
<td>Aloe Vulgaris</td>
<td></td>
</tr>
<tr>
<td>Aloe Socotrina</td>
<td>Aloe Spicata</td>
<td></td>
</tr>
<tr>
<td>Scilla ...</td>
<td>Urginea Scilla</td>
<td></td>
</tr>
<tr>
<td>Amygdala Amara</td>
<td>Amygdalus Communis</td>
<td></td>
</tr>
<tr>
<td>Amygdala dulcis</td>
<td>Amygdalus Communis</td>
<td></td>
</tr>
<tr>
<td>Cusso</td>
<td>Brayera Anthelmintica</td>
<td></td>
</tr>
<tr>
<td>Laurocerasi Folia</td>
<td>Prunus Laurocerasus</td>
<td></td>
</tr>
<tr>
<td>Prunum</td>
<td>Prunus Domestica</td>
<td></td>
</tr>
<tr>
<td>Rosæ Caninae Fructus</td>
<td>Rosa Canina</td>
<td></td>
</tr>
<tr>
<td>Rosæ Gallicæ Petala</td>
<td>Rosa Gallica</td>
<td></td>
</tr>
<tr>
<td>Rosæ Centifolia Petala ...</td>
<td>Rosa Centifolia</td>
<td></td>
</tr>
<tr>
<td>Wild Chorry Bark</td>
<td>Prunus Virginiana</td>
<td></td>
</tr>
<tr>
<td>Anthemidis Floros</td>
<td>Anthemis Nobilis</td>
<td></td>
</tr>
<tr>
<td>Arnica Radix</td>
<td>Arnica Montana</td>
<td></td>
</tr>
<tr>
<td>Lactuca ...</td>
<td>Lactuca Virosa</td>
<td></td>
</tr>
<tr>
<td>Marigold ...</td>
<td>Calendula Officinalis</td>
<td></td>
</tr>
<tr>
<td>Ploughman’s Spikonard</td>
<td>Inula Conyza</td>
<td></td>
</tr>
<tr>
<td>Pyrothri Radix</td>
<td>Anacyclus Pyrothrum</td>
<td></td>
</tr>
<tr>
<td>Taraxaci Radix</td>
<td>Taraxacum Dens-Ioomis</td>
<td></td>
</tr>
<tr>
<td>Santonica ...</td>
<td>Artemisia Cina</td>
<td></td>
</tr>
<tr>
<td>Safflower ...</td>
<td>Carthamus Tinctorius</td>
<td></td>
</tr>
<tr>
<td>Official and Non-Official Names</td>
<td>Obtained From</td>
<td>Natural Order</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Armoraciae Radix ...</td>
<td>Cochloaria Armoracia</td>
<td>Cruciferae.</td>
<td></td>
</tr>
<tr>
<td>Sinapis</td>
<td>Sinapis {Alba</td>
<td>{Nigra</td>
<td></td>
</tr>
<tr>
<td>Bola Fructus</td>
<td>Ogle Marmelos</td>
<td>Aurantiaceae.</td>
<td></td>
</tr>
<tr>
<td>Limon</td>
<td>Citrus Limonum</td>
<td></td>
</tr>
<tr>
<td>Aurantii Cortex</td>
<td>Citrus Bigaradia</td>
<td></td>
</tr>
<tr>
<td>Belladonnae Radix et Folia ...</td>
<td>Atropa Belladonna</td>
<td>Atropaceae.</td>
<td></td>
</tr>
<tr>
<td>Hyoscyami Folia ...</td>
<td>Hyoscyami Niger</td>
<td></td>
</tr>
<tr>
<td>Stramonium</td>
<td>Datura Stramonium</td>
<td></td>
</tr>
<tr>
<td>Oleum Anisi</td>
<td>Illicium Anisatum</td>
<td>Magnoliaceae</td>
<td></td>
</tr>
<tr>
<td>Winters Bark</td>
<td>Drymia Winteri</td>
<td></td>
</tr>
<tr>
<td>Areca</td>
<td>Areca Catechu</td>
<td></td>
</tr>
<tr>
<td>Ginseng</td>
<td>Coriaria Myrtifolia</td>
<td>Myrtaceae.</td>
<td></td>
</tr>
<tr>
<td>Benzoinum</td>
<td>Panax Quinque Foliun</td>
<td></td>
</tr>
<tr>
<td>Buchu Folia</td>
<td>Styrax Benzoin</td>
<td>Styraceae.</td>
<td></td>
</tr>
<tr>
<td>Cuspariae Cortex</td>
<td>Barosma {Crenulata</td>
<td>Rutaceae.</td>
<td></td>
</tr>
<tr>
<td>Jaborandi</td>
<td>Serratifolia</td>
<td></td>
</tr>
<tr>
<td>Rutae Herba</td>
<td>Galepea Cusparia</td>
<td></td>
</tr>
<tr>
<td>Cajuputi oleum</td>
<td>Pilocarpus Pinnatifolia</td>
<td></td>
</tr>
<tr>
<td>Caryophyllum</td>
<td>Ruta Graveolens</td>
<td></td>
</tr>
<tr>
<td>Pimenta</td>
<td>Melaleuca Minor</td>
<td></td>
</tr>
<tr>
<td>Calumbae Radix</td>
<td>Caryophyllus Aromaticus</td>
<td>Myrtaceae.</td>
<td></td>
</tr>
<tr>
<td>Pareiraë Radix</td>
<td>Eugenia Pimenta</td>
<td></td>
</tr>
<tr>
<td>Cambogia</td>
<td>Jateorrhiza {Columba</td>
<td>Menispermaceae.</td>
<td></td>
</tr>
<tr>
<td>Mangosteen Fruit</td>
<td>Miersii</td>
<td></td>
</tr>
<tr>
<td>Bay Berries</td>
<td>Coscinium Fenestratum</td>
<td></td>
</tr>
<tr>
<td>Borneo Camphor</td>
<td>Cissampelos Pareira</td>
<td></td>
</tr>
<tr>
<td>Camphora</td>
<td>Chondodendron Tomentosum</td>
<td></td>
</tr>
<tr>
<td>Cinnamomi Cortex</td>
<td>Garcinia Morella</td>
<td></td>
</tr>
<tr>
<td>Nectandrae Cortex</td>
<td>Garcinia Mangostana</td>
<td></td>
</tr>
<tr>
<td>Sassafras Radix</td>
<td>Laurus Nobilis</td>
<td></td>
</tr>
<tr>
<td>Cassia</td>
<td>Dryobalanops Camphora</td>
<td>Lauraceae.</td>
<td></td>
</tr>
<tr>
<td>Ammoniacum</td>
<td>Camphora Officinarum</td>
<td></td>
</tr>
<tr>
<td>Anethi Fructus</td>
<td>Cinnamomum Zeylanicum</td>
<td></td>
</tr>
<tr>
<td>Anisi Oleum</td>
<td>Nectandra Rodiae</td>
<td></td>
</tr>
<tr>
<td>Assafodida</td>
<td>Sassafras Officinale</td>
<td></td>
</tr>
<tr>
<td>Carui Fructus</td>
<td>Cinnamomum Cassia</td>
<td></td>
</tr>
<tr>
<td>Carrot Fruit</td>
<td>Dorema Ammoniacum</td>
<td>Umbelliferae.</td>
<td></td>
</tr>
<tr>
<td>Conii Folia</td>
<td>Anethum Graveolens</td>
<td></td>
</tr>
<tr>
<td>Coriandri Fructus</td>
<td>Pimpinella Anisum</td>
<td></td>
</tr>
<tr>
<td>Cumin Fruit</td>
<td>Narthex Assafodida</td>
<td></td>
</tr>
<tr>
<td>Foeniculi Fructus</td>
<td>Carum Carui</td>
<td></td>
</tr>
<tr>
<td>Galbanum</td>
<td>Daucus Carota</td>
<td></td>
</tr>
<tr>
<td>Sumbul Radix</td>
<td>Conium Maculatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coriandrum Sativum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuminum Cyminum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foeniculum Dulce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forula Galbaniflua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euryangium Sumbul</td>
<td></td>
</tr>
<tr>
<td>OFFICIAL AND NON-OFFICIAL NAMES</td>
<td>OBTAINED FROM</td>
<td>NATURAL ORDER</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Cannabis Indica...</td>
<td>Cannabis Sativa</td>
<td>Cannabinaceæ.</td>
<td></td>
</tr>
<tr>
<td>Lupulus...</td>
<td>Humulus Lupulus</td>
<td>Cannabinaceæ.</td>
<td></td>
</tr>
<tr>
<td>Capsici Fructus...</td>
<td>Capsicum Fastigiatum</td>
<td>Solanaceæ.</td>
<td></td>
</tr>
<tr>
<td>Dulcamara...</td>
<td>Solanum Dulcamara</td>
<td>Solanaceæ.</td>
<td></td>
</tr>
<tr>
<td>Sem Cardamomi</td>
<td>Elottaria Cardamomum</td>
<td>Zingiberaceæ.</td>
<td></td>
</tr>
<tr>
<td>Grains of Paradise...</td>
<td>Amomum Moqueata</td>
<td>Zingiberaceæ.</td>
<td></td>
</tr>
<tr>
<td>Turmeric...</td>
<td>Curcuma Longa</td>
<td>Zingiberaceæ.</td>
<td></td>
</tr>
<tr>
<td>Zingiberis Radix...</td>
<td>Zingiber officinale</td>
<td>Zingiberaceæ.</td>
<td></td>
</tr>
<tr>
<td>Cascarillæ Cortex...</td>
<td>Croton Eltoria</td>
<td>Euphorbiaceæ.</td>
<td></td>
</tr>
<tr>
<td>Croton...</td>
<td>Croton Tiglium</td>
<td>Euphorbiaceæ.</td>
<td></td>
</tr>
<tr>
<td>Euphorbium...</td>
<td>Euphorbia officinarum</td>
<td>Cinchonaceæ.</td>
<td></td>
</tr>
<tr>
<td>Kamala...</td>
<td>Rottlera Tinctoria</td>
<td>Boraginaceæ.</td>
<td></td>
</tr>
<tr>
<td>Ricinus...</td>
<td>Ricinus Communis</td>
<td>Byttneriaceæ.</td>
<td></td>
</tr>
<tr>
<td>Catechu Pallidum...</td>
<td>Uncaria Gambir</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>Cinchonaæ Flavaæ...</td>
<td>Cinchona Calisaya</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>Cinchonaæ Pallidaæ...</td>
<td>Cinchona Condamineæ</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>Cinchonaæ Rubraæ...</td>
<td>Cinchona Suceirubra</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>Ipecacuanha...</td>
<td>Cephalis Ipecacuana</td>
<td>Boraginaceæ.</td>
<td></td>
</tr>
<tr>
<td>Comfrey...</td>
<td>Symphytum officinale</td>
<td>Byttneriaceæ.</td>
<td></td>
</tr>
<tr>
<td>Alkanet...</td>
<td>Alkana tinctoria</td>
<td>Boraginaceæ.</td>
<td></td>
</tr>
<tr>
<td>Cacao Butter...</td>
<td>Theobroma cacao</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>Chirata...</td>
<td>Ophelia Chirata</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>Gentianaæ Radix...</td>
<td>Gentiana Lutea</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>American Calumba...</td>
<td>Frasora Walteri</td>
<td>Gentianaceæ.</td>
<td></td>
</tr>
<tr>
<td>Colchicum...</td>
<td>Colchicum Autumnale</td>
<td>Melanthaceæ.</td>
<td></td>
</tr>
<tr>
<td>Veratia...</td>
<td>Gavadilla</td>
<td>Melanthaceæ.</td>
<td></td>
</tr>
<tr>
<td>Veratri Viridis...</td>
<td>Veratrum Viride</td>
<td>Melanthaceæ.</td>
<td></td>
</tr>
<tr>
<td>Veratri Albi...</td>
<td>Veratrum Album</td>
<td>Melanthaceæ.</td>
<td></td>
</tr>
<tr>
<td>Bryony Root...</td>
<td>Bryonia Dioica</td>
<td>Cucurbitaceæ.</td>
<td></td>
</tr>
<tr>
<td>Colocynthidis Pulpa...</td>
<td>Citrullus Colocynthis</td>
<td>Iridaceæ.</td>
<td></td>
</tr>
<tr>
<td>Echalii Fructus...</td>
<td>Ecbalium Officinarum</td>
<td>Iridaceæ.</td>
<td></td>
</tr>
<tr>
<td>Crocus...</td>
<td>Crocus Sativus</td>
<td>Iridaceæ.</td>
<td></td>
</tr>
<tr>
<td>Orris Root...</td>
<td>Iris Florentina</td>
<td>Iridaceæ.</td>
<td></td>
</tr>
<tr>
<td>Cubeba...</td>
<td>Cubeba Officinalis</td>
<td>Iridaceæ.</td>
<td></td>
</tr>
<tr>
<td>Matinæ Folia...</td>
<td>Artanthe Elongata</td>
<td>Iridaceæ.</td>
<td></td>
</tr>
<tr>
<td>Piper Nigrum...</td>
<td>Piper Nigrum</td>
<td>Scrophulariaceæ.</td>
<td></td>
</tr>
<tr>
<td>Piper Longum...</td>
<td>Chavica, Roxburghii</td>
<td>Amyridaceæ</td>
<td></td>
</tr>
<tr>
<td>Digitalis Folia...</td>
<td>Digitalis Purpura</td>
<td>Scrophulariaceæ.</td>
<td></td>
</tr>
<tr>
<td>Mullein...</td>
<td>Verbascum Thapsus</td>
<td>Amyridaceæ</td>
<td></td>
</tr>
<tr>
<td>Bdellium...</td>
<td>Balsamodendron Mukul</td>
<td>Amyridaceæ</td>
<td></td>
</tr>
<tr>
<td>Elemi...</td>
<td>Canarium, Commune</td>
<td>Amyridaceæ</td>
<td></td>
</tr>
<tr>
<td>Myrrha...</td>
<td>Balsamodendron Myrrha</td>
<td>Amyridaceæ</td>
<td></td>
</tr>
<tr>
<td>Olibanum...</td>
<td>Varieties of Boswellia</td>
<td>Amyridaceæ</td>
<td></td>
</tr>
<tr>
<td>Official and Non-Official Names</td>
<td>Obtained from</td>
<td>Natural Order</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Ergota</td>
<td>Secale cerealo</td>
<td>Graminaceae</td>
<td></td>
</tr>
<tr>
<td>Farina Triticum</td>
<td>Triticum Vulgare</td>
<td></td>
</tr>
<tr>
<td>Hordeum Decorticatum</td>
<td>Hordeum Distichon</td>
<td></td>
</tr>
<tr>
<td>Saccharum</td>
<td>Saccharum Officinarum</td>
<td></td>
</tr>
<tr>
<td>Felix-Mas</td>
<td>Aspidium Felix-Mas</td>
<td>Filices</td>
<td></td>
</tr>
<tr>
<td>Galla</td>
<td>Quercus Infectoria</td>
<td></td>
</tr>
<tr>
<td>Quercus Cortex</td>
<td>Quercus Pedunculata</td>
<td></td>
</tr>
<tr>
<td>Granati Radicis Cortex</td>
<td>Punica Granatum</td>
<td></td>
</tr>
<tr>
<td>Guaiaci Lignum</td>
<td>Guaiacum Officinale</td>
<td>Cupuliferæ</td>
<td></td>
</tr>
<tr>
<td>Guaiaci Rosina</td>
<td>Guaiacum Officinale</td>
<td>Myrtaceæ</td>
<td></td>
</tr>
<tr>
<td>Argol Leaves</td>
<td>Solenostemma Argol</td>
<td>Zygophyllaceæ</td>
<td></td>
</tr>
<tr>
<td>Hemidesmi Radix</td>
<td>Hicana Indicus</td>
<td>Asclepiadaceæ</td>
<td></td>
</tr>
<tr>
<td>Gum Juniper</td>
<td>Callitris Quadrivalis</td>
<td>Coniferæ</td>
<td></td>
</tr>
<tr>
<td>Huile de Cade</td>
<td>Juniperus Oxycedras</td>
<td></td>
</tr>
<tr>
<td>Juniper</td>
<td>Juniperus Communis</td>
<td></td>
</tr>
<tr>
<td>Larch Bark</td>
<td>Larix Europæa</td>
<td></td>
</tr>
<tr>
<td>Pix Burgundica</td>
<td>Abies Excelsa</td>
<td></td>
</tr>
<tr>
<td>Pix Liquida</td>
<td>Pinus Sylvestris</td>
<td></td>
</tr>
<tr>
<td>Resina</td>
<td>Pinus et Abies</td>
<td></td>
</tr>
<tr>
<td>Sabinae Cacumina</td>
<td>Juniperus Sabina</td>
<td></td>
</tr>
<tr>
<td>Terobinthina Canadensis</td>
<td>Abies Balsamea</td>
<td></td>
</tr>
<tr>
<td>Thus Americanum</td>
<td>Pinus Tæda</td>
<td></td>
</tr>
<tr>
<td>Krameria Radix</td>
<td>Krameria Triandra</td>
<td>Krameriacæ, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krameria Ixina</td>
<td>Polygalaceæ</td>
<td></td>
</tr>
<tr>
<td>Lavandula</td>
<td>Lavandula Vera</td>
<td>Labiatæ</td>
<td></td>
</tr>
<tr>
<td>Mentha Piperita</td>
<td>Mentha Piperita</td>
<td></td>
</tr>
<tr>
<td>Mentha Viridis</td>
<td>Mentha Viridis</td>
<td></td>
</tr>
<tr>
<td>Oleum Mentha Pulegii</td>
<td>Mentha Pulegium</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus</td>
<td>Rosmarinus Officinalis</td>
<td>Sapotaceæ</td>
<td></td>
</tr>
<tr>
<td>Gutta Percha</td>
<td>Isandra Gutta</td>
<td></td>
</tr>
<tr>
<td>Cotton Wool</td>
<td>Gossypium</td>
<td>Malvaceæ</td>
<td></td>
</tr>
<tr>
<td>Guarana</td>
<td>Paullinia Sorbilis</td>
<td>Sapindaceæ</td>
<td></td>
</tr>
<tr>
<td>Lini Semina</td>
<td>Linum Usitatissimum</td>
<td>Linaceæ</td>
<td></td>
</tr>
<tr>
<td>Lobelia</td>
<td>Lobelia Inflata</td>
<td>Lobeliaceæ</td>
<td></td>
</tr>
<tr>
<td>Manna</td>
<td>Fraxinus { Ornus Rotundifolia</td>
<td>Oleaceæ</td>
<td></td>
</tr>
<tr>
<td>Oleæ Oleum</td>
<td>Olea Europæa</td>
<td></td>
</tr>
</tbody>
</table>
Materia Medica

<table>
<thead>
<tr>
<th>Official and Non-Official Names</th>
<th>Obtained From</th>
<th>Natural Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastiche</td>
<td>Pistacia Lentiscus</td>
<td>Anacardiaceae.</td>
</tr>
<tr>
<td>Mezerei cortex</td>
<td>Daphne</td>
<td>Thymelaeae.</td>
</tr>
<tr>
<td>Moro Succus</td>
<td>Mezereum</td>
<td>Moraceae.</td>
</tr>
<tr>
<td>Fig</td>
<td>Laureola</td>
<td>Myristicaceae.</td>
</tr>
<tr>
<td>Myristica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nux Vomica</td>
<td>Strychnos Nux Vomica</td>
<td>Loganiaceae.</td>
</tr>
<tr>
<td>Ignatia</td>
<td>Ignatia Amara</td>
<td></td>
</tr>
<tr>
<td>Papaveris Capsule</td>
<td>Papaver Somniferum</td>
<td>Papaveraceae.</td>
</tr>
<tr>
<td>Rheodos Petala</td>
<td>Papaver Rhoes</td>
<td></td>
</tr>
<tr>
<td>Ophium</td>
<td>Papaver Somniferum</td>
<td></td>
</tr>
<tr>
<td>Quassia Lignum</td>
<td>Pierana Excelsa</td>
<td></td>
</tr>
<tr>
<td>Rhamni Succus</td>
<td>Rhamnus Catharticus</td>
<td></td>
</tr>
<tr>
<td>Rheum Radix</td>
<td>Rheum Palmatum</td>
<td></td>
</tr>
<tr>
<td>Sambuei Flores</td>
<td>Sambucus Nigra</td>
<td></td>
</tr>
<tr>
<td>Sarsa Radix</td>
<td>Smilax Officinalis</td>
<td></td>
</tr>
<tr>
<td>Scammoniae Radix</td>
<td>Convolvulus Scammonia</td>
<td>Convolvulacese.</td>
</tr>
<tr>
<td>Scammonium</td>
<td>Convolvulus Scammonia</td>
<td>Convolvulacese.</td>
</tr>
<tr>
<td>Tampico Jalap</td>
<td>Exogonium Purga</td>
<td></td>
</tr>
<tr>
<td>Senega Radix</td>
<td>Ipomoea Simulans</td>
<td></td>
</tr>
<tr>
<td>Serpentina Radix</td>
<td>Polygala Senega</td>
<td></td>
</tr>
<tr>
<td>Styrax Preparatus</td>
<td>Aristolochia Serpentina</td>
<td></td>
</tr>
<tr>
<td>Ulmi Cortex</td>
<td>Liquidambar Orientale</td>
<td></td>
</tr>
<tr>
<td>Uvae Ursi Folia</td>
<td>Ulmus Campestris</td>
<td></td>
</tr>
<tr>
<td>Valeriana Radix</td>
<td>Arctostaphylos Uva Ursi</td>
<td></td>
</tr>
<tr>
<td>Canella Alba Cortex</td>
<td>Canella Alba</td>
<td></td>
</tr>
<tr>
<td>Winters Bark</td>
<td>Cinnamomendron Corticosum</td>
<td>Canellaceae.</td>
</tr>
<tr>
<td>Wood Oil</td>
<td>Dipterocarpus Turbinatus</td>
<td>Dipteraceae.</td>
</tr>
<tr>
<td>Red Whortleberry</td>
<td>Vaccinium Vitis Lactis</td>
<td>Vaccinaceae.</td>
</tr>
</tbody>
</table>
Sub-Kingdom—Phanerogamia.
Class.—Dicotyledones.
Sub-Class I.—Thalamifloræ.
Natural Order.—Ranunculaceæ.

Case A.

The fresh leaves and flowering tops of Aconitum Napellus, Monkshood, gathered when about one-third of the flowers are expanded, from plants cultivated in Britain. The reason for gathering at this period is that those compounds, which are simply of use as nutrition for the growth of the plant, may be taken up to form new tissues, the secretions necessarily becoming concentrated by their removal.

Habitat Britain, where the plant is cultivated.

The leaves are far less active than the root, and are reported to possess one-sixth of its activity.

The dried root of Aconitum Napellus, collected in winter or early spring, before the leaves have appeared. The object of the root being collected before the appearance of the leaves is, that in proportion to the growth above ground, so is the loss underground.

Habitat, cold climates of Europe. Generally imported from Germany or cultivated in Britain.

Characters.—Aconite root is from two to four inches long, coffee coloured, and in shape is conical, tapering to a point. Its taste is acrid, followed by a numbness and tingling of the lips and skin.
Aconite root has been sometimes mistaken for horseradish root, from which it may be distinguished by the following marked characters:

Aconite Root
Is from two to four inches long, conical and terminating in a point, coffee-coloured, possessing no pungent smell, and turns pink when the fresh root is scraped or cut.

Horseradish Root
Is generally three or four times as long as aconite root, cylindrical, and terminating rather abruptly, of a light yellow colour, possessing a very pungent odour, especially when scraped. It does not turn pink when scraped or cut.

Composition.—All parts of the plant contain the alkaloid *Aconitia* \(C_{30}H_{47}NO_7\) united with aconitic acid.

Another crystallizable alkaloid named Aconella is present in aconite root, in composition and properties it resembles narcotine. An alkaloid termed Pseudo-aconitia, more powerful in its properties than ordinary aconitia, has been found in the *Aconitum Ferox*. Aconitia is distinguished from Pseudo-aconitia by the following tests:

Pseudo-aconitia softens in boiling water. Aconitia does not. Aconitia gives a violet tint with concentrated phosphoric acid, Pseudo-aconitia does not.

Therapeutics.—Aconite is used in nervous complaints, such as neuralgia, gout and rheumatism. It produces numbness of the nerves.

Official Preparations.

Of the leaves.	Extractum Aconiti.
Of the root.	Tinctura Aconiti.
	Linimentum Aconiti.
	Aconitia.
Of Aconitia.	Unguentum Aconitiae.

No. 3. Podophylli Radix. *Podophyllum Root.*
The dried rhizome of *Podophyllum Peltatum* or *May Apple*. It is this rhizome which is called mandrake in the United States.
Habitat.—United States of North America.

Characters.—Podophyllum root, as it is called, is known to be a rhizome by its producing buds and leaves on its upper surface, and rootlets from its lower surface. Along the rhizome at intervals more or less flattened and swollen portions are found (a), presenting on their upper surfaces a number of rings, produced by the falling off of the leaves, and on their lower surfaces white scars (b), due to the detachment of the rootlets. Sometimes the rootlets themselves are found on the rhizome.

Composition.—Podophyllum root contains from 3 to 4 per cent. of resin podophylline. This resin is stated to consist of two resinous bodies, one soluble in ether, the other insoluble; if this is correct, the official resin must contain both, as both are soluble in alcohol. Podophyllum also contains the alkaloid berberine and saponin.

Therapeutics.—The resin contained in podophyllum acts as an active cathartic.

Official Preparation.—Podophylli Resina.

No. 4. Hellebori Nigri Rhizoma. Hellebore Rhizome. (Not official.)

The dried rhizome and rootlets of the Helleborus Niger, Black Hellebore, or Christmas Rose.

Habitat.—Central Europe.

Adulterations.—Black Hellebore has been frequently adulterated with the rhizome of Actaea Spicata, (Baneberry), from which it may be readily distinguished by the following character:—On making a transverse section of a rootlet of Black Hellebore, the meditullium appears as one mass, not being divided in any way. On treating a rootlet of Baneberry in a similar manner, the meditullium is seen to be divided in a stellate or cruciate manner.

The rhizomes of Helleborus viridis and Helleborus foetidus are occasionally substituted for Black Hellebore rhizome; this substitution, however, matters little, as they possess as much activity as the true drug.

Therapeutics.—Black Hellebore is a drastic purgative and emmenagogue.
Composition.—An acrid oil, believed to be the active principle, and a crystalline body, Helleborine.

Preparation.—A tincture of Hellebore was formerly official, but the use of the drug has been discontinued, principally on account of its adulteration with the Baneberry, which possesses entirely different properties.

(Not official.)

The seeds of Delphinium Staphysagria or Stavesacre.

Habitat.—South of Europe.

Characters.—The seeds are of an irregular triangular shape, and possess a deeply pitted testa.

Composition.—Stavesacre seeds contain an alkaloid delphinia (C₂₇H₁₉N₇).

Therapeutics.—Its principal use is externally in the form of an ointment for destroying pediculi.

(Not official.)

The dried rhizome and rootlets of Actœa Racemosa, or black snake root. In the United States it is known as Cimicifuga.

Habitat.—United States of North America.

Characters.—The rootlets are considered to be the most active portion; they resemble the rootlets of Actœa Spicata in possessing a stellate meditullium.

Composition.—Cimicifuga contains a resin cincifugin or macrotin, and a volatile oil. It has not yet been thoroughly analyzed.

Natural Order.—Magnoliaceæ.

The Star Anise fruit as found in commerce consists of a number of carpals arranged in a stellate manner. Each carpel is generally found with an opening which is its ventral suture, by which it has dehisced, and within each carpel is found a single seed.
The oil distilled in China from the fruit of Illicium Anisatum, Star Anise, is official, together with the oil distilled in Europe from the umbelliferous fruit of Pimpinella Anisum, (Anise.)

The two oils may be distinguished from one another by the oil from the Illicium Anisatum congealing at a higher temperature than the oil from the Pimpinella Anisum. The Chinese oil is considered as superior to the European oil, and is the one mostly in use in this country.

Therapeutics.—Used as an aromatic and carminative.

Cortex Winteri. Winter's Bark.

(Not Official.)

No 8. The bark of Drymis Winteri, or Drymis Aromatica.

Habitat.—The coasts of the Straits of Magellan. Most of the Winter's Bark is not obtained from the true plant, but from the Cinnamodendron Corticosum, a plant of the Natural Order Canellaceae.

Adulteration.—Canella Alba Bark is often substituted and mistaken for Winter's Bark. They are distinguished from one another by Canella Bark having its outer surface darker than the inner, and by Winter's Bark having its inner surface darker than the outer. An infusion of Winter's Bark will also strike a black colour with salts of iron, from the tannic acid contained in it; an infusion of Canella Bark does not, since it contains no tannic acid.

Composition.—Winter's bark contains a little tannic acid, volatile oil, and resin.

Therapeutics.—Used as an aromatic and tonic.

Natural Order.—Menispermacæ.

No. 9. Calumbæ Radix. Calumba Root.

The root, cut transversely and dried, of Jateorhiza Calumba and Jateorhiza Miersii.
Habitat.—The forests of Eastern Africa between the rivers Ibo and Zambesi.

Characters.—Calumba root consists of the sliced tubercules or fleshy portions of the root. A test used by the natives as to the quality of the root is to expose it to the sun; if it then possesses a brittle fracture it is good, but if it is soft it is regarded as of bad quality. The interior of each slice is depressed from shrinking during the process of drying.

The yellow colour of the root is due to the salts of berberine contained in it. It is frequently found perforated with holes caused by insects, on account of the starch which it largely contains. The small slices are the best, from possessing most cortical portion in which the greatest amount of activity resides.

Adulterations.—Bryony Root, from Bryonia dioica, the root of Frasera Walteri, and the stem of Coscinium Fenestratum, (a menispermaceous plant) have been substituted for Calumba Root. They are distinguished from Calumba by their slices having no depression and by not giving a blue colour when touched with tincture of iodine, on account of the absence of starch.

Composition.—Calumba Root contains a neutral crystallizable principle, Calumbin, an alkaloid, berberine ($C_{20}H_{17}NO_4$) combined with calumbic acid and about 33 per cent. of starch. Calumbate of berberine is soluble both in water and spirit, it is therefore contained in the infusion and tincture, the alkaloid berberine was first discovered in the Berberis Vulgaris, (common barberry.) A cold decoction of Calumba Root gives a dark blue colour with tincture of iodine, on account of the starch contained in it.

Therapeutics.—Calumba Root is useful as a stomachic and tonic.

Official Preparations.

Extractum Calumbæ.
Infusum Calumbæ.
Tinctura Calumbæ.
No. 10. Pareira Root.—The dried Root of Chondodendron Tomentosum. It is commonly called Pareira Brava.

Habitat:—Brazil.

Characters.—Pareira root was formerly believed to be the produce of Cissampelos Pareira, but Hanbury has clearly shown that its true botanical source is the Chondodendron Tomentosum. It occurs in dark irregular pieces, generally about an inch in diameter and six to twenty-four inches long. When cut it presents a waxy appearance.

Adulterations.—Previous to the discovery of the true source of pareira root, the roots of some allied species were almost entirely found in commerce; all that is known about them is, that they were derived from some menispermaceous plants of unknown origin; that they belong to the menispermacceae is evident from the peculiar structure of their wood. The true pareira root may be distinguished from this adulteration by the following characters:—

The true pareira root is darkest in colour; it generally possesses only three or four concentric rings of wood, arranged in a very irregular manner, and has a smooth waxy cut.

The substituted root (see No 10a), generally possesses a number of concentric rings arranged in a regular manner, and when cut it presents a rough surface, due to the cells not being in such a compact condition as in the true root.

The stems of the chondodendron tomentosum, and of allied species, have been substituted for pareira root.

The root may be distinguished from the stem as follows:—

The root is darker and more irregular than the stem; it generally has short rootlets, but it has no perceptible pith nor any development of lichens.

The stem has a pith and an evident development of lichens, but it has no branches.

Composition.—The true pareira root has not been thoroughly analyzed, but the root formerly known in commerce as pareira root contains a bitter principle called Pelozine or Cissampeline (C_{18}H_{21}NO_{3}), which is believed to be identical with the alkaloid beberia.
Therapeutics.—Pareira root is a tonic and diuretic.

Official Preparations.
Decoctum Pareiræ.
Extractum Pareiræ.
Extractum Pareiræ Liquidum.

No. 11. Cocculus. Cocculus Indicus.

The dried fruit of Anamirta Cocculus or Anamirta Paniculata. It is commonly but incorrectly called a berry; it is a drupe.

Habitat—India.

Characters.—The Cocculus Indicus fruit is reniform or kidney shape, enclosing one seed, which is firmly attached by the placenta to the pericarp. If the fruit is good, this seed should fill at least two-thirds of the shell.

Cocculus Indicus fruits are frequently confounded with bay berries. They may be distinguished as follows.—

Cocculus Indicus.
2. The seed does not rattle when the fruit is shaken, being firmly attached to the placenta.

Bay Berries.
1. Oval in shape, larger than Cocculus Indicus.
2. The seed rattles when a berry is shaken, because it lies loose in the pericarp.

Contains a crystalline neutral principle Picrotoxine, found only in the seed, to which its activity is due. The pericarp contains two alkaloids, menispermia and paramenispermia, both of the same composition, they are distinguished from one another by the former combining with acid to form salts, and the latter not doing so.

Therapeutics.—Cocculus Indicus has been used externally in the form of an ointment, to destroy pediculi. It is frequently used to adulterate beer, in order to increase its intoxicating power. It is also used by poachers for stupifying fish and game.
Natural Order.—Papaveraceae.

The fresh petals of Papaver Rhœas, the red or corn poppy. The fresh petals only should be used in making the syrup, and they should be collected on a hot, dry day.

Habitat.—Indigenous.

Composition.—Red poppy petals contain a red colouring matter, for which they are chiefly used in medicine. They contain no morphia.

Official Preparation.—Syrupus Rhœados.

The nearly ripe dried capsules of Papaver Somniferum, the opium poppy.

Habitat.—Asia and Egypt, it is also largely cultivated in Britain.

Characters.—There are two well marked varieties of the Papaver Somniferum, viz.:

1. Papaver Somniferum—
 var Nigrum.

 Petals usually red, capsule dehiscing by pores, situated under the stigma, seeds dark coloured. These seeds are commonly called maw seeds.

2. Papaver Somniferum—
 var Album.

Poppy capsules are most active before they are quite ripe, and should be gathered at that period. On the top of each capsule is a star like sessile stigma. Within, the seeds are attached to parietal placentas, which project into the cavity of the ovary, and which are equal in number to the stigmas.

Composition.—Poppy Capsules contain a small amount of the principles found in opium; from the seeds a fixed oil, called poppy-oil, is obtained by expression.
Plate 3.

N° 15

N° 16

The juice obtained by incision from the unripe capsules of *Papaver Somniferum,* and hardened by spontaneous evaporation.

Habitat.—Asia Minor; cultivated also in Egypt, Persia, and India.

Collection.—Opium is obtained by making incisions into the poppy capsules a few days after the petals have fallen, the incisions are made either horizontally or vertically; either way does, as the laticiferous vessels in which the juice is contained permeate in every direction. In Asia Minor and Smyrna the incisions are made horizontally, and extend about three-fourths round the capsule. In India the incisions are made vertically. Care must be taken that the incision does not go through the pericarp, as this would cause most of the milky juice to flow into the inside and to be lost, and would also prevent the ripening of the seeds, which alone will pay the cost of the cultivation of the poppy, on account of the oil obtained from them. The exuded juice, which is at first of a white colour soon becomes brown and concretes in the form of tears, which are then scraped off and either worked up into a mass or the separate tears are simply put together. The opium is further dried in the shade and the masses are usually enveloped with some leaf.

Characters.—Several varieties of opium are found in commerce, as Smyrna, Constantinople, Egyptian, Persian or Trebizond, Indian and European. Of these the first four only are found in English commerce; the Smyrna and Constantinople opiums are the only official ones; the other opiums should not be employed in making the preparations of the Pharmacopoeia.

No. 15. Smyrna Opium, commonly called Turkey or Levant opium, occurs in masses, made up of agglutinated tears, weighing from half to two pounds. These masses are wrapped up in poppy leaves, which possess marked pinnate or feather venation, and are generally covered externally by the capsules of a species of *Rumex*; instead of the capsules
their triangular seeds are frequently found on the masses of opium, on account of their pericarps having been rubbed or shaken off. This is the best kind of opium, it contains on the average about 8 per cent. of morphia.

No. 16. Constantinople Opium occurs either in large cakes or in small lenticular masses, weighing from a quarter to half a pound. The masses are generally wrapped in a poppy leaf, with a marked midrib, and are never covered with rumex capsules, by which character this kind of opium may be distinguished from Smyrna opium. Constantinople opium is generally considered to be inferior to Smyrna; some specimens, however, contain a large percentage of morphia.

No. 17. Egyptian Opium occurs in circular cakes, more or less flat, about two or three inches in diameter, and covered with a leaf which is believed to be that of the Oriental Plane. This leaf can be distinguished from the poppy leaf by possessing palmate or radiate venation. Internally this opium is of a reddish colour, which does not darken by keeping, as the other kinds of opium do. It is inferior to either the Smyrna or Constantinople opium.

No. 18. Persian or Trebizond Opium originally came over in sticks wrapped up in paper, about the thickness of the little finger and about six inches in length. This opium is very inferior. Recently opium of a better quality has been imported from Persia in lumps, some specimens of which, forwarded to the author, contained from 8 to 9 per cent. of morphia.

No. 19. East Indian Opium, called 'Chinese investment opium', occurs in round balls like cannon balls. It turns black by keeping, and is a very inferior variety.

European Opiums, amongst which are English, French, and German, are occasionally met with, but are, as a rule, very inferior varieties.

Adulterations.—Inferior kinds of opium, and opium from which the morphia has been extracted, have been substituted for good opium. Impurities such as stones, gravel,
bullets, &c., have frequently been found mixed with opium. Opium of too soft a consistence should not be used, as the more water there is in a sample, the smaller the per centage of morphia will be.

The best way to ascertain the purity of a sample of opium is to estimate the amount of morphia present in it. The following is the test given in the British Pharmacopoeia for estimating the amount of morphia present in opium:—

Take of opium one hundred grains, slaked lime one hundred grains, distilled water four ounces. Break down the opium, and steep it in an ounce of the water for twenty-four hours, stirring the mixture frequently. Transfer it to a displacement apparatus, and pour on the remainder of the water in successive portions, so as to exhaust the opium by percolation. To the infusion thus obtained, placed in a flask, add the lime, boil for ten minutes, place the undisolved matter on a filter and wash it with an ounce of boiling water. Acidulate the filtered fluid slightly with diluted hydrochloric acid, evaporate it to the bulk of half an ounce, and let it cool. Neutralize cautiously with solution of ammonia, carefully avoiding an excess; remove by filtration the brown matter which separates, wash it with an ounce of hot water, mix the washings with the filtrate, concentrate the whole to the bulk of half an ounce, and add now solution of ammonia in slight excess. After twenty-four hours collect the precipitated morphia on a weighed filter, wash it with cold water, and dry it at 212°. It ought to weigh at least from six to eight grains.

Composition.—Opium contains a peculiar acid and several alkaloids and neutral bodies, of which the following are the most important, Meconic Acid, Morphia, Codeia, Thebaia or paramorphia, Narcotine, Narcein, Meconin, a trace of volatile oil, resinous and extractive matter.

Meconic acid (C₇H₁₀O₄3H₂O), a tribasic acid. It is best prepared by adding hydrochloric acid to a hot solution of meconate of calcium; the meconic acid crystallizes out on cooling. Meconic acid gives a blood red colour with neutral ferric salts, which colour can be distinguished from
the similar one of ferric sulphocyanide by being destroyed by hydrochloric acid. The colour of ferric sulphocyanide is not destroyed on the addition of hydrochloric acid.

Morphia (C₁₇H₁₉NO₅), an alkaloid existing in opium in combination with meconic acid. Soluble in alcohol, but only very slightly so in water. It has an alkaline reaction both on turmeric and red litmus paper. Morphia liberates iodine from iodic acid, and strikes a blue colour with neutral ferric salts.

Codeia (C₁₈H₂₁NO₃), a white crystalline alkaloid, distinguished from morphia by not giving a blue colour with ferric salts.

Thebaia or Paramorphia (C₁₉H₂₁NO₃), a white crystalline alkaloid, distinguished from morphia by not becoming blue on the addition of a ferric salt, and from codeia by not forming crystallizable salts. The name *paramorphia* was given to it by Pelletier, who believed it to be isomeric with morphia.

Narcotine (C₂₂H₂₃NO₇), a neutral principle existing in opium in the free state. After exhausting opium with water the narcotine is left in the residue, from which it may be extracted with ether. It can be distinguished from morphia, codeia, and thebaia by giving no alkaline reaction with test paper. It does not possess narcotic properties as its name seems to imply; its solution in sulphuric acid has been used with success in India as a substitute for sulphate of quinine.

Narcein (C₂₃H₂₉NO₉), a white crystalline solid, distinguished from the other bodies present in opium by giving a light-blue colour with dilute sulphuric, nitric, or hydrochloric acids.

Meconin (C₁₀H₁₀O₄), a white crystalline solid, containing no nitrogen.

Therapeutics.—Opium, when taken internally, generally produces at first a stimulating effect on the vascular and nervous systems, afterwards producing sleep. In large doses it is a poison, the sleep passing into a condition of coma, followed by death.
Of Opium—

Confectio Opii
Emplastrum Opii,
Enema Opii.
Extractum Opii
Extractum Opii Liquidum
Linimentum Opii
Pilula Saponis Composita
Pilula Plumbi cum Opio
Pulvis Cretae Aromaticus cum Opio
Pulvis Ipecacuanhae Compositus
Pulvis Kino Compositus
Pulvis Opii Compositus
Tinctura Opii.
Tinctura Camphorae Composita
Tinctura Opii Ammoniata
Trochisci Opii
Unguentum Gallae cum Opio
Vinum Opii
Morphiae Hydrochloras.

Of Hydrochlorate of Morphia—
Liquor Morphiae Hydrochloratis
Suppositoria Morphiae
Trochisci Morphiae.
Trochisci Morphiae et Ipecacuanhae
Morphiae Acetas

Of Acetate of Morphia—
Liquor Morphiae Acetatis.

NATURAL ORDER.—Cruciferae.

No. 20. Sinapis. Mustard.

The seeds of Sinapis Nigra and Sinapis Alba, or black and white mustard, reduced to powder, mixed.

Habitat.—Indigenous; growing in waste places and cultivated in fields.

Characters.—Black mustard seeds are very small, round, of a brownish black colour externally; internally they possess a yellow nucleus. They possess no odour, but when
rubbed with water they give a very pungent smell, due to the formation of volatile oil.

White mustard seeds are larger than those of the black mustard. They are of a yellow colour both externally and internally. They possess no pungent odour even when rubbed with water. Flour of mustard consists of the seeds of both black and white mustard crushed, pounded, and afterwards sifted once or twice.

The two plants may be distinguished by the following characters:—White mustard has hispid spreading siliques, which are short and are surmounted by a long beak, and generally curved. Black mustard has smooth siliques, adpressed to the stem, with short straight beak.

Adulterations.—Flour of Mustard is frequently adulterated with flour or starch. A cold decoction of mustard should not become blue on the addition of tincture of iodine, indicating the absence of starch.

Composition.—Black mustard seeds contain a fixed oil, Myronate of potash, Myrosin, and a crystallizable substance called Sinapisin. They do not contain any volatile oil ready formed, but in presence of water the Myrosin decomposes the Myronate of potash, and the volatile oil is one of the products of this decomposition. The water used may be warm, but if it is raised to a temperature of 212° F. no volatile oil is formed, on account of the heat coagulating the Myrosin, in which state it is incapable of effecting the decomposition of the Myronate of potash. Volatile oil of mustard (C₃H₅CNS) is the Sulphocyanide of Allyl, it is of a pale yellow colour and possesses an extremely pungent odour.

White mustard seeds contain a fixed oil, similar to that present in the black mustard seeds, an oily principle to which the acrid taste of the seeds is due, and Myrosin, but they contain no Myronate of potash, and therefore when mixed with water they yield no volatile oil. They also differ from black mustard seeds in containing a principle called Sulphocyanide of Sinapin.

Black mustard seeds do not contain sufficient Myrosin to decompose all the Myronate of potash, therefore in flour of mustard the Myrosin of the white mustard seeds effects the decomposition of the remainder.

Therapeutics.—Mustard acts as a powerful stimulant, diuretic, and in large doses it possesses emetic properties.

Official Preparations.

Of the Seeds Cataplasma Sinapis
Oleum Sinapis
Of the volatile oil Linimentum Sinapis Compositum.

No. 21. Armoracæ Radix.

Horseradish Root.

The fresh root of Cochlearia Armoracia.

Habitat.—Cultivated in Britain and all parts of Europe.

Characters.—Horseradish root is long, cylindrical, of a very light yellow colour externally, and of a white colour within. When cut or scraped it emits a very pungent odour.

Composition.—Horseradish root contains Myrosin, Myronate of potash, and water; hence, on scraping the root, the volatile oil is produced by the Myrosin and Myronate of Potash reacting on each other in presence of the water contained in it. The volatile oil was believed to be identical with volatile oil of mustard, but, according to Hofmann, it is the Sulphocyanide of Butyl (C₄H₉CNS); that the volatile oil does not exist ready formed in the root may be proved by treating with alcohol, when no volatile oil is extracted.

Therapeutics.—The same as mustard.

Official Preparation.
Spiritus Armoracæ Compositus.

Natural Order.—Violaceæ.

(Not Official.)

No. 22. Violæ. Violets.

The fresh flowers of Viola Odorata, the sweet violet. They should be gathered soon after the expansion of the flower.

Composition.—Violet petals contain a colouring matter, volatile oil, and a small quantity of an acrid principle called Violin. The colouring matter is turned red by acids and green by alkalies.
Therapeutics.—Slightly laxative. The root, in doses of from 30 to 60 grains, possesses emetic and purgative properties.

Preparation.—Syrupus Violas.

Natural Order.—Polygalaceae.

The dried root of Polygala Senega.

Habitat.—United States of America.

Characters.—Senega root consists of twisted portions, about the thickness of a quill, attached to a knotty root stock. Each portion has a projecting ridge in the form of a keel, extending throughout its entire length. The activity resides entirely in the cortical portion, the meditullium or inner portion being inert.

Adulterations.—Ginsing root obtained from Panax Quinquefolium is occasionally used to adulterate senega root. It is distinguished by the absence of the projecting ridge, its spindle shape, and by being much larger than senega root. The roots of species of Grillenia have also been found mixed with senega. They are detected by the absence of the projecting ridge.

Composition.—Senega contains a principle called Polygalic acid or Senegin, to which it is said to owe its active properties, it also contains tannic acid, Pectin and Saponin: to the latter is due the frothing of an infusion of Senega.

Therapeutics.—Senega root possesses diaphoretic, diuretic and expectorant properties.

Official Preparations.
Infusum Senegæ
Tinctura Senegæ.

No. 24. Krameriae Radix. Rhatany Root

The dried root of Krameria Triandra, commonly known as Peruvian Rhatany.

Habitat.—Peru.
Characters.—Long roots of a reddish brown colour, sometimes attached to a thickened rootstock. The root consists of an easily separable bark or cortical portion, and the meditullium or inner portion.

The activity resides almost entirely in the bark. Small pieces are therefore the best, as they contain a greater proportion of bark.

Adulterations.—A Rhatany called Savanilla, or New Granada Rhatany, is frequently found in commerce. This may be distinguished from the official rhatany by its violet colour, by the bark being firmly attached to the wood, and therefore not easily removed, and by deep cracks extending across the root. This Savanilla rhatany is quite as good and in some cases superior to the official rhatany; its botanical origin is Krameria Ixina. Another variety termed Para rhatany is sometimes found in commerce, it can be bent to and fro without breaking, whereas the Peruvian rhatany would snap.

Composition.—Rhatany root contains 40 per cent. of tannic acid, to which its astringent properties are due, it also contains Krameric acid, of which little is known.

Therapeutics.—A powerful astringent.

Official Preparations.
Extractum Krameriae.
Infusum Krameriae.
Pulvis Catechu Compositus.
Tinctura Krameriae.

Natural Order.—Linaceae.

No. 25. Lini Semina. Linseed.

The seeds of Linum Usitatissimum, the common flax.

Habitat.—Britain.

Characters.—The seeds are small, flattened, and shining on the surface, of a brown colour externally, and a yellowish white internally.

Flax is prepared from the liber or inner bark of this plant. Tow consists of the short threads separated during the combing of flax.
Linen is made from flax, and lint is linen the surface of which has been scraped.

Adulterations.—Small seeds obtained from some cruciferous and other plants have frequently been mixed with linseed. Attention to the above-mentioned characters will distinguish them.

Composition.—Linseed contains from 30 to 33 per cent. of a fixed oil found in the kernel, and mucilage which resides in the coats of the seeds.

Therapeutics.—An emollient and demulcent.

Official Preparation.—Infusum Lini.

Natural Order.—Malvaceae.

The hairs of the seeds of Gossypium Herbaceum and other species of Gossypium, carded.

Characters.—Cotton consists of tubular hairs, becoming flattened by drying, which were attached to the surface of the seed.

Cotton is composed of cellular tissue, the cells being placed end to end. By drying, these cells become angular. Linen is composed of vascular tissue, the vessels being round, tapering at their extremities and overlapping one another. It is on account of its fibres being smooth and devoid of angles, that linen is preferable to cotton for dressing wounds.

Composition.—Cotton is of the same composition as lignin, or ordinary woody fibre (C_{6}H_{10}O_{5}).

Official Preparation.—Pyroxylin.

(Not official.)

No. 27. Althæae Radix. Marsh Mallow Root.

The dried root of Althææ Officinalis. It should be gathered from plants two years old, as it contains most mucilage and very little fibrous portion then.

Habitat.—Indigenous; common throughout Europe.
Plate 6.

No. 29. Section.

No. 30. Section.
Characters.—The root is of a yellow colour externally, and white within. It frequently has the epidermis removed, when it is white on the outside.

Composition.—Mucilage, starch, and althein.

Therapeutics.—A demulcent.

Natural Order.—Byttneriaceæ.

No. 28. Oleum Theobromæ. Oil of Theobroma.

Oil of Theobroma, or Cacao Butter, is a concrete oil obtained by expression and heat from the ground seeds of Theobroma Cacao.

Habitat.—West Indies and South America.

Description.—The heat used in the extraction of Oil of Theobroma is to melt the concrete oil; if not previously melted it could not be expressed from the seeds. Cocoa and chocolate simply consist of these seeds roasted, disroved of their integuments, then ground and mixed with sugar, starch, and frequently some flavouring matter.

Prepared cocoa consists of the seeds from which the oil has been expressed.

An advantage possessed by Oil of Theobroma is that it does not become rancid from exposure to the air.

Composition of the seeds.—Cocoa seeds contain an alkaloid much resembling theine, which is found in tea, and about 50 per cent. of oil of Theobroma.

Official Preparations.

The oil is used in the suppositories of the British Pharmacopœia.

Natural Order.—Sapindaceæ.

No. 29. Guarana.

(Not Official.)

The seeds of Paullinia Sorbilis, Brazilian Cocoa.

Habitat.—Brazil.

Characters.—Guarana consists of the seeds dried, crushed, and made into a mass with water, which is then generally rolled out in the form of long sausages, about twelve inches
long and one or two inches thick. An infusion, made in the same way as tea, is the usual form of administering this drug.

Composition.—Contains 5 per cent. of an alkaloid called guaranine, similar to theine, the alkaloid contained in tea.

NATURAL ORDER.—Aurantiaceae.

The dried outer portion of the rind of the fruit of Citrus Bigaradia, the Seville or bitter orange.

Habitat.—South of Europe.

Characters.—Orange peel should be deprived of the inner white portion, which is useless. The rind is covered with numerous dots, which are the glands containing the volatile oil and bitter extractive, termed hesperidin.

Therapeutics.—The rind is a stomachic and tonic.

Official Preparations.

Infusum Aurantii.
Infusum Aurantii Compositum.
Tinctura Aurantii.
Syrupus Aurantii.
Vinum Aurantii.

Aqua Aurantii Floris. Orange Flower Water.

The water distilled from the flowers of Citrus Bigaradia, the bitter orange tree, and Citrus Aurantium, the sweet orange tree. Prepared mostly in France.

Preparation and Adulterations. See Elements of Pharmacy.

Official Preparation. Syrupus Aurantii Floris.

No. 31. Limonis Cortex. Lemon Peel.

The outer part of the rind of the fresh fruit of Citrus Limonum, the lemon tree.

Habitat.—Southern Europe

Characters.—Lemon peel occurs in thin yellow slices,
dotted with the glands containing the oil. The inner white portion should be removed, as it is inert. The fresh peel only is official.

Composition.—Lemon peel contains volatile oil and bitter extractive and hesperidine.

Therapeutics.—A stomachic; also used as a flavouring agent.

Official Preparations.
- Oleum Limonis.
- Syrupus Limonis.
- Tinctura Limonis.

Limonis Succus. Lemon Juice.

The freshly expressed juice of the ripe fruit of Citrus Limonum.

Official Preparation.—Acidum Citricum.

No. 32. Belæ Fructus. Bael Fruit.

The dried half-ripe fruit of Ægle Marmelos.

Habitat.—Malabar and Coromandel (the coasts of India).

Characters.—The fruit is round, about the size of a large orange, with a hard woody rind. It is imported in fragments consisting of rind, with dried pulp and seeds adherent to it. The epicarp or outer portion of the rind is firmly attached. The fruit is a hesperidium.

Adulteration.—The dried rind of the Mangosteen fruit has been found mixed with Bael fruit. It may be distinguished from Bael fruit by having no adhering pulp or seeds, by the epicarp being easily detached and by the pieces which come from the top of the fruit possessing radiating stigmas.

Composition.—No true analysis has yet been made.

Therapeutics.—An astringent.

Official Preparation. Extractum Belæ Liquidum.

Natural Order. Canellaceæ.

No. 33. Canellæ Albæ Cortex. Canella Alba Bark.

Habitat.—The West Indies.
Characters.—The bark occurs in quills, produced by its curling during the process of drying. It is called spurious Winter's bark, on account of its having been substituted for Winter's bark. (For the distinguishing characters, see Winter's bark.)

Composition.—A volatile oil, resin, and bitter extractive.

Therapeutics.—An aromatic tonic.

Official Preparation.

One of the ingredients of Vinum Rhei.
The powder called Hiera Picra (not official) consists of aloes and powdered Canella bark.

Natural Order.—Guttiferae.

No. 34. Cambogia. Gamboge.

A gum resin obtained from the leaves and twigs of Garcinia Morella, var pedicellata.

Habitat.—Siam.

Characters.—Gamboge occurs in cylindrical pieces, called pipe or roll gamboge, and also in lumps. It is obtained by breaking off the leaves and twigs, when the gamboge exudes as a yellow milky juice. The pipe gamboge is obtained by collecting this juice in bamboo stems. Pipe gamboge, which is generally the best on account of the difficulty of mixing adulterations with it, is striated externally, an impression which it has received from the uneven interior of the bamboo stem in which it was collected. It should be brittle, and the fractured surface should be smooth and shining. If pure, it should be entirely dissolved by successive treatment with ether and water, the ether dissolving the resin and the water the gum.

Adulteration.—Starch. A cold decoction of gamboge should not become green on the addition of solution of iodine; if a green colour is produced, it is due to the mixture of the blue colour of the iodide of starch with the yellow colour of the gamboge.

Composition.—Good gamboge contains about 75 per cent. of a resin called gambogic acid, and about 25 per cent. of gum; if rubbed with water, the gum dissolves and the resin remains suspended in the solution, forming a yellow emulsion.
Therapeutics.—A drastic purgative; in large doses it is poisonous.

Official Preparation.—Pilula Cambogiae Composita.

Natural Order. Vitaceae.

No. 35. Uvæ. Raisins.

The ripe fruit of Vitis Vinifera, the grape vine, dried in the sun or with artificial heat.

Habitat.—Spain.

Composition.—Raisins contain grape sugar and acid tartrate of potash, in the preparation of wine from the juice of the grape, the grape sugar becomes converted into alcohol.

Argol consists of the acid tartrate, which is deposited inside the wine casks, it being insoluble in the alcohol that is formed.

Official Preparations.

Tinctura Cardamomi Composita.
Tinctura Sennæ.

Natural Order—Zygophyllaceae.

The wood of Guaiacum Officinale.

Habitat.—St. Domingo and Jamaica (West Indies).

Characters.—Guaiacum wood is commonly known as Lignum Vitis. It is imported in logs; each log has a large central portion of a greenish brown colour. This is the duramen, or heart wood. The colour of it is owing to the deposit of guaiacum resin in its cells. On the outside of the duramen is the alburnum, or sap wood, which is of a pale yellow colour. The chips or rasplings are obtained from the logs during their conversion by the turning lathe into various articles of turning ware.

A resin obtained from the stem of Guaiacum Officinale, by natural exudation, by incisions, or by heat.
Description.—Guaiacum Resin may be obtained in four different ways.

1. By natural exudation. Guaiacum resin obtained by this method occurs in tears.
2. By making incisions into the stem.
3. By heat. This, which is the general method of extracting guaiacum resin, is performed by cutting the wood into logs. The logs then have a hole bored through them lengthwise, and are placed in a slanting position with one end in a fire. The heat melts the resin, which runs down the hole into a vessel placed to receive it.
4. By boiling the chips in a solution of common salt, when the resin melts and rises to the surface. The solution of salt boils at a higher temperature than water, and so enables the resin to melt.

Guaiacum resin, either in tears or in lumps, as obtained by the third method, may be recognised by being covered externally with a green coloured powder, or, if this be absent, the green colour can be produced by rubbing two pieces together.

Adulteration.—Guaiacum resin is sometimes adulterated with turpentine resin, which may be detected by the terebinthinate odour evolved on heating a sample of the suspected resin; this admixture is rarely practised.

Composition.—Guaiacum resin contains resin of Guaiacum, Guaiacic Acid, and a little extractive matter, soluble in water. A tincture of Guaiacum resin gives a blue colour when applied to the inner surface of a paring of raw potato, due to the action of Guaiacic acid on the gluten, the blue colour is deepest if the tincture be applied to that part of the paring where an eye or bud is situated, since there the greatest portion of gluten resides. Also a piece of paper soaked in the tincture turns blue when exposed to nitrous fumes.

Therapeutics.—Guaiacum resin is a stimulant, alterative and diaphoretic.
Of the wood. Decoctum Sarzæ Compositum.
Of the resin. Mistura Guaiaci.
Pilula Hydrargyri Subchloridi Composita.
Tinctura Guaiaci Ammoniata.

Natural Order.—**Rutaceæ.**

Oleum Rutæ. Oil of Rue.

The volatile oil distilled in England from the fresh leaves and unripe fruit of Ruta Graveolens, or common rue.

Habitat.—The rue plant grows wild in the South of Europe, and is cultivated in England.

Composition.—Oil of rue is contained in the glands with which the leaves are dotted, the disagreeable odour of the leaves is due to this volatile oil, rue leaves also contain a bitter extractive matter.

Therapeutics.—Rue acts as a carminative, antispasmodic, and emmenagogue.

No. 38. **Buchu Folia.—Buchu Leaves.**

The dried leaves of Barosma Betulina, B. Crenulata and B. Serratifolia.

Habitat.—Cape of Good Hope (southern extremity of Africa.)

Characters.—Buchu leaves are of a yellowish-green colour, smooth, and of a leathery texture. They are studded with glands containing the volatile oil. The leaves of the three species may be distinguished from one another by the following characters:

The leaves of Barosma Betulina (Fig. a) are the shortest of the three buchus; they are ovate and recurved at the apex.

The leaves of Barosma Crenulata (Fig. b) are longer than those of B. Betulina and shorter than those of B. Serratifolia. They are oval-lanceolate and minutely crenated at the margin (*hence the name Crenulata.*).

The leaves of B. Serratifolia (Fig. c) are the longest and narrowest of the three buchus. They are linear-lanceolate, and finely serrated at the margin (*hence the name Serratifolia.*)
Composition.—Buchu leaves contain a volatile oil, and a bitter extractive called barosmin, or diosmin.

Therapeutics.—Buchu is a tonic, but is used chiefly for its action on the urinary organs.

Official Preparations.
Infusum Buchu.
Tinctura Buchu.

No. 39. Cuspariae Cortex.—Cusparia Bark.

The bark of Galipea Cusparia, the Angustura bark tree.

Habitat.—Tropical South America.

Characters.—Cusparia or Angustura bark occurs in curved pieces with bevelled or pared edges, and covered with a yellowish-grey epidermis, which can easily be scraped off. It breaks with a resinous fracture, and possesses an aromatic odour.

Adulteration.—Cusparia Bark was formerly adulterated with the bark of the Nux Vomica tree, which on this account received the name of false angustura bark. Nux Vomica bark is more twisted and thicker in proportion than Cusparia bark. The best test, however, is to apply a drop of nitric acid to the inner surface of the suspected bark; Nux Vomica bark is turned to a blood-red colour, the colour of Cusparia bark is simply deepened by the application of nitric acid. The blood-red colour is due to the action of nitric acid on the brucia contained in the Nux Vomica bark.

Composition.—Cusparia bark contains a volatile oil, two resins, a hard and soft one, the soft resin gives the colour with nitric acid, and a bitter principle called Angusturine or Cusparine.

Therapeutics.—An aromatic tonic and febrifuge.

Official Preparation.—Infusum Cuspariae.

Natural Order.—Simarubaceae.

No. 40. Quassiae Lignum. Quassia Wood.

The wood of Picræna Excelsa.

Habitat.—Jamaica (West Indies).
Plate 8.

a. N° 38.

b. c.

N° 39

Hilum.

Foramen.

N° 56.

Chalaza.

N° 56.

N° 58.

N° 59.

Lanceolata obovata N°s 1.

2.

3.

4.
Characters.—Quassia was formerly obtained from Quassia Amara, a native of Surinam, in Borneo; this kind was called Surinam quassia; it is not met with in commerce now. Quassia wood is imported in logs or billets of various sizes, of a yellowish-white colour, and intensely bitter taste. The white efflorescence sometimes observed on the logs consists of nitrate of potash. It is commonly sold in the form of chips or raspings.

Adulteration.—Quassia wood is sometimes adulterated with the chips of other woods, as deal, &c., which may be distinguished by their want of bitterness.

Composition.—Quassia owes its bitterness to a neutral principle called quassine, which is soluble in both water and spirit. Quassia is a pure bitter, containing no tannic acid.

Therapeutics.—A bitter stomachic and tonic.

Official Preparations.

Extractum Quassiae. Infusum Quassiae. Tinctura Quassiae.

(Not official.)

No. 41. Simarubae Cortex. Simaruba Bark.

The bark of the root of Simaruba Amara, the Mountain Damson.

Habitat.—Jamaica and the West Indies.

Characters.—Simaruba bark occurs in long folded pieces, more or less crushed, of a yellowish colour; tough, fibrous, and very difficult to powder.

Composition.—The bark contains quassine, the bitter principle found also in quassia.

Therapeutics.—The same as those of quassia.

Case B.

Sub-Class II. Calicyflorae.

Natural Order.—Rhamnaceae.

(Not official.)

No. 42. Rhamni Fructus. Buckthorn Berries.

The dried ripe fruit of Rhamnus Catharticus.

Habitat.—Indigenous.

Characters.—Buckthorn fruits are about the size of a pea, black, and containing four seeds. The fruit of the Alder Buckthorn and the Dog Wood occasionally get accidentally mixed with Buckthorn berries, they may be readily distinguished by possessing only two seeds.
Natural Order.—Anacardiaceae.

No. 43. Mastiche. Mastich.

A resinous exudation obtained by incision from the stem of Pistacia Lentiscus.

Habitat.—The island of Scio and the Levant.

Collection.—About July the trees are cut transversely, when the juice exudes; that which hardens on the bark in tears is the best, and is called mastich in the tear; that which falls to the ground and gets earth and other impurities mixed with it is inferior, and known as common mastich.

Characters.—Mastich occurs in small tears of a pale yellow colour, covered with a whitish powder, produced by the tears rubbing together. The larger masses of mastich are less pure than the separate tears, since they generally consist of several tears which have fallen to the ground, and become agglutinated. In the east, mastich is frequently used as a masticatory; hence the origin of its name.

Composition.—Mastich contains a small quantity of a volatile oil, and two resins called masticic acid and masticine. Masticic acid, which exists in mastich to the extent of 90 per cent., is soluble in alcohol; masticine, of which there is 10 per cent. present in mastich, is insoluble in alcohol. Both resins are soluble in ether.

No. 44. Terebinthina Chia. Chian Turpentine.

(Not Official.)

An oleo-resin, obtained by making incisions into the stem of Pistacia Terebinthus; it flows down the stem on to stones placed to receive it; it is then allowed to harden.

Habitat.—The Grecian Archipelago.

Characters.—Chian turpentine is of a pale yellow colour; when imported it is of the consistence of honey; by keeping it solidifies, on account of the evaporation of the volatile oil.

Adulterations.—The turpentines obtained from the coniferae are frequently sold for it.

Composition.—The same as the coniferous turpentines, consisting of a resin dissolved in a volatile oil.

Therapeutics.—Similar to the coniferous turpentines.
Natural Order.—Amyridaceae.

No. 45. Myrrha. Myrrh.

A gum-resin, exuding from the stem of Balsamodendron Myrrha.

Habitat.—Abyssinia and Arabia Felix (east of Africa), this district is called the myrrh and frankincense district.

Collection.—Myrrh is an exudation partly natural and partly obtained by incisions. Myrrh is first sent to India, and from there imported to this and other countries. The best kind of myrrh was called Turkey myrrh, on account of its being formerly brought from Turkey.

Characters.—Myrrh, when first obtained from the tree, is of a pale yellow colour; by drying it acquires a reddish-brown colour, on account of the evaporation of the water. The best myrrh should consist of tears or masses of tears, of a reddish brown colour externally; it should have a very brittle, irregular fracture, and present a dull oily appearance when broken; good myrrh should possess an aromatic odour, especially when breathed on; when broken, myrrh frequently presents internally a number of white veins or spots, due to some water being left by imperfect drying. An inferior variety of myrrh called myrrh in sorts, consists of different qualities mixed. A third variety, called East Indian myrrh, consists of dark pieces mixed with gums and other adulterations.

Adulterations.—Myrrh is adulterated with Indian Bdellium and various gums and resin. Indian Bdellium obtained from Amyris Commiphora, may be distinguished from myrrh by its want of fragrant odour, by its becoming soft when held in the hand for some time, and by goats' hairs being frequently found sticking to the pieces (bdellium, being softer than myrrh, runs to the foot of the tree, against which the goats rub.) Gums and resins may be detected by their want of odour and by their fractured surfaces being shiny, not dull and oily as is the case with myrrh.

Composition.—Myrrh contains a volatile oil, resin, and gum. The volatile oil, which gives the odour to myrrh, constitutes about 2.5 per cent. The resin, of which there is about 28 per cent., consists of two kinds, a hard and a
soft resin; the hard resin possesses the properties of an acid, and is called myrrhic acid. The gum is also of two kinds, consisting principally of a soluble gum (arabin), with a small quantity of an insoluble gum (bassorin).

With water myrrh forms a milky emulsion, due to the suspension of the resin in the dissolved gum. The best solvent of myrrh is proof spirit, the spirit of which dissolves the resin, and the water the gum.

Therapeutics.—A stimulant, an antispasmodic, and an emmemagogue.

Official Preparations.

Decoctum Aloes Compositum. Pilula Rhei Composita.
Pilula Assafœtidæ Composita. Tinctura Myrrhæ.

No. 46. Elemi. Elemi.

A concrete resinous exudation from Canarium Commune.
Habitat.—Manilla.
Characters.—It occurs in masses of a soft consistence, becoming harder by keeping, of a light yellow colour, and a peculiar fennel-like odour.

Composition.—Elemi consists of a volatile oil and resin. The hardening of Elemi is caused by the evaporation of this volatile oil, of which it contains 10 per cent.

Therapeutics.—Only used externally in the form of an ointment.

Official Preparation.—Unguentum Elemi.

No. 47. Olibanum. Frankincense.
(Not Official.)

A gum-resinous exudation obtained from Boswellia Thurifera and other species.
Habitat.—Africa and India.
Characters.—It occurs in the form of oblong tears, of a pale yellow colour, and a balsamic odour. It is principally used for burning as incense.

Composition.—Olibanum consists of a volatile oil, gum, and resin.
Natural Order.—Leguminosae.
Sub-Order.—Papilionae.

The fresh and dried root of Glycyrrhiza Glabra.
Habitat.—Cultivated in England.

Characters.—Liquorice root is about the size of the little finger; it has a brown cortical portion, and is of a yellow colour inside. For medicinal use the root should be decorticated, as the acridity resides in the cortical portion.

Composition.—The sweetness of the root is due to a kind of sugar called glycyrrhizin; it also contains gum.

Therapeutics.—Emollient and demulcent.

Official Preparation.—Extractum Glycyrrhizæ.
Solazzi juice or liquorice is an extract of liquorice root.

No. 49. Tragacantha. Tragacanth.
A gummy exudation, exuding from the stem of Astragalus Verus, and possibly other species.

Habitat.—Asia Minor.

Collection.—Tragacanth is obtained by natural exudation or by incision. That obtained by incision is the best, since the stems are only incised in fine warm weather, and the tragacanth then dries quickly and retains its white colour. That obtained by natural exudation is in small pieces of a yellow colour, because it frequently exudes in damp weather, and then takes longer to dry.

Characters.—Tragacanth is commonly called gum dragon. The best kind occurs in semi-transparent flakes, waved concentrically. With water it forms a gelatinous mass.

Adulterations.—Tragacanth is sometimes adulterated with Caramania and Moussul gums. They may be detected by occurring in small pieces (not flaky), and by being whitened externally with carbonate of lead.

Composition.—Tragacanth contains 2 gums, tragacanthin, or soluble gum, and bassorin, or insoluble gum. Tragacanthin may be distinguished from arabin (the gum contained in gum arabic) by not forming a jelly with perchloride of iron; arabin does.

Therapeutics.—Demulcent.
Official Preparations.
Mucilago Tragacanthæ.
Pulvis Tragacanthæ Compositus.

No. 50. Mucuna. Cowhage.
(Not Official.)

The hairs of the legume of Mucuna Pruriens.

Habitat.—West Indies.

Composition.—The hairs contain tannic acid.

Therapeutics.—Cowhage or cow-itch is used as an anthelminthic. The hairs act mechanically by irritating the worms, and thus causing them to leave go their hold on the coats of the stomach.

No. 51. Scoparii Cacumina Broom Tops.

The fresh and dried tops of Sarothamnus Scoparius.

Habitat.—Indigenous.

The fresh tops are used for obtaining the juice; the dried tops for making the decoction.

Composition.—Broom tops contain a neutral principle called scoparin, to which its diuretic properties are due, and a liquid volatile alkaloid called sparteine, which is poisonous.

Therapeutics.—Diuretic.

Official Preparations.
Decoctum Scoparii. Succus Scoparii.

No. 52. Pterocarpi Lignum. Red Sandal Wood.

The wood of Pterocarpus Santalinus.

Habitat.—Coromandel and Ceylon.

Characters.—Imported in billets. Very heavy. Used in the form of rasplings.

Composition.—A colouring matter called santaline.

Sandal wood is used to give colour to compound tincture of lavender.

The inspissated juice obtained from incisions made in the trunk of Pterocarpus Marsupium.

Habitat.—Malabar (India.)
Characters.—The kinos are inspissated juices; the catechus are extracts. Kino occurs in angular glistening fragments, very brittle, ruby-red at the edges. A bitter astringent taste, followed by a sweet taste. Five other kinds of kino are sometimes met with, viz.:

1. Botany Bay Kino, obtained from Eucalyptus Resinifera.
2. Jamaica Kino, obtained from Coccoloba Uvifera.
3. African Kino, obtained from Pterocarpus Erinaceus.
4. American Kino is an extract made from the roots of several species of Krameria.
5. Bengal Kino, obtained from Butea Frondosa.

The African was the first kino known in this country.

Composition.—Kino contains tannic acid and catechine, to both of which its astringent properties are due.

Therapeutics.—Astringent.

Official Preparations.

Pulvis Kino Compositus. Tinctura Kino.

Contained also in Pulvis Catechu Compositus.

No. 54. Balsamum Peruvianum. Balsam of Peru.

A balsam obtained from the trunk of Myroxylon Pereiræ.

Habitat.—Salvador in Central America.

Collection.—The bark is bruised, and scorched by torches being applied to it, by which means it separates from the wood; the balsam then exudes and soaks into rags, which are inserted between the bark and the wood; the rags are boiled with water, when the balsam sinks to the bottom. Balsam of Peru is sent into the market enclosed in gourds.

Characters.—Balsam of Peru is a reddish-brown liquid, of the consistence of treacle; it is inflammable, and is soluble in 5 parts of rectified spirit.

Adulterations.—Balsam of Peru is rarely adulterated. Spirit, if used to adulterate it, might be detected by shaking the balsam up with water, when it would undergo a diminution in volume. Copaiva, which is sometimes used to adulterate it, may be detected by distilling a few drops and adding iodine, when an explosion results, if copaiva is present, due to the formation of hydriodic acid.

Composition.—Balsam of Peru contains volatile oil, cinnamic acid and resin. The cinnamic acid is formed by the oxidation of the volatile oil; the resin by the union of the volatile oil with the elements of water and Benzoic acid.

Therapeutics.—A stimulant and expectorant.
A balsam obtained by making incisions in the trunk of Myroxylon Toluifera.

Habitat.—New Granada (South America.)

Characters.—Balsam of Tolu, when first imported, is soft like thick honey, but becomes hard by keeping; this is due to the conversion of some of the volatile oil into cinnamic acid and resin.

Adulteration.—Common resin is said to have been used to adulterate Balsam of Tolu, it may be detected by means of strong sulphuric acid. Balsam of Tolu dissolves in sulphuric acid, forming a red liquid; but if common resin be present, the liquid turns black.

Composition.—Balsam of Tolu contains volatile oil, cinnamic acid, and resin, the same as Balsam of Peru.

Therapeutics.—The same as the Balsam of Peru.

Official Preparations.

Syrupus Tolutanus. Tinctura Tolutana.

Contained also in Tinctura Benzoini Composita.

No. 56. Physostigmasis Faba. Calabar Bean.
The seed of Physostigma Venenosum.

Habitat.—Western Africa.

Characters.—Calabar beans, or rather seeds, are about one inch long, of a reniform shape, with a reddish-brown testa, enclosing two white cotyledons. The convex edge is traversed by a furrow, which is the hilum. At one extremity of the hilum a little slit (the foramen) is visible; at the other extremity the chalaza is present in the form of a little swelling.

Adulteration.—The seeds of cowhage have been sold for calabar beans, but may be readily distinguished by attention to the characters mentioned above.

Composition.—Calabar beans owe their activity to a poisonous alkaloid, physostigmine, which principally exists in the cotyledons.

Therapeutics.—Principally used for producing contraction of the pupil of the eye.

Official Preparation.—Extractum Physostigmatis.
Sub-Order.—Cesalpinieae.

No. 57. Hæmatoxyli Lignum. Logwood.

The sliced heart-wood or duramen of Hæmatoxylon Campechianum.

Habitat.—Campeachy. Grown also in West Indies.

Characters.—Only the duramen must be used. The logs are heavy and sink in water. The crystals frequently found in the logs consist of hæmatin.

Composition.—Logwood contains hæmatoxylin, tannin, resin, and volatile oil. The odour of the volatile oil resembles that of violets.

Therapeutics.—An astringent.

Official Preparations.

Decoctum Hæmatoxyli. Extractum Hæmatoxyli.

No. 58. Senna Alexandrina. Alexandrian Senna.

The leaflets of Cassia Lanceolata and Cassia Obovata.

Habitat.—Egypt and Nubia. Imported from Alexandria.

Characters.—Alexandrian Senna is composed of lanceolate and obovate leaflets, unequal at the base and of a green colour. It should be picked free from argel leaves, with which it is generally adulterated. It is stated that Alexandrian Senna is made up of five parts of the leaflets of Cassia Lanceolata, three parts of the leaflets of Cassia Obovata, and two parts of argel leaves.

Adullterations.—Alexandrian Senna is adulterated with the leaflets and pods of (1) Solenostemma argel, (2) Tephrosia Apollinea, (3) Colutea arborescens, and (4) Coriaria myrtifolia.

The leaves of (1) may be distinguished by being equal at the base, thick and leathery, pale in colour, and the veins imbedded in the leaf so as to be invisible.

The leaves of (2) may be detected by being equal at the base, with an emarginate apex, and generally folded in a conduplicate manner.

The leaves of (3) may be distinguished by being equal at the base.

The leaves of (4), which are poisonous, may be detected by being equal at the base, and by having a prominent vein running within the margin.
No. 59. Senna Indica *Tinnivelly Senna.*

The leaflets of Cassia Elongata.

Habitat.—Southern India.

Characters.—Tinnivelly Senna is a very fine variety, being free from adulterations. It consists of long leaflets, of a lanceolate shape and unequal at the base.

Another kind of senna, called East Indian Senna, is also obtained from Cassia Elongata; it only differs from Tinnivelly Senna on account of its growth in a different climate and soil.

Composition.—Senna contains a volatile oil and cathartin; to the latter its purgative properties are due. It is stated that good Alexandrian Senna yields half as much again of the active principle as the Tinnivelly Senna.

Therapeutics.—Purgative.

Either the Alexandrian or the Tinnivelly Senna may be used in the B. P. preparations.

Official Preparations.

Confectio Sennæ.	Mistura Sennæ Composita.
Infusum Sennæ.	Syrupus Sennæ.
Tinctura Sennæ.	

No. 60. Cassiæ Pulpa. *Cassia Pulp.*

The pulp obtained from the pods of Cassia Fistula.

Habitat.—East and West Indies.

Characters.—The Cassia pod or lomentum is from 1 to 2 feet long; it is marked on one side by two contiguous bands, which constitute the ventral suture, and on the opposite side by one band, which constitutes the dorsal suture. It is divided into a number of cells by means of several transverse spurious dissepiments; in each cell is a seed imbedded in the pulp. The seeds should not rattle when the pod is shaken; if they do, the pulp has dried up. The pulp is obtained by boiling the crushed pods with water.

Therapeutics.—A slight laxative.
The oleo-resin obtained from incisions made in the trunk of *Copaifera Multijuga*, and other species of *Copaifera*.

Habitat.—The valley of the Amazon in South America.

Collection.—Copaiva is obtained by boring the trees nearly to the pith, when it flows out.

Characters.—Copaiva is a transparent liquid, of a light yellow colour and peculiar odour. It is wrongly termed a balsam, since it neither contains benzoic nor cinnamic acids, one of which must be present in a balsam. It is an oleo-resin, that is a solution of resin in a volatile oil.

Adulterations.—Wood oil or Gurjum Balsam, an oleo-resin obtained from *Dipterocarpus turbinatus* (Dipteraceae), has been used to adulterate copaiva. It may be detected by heating to 270° F., when it thickens; copaiva does not. Good copaiva will dissolve a quarter of its weight of carbonate of magnesia by heat and remain clear; if wood oil is present, it will be cloudy.

Turpentine, castor oil, and the other fixed oils have also been used to adulterate copaiva. Turpentine is detected by its odour on heating the copaiva. The fixed oils may be detected by the carbonate of magnesia test.

Composition.—Copaiva contains about 50 per cent. of hard resin (cpaivic acid), 40 per cent. of volatile oil, and 2 per cent. of a soft resin. The latter is more abundant in old than recent copaiva, and is probably formed by some alteration of the acid resin.

Therapeutics.—A stimulant in discharges from the mucous membranes.

Sub-Order.—*Mimoseæ*.

No. 62. Acaciaæ Gummi. Gum Acacia.

A gummy exudation from the stem of one or more undetermined species of acacia.

Habitat.—Cordofan, in Eastern Africa.

Characters.—Gum acacia is usually a natural exudation from the stem, though sometimes incisions are made to
favour its flow. It occurs in tears, more or less opaque, from a number of cracks extending through them. It is very brittle. Soluble in water; insoluble in alcohol.

Adulterations.—Inferior gums, such as Barberry and Senegal gums, are mixed with gum arabic. These are detected by their darker colour, their want of brittleness, and their imperfect solubility in water.

Composition.—Gum consists of arabin with 17 per cent. of water. The arabin is an acid, called gummic acid, and exists in the gum as gummate of calcium.

Official Preparation.—Mucilago Acacīae.

No. 63. Catechu Nigrum. Black Catechu.

(Not Official.)

An extract of the heart-wood of Acacia Catechu.
Habitat.—East Indies. Imported from Pegu.
Characters.—Black catechu, commonly called *cutch*, occurs in masses of a black colour, enveloped in rough leaves. It is used largely for tanning.
Composition.—Tannic acid and catechine (see pale catechu). Catechine is converted into catechu tannic acid by boiling.
Therapeutics.—Astringent.

Natural Order.—*Rosaceae.*

No. 64. Rosæ Centifolæ Petala. Cabbage Rose Petals.

The fresh petals of the Rosa Centifolia.
Habitat.—Cultivated in Britain.
Composition.—These petals are used on account of their odour, which is due to a volatile oil. This volatile oil, called *otto* of roses, is obtained by distilling the flowers with water; when cold, it concretes and floats on the surface of the water.
Official Preparation.—Aqua Rosæ.

The fresh and dried unexpanded petals of Rosa Gallica.

Habitat.—Cultivated in Britain.

Characters.—The flowers are collected when about the size of a nutmeg, their white claws are cut off, and they are then dried. They should be kept away from the light, in order to preserve their colour.

Composition.—These petals contain tannic and gallic acids, and a red colouring matter (Quercetin). An infusion of them is turned bright red by acids, and green by alkalies.

Official Preparations.
Confectio Roseæ Gallicæ. Infusum Roseæ Acidum.
Syrupus Roseæ Gallicæ.

The fresh fruit of Rosa Canina, the dog rose, and other allied species.

Habitat.—Indigenous.

Characters.—The fruit (a cynarrhodum) is of an oval shape and about an inch long. It consists of a concave thalamus, to which the calyx is attached on the outside. Inside are a number of small hairy fruits (achænia), which are improperly called seeds.

Composition.—The pulp contains citric and malic acids, with sugar and a little tannin.

Official Preparation.—Confectio Roseæ Caninæ.

No. 67. Tormentillæ Rhizoma. Tormentilla Rhizome.

(Not Official.)

The dried rhizome of Potentilla Tormentilla.

Habitat.—Indigenous.

Characters.—The rhizome is knotty, and has a number of radicles attached to it. It is dark brown externally, and of a reddish colour internally.

Composition.—Tormentilla contains about 18 per cent. of tannic acid, to which its properties are due.

Therapeutics.—Astringent.

The seed of the bitter almond tree, Amygdalus Communis, var. Amara.

Habitat.—Mogadore.

Characters.—Bitter almonds are distinguished from the sweet almonds by their smaller size, greater width, and bitter taste. They are mostly used because the fixed oil can be obtained from them by expression, and then the pressed cake, on distillation with water, yields the volatile oil of bitter almonds, the latter not being obtainable from the sweet almonds.

The brown skin constitutes the testa or outer coat of the seed; the two white portions within it are the cotyledons. The seeds contain no albumen.

Composition.—Bitter almonds contain about 44 per cent. of fixed oil, emulsin, amygdalin, and amandin. The essential oil does not exist in them, but is produced by the action of the emulsin on the amygdalin in presence of water. Hydrocyanic acid is also produced at the same time. Hence bitter almonds evolve no smell of the essential oil or of hydrocyanic acid until rubbed with water.

69. Amygdala Dulcis. Sweet Almond.

The seed of the sweet almond tree, Amygdalus Communis, var. Dulcis.

Habitat.—Malaga.

Characters.—Almonds as we see them (in the shell) consist of seed and endocarp, the thin skin, consisting of epicarp and mesocarp, being removed. Jordan almonds are the ones that should be used in the B. P. preparations; though this is not stated in the Pharmacopoeia, it is known to be the case by the Jordan almonds corresponding with the characters given in the B. P.; moreover they come from Malaga. Between the two white cotyledons at their apex may be seen the _plumule_ (A), and _radicle_ (B).

Composition.—Sweet almonds contain fixed oil, 50 to 55 per cent., and emulsin, but no amygdalin; hence, when rubbed with water, they evolve no smell of the essential oil.
Official Preparations.

Mistura Amygdalae. Pulvis Amygdalæ Compositus.

70. Lauro-Cerasi Folia. Cherry-Laurel Leaves.

The fresh leaves of Prunus Lauro-Cerasus.

Habitat.—Cultivated in England.

Characters.—The leaves of the cherry laurel are about four inches long and two broad, of a lanceolate shape and coriaceous texture.

Composition.—It is believed that cherry-laurel leaves contain laurcerasin and some substance analogous to emulsin, for when distilled with water they yield oil of bitter almonds and hydrocyanic acid, from 3 to 8 per cent.

Therapeutics.—The same as those of prussic acid.

Official Preparation.—Aqua Lauro-Cerasi.

The flowers and tops of Brayera Anthelmintica.

Habitat.—Abyssinia.

Characters.—Kouso occurs in bunches of flowers, which are small, of a reddish brown colour, and situated on hairy stalks. The flowers are dioecious, that is, the male and female organs are found in separate flowers and on separate plants.

Composition.—Kouso contains a volatile oil, astringent matter, a bitter resin, and a principle called koussine. It is not known whether the activity is due to the resin or the koussine.

Therapeutics.—Kouso acts as an anthelmintic.

Official Preparation.—Infusum Cusso.

Natural Order.—Myrtaceæ.

72. Caryophyllum. Clove.

The dried unexpanded flowers of Caryophyllus Aromaticus.

Habitat.—Penang, Bencoolen, and Amboyna.

Characters.—Cloves are termed in the Pharmacopoeia the unexpanded flower buds. This description is too full, since a flower bud must be unexpanded, or it would be a flower.
The radiating part of the clove (a), consists of the four-toothed calyx. On the top (b) is situated the unexpanded corolla in the form of a ball. Within this ball or corolla are a number of small stamens.

Mother cloves are the dried fruits of the clove tree; they are occasionally found in commerce.

Composition.—Cloves owe their active properties to a volatile oil, 16 to 18 per cent., they also contain tannic acid. Oil of cloves is one of the few volatile oils heavier than water. It is composed of two oils, one lighter than water, and isomeric with oil of turpentine, and one heavier than water, called caryophyllic acid. A good clove should contain \(\frac{1}{4} \)th of its weight of volatile oil, and should show the oil when indented with the nail.

Therapeutics.—Aromatic and carminative.

Official Preparations.

Infusum Caryophylli. Oleum Caryophylli.

73. Pimenta. Pimento.

The dried unripe berries of Eugenia Pimenta.

Habitat.—West Indies.

Characters.—Pimento or allspice berries must be gathered when unripe; if left till ripe they lose their volatile oil. Pimento is an inferior fruit about the size of a pea; the ring at the apex (a) is the limb or free portion of the superior calyx; within are two seeds lying loose. The active portion is the calyx.

Composition.—Pimento contains volatile oil, resin and tannin. The volatile oil, like that of cloves, consists of two oils, a light and a heavy one, the latter being called eugenic acid.

Therapeutics.—Stimulant and carminative.

Official Preparations.

Aqua Pimentae. Oleum Pimentae.

Oleum Cajuputi. Oil of Cajuput.

The oil distilled from the leaves of Melaleuca Minor.
Habitat.—Molucca Islands, imported from Batavia and Singapore.

Collection.—The leaves are allowed to ferment by macerating them in water, they are then submitted to distillation, when the oil distils over and floats on the surface of the water.

Characters.—Oil of cajuput has a strong odour, resembling that of camphor and cardamoms combined, and a bluish-green colour; this colour may be due to the chlorophyll, or green colouring matter of the leaves, it is natural to the oil, and is not due to any salt of copper, although copper has sometimes been found present as an adulteration.

Therapeutics.—Stimulant and antispasmodic.

The dried bark of the root of Punica Granatum.

Habitat.—South of Europe.

Characters.—The root-bark occurs in thin quilled pieces, with a very astringent taste.

Three root-barks are used in medicine, viz., pomegranate root-bark, simaruba bark, and mezereon bark; the latter may consist of the bark of the root or stem.

The rind of the pomegranate fruit was formerly official; the fruit is a balausta, the peculiarity of which is that the carpels are arranged in two rows, one above the other.

Adulterations.—Box bark and barberry bark are used to adulterate it; they are distinguished by their intense bitterness.

Composition.—The bark contains 20 per cent. of tannic acid, to which its properties are due, and mannite sugar.

Natural Order.—Cucurbitaceae.

The dried decorticated fruit, freed from the seeds, of Citrullus Colocynthis. The seeds may be detected in the powder by their imparting an oily stain to paper when pressed between the folds of it.

Habitat.—Smyrna, Trieste, France, and Spain.
Characters.—Colocynth fruit is a pepo, which is a fruit resembling a berry in being inferior, but differing from it by having its seeds attached to placentas.

There are two varieties of colocynth in commerce:—

1. Turkey or peeled colocynth.
2. Mogadore or unpeeled colocynth.

The Turkey or peeled colocynth is the best, and is the official variety. The pulp, freed from the seeds, only should be used. The fruit contains about 70 per cent. of seeds, and, as they are inactive, their removal is essential.

The Mogadore colocynth is covered over with a smooth rind; it is larger than the other variety, and is inferior to it.

Composition.—Colocynth owes its activity to a bitter principle, colocynthin, a glucoside.

Therapeutics.—A drastic purgative.

Official Preparations.

Extractum Colocynthidis Compositum.
Pilula Colocynthidis Composita.
Pilula Colocynthidis et Hyoscyami.

76. Elaterium. Elaterium.

A sediment from the juice of the fruit of Ecbalium Officinarum, the squirting cucumber fruit.

Preparation.—The fruit is cut lengthwise, the juice lightly pressed out, strained, and allowed to stand; the deposit which settles down when dried constitutes Elaterium. Elaterium is found only in the juice around the seeds. Ecbalium fruit, like that of the colocynth, is a pepo; when ripe its seeds are violently ejected, hence its common name of squirting cucumber.

Characters.—Two kinds of elaterium are known in commerce, English and Maltese. The English only should be used, as the Maltese is very inferior and is adulterated.

Adulterations.—Starch and chalk. Good elaterium should not give a blue colour on the addition of iodine to its cold decoction, showing absence of starch. Chalk is detected by the effervescence on the addition of hydrochloric acid.
Composition.—The active principle of elaterium is ela-
terine, of which at least 20 per cent. should be present. A
test of the activity of elaterium is to estimate the amount
of elaterine, which is done by dissolving elaterium in boil-
ing rectified spirit, concentrating and adding a warm
solution of caustic potash, when at least 20 per cent. of
elaterine should be deposited.

Therapeutics.—A drastic purgative.

NATURAL ORDER.—Umbelliferae.

The fresh leaves and young branches of the Conium
Maculatum, and the dried leaves; to be gathered when the
fruit begins to form.

Habitat.—Indigenous.

Characters.—The Conium plant is commonly called the
spotted hemlock, on account of its stem being dotted with
dark purple spots. The leaves are decompound, that is, they
are more than three times divided in a pinnate manner.
The fresh leaves are used in

Extractum Conii. Succus Conii.
The dried leaves are used in Cataplasma Conii.

78. Conii Fructus. Hemlock Fruit.

The ripe dried fruit of the Conium Maculatum.

Characters.—Conium fruit is a cremocarp, consisting of
two mericarps, with undulate crenate ridges, between which
are the striae, but no vitæ. Although the ripe fruit is
ordered in the Pharmacopœia, it is of little use, since the
fruit in ripening loses most of its activity; the fruit
gathered just as it is losing its green colour is the most
active.

Composition.—All parts of the plant contain conia, to which
they owe their activity. They contain a trace of volatile
oil, to which their odour is due. Conia is a liquid volatile
alkaloid, existing in the plant combined with malic acid;
it is obtained on distilling any part of the plant with water and caustic potash. It has a peculiar odour, resembling that of mice. This is the only alkaloid which has been formed artificially.

Therapeutics.—A sedative.

Official Preparation.—Tinctura Conii.

79. *Assafoetida.* Assafoetida.

A gum-resin obtained by incision from the living root of *Narthex Assafoetida* and *Scorodosma foetidum*.

Habitat.—Afghanistan and the Punjaub (Northern India.)

Collection.—When the plant is sufficiently grown, the stem is cut off, and the earth around the root removed; the top of the root is then sliced off, and the assafoetida that exudes scraped off; another slice is then cut off the wood and the exuded assafoetida removed, and so on.

Characters.—Assafoetida occurs in tears or in masses of agglutinated tears; the masses when cut, present an amygdaloid appearance, due to the lighter-coloured tears being embedded in the reddish substance used to unite them; by exposure to light assafoetida turns pink and afterwards dark-red; it has a strong, disagreeable odour.

Adulterations.—Mechanical impurities such as sand, stones, &c., are sometimes found in assafoetida.

Composition.—Assafoetida contains gum, resin, and a volatile oil; the volatile oil is present to the extent of 4 per cent.; it contains sulphur existing as a sulphide of a hydrocarbon; to this oil the odour of assafoetida is due.

Therapeutics.—A powerful antispasmodic.

Official Preparations.

Enema Assafoetidae.
Pilula Aloes et Assafoetidae.
Pilula Assafoetidae Composita.
Spiritus Ammoniae Foetidus.
Tinctura Assafoetidae.

A gum-resin obtained by incision from the stem of Ferula Galbaniflua.

Habitat.—Persia.

Characters.—Galbanum occurs in tears, or more frequently in masses, consisting of agglutinated tears. It is frequently mistaken for ammoniacum, from which it can be distinguished by always having bits of dirt sticking to it, and by being much softer: it also contains umbelliferone.

Composition.—Gum, resin, and volatile oil.

Therapeutics.—Antispasmodic and expectorant.

Official Preparation.—Emplastrum Galbani.

A gum-resinous exudation from the stem of Dorema Ammoniacum. It is believed to exude from punctures made in the bark by beetles.

Habitat.—Persia, and the Punjaub.

Characters.—Ammoniacum occurs in tears or in masses of agglutinated tears, presenting an amygdaloid appearance when broken. The tears are by far the best.

Composition.—Gum, resin, and volatile oil.

Therapeutics.—Expectorant and local irritant.

Official Preparations.

Emplastrum Ammoniaci c Hydrargyro.

Mistura Ammoniaci.

The fruits of Pimpinella Anisum (Anise), *Foeniculum dulce* (Fennel), *Coriandrum Sativum* (Coriander), *Carum Carui* (Caraway), and *Anethum Graveolens* (Dill) are all official on account of the volatile oils that they contain. All these fruits, which are frequently improperly called seeds, are cremocarps and are surmounted by a double fleshy disk, termed a stylopodium.

82. Sumbul Radix. *Sumbul Root.*

The root of Euryangium Sumbul; commonly called Musk Root.
Habitat.—Russia and India.

Characters.—Sumbul Root occurs in circular pieces, generally from 2 to 5 inches in diameter, consisting of transverse sections of the root. Its odour is like that of musk. Two varieties occur in commerce, the Russian and the Indian; the Russian is of a looser texture than the Indian and has bristles externally.

Composition.—Sumbul Root contains a volatile oil, and 2 resins; its active properties are due to the resins.

Therapeutics.—Stimulant.

Official Preparation.—Tinctura Sumbul.

Sub-Class III. Corollifloræ.

Natural Order.—Caprifoliaceæ.

83. Sambuci Flores. Elder Flowers.

The fresh flowers of Sambucus Niger.

Habitat.—Indigenous.

Characters.—Elder Flowers occur in corymboscent cymes.

Composition.—A volatile oil, to which their odour is due.

Official Preparation.—Aqua Sambuci.

Natural Order.—Cinchonaceæ.

84. Cinchonæ Flavæ Cortex.—Yellow Cinchona Bark.

The bark of Cinchona Calisaya.

Habitat.—Peru and Bolivia (South America.)

Characters.—Two varieties of the Cinchona Calisaya bark are official; viz., the quilled and the flat. The quilled bark occurs in quills of a yellow colour, about \(\frac{1}{4} \) to \(\frac{1}{2} \) an inch in diameter and covered externally with lichens. The quilled yellow cinchona bark is sometimes mistaken for pale cinchona bark, but the larger size of the quills and their very short fracture will at once distinguish the two; quilled cinchona bark consists of the entire bark, and it is generally obtained from the young branches.

The flat cinchona bark is obtained from the stem of the tree, and has the outer portion of the bark removed, so that it consists of the endophloëum or liber bark, with
portions of the mesophloënum adhering to it. This bark may be distinguished from any others by the two following characters:

(I.) It presents grooved depressions on its outer surface.

(II.) Its fracture is very short, being the shortest fracture of any of the cinchona barks.

Adulteration.—Carthagena or Coquetta bark (84a) is used to adulterate yellow bark. This bark, which is obtained from Cinchona lancifolia, is official, but only as a source of quinine; it can readily be distinguished from the yellow bark by having a smooth, velvety, spongy appearance externally, and a long splintery fracture.

Composition.—Yellow Cinchona bark should contain not less than 2 per cent. of quinine, which exists combined with kinic acid; it also contains cinchonine, and a red colouring matter called cinchotannic acid. Some specimens of yellow bark from India have yielded as much as 10 per cent. of quinine.

The bark of Cinchona Condaminea, called Loxa or Crown Bark.

Habitat.—Loxa in Ecuador (South America.)

Characters.—This bark occurs in small quills, covered externally with lichens of a light colour, it has circular cracks and a short fracture.

Composition.—Pale bark contains from \(\frac{1}{2} \) to 1 per cent. of alkaloids, which consist principally of cinchonine with a very little quinine.

86. Cinchonæ Rubrae Cortex. *Red Cinchona Bark.*

The bark of Cinchona Succirubra.

Habitat.—The western slopes of Chimborazo (South America.)

Characters.—Red Cinchona Bark generally occurs in flattened pieces, of a dark-red colour internally and
brownish red externally; the pieces are much thicker than any of the other cinchona barks. Lately red cinchona bark has been sent over from India in the form of very thin quills, about the size of the quills of pale cinchona bark; from this last-mentioned bark, it may be distinguished by being destitute of lichens and by being darker in colour internally.

Adulteration.—Red Cinchona of Santa Fé has been used to adulterate red cinchona bark; it is hard, horny and possesses deep cracks.

Composition.—Red Cinchona Bark contains about 2 per cent. of alkaloids, quinine and cinchonine in almost equal proportions; also cinchona red and cinchotannic acid.

Therapeutics.—The Cinchona barks possess tonic, anti-periodic, and astringent properties.

With regard to the composition of the different barks it will be noticed that—

Yellow bark contains principally quinine.
Pale bark contains principally cinchonine.
Red bark contains a mixture of the two, quinine and cinchonine.

Official Preparations.

Of yellow bark. Dccoctum Cinchonae Flavæ.
Extractum Cinchonae Flavæ Liquidum.
Infusum Cinchonae Flavæ.
Quiniae Sulphas.
Tinctura Cinchonae Flavæ.

Of Cartbagena Bark. Quiniae Sulphas.
Of Pale Bark. Mistura Ferri Aromatica.
Tinctura Cinchonae Composite.

87. Ipecacuanha. *Ipecacuanha.*

The dried root of Cephaelis Ipecacuanha.

Habitat.—Brazil (South America.)

Characters.—Ipecacuanha root is what is termed an annulated root, the cortical portion being divided into the form of rings which are strung as it were upon the meditullium. The activity resides entirely in the cortical portion. The smooth portions that are frequently found
in samples of ipecacuanha are portions of the stem; they should be rejected as they are worthless. There are three varieties of ipecacuanha:

1. Red Ipecacuanha.
2. Grey Ipecacuanha.

The brown variety is the best. In 100 parts of good ipecacuanha, there are 80 parts of cortical portion and 20 parts of meditullium.

Adulterations.—Striated Ipecacuanha, the root of Psychotria Emetica, is used to adulterate Ipecacuanha; it is known by possessing striae or longitudinal depressions connecting the rings of circular depressions. Undulated ipecacuanha, the root of Richardsonia Scabra, is known by its wavy form.

Composition.—Ipecacuanha root contains 1 per cent. of an alkaloid emetine, to which its active properties are due.

The emetine exists in combination with ipecacuanhic acid.

Therapeutics.—Expectorant, diaphoretic, and emetic.

Official Preparations.

Pilula Ipecacuanhæ cum Scilla.
Pulvis Ipecacuanhæ Compositus.
Trochisci Ipecacuanhæ.
Vinum Ipecacuanhæ.

An extract from the leaves and young shoots of Uncaria Gambir.

Habitat.—Singapore and Eastern Archipelago.

Characters.—Pale Catechu, or Terra Japonica as it is called, occurs in cubical pieces about an inch in diameter; these pieces are light and will float in water. It is obtained by evaporating a decoction of the leaves and young shoots down to an extract, spreading the extract out, cutting it up into cubical pieces, and allowing these to dry.

Composition.—Pale catechu contains tannic acid and catechunic acid, 40 per cent. of the two together. The tannic acid is a different variety to the ordinary kind, in that it yields a green precipitate with ferric salts.
Therapeutics.—A powerful astringent.

Official Preparations.

Infusum Catechu. | Tinctura Catechu.
Pulvis Catechu Compositus. | Trochisci Catechu.

Natural Order.—Valerianaceae.

89. Valerianæ Radix. Valerian Root.

The dried root of Valeriana officinalis; that obtained from the wild plant is best.

Habitat.—Indigenous.

Characters.—Valerian root should be collected in autumn or early spring, when there is little growth above ground, for in proportion to the growth above ground is the loss to the root. Valerian root consists of a short rhizome with a number of rootlets attached to it; it has a strong, peculiar odour.

Composition.—Valerian root contains a volatile oil and valerianic acid. The volatile oil is believed not to pre-exist in the wood, but to be formed by the action of water.

Therapeutics.—Stimulant and antispasmodic.

Official Preparations.

Infusum Valerianæ.
Tinctura Valerianæ.
Tinctura Valerianæ Ammoniata.

Natural Order.—Composite.

90. Pyrethri Radix. Pellitory Root.

The root of Anacyclus Pyrethrum, or Pellitory of Spain.

Habitat.—Spain and Africa.

Characters.—Pellitory root occurs in pieces about the size of the little finger, breaking with a resinous fracture and exhibiting internally a radiated structure, by which it may be recognized.

Composition.—An acrid resin (pyrethrin) and a volatile oil.

Therapeutics.—A topical irritant.

Official Preparation.—Tinctura Pyrethri.
91. Santonica.

The unexpanded flower-heads of Artemesia Maritima.

Habitat.—Russia.

Characters.—Santonica consists of the small unexpanded capitula or flower-heads; they much resemble seeds in appearance, and hence have received the name of worm seed. Each flower-head consists of an external involucre, composed of imbricated bracts; within this are four or five tubular florets. There are three varieties of santonica:—

1. Levant or Russian Santonica.
2. Barbary Santonica.
3. Indian Santonica.

Only the Levant or Russian Santonica is official, as the two other kinds contain no santonin. The official variety is readily recognised by being smooth, the other kinds being hairy or downy on the surface.

Composition.—A volatile oil and a crystallizable substance called santonin, to which it owes its active properties.

Therapeutics.—Anthelmintic.

Official Preparation.—Santoninum.

The single and double flower-heads of Anthemis Nobilis.

Habitat.—Indigenous.

Characters.—The single chamomile flowers are composed of yellow tubular florets and white strap-shaped florets, the former constituting the disk and the latter the ray. The double chamomile flowers are composed of white strap-shaped florets only. The single flowers are the best, as they possess the largest yellow disks, where most of the oil resides.

Description.—The circular green body at the base of each flower-head is the involucre, composed of a number of bracts; the conical body to which the florets are attached is the receptacle, and the little chaffy bodies found at the base of each floret are small bracts called paleæ.

Adulterations.—Fever-few flowers, from Pyrethrum Parthenium; and the flowers of Matricaria Chamomilla
are used to adulterate chamomile flowers; the former are distinguished by their flat receptacle and no paleæ; the latter by the receptacle being hollow.

Composition.—A volatile oil, bitter extractive and tannic acid. The volatile oil, when fresh, is of a pale blue colour.

Therapeutics.—Stomachic and tonic.

Official Preparations.

Infusum Anthemidis.

Extractum Anthemidis.

Oleum Anthemidis.

93. **Taraxaci Radix.** *Dandelion Root.*

The fresh and dried roots of Taraxacum Dens Leonis, the common Dandelion. To be collected between September and February.

Habitat.—Indigenous.

Characters.—Care should be taken not to collect the roots after a frost, as they then lose their bitterness. A section of dandelion root shows a number of concentric rings (laticiferous vessels) arranged round a yellow disk; by these characters it may at once be distinguished from any adulterations.

Composition.—The juice, which is the active portion, contains a bitter extractive (taraxacin); the juice resides entirely in the laticiferous vessels.

Therapeutics.—An alterative in liver complaints.

Official Preparations.

Decoctum Taraxaci.

Extractum Taraxaci.

Succus Taraxaci.

94. **Arnicae Radix.** *Arnica Root.*

The rhizome and rootlets of Arnica Montana.

Habitat.—Mountainous parts of Europe and Asia.

Characters.—Arnica consists of a small rhizome, 1 to 2 inches long, with a number of slender rootlets attached. Arnica flowers, which are used on the Continent, are far more efficacious than the root.
Composition.—A volatile oil and an acrid resin.

Therapeutics.—Used externally for bruises.

Official Preparation.—Tinctura Arnicae.

Natural Order.—Lobeliaceae.

95. Lobelia. Lobelia.

The flowering herb of Lobelia Inflata.

Habitat.—United States (North America.)

Characters.—Lobelia generally comes over in the form of compressed cakes which consist of the entire herb.

Composition.—Lobelia contains a volatile oil, resin, and a liquid alkaloid lobeline.

Therapeutics.—Expectorant and diaphoretic.

Official Preparations.

Tinctura Lobeliiæ.

Tinctura Lobeliiæ Ætherea.

Natural Order.—Ericaceæ.

The leaves of Arctostaphylos Uva Ursi.

Habitat.—Grown in England.

Characters—Bearberry leaves are small, dark-green in colour, leathery in consistence, and have an entire margin.

Adulterations.—Red Whortleberry leaves and box leaves are used to adulterate Bearberry leaves.

- Red Whortleberry leaves have a crenate margin.
- Bearberry leaves have an entire margin.
- Box leaves are destitute of astringency.
- Bearberry leaves are very astringent.

Composition.—Bearberry leaves owe their activity to tannic acid, of which they contain about 36 per cent.; they also contain a volatile oil and 2 substances called Ursin and Arbutin.

Therapeutics.—Astringent and diuretic.

Official Preparation.—Infusum Uvæ Ursi.
MATERIA MEDICA.

Natural Order. — Styraceae.

A balsamic resin obtained from Styrax Benzoin.

Habitat. — Siam and Sumatra.

Collection. — Benzoin is obtained by making incisions in the bark and exposing the exuded liquid to the air.

Characters. — Two kinds of Benzoin are known in commerce, Siam Benzoin and Sumatra Benzoin.

Siam Benzoin (97a), which is the better kind, occurs in tears, or in lumps consisting of agglutinated tears, which, when broken, present an amygdaloid appearance.

Sumatra Benzoin (97b), which is an inferior kind, occurs in pieces with the impression of a cloth on them; the pieces are not made up of large tears but of small fragments, so that when broken, they present no amygdaloid appearance, but the whole looks like granite.

There are also three varieties of Benzoin called Head, Belly, and Foot.

1. Head Benzoin (the best) is white, and is that which exudes during the first three years.

2. Belly Benzoin is of a brownish colour, and is that which flows after the first three years.

3. Foot Benzoin is obtained by cutting down the tree, splitting the stem and scraping out the balsam; it is very impure.

Composition. — Benzoin contains from 15 to 20 per cent. of Benzoic acid, and 80 per cent. of resin.

Therapeutics. — A stimulant and expectorant.

Official Preparations.

Adeps Benzoatus.

Acidum Benzoicum.

Tinctura Benzoini Composita.

Natural Order. — Oleaceae.

98. Manna. Manna.

A concrete saccharine exudation from the stem of Fraxinus Ornus and Fraxinus Rotundifolia.
Habitat.—Cultivated in Sicily and Calabria.

Characters.—Manna is obtained by making transverse incisions in the bark, when it exudes and is allowed to dry. Two varieties of Manna are known in commerce:

1. Flake Manna. Obtained during the height of the season, from the upper part of the stem, where the juice is less fatty and dries quicker. It is the best kind.

2. Manna in sorts. Obtained from the lower part of the stem, where the juice is more fatty and takes longer to dry. It is an inferior kind.

Manna is flat on that side which has adhered to the stem; the opposite side is irregular.

Composition.—Manna contains 60 to 80 per cent. of mannite, extractive matter, and a small amount of resin.

Therapeutics.—A mild laxative.

Natural Order.—Asclepiadaceae.

The root of *Hemidesmus Indicus*, called Indian Sarsaparilla.

Habitat.—India.

Characters.—In yellowish-brown long cylindrical pieces; the cortical portion is wrinkled, marked with deep circular rings, and looks as if it were too large for the meditullium.

Composition.—*Hemidesmus* root contains a substance called hemidesmine, of which little is known.

Therapeutics.—Supposed to have a similar action to that of sarsaparilla.

Official Preparation.—Syrupus Hemidesmi.

Natural Order.—Loganiaceae.

100. Nux Vomica. *Nux Vomica*.

The seeds of *Strychnos Nux Vomica*.

Habitat.—East Indies and Ceylon.

Characters.—*Nux Vomica* seeds are round, concave on one side and convex on the other; externally they are
covered by a testa composed of fine satiny hairs. In the
centre of the concave side is a little mark (the hilum); from
the hilum is a little ridge (the raphe), terminating in a
little protuberance at the circumference of the seed (the
chalaza). The Nux Vomica seeds are albuminous, the al-umen being horny and of a dirty white colour. When split
open the plumule and radicle can be distinctly seen, the
plumule resembling a small ovate leaf.

Composition.—Nux Vomica seeds contain two alkaloids,
strychnia and brucia; from \(\frac{1}{2} \) to 1 per cent. of strychnia is
present. Both alkaloids exist in the seeds in combination
with igasuric acid. Brucia has been stated not to be a
distinct alkaloid, but a compound of strychnia and resin.
The poisonous properties of Nux Vomica bark are due to
brucia.

Therapeutics.—A powerful stimulant and bitter stomachic;
in large doses poisonous.

 . Official Preparations.
 Extractum Nucis Vomicae.
 Tinctura Nucis Vomicae.
 Strychnia.

(Not Official.)

The seed of the Strychnos Amara.

Habitat.—Phillippine Islands.

Characters.—The seeds are of a brown colour, somewhat
triangular in shape and of a horny texture.

Composition.—These seeds are used as a source of
strychnia, of which they contain about 1.5 per cent. They
also contain brucia.

Therapeutics.—The same as Nux Vomica.

Natural Order.—Gentianaceae.

The dried root of Gentiana Lutea.
Habitat—Mountainous parts of Central and Southern Europe.

Characters.—Gentian root occurs in cylindrical pieces, of a yellowish brown colour, and spongy within. This root may be recognised by its being divided into three parts.
1. A large central meditullium portion.
2. A deep red line encircling it.
3. A yellow cortical portion outside.

Composition.—Gentian root contains a bitter principle, gentianite, gentisic acid, and pectin.

Therapeutics.—A stomachic tonic.

Official Preparations.
Extractum Gentianæ.
Infusum Gentianæ Compositum.
Mistura Gentianæ.
Tinctura Gentianæ Composita.

The entire plant, Ophelia Chirata.

Habitat.—India.

Characters.—Chiretta is imported in bundles about 3 feet long; the stems are of a brown colour, and have the flowers and parts of the roots attached. Any part of the plant is intensely bitter to the taste.

Adulteration.—An adulteration of Chiretta has lately been described; it is the Munjeet plant, derived from Rubia Cordifolia; it may be distinguished by being a trailing plant.

Composition.—A bitter matter, chiratin, to which it owes its active properties.

Therapeutics.—A stomachic tonic.

Official Preparations.
Infusum Chiratæ.
Tinctura Chiratæ.

Natural Order.—Convolvulaceæ.

104. Scammoniae Radix, Scammony Root.

The dried root of Convolvulus Scammonia.
Habitat.—Asia Minor.

Characters.—A twisted root of a light colour. It is official for extracting resin of scammony from it.

Composition.—4 per cent. of resin, 6 per cent. of gum. Scammony roots are richest in resin just before the plants flower.

Official Preparation.—Scammoniae Resina.

105. Scammonium. Scammony.

A gum-resin obtained from the living root of Convolvulus Scammonia.

Collection.—Scammony is obtained by making incisions in the living root, and sticking a mussel shell in the root just below the incision. The scammony exudes and runs down into the shell; the contents of several shells are then scraped out, mixed together, and dried.

Characters.—Scammony is sometimes covered externally with chalk, to prevent the lumps sticking together. When broken, if good, it should present a greenish black shining resinous fracture, with no white spots; when moistened with water it forms an emulsion, due to the suspension of the resin in the dissolved gum.

Adulterations.—Chalk, starch, guaiacum resin, earthy matter. When a lump of scammony is touched internally with hydrochloric acid, it should not effervesce, showing absence of chalk. A cold decoction of scammony should not turn blue on the addition of iodine, indicating absence of starch. Guaiacum resin can be delicately detected by making a tincture of the scammony with spirit, and adding solution of chlorinated lime; a blue colour will be produced if any guaiacum be present. Earthy matter can be detected by estimating the amount of ash left on burning a weight of the scammony; good scammony should contain only 3 per cent. of ash.

Scammony resin is sometimes adulterated with jalap resin. Scammony resin is entirely soluble in ether; jalap resin is not.

Composition.—A sample of Scammony is good if it has
the following composition:—80 per cent. of resin, 6 to 8 per cent. of gum, 3 per cent. of ash; the remainder is moisture.

Therapeutics.—A drastic purgative.

Official Preparations.

Confectio Scammonii.
Pulvis Scammonii Compositus.

106. Jalapa. Jalap.

The dried tubercules of Exogonium Purga.

Habitat.—Mexico.

Characters.—The tubercules are the swollen portions of the roots; they are rounded, more or less pointed at the extremities, heavy in weight, dense in structure, and resinous in appearance. The pieces are sometimes worm-eaten; worm-eaten jalap contains less resin than sound jalap. The official jalap is known in commerce as Vera Cruz jalap.

Adulterations.—Tampico Jalap obtained from Ipomæa Simulans, is an adulteration of true jalap; it is more wrinkled, lighter in weight and more elongated than the true jalap.

The root of Ipomæa Orizabensis is another adulteration of jalap; it is paler in colour and lighter in weight than the true jalap.

Composition.—Jalap contains 18 per cent. of resin, to which it principally owes its active properties, and extractive matter.

Therapeutics.—A brisk purgative.

Official Preparations.

Extractum Jalapæ.
Pulvis Jalapæ Compositus.
Tinctura Jalapæ.

Natural Order.—Solanaceae.

107. Dulcamara. Dulcamara.

The young branches, dried, of Solanum Dulcamara, collected in autumn, when the plants have shed their leaves.

Habitat.—Indigenous.

Characters.—Dulcamara occurs in small cylindrical pieces,
one to two inches long, very light in weight on account of their containing much pith.

Composition.—An alkaloid solania, to which the active properties are due.

Therapeutics.—Alterative.

Official Preparation.—Infusum Dulcamaræ.

108. Capsici Fructus. Capsicum Fruit.

The dried ripe fruit of Capsicum Fastigiatum; called Guinea and pod pepper.

Habitat.—Zanzibar.

Characters.—A small pod, with a shrivelled appearance, $\frac{1}{4}$ to 1 inch long, of a bright scarlet colour and possessing a very pungent odour. The pods powdered constitute cayenne pepper.

Composition.—An acrid resin and an oil, capsicinum.

109. Belladonnae Folia. Belladonna Leaves.

The fresh leaves and branches of Atropa Belladonna, or deadly nightshade; also the dried leaves separated from the branches; to be gathered when the fruit has begun to form.

110. Belladonnae Radix. Belladonna Root.

The dried root of Atropa Belladonna.

Habitat.—Cultivated in England.

Characters.—Belladonna root occurs in pieces from 1 to 2 feet long, from $\frac{1}{2}$ to 2 inches thick, of a brownish white colour. It is sometimes mistaken for gentian root, but the difference in colour and the peculiar structure of gentian root (see gentian root) will at once distinguish them. Preparations of Belladonna possess the property of dilating the pupil of the eye.

Composition.—Both leaves and root contain the alkaloid atropia, to which they owe their activity; it exists in the plant as acid malate of atropia. The root is more powerful than the leaves.

Therapeutics.—An antispasmodic.
Official Preparations

Of the leaves
- Extraitum Belladonnae
- Emplastrum Belladonnae
- Tinctura Belladonnae
- Unguentum Belladonnae

Of the root
- Atropia. Linimentum Belladonnae.

111. Stramonii Folia. Stramonium Leaves.
The dried leaves of Datura Stramonium, the Thorn Apple.

The ripe seeds of Datura Stramonium.

Habitat.—Indigenous.

Composition.—The leaves and seeds contain an alkaloid daturine, which is identical in composition and properties with atropine.

Therapeutics.—The same as belladonna.

Official Preparations.

Of the seeds
- Extraitum Stramonii. Tinctura Stramonii.

112a. Tabaci Folia. Leaf Tobacco.
The dried leaves of Virginian Tobacco, Nicotiana Tabacum.

Habitat.—North America.

Composition.—The active principle of tobacco is due to a volatile alkaloid, nicotine.

Official Preparation.—Enema Tabaei.

The fresh leaves and young branches, and the dried leaves of Hyoscyamus Niger, the Henbane plant; to be gathered from biennial plants, when about two-thirds of the flowers are expanded.

Habitat.—Indigenous.

Characters.—When fresh the leaves are green and hairy. The leaves of the annual and biennial plants may be distinguished by the former being sessile and the latter stalked; moreover a tincture of the leaves of the annual plants remains clear when mixed with water; a tincture of the leaves of the biennial plants produces a milkiness when mixed with water.
Composition.—The active properties are due to an alkaloid hyoscyamine, which can be distilled without decomposition, and may be distinguished from atropia by its being soluble in water. Henbane juice dilates the pupil of the eye.

Therapeutics.—The same as belladonna, but milder in its action.

Official Preparations.

Of the fresh leaves Extractum Hyoseyami.
Of the dried leaves Tinctura Hydroseyami.

Natural Order.—Scrophulariaceae.

The dried leaves of Digitalis purpurea, the Purple Foxglove; collected when about two-thirds of the flowers are expanded.

Habitat.—Indigenous.

Characters.—Digitalis leaf is ovate lanceolate in shape, it has a crenate margin, and is downy on the under surface.

Adulterations.—Mullein leaves obtained from Verbascum Thapsus are used to adulterate digitalis leaves, they may be distinguished by being downy upon both surfaces. The Inula Conyza are sometimes found mixed with digitalis leaves, they are rougher than digitalis leaves, and possess a fetid odour.

Composition.—Digitalis leaves owe their activity to a neutral principle called digitalin.

Therapeutics.—A cardiac sedative.

Official Preparations.

Digitalinum. Infusum Digitalis. Tinctura Digitalis.

Natural Order.—Labiate.

The following oils, obtained from plants belonging to this order, are official.

Oil of Rosemary obtained from Rosmarinus officinalis.
Oil of Lavender , , Lavandula vera.
Oil of Peppermint , , Mentha piperita.
Oil of Spearmint , , Mentha viridis.
Sub-Class.—Monochlamydeae.
Natural Order.—Polygonaceae.

Rhei Radix. Rhubarb Root.

The dried root, deprived of the external portion, of Rheum officinale.

Habitat.—Chinese Tartary and Thibet.

Collection.—The roots are dug up when the plant is six years old (if younger, the root is of a pale colour, from the active properties not being developed), the cortical portion is then removed either by scraping or slicing, and the roots, are dried by exposure to the air; frequently a hole is bored through the pieces, which are then strung upon a string to dry.

Characters.—Though there is no true Turkey Rhubarb in commerce now, yet that rhubarb which is sent overland to Moscow, is known as Turkey or Russian rhubarb. All rhubarbs coming by way of Russia or India may be used in the official preparations. The official rhubarbs are the Turkey or Russian, the East Indian, and the Dutch-trimmed. The English and Himalayan rhubarbs must not be used in the official preparations.

The following characters will distinguish the different rhubarbs.

115a. Turkey or Russian Rhubarb.
Trimmed by being sliced, so that the root presents flat surfaces and angles; on account of the slicing no portions of the cortex are left on the pieces. Large hole. Mottled texture. Reticulated veins.

115b. East Indian Rhubarb.
Trimmed by being scraped, therefore it has a rounded surface, and brown portions of the cortex left on it. Small hole. Reticulated veins. On the finer pieces are star-like spots.

115c. Dutch Trimmed Rhubarb.
This kind may be recognised by the irregular appearance the pieces present, looking as though they had been cut out of a root, or large pieces cut out of them. Reticulated veins.
115d. English Rhubarb.

Spongy, of a pinkish hue. Veins parallel, and therefore present a radiating appearance when a piece is cut across. This rhubarb contains no raphides (crystals of oxalate of calcium), and therefore is not gritty when chewed. The three previously mentioned rhubarbs all contain raphides, and feel gritty when chewed.

Adulteration.—Rhubarb is frequently adulterated with English rhubarb, which is derived from Rheum Rhaponticum; it may be detected by the characters just given. Powdered rhubarb is sometimes adulterated with turmeric; to detect this, prepare a weak tincture of the rhubarb, and add solution of boracic acid to it, if it turns deep brown, turmeric is present.

Composition.—Rhubarb contains chrysophanic acid, three resins, a bitter extractive and about 40 per cent. of oxalate of calcium (raphides), the combined action of these bodies produces the activity of rhubarb.

Therapeutics.—Stomachic in small doses; purgative in large doses.

Official Preparations.

Extractum Rhei.
Infusum Rhei.
Pilula Rhei Composita.
Pulvis Rhei Compositus.
Syrupus Rhei.
Tinctura Rhei.
Vinum Rhei.

Natural Order. Myristicaceae.

The kernel of the seed of Myristica Officinalis.

Fig. 116a. shows the entire fruit.

Fig. 116b., the seed before the mace or arillode has been removed.

Fig. 116c. section of ditto, showing the kernel, or nutmeg.

Habitat.—The Banda Islands of the Malayan Archipelago.
Characters.—The nutmeg is of the shape of a bird’s egg, about an inch long, and presenting, when cut, a mottled or veined appearance; this is due to the endopleura or inner coat of the seed penetrating into the albumen and branching in all directions; such albumen is called ruminated.

Four kinds of nutmegs occur in commerce.
1.—Penang nutmegs. These are the best; they are not coated over with lime.
2.—Dutch, or Batavian nutmegs. Coated over with lime to preserve them.
3.—Singapore nutmegs. An inferior kind.
4.—Long nutmegs. An inferior kind obtained from Myristica fatua.

Mace is a covering on the outside of the testa of the seed; it is an arilloide or false arillus (not an aril).

Mace is frequently soaked in solution of salt to prevent the attacks of insects.

Composition.—A volatile oil and a fixed concrete oil, about 30 per cent. of the latter is contained in nutmegs.

Therapeutics.—An aromatic carminative.

Official Preparations.
Myristici Oleum Expressum.
Oleum Myristici.

Of the volatile oil Spiritus Myristici.

Natural Order.—Lauraceæ.

The inner, or liber bark of shoots from the truncated stocks of Cinnamomum Zeylanicum; known in commerce as Ceylon cinnamon.

Habitat.—Ceylon (South of India).

Characters.—Cinnamon is the liber bark, and has the two outer layers of the bark (epiphænum and mesophænum) removed; it occurs in commerce in the form of compound quills, which are prepared by inserting the smaller quills within the larger ones.

Adulteration.—Cassia bark, the produce of Cinnamomum Cassia (117a) is used to adulterate cinnamon bark; the quills
are larger, thicker, and single (not filled up). If powdered cassia bark is used to adulterate cinnamon bark in powder, it may be detected by making a decoction, and when cold adding tincture of iodine, a blue colour; will indicate the presence of cassia bark, on account of its containing starch; cinnamon bark also contains starch, but it exists as tannate of starch, which will not give the blue colour with iodine.

Composition.—A volatile oil and tannic acid.

Therapeutics.—An aromatic stimulant and carminative.

Official Preparations.
Aqua Cinnamomi.
Oleum Cinnamomi.
Pulvis Cinnamomi Compositus.
Tinctura Cinnamomi.

(Not official.)

118. Cassia Buds.
The dried flower buds of Cinnamomum Cassia.
These to some extent resemble cloves in appearance; but a close inspection will at once distinguish them.

A concrete volatile oil obtained from the wood of Camphora Officinarum.

Habitat.—China and Japan.

Extraction.—The leaves, twigs, wood, &c. of the camphor tree are boiled with water until the camphor begins to solidify on a branch used to stir the liquid with; it is then allowed to cool, when the camphor solidifies and floats; in this form it is sent to England and is then sublimed in the form of hollow hemispherical cakes.

Characters.—Camphor is a white solid, slightly soluble in water, readily soluble in alcohol; it is difficult to powder by itself, but when a few drops of spirit are added it can easily be powdered.

Adulterations.—Camphor is seldom adulterated. Another kind of camphor, in the form of small pieces or grains, is occasionally met with; it is called Borneo camphor, and is the produce of Dryobalanops aromatica. This kind is
not affected by gaseous hydrochloric acid, whereas the laurel camphor becomes liquid. An artificial camphor can be obtained by passing hydrochloric acid gas into oil of turpentine; this kind may be recognised by the terebinthinate odour which it evolves when heated.

Therapeutics.—Stimulant.

Official Preparations.

Aqua Camphoræ.
Linimentum Camphoræ.
Linimentum Camphoræ Compositum.
Spiritus Camphoræ.
Tinctura Camphoræ Composita.

120. Sassafras. *Sassafras.*
The dried root of *Sassafras officinale.*

Habitat.—North America.
The bark of the root is the most active portion.

Composition.—Volatile oil, resin, and a principle called sassafrin.

Therapeutics.—Stimulant.

121. Nectandrea Cortex. *Bebeeru Bark.*
The bark of *Nectandra Rodicei*, the green-heart tree.

Habitat.—British Guiana.

Characters.—The bark occurs in flat pieces, heavy and very hard; taste bitter and astringent.

Composition.—Bebeeru bark contains 2.5 per cent. of an alkaloid, beberine, and tannic acid.

Therapeutics.—Tonic and antiperiodic.

Official Preparation.—Bebeeriae Sulphas.

Natural Order.—*Aristolochiaceae*.

The rhizome and rootlets of *Aristolochia Serpentina*.

Habitat.—United States.

Characters.—A small rhizome with a tuft of numerous small rootlets, about 3 inches long, attached to it.

Composition.—A volatile oil and a bitter substance called serpentine.
Therapeutics.—A stimulant and diuretic.

Official Preparations.
Infusum Serpentariae.
Tinctura Serpentariae.

Natural Order.—Thymelaeæ.

The dried bark of Daphne Mezerenum, or of Daphne Laureola.

Habitat.—Indigenous.

Characters.—The bark from both root and stem is official. That obtained from Daphne Mezerenum is the best, but is the most difficult to obtain; the bark of Daphne Laureola is chiefly found in commerce.

Composition.—An acrid resin, a volatile oil, and a principle called daphnin.

Therapeutics.—Externally a local irritant; internally a diaphoretic and diuretic.

Official Preparation.—Extractum Mezerei Æthereum.

Natural Order.—Euphorbiaceæ.

The bark of Croton Eluteria.

Habitat.—The Bahama Islands.

Characters.—In small quills about the size of a pencil, with a number of black spots on the outer surface; the quills are covered with white lichens.

Composition.—A volatile oil, resin, and extractive matter.

Therapeutics.—Stomachic and tonic.

Official Preparations.
Infusum Cascarillæ.
Tinctura Cascarillæ.

Croton seeds from which the oil is expressed are rather smaller than castor oil seeds, of a brown colour externally.
and triangular in shape. They consist of 64 parts of nucleus to 36 parts of shell; the nucleus contains 60 per cent. of oil.

Habitat.—East Indies.

Two kinds of croton oil are known in commerce, that expressed in England and that expressed abroad.

1. English oil is of a reddish brown colour, and fluorescent to a green colour; it is soluble in cold alcohol.

2. Foreign oil is lighter in colour than the English, and is insoluble in cold alcohol.

Composition.—The seeds contain the fixed oil, crotonic acid, and erotonin.

Therapeutics.—A drastic purgative.

126. Ricini Semina. Castor Oil Seeds.

The seeds from which the oil is expressed are about the size of small beans, the testa is mottled, and at one part of the seed is a small protuberance (a), which is called the caruncle or strophiole. Castor oil differs from most other fixed oils in being soluble in alcohol, and also possesses the property of rendering other oils which are insoluble in alcohol, when mixed with it, soluble. Cold-drawn castor oil is the oil expressed without the aid of heat.

Habitat.—East Indies; cultivated in Italy.

127. Kamala. Kamala.

A powder consisting of the minute glands covering the capsules of Rottlera Tinctoria.

Habitat.—India.

Characters.—Kamala is a powder of a brick-red colour, with a lighter coloured powder intermixed. This latter is the outer portion of the pericarp; it should be separated. This can be done by shaking, when, on account of the different specific gravities of the two, the heavier falls to the bottom.
Composition.—Kamala contains a resinous body called rottlerine.

Therapeutics.—A powerful anthelmintic.

Natural Order. — *Piperaceae.*

128. **Piper Nigrum.** Black Pepper.

The dried unripe berries of Piper Nigrum.

Habitat.—East Indies.

Characters.—Black pepper consists of the whole unripe fruit, picked when the berries are changing from a green to a red colour. White pepper is obtained from the same plant, but it consists of the ripe fruit with most of the pericarp rubbed off; in fact, white pepper consists of little more than the ripe seed.

Composition.—Resin, volatile oil, and piperine.

Therapeutics.—A stimulant stomachic; chiefly used as a condiment.

Official Preparation.—Confectio Piperis.

129. **Cubeba.** Cubeba.

The dried unripe fruit of Cubeba Officinalis.

Habitat.—Java.

Characters.—The cubeb fruit very much resembles black pepper, but can be readily distinguished by having a small stalk attached; on this account it has received the name of tailed pepper.

Composition.—A volatile oil, resin, and cubebin.

Therapeutics.—Cubebs are principally used for their influence on the mucous membrane of the urethra and bladder.

Official Preparations.

Oleum Cubebæ.

Tinctura Cubebæ.

130. **Maticæ Folia.** Matico Leaves.

The leaves of Artanthe Elongata.

Habitat.—Peru.
Characters.—Matico leaves have a green colour; they are lanceolate in shape and downy on the under surface. The veins are reticulated and project out a great deal.

Adulteration.—The leaves of Artanthe Adunca. The veins are not so projecting, and there are fewer hairs.

Therapeutics.—Chiefly used as a styptic.

Official Preparation.—Infusum Maticæ.

NATURAL ORDER.—Ulmaceæ.

131. Ulmi Cortex. Elm Bark

The dried inner or liber bark of Ulmus Campestris.

Habitat.—Indigenous.

Elm bark should be collected in spring, and the outer bark must be removed.

Composition.—A substance called ulmin, and 3 per cent. of tannic acid.

Official Preparation.—Decoctum Ulmi.

NATURAL ORDER.—Cupuliferæ.

The dried bark of the small branches and young stems of Quercus Pedunculata.

Habitat.—Indigenous.

Characters.—Oak bark occurs in long pieces, generally covered with a grey epidermis, astringent to the taste. It should be collected in spring, as it is most astringent at that period.

Composition.—Oak bark contains from 6 to 10 per cent. of tannic acid.

Therapeutics.—Astringent.

Official Preparation.—Decoctum Quercus.

Excrescences occurring on the small twigs of Quercus Infectoria, the gall oak, caused by the punctures and deposited ova of Diplolepis Gallæ tinctoriae.
Habitat.—Asia Minor.

Characters.—After the puncture of the young twig by the insect, an astringent exudation takes place, which encloses the eggs deposited by the insect; when dry, this exudation constitutes the gall. When a hole is found in a gall, it is caused by the insect (produced from one of the eggs) having eaten its way out and escaped. The best galls are those without holes.

There are two varieties of galls, blue and white.

1. Blue or Aleppo galls are small, heavy, of a bluish green colour externally, without a hole, and possessing internally a cavity containing the dried-up insect.

2. White galls are larger and lighter both in colour and weight; they frequently have a hole, as they are gathered when the insect has escaped.

Composition.—Good galls contain 40 per cent. of tannic acid, and about 4 per cent. of gallic acid.

Therapeutics.—Astringent.

Official Preparations.

Acidum Tannicum.
Acidum Gallicum.
Tinctura Gallæ
Unguentum Gallæ.
Unguentum Gallæ cum Opio.

Natural Order.—Liquidambaraceæ.

A liquid balsam, obtained by expression or by ebullition with water, from the bark of Liquidambar Orientale; purified by means of rectified spirit and straining.

Habitat.—Asia Minor.

Characters.—Storax occurs in two forms, liquid and solid.

1. Liquid storax is the official storax. It is a thick sticky substance of the consistence of bird lime.

2. Solid or common storax consists of the liquid made into lumps with the powdered residual bark or with sawdust.
Composition.—Lupuline consists of 10 per cent. of a bitter principle called lupulite, 50 per cent. of resin, 2 per cent. of volatile oil, and tannic acid.

Therapeutics.—Tonic, stomachic and narcotic.

Official Preparations.

Infusum Lupuli.
Tinctura Lupuli.
Extractum Lupuli.

Natural Order.—Coniferae.

137. Terebinthinæ Oleum. Oil of Turpentine.

The volatile oil distilled from the oleo-resin or turpentine of Pinus Palustris, Pinus Taeda, and sometimes Pinus Pinaster.

The residue of the distillation of the turpentines from the above-mentioned pines.

Characters.—Turpentine is obtained from the pines by making incisions in the stems; when it first flows out it is of the consistence of soft honey, but becomes more or less solid by keeping, on account of loss of volatile oil by evaporation; when turpentine (the oleo-resin) is heated, oil of turpentine distils over, and the resin of commerce is left. Distilled oil of turpentine contains volatile resin acids; it is freed from these by redistillation with lime.

Composition of turpentine or oleo-resin.—Volatile oil, 15 per cent.; resin, 85 per cent.

Therapeutics.—Stimulant, antispasmodic, and astringent.

Official Preparations.

Of oil of turpentine. Confectio Terebinthinæ.

Enemá
Linimentum
Linimentum Aceticum.
Unguentum

Of the resin. Emplastrum Resinæ.
Unguentum Resinæ.
139. Terebinthinae Canadensis. *Canada Balsam.*

The turpentine obtained by incision from the stem of Abies Balsamea, or Balm of Gilead Fir.

Habitat.—Canada.

Characters.—It is improperly called a balsam, for it contains neither benzoic nor cinnamic acids, one of which is essential to a balsam; it is an oleo-resin, like all turpentines. Canada Balsam is contained in receptacles situated between the wood and bark.

Composition.—Canada Balsam consists of a resin dissolved in about 20 per cent. of a volatile oil.

140. Thus Americanum. *Common Frankincense.*

The concrete turpentine of Pinus Taeda and Pinus Palustris.

Habitat.—North America.

Characters.—A soft solid, of a bright yellow colour, possessing the odour of turpentine.

A resinous exudation from the stem of Abies Excelsa; purified by melting and straining.

Habitat.—Switzerland.

Characters.—Very little of the true Burgundy pitch is seen in commerce; the commercial article mostly consists of resin rendered opaque by incorporation of water and coloured with palm oil.

True Burgundy pitch is soluble in glacial acetic acid.

The spurious article is not.

Composition.—Resin and a little volatile oil.

Official Preparation.—Emplastrum Picis.

Tar is a bituminous liquid obtained by destructive distillation from the wood of Pinus Sylvestris and other pines. The residue left after the distillation of tar is pitch.

Official Preparation.—Unguentum Picis Liquidae.

The oil distilled from the unripe fruit of Juniperus Communis.

Habitat.—Northern Europe.

Characters.—The juniper fruit is about the size and colour of a black currant; it is not a berry as commonly stated, but a galbulus, which is a cone possessing fleshy bracts; at the top of the juniper fruit is a tri-radiate groove indicating the adhesion of the succulent bracts, at the base are some very small scaly bracts arranged in a stellate manner.

Official Preparation.—Spiritus Juniperi.

144. Sabinae Cacumina. *Savin Tops.*

The fresh and dried tops of Juniperus Sabina; to be collected in spring.

Habitat.—Cultivated in Britain.

Characters.—The tops consist of the young branches, against which are pressed the small, dark-green, overlapping leaves.

Savin tops are sometimes mistaken for juniper tops; as just stated, the small leaves in savin tops are pressed close to the stem; in the juniper tops, the leaves, which are longer and pointed, stand out at right angles to the stem.

Composition.—Savin tops owe their activity to a volatile oil.

Therapeutics.—An irritant and emmenagogue.

Official Preparations.

Oleum Sabinae.
Tinctura Sabinae.
Unguentum Sabinae.

The bark of Larix Europæa, the common larch.

Habitat.—Mountainous parts of Central Europe.

Characters.—Larch bark from which the external portion has been removed is now official. It may be recognised by its peculiar reddish-brown colour.
Composition.—Larch bark owes its activity to the tannic acid which it contains.

Official Preparation.—Tinctura Laricis.

(Not Official.)

Sandarach or gum juniper is obtained from Callitris Quadrivalvis. It is sometimes mistaken for mastich, but may be distinguished by its tears being much longer than those of mastich.

(Not Official.)

Huile de Cade (oil of Cade) is obtained by distillation from the wood of Juniperus Oxycedrus.

Class II.—Monocotyledones.

The scraped and dried rhizome of Zingiber Officinale.

Habitat.—West Indies, India, &c.

Characters.—Ginger is dug up when the rhizomes are a year old. Two varieties of ginger are known in commerce, the Barbadoes or coated ginger, and the Jamaica or uncoated ginger.

1. Barbadoes or coated ginger is an inferior kind; the rhizome when dug up is simply scalded and washed, and imported with the external coat on.

2. Jamaica or uncoated ginger is the best; the rhizome is scalded and washed, and the coat scraped off.

The darker kinds of ginger are sometimes bleached by washing in a solution of chlorinated lime.

Composition.—A volatile oil, resin, and much starch. The pungency of ginger depends on the volatile oil and resin.

Therapeutics.—An aromatic stimulant and carminative.

Official Preparations.

Syrupus Zingiberis.
Tinctura Zingiberis.
Tinctura Zingiberis Fortior.

The dried seeds of Elettaria Cardamomum.

Habitat.—Malabar (India.)

Characters.—The seeds are generally met with in their capsules, the light-coloured pericarps of which should be rejected. Three varieties of cardamoms are known in commerce by the names of shorts (a), short-longs (b), and long-longs (c); the short plump ones are the best. The dehiscence of the cardamom capsule is septifragal.

Composition.—The seeds contain 4-5 per cent. of a volatile oil, to which they owe their aromatic flavour.

Therapeutics.—An aromatic stomachic and carminative.

Official Preparation.—Tinctura Cardamomi Composita.

The rhizome of Curcuma Longa, and Curcuma Rotunda.

Habitat.—Ceylon.

Characters.—The rhizomes are small, of a yellow colour externally and orange colour internally.

Composition.—A yellow-colouring matter, used as a test for alkalies, which turn it deep brown.

Natural Order.—Iridaceae.

149. Crocus. Saffron.

The dried stigma and part of the style of Crocus Sativus.

Habitat.—Asia Minor; grown in Spain, France, and Italy.

Characters.—Saffron consists of one style and three stigmas; when dried by heat without pressure it constitutes hay saffron. The so-called cake saffron of commerce consists of the flowers of the safflower pressed into a cake with solution of gum.

Adulterations.—Saffron is largely adulterated; the following five are the chief adulterations:

1. Safflower, the florets of Carthamus Tinctorius, Natural Order Compositae.
2. Stamens of the saffron plant.
3. Shreds of beef.
4. Oil; incorporated in order to render it heavier.
5. Saffron from which the colouring matter has been extracted.

The first three adulterations are detected when the suspected sample is macerated in warm water, their appearance being quite dissimilar to that of saffron. The fourth can be detected by its leaving an oily stain when pressed between blotting paper, and the fifth by the absence of colour when rubbed on the hand.

Composition.—A yellow colouring matter (Polychroit) and a volatile oil.

Therapeutics.—Chiefly used as a colouring agent.

Official Preparation.—Tinctura Croci.

Natural Order.—Smilaceæ.

150. Sarsæ Radix. Sarsaparilla Root.

The dried root of Smilax Officinalis; called Jamaica Sarsaparilla.

Habitat.—Central America; imported from Jamaica.

Characters.—The sarsaparillas are classified into two divisions, mealy and non-mealy.

I.** Mealy Sarsaparillas.**

These have a thick swollen cortical portion, from the amount of starch contained in them; hence they are called gouty sarsaparillas. When a section of one of them is touched with strong sulphuric acid, only the woody zone darkens, showing that there alone is the active principle smilacine; a cold decoction of mealy sarsaparilla turns blue on the addition of iodine. The mealy sarsaparillas are the Caraccas or Vera Cruz, the Brazillian, the Honduras, and the Guatemala.

II. **Non-Mealy Sarsaparillas.**

These are the best; the cortical portion is not swollen, and is much smaller and darker than the meditullium. If a section of one is touched with strong sulphuric acid, both bark and wood acquire a purplish tint, showing the presence of the active principle smilacine throughout; a
cold decoction gives no blue colour with iodine. The non-mealy sarsaparillas are the Lima, the Vera Cruz, and the Jamaica. Only the latter is official.

The best Jamaica sarsaparilla may be distinguished by the following characters:—it is of a reddish-brown colour, beardy, not swollen, and has most taste.

Adulterations.—Inferior kinds of sarsaparilla.

Composition.—The active principle is smilacine. Raphides are present in sarsaparilla root.

Therapeutics.—An alterative.

Official Preparations.
- Decoctum Sarsae.
- Decoctum Sarsæ Compositum.
- Extractum Sarsæ Liquidum.

Natural Order.—Liliaceæ.

151. Scilla. Squill.

The sliced and dried bulb of Urginea Scilla.

Habitat.—The coasts of the Mediterranean.

Characters.—The bulb is composed of a number of fleshy scales overlapping one another; the outer scales which constitute the tunic are thin and membranous. There are two varieties of squill, the white and the red, from the colour of their outer scales; the white is considered the best. Squill should be kept sliced; if kept in the bulb it has a great tendency to germinate. Squill should be kept in a bottle, as it readily absorbs moisture. (It frequently absorbs as much as five times its weight of moisture.)

Composition.—Squill contains scillitine (the diuretic principle) and skuleine (a poisonous body), and saponin (7 per cent).

Therapeutics.—Expectorant and diuretic.

Official Preparations.
- Acetum Scillæ.
- Oxymel Scillæ.
- Pilula Scillæ Composita.
- Syrupus Scillæ.
- Tinctura Scillæ.
- Pilula Ipccacuanhæ & Scillæ.
Plate 23. Nos. 151-153 were not issued with this edition.
152. Aloe Barbadensis. Barbadoes Aloes.

The inspissated juice of the leaf of Aloe Vulgaris.

Habitat.—West Indies; imported from Barbadoes.

Collection.—The leaves are cut from the Aloe plant, and, with their cut portions downwards, are placed in a vessel, when the juice runs out; this is then allowed to evaporate either by exposure to the air in the shade, or to the direct rays of the sun. The juice is contained in vessels situated just beneath the epidermis of the leaf.

Characters.—Barbadoes aloes may be recognised by its dull appearance, conchoidal fracture, and very nauseous odour. It is generally imported in gourds; if good, it is the best kind of aloes.

The inspissated juice of the leaves of one or more undetermined species of aloe, probably Aloe Socotrina and Aloe Purpurascens.

Habitat.—Socotra (East of Africa).

Characters.—Socotrine aloes may be recognised by its reddish-brown colour, translucent edges, and smell, which is by no means unpleasant. It generally comes over enclosed in membranes.

Hepatic aloes (not official) may be recognised by its liver colour and its opacity (due to the presence of minute crystals of aloin). It is believed that Socotrine and Hepatic aloes are both obtained from the same plant, the only difference being in the mode of preparation; Socotrine aloes being prepared with heat, Hepatic aloes without heat; for they both possess the same odour, and the Hepatic aloes when heated changes into what exactly resembles Socotrine aloes.

Cape aloes (not official) is the produce of Aloe Spicata.

Habitat.—Cape of Good Hope.

Characters.—Cape aloes may be recognised by its dark shining appearance, its conchoidal fracture, and sickly odour.

Natal Aloes (not official).

Composition.—Aloin and a resin.
Aloin was thought to be a glucoside; but though, after boiling with acids, it reduces a copper solution, still aloin itself does this. That this action is not due to sugar is proved by no fermentation taking place when yeast is added. Aloin is probably a compound phenol. No acid except nitric acid has any action on aloin.

Nitric acid added to nataloin produces picric and oxalic acids (a red colour not fading); nitric acid added to bar-baloin produces chrysammic acid in addition to the other two (a red colour, quickly fading).

Therapeutics.—Purgative.

Official Preparations.—

Of Barbadoes or Socotrine Aloes

Of Barbadoes Aloes

Of Socotrine Aloes

Enema Aloes.

Extractum Aloes Barbadensis.

Pilula

Pilula Aloes et Ferri.

Decoctum Aloes Compositum.

Extractum Aloes Socotrinaræ.

Pilula

Pilula Aloes et Assafcetidæ.

Pilula Aloes et Myrrhæ.

Tinctura Aloes.

Vinum Aloes.

Natural Order.—Melanthaceæ.

The fresh corm and the sliced and dried corm of Colchicum Autumnale, the meadow saffron; collected about the end of June, and dried at a temperature not exceeding 150° F., a higher temperature would decompose the Colchicine.

The fully ripe seeds of Colchicum Autumnale.

Habitat.—Indigenous.
Characters.—The corm should be collected about the end of June, when it is a year old, and has not exhausted itself by the production of the new corm. It is biennial. The new corm is produced at the side of the old one about June; in September it flowers. The flowers die down in winter, and in spring the leaves appear. The slices of the corms present a concavity where the young corm was attached; this concavity should not be too deep.

Adulteration.—Tulip bulbs (distinguished by their overlapping scales) have been sold for colchicum corms.

Composition.—The corms and seeds contain an alkaloid, colchicia, combined with gallic acid.

Therapeutics.—Used for gout and rheumatism.

Official Preparations.

Of the corm.
- Extractum Colchici.
- Extractum Colchici Aceticum.
- Vinum Colchici.

Of the seeds.
- Tinctura Colchici Seminum.

156. Sabadilla. Cevadilla.

The dried fruit of Asagreae Officinalis.

Habitat.—Mexico.

Characters.—Each fruit consists of a number of papery follicles, enclosing dark-coloured seeds about a quarter of an inch long.

Composition.—Cevadilla owes its active properties to the alkaloid veratria, which exists in combination with gallic acid. Veratria was formerly supposed to be identical with colchicia, but they have very different properties.

Colchicia. Veratria.
Soluble in water. Insoluble in water.
Crystallizable. Not crystallizable.
Not acrid. Acrid.
No smell. Produces sneezing when smelt.

Therapeutics.—A powerful emetic and drastic purgative.

Official Preparation.—Veratria.
157. **Veratri Viridis Radix.** *Green Hellebore Root.*

The dried rhizome of *Veratrum Viride.*

Habitat.—United States and Canada.

Characters.—This rhizome is of a light colour, and has long straggling rootlets of the same colour, by which characters it may be distinguished from white hellebore rhizome.

Composition.—Veratrina combined with gallic acid.

Therapeutics.—The same as cevadilla.

Official Preparation.—Tinctura Veratri Viridis.

White hellebore, 157a (not official) is the dried rhizome of *Veratrum Album.*

Characters.—It is darker in colour and has shorter rootlets than the green hellebore.

Composition.—It differs from green hellebore by containing an alkaloid jervine in addition to veratrina.

Acotyledones.

NATURAL ORDER.—*Filices.*

158. **Felix Mas.** *Male Fern.*

The dried rhizome, with the bases of the footstalks and portions of the root fibres, of *Aspidium Filix Mas*; to be collected in summer.

Habitat.—Indigenous.

Composition.—A green fatty fixed oil, a volatile oil, and resin. The official liquid extract contains them all in solution.

Therapeutics.—Anthelmintic.

Official Preparation.—Extractum Filicis Liquidum.

NATURAL ORDER.—*Fungi.*

159. **Ergota.** *Ergot.*

The sclerotium (compact mycelium or spawn) of *Claviceps Purpurea,* produced within the paleae of the common rye, secale cereale.
Characters.—Ergot is not peculiar to rye. There are three phases in the development of Ergot, viz:—

1. The sphacelium or initial stage of the fungus.
2. The sclerotium, or the hard and compact mycelium.
3. The claviceps purpurea, the perfect fungus, formed if ergots are placed in the earth.

Ergot consists of the organs of nutrition alone; if allowed to grow under favourable circumstances, the organs of reproduction will be produced.

Composition.—It is believed that ergot owes its properties to a substance called ergotin, of which it contains 1.2 per cent.; it also contains a nitrogenous substance called secalin, and about 30 per cent. of a fixed oil. It is believed that the ergotin is a nitrogenous acid, forming with the secalin an ergotate of secalin; it also contains 7 per cent. of resin.

Therapeutics.—Mostly employed to cause contraction of the uterus.

Official Preparations.
Extractum Ergotæ Liquidum.
Infusum Ergotæ.
Tinctura Ergotæ.
ADULTERATIONS AND TESTS.

Crocus Sativus.
Saffron.

1. Damped or oiled in order to give it a fresh appearance.
 Test.—It should not moisten or grease blotting paper.

2. Florets of Safflower (Carthamus tinctorius)
 Test.—When rubbed between the fingers it produces a slight yellow mark only, while genuine saffron produces an intense yellow stain. It may also be detected by macerating in hot water, and viewing through a magnifying lens. The genuine exhibits a filiform style; the Safflower, on the other hand, shows the monopetalous corolla, inclosing syngenesious stamens and forked style.

3. Fibres of beef and the stamens of crocus saffron detected as No. 2.

4. Florets of Marigold (Calendula officinalis) distinguished by their shape.

Cinnamomum Zeylanicum.
Cinnamon.

Cassia Bark. Greater thickness, short resinous fracture, shorter and single quills, tincture of iodine gives a blue colour, with a cool decoction of cassia bark, but not with a decoction of cinnamon bark. Both barks contain starch, but the latter contains a larger proportion of tannic acid, which destroys the blue colour.

Digitalis Purpurea.
Foxglove.

1. Ploughman’s Spikenard (Inula Conyza). Distinguished by its odour.
2. Comfrey (Symphytum officinale).
 The latter are downy on both surfaces, digitalis being downy only on the under surface.
Scammonium.

Scammony.

1. *Chalk.* Effervescence on the addition of an acid.
2. *Starch.* Iodine to a cool decoction produces a blue colour.
4. *Guaiacum Resin.* Nitrous fumes give a blue colour to paper soaked in the tincture, or, by applying the tincture to the fresh surface of a cut potato, a blue colour will be produced if guaiacum be present, due to the action of the guaiacic acid on the gluten.

Resina Scammoniæ.

Scammony Resin.

1. *Jalap Resin.* Insoluble in Ether.
2. *Guaiacum Resin.* Detected as for Scammony.
3. *Common Resin.* Dissolve it out with oil of turpentine, evaporate the latter off and add sulphuric acid. An intense red colour will immediately be produced if common resin be present.
4. *Sand Ashes, &c.* Should not leave more than 3 per cent. of ash after incineration.

Exogonium Purga.

Jalap.

1. *Tampico Jalap (Ipomœa Simulans).* More wrinkled, lighter in weight, elongated and tapering at each end.
2. *Ipomœa Orizabensis.* Pale colour, lighter in weight.

Arctostaphylos Uva Ursi.

Bearberry Leaves.

1. *Red Whortleberry (Vaccinium Vitis Idæa).* Margins of the leaves revolute and crenate, the under surface dotted.
2. *Box Leaves.* Absence of astringency.
Anthemis Nobilis.

Chamomile.

1. Feverfew flowers (*Pyrethrum Parthenium*). Unpleasant odour and nearly flat receptacle.
3. *Anthemis Cotula* (Stinking Maywood).

Cephaelis Ipecacuanha.

Ipecacuanha.

Myroxyton Pereiræ.

Balsam Peru.

1. *Castor Oil*. Sulphuric Acid produces a soft resin.
2. *Copaiva*. On distilling a little, and adding iodine to the distillate, an explosion will result if copaiva be present, due to the formation of Hydriodic Acid.

Myroxyton Toluifera.

Balsam Tolu.

1. *Common Resin*. Sulphuric acid will blacken it and give off sulphurous acid gas.

Astragalus Verus.

Tragacanth.

1. *Caramania and Moussul Gums* in broken pieces, and whitened with carbonate of lead.

Myristica Officinalis.

1. Long or Wild Nutmegs. (*Myristica Fatua*) recognised by their greater length.
MATERIA MEDICA.

Senna Alexandrina.

1. Leaves, flowers, and fruits of *Solenostemma Argel*. Detected by being stiffer, thicker, and having an equal base and bitter taste.

2. Leaflets and legumes of *Tephrosia Appolinea*. Emarginate generally folded, veins go straight, equal base.

3. Leaves of *Colutea Arborescens* (Bladder Senna). Detected by equal base.

4. Leaves of *Coriaria Myrtifolia* (Myrtle Sumach). Equal at base, prominent veins. (Poisonous.)

Belæ Fructus.

Bael Fruit.

1. The dried rind of Mangosteen fruit (*Garcinia Mangostana*). Thicker, no adhering pulp and seeds, easily separable epicarp, and by the pieces which come from the top of the fruit possessing radiating stigmas.

Senegæ Radix.

1. *Ginseng Root* (*Panax quinquefolium*). Absence of projecting ridge, greater size, and fusiform shape.

2. *Gileniu trifoliata* as above.

Jateorhiza Calumba.

1. *Coscinium fenestratum*. Not contracted in the centre; very little starch.

2. *Bryony Root* (*Bryonia dioica*). No depression, no starch.

3. *Frasera Walteri*. Contains no starch, but contains tannic acid.

Hellebori Nigri.

Baneberry (*Actaea Spicata*.) Astringent properties. Reddish tinge externally, cruciform, and triangular meditulium.
Balsamodendron Myrrha.

Myrrh.

1. Indian Bdellium (Balsamodendron Mukul). Becomes soft when rubbed between the fingers; often has the hair of goats attached; darker in colour, and warty.

2. Various gums, resins, &c.

Galipea Cusparia.

Or, True Angustura Bark.

1. Nux Vomica, or, False Angustura Bark. Twisted and arched backwards. Nitric acid applied to the inner surface gives a blood-red colour, due to the action of the nitric acid on the Brucia contained in the Nux Vomica bark.

Guaiacum Resin.

Common Resin. Odour of turpentine evolved on heating, or by dissolving the guaiacum resin in alcohol, and adding Liquor Potassae until the liquor becomes clear. If, on the addition of more Liquor Potassae a precipitate occurs, common resin is present.

Krameriae Radix.

1. Savanilla Rhatany (Krameria Ixina). Externally dark, violet colour, bark firmly attached; cracks extending across the root, possesses a soapy feel.

2. Para Rhatany. May be bent to and fro without breaking. The Peruvian Rhatany would snap.

Garcinia Morella.

Gamboge.

1. Starch. A cold decoction becomes green on the addition of solution of iodine. It is due to the mixture of the blue colour of the iodide of starch with the yellow colour of the Gamboge.
MATERIA MEDICA.

Canella Alba.

1. Winter's bark (Drymis Winteri), or (Cinnamodendron Corticosum), distinguished by having its inner surface darker than the outer. An infusion will strike a black colour with salts of iron from the tannic acid contained in it. Canella alba contains no tannic acid.

True Pareira.

Obtained from Chondodendron Tomentosum.

1. Darker in colour.
2. When cut presents a waxy appearance.
 Generally possesses only 3 or 4 concentric rings of wood.

False Pareira.

Supposed to be obtained from Cissampelos Pareira, but according to Hanbury such is not the case.

1. Lighter in colour.
2. When cut presents a rough appearance.

The root may be distinguished from the stem by being darker in colour and more irregular, often containing short rootlets, no perceptible pith, and no development of lichens.

Opium.

1. Inferior kinds from which the morphia has been extracted, quality ascertained by B.P. test.
2. Stones, gravel, &c. Detected by washing the opium on a sieve.
3. Starch. Tincture of iodine to a cold decoction produces a blue colour.

Sinapis.

Mustard:

1. The powder is often adulterated with flour or starch. A cold decoction of mustard should give no blue colour with tincture of iodine.
TABLES OF OFFICIAL FRUITS.

Cremocarp.
Pimpinella Anisum. Coriandrnum Sativum.
Anethum Gravolens.

Berry.
Piper Nigrum. Pimenta.
Cubeba. Rhamnus Catharticus.

Hesperidium.
Citrus Aurantium. Citrus Limonis.
Ægle Marmelos.

Pepo.
Ecbalium Officinarum.
Citrullus Colocynthidis.

Drupe.
Cocculus Indicus.

Capsule.
Papaver Somniferum.

Lomentum.
Cassia Fistula.

Cynarrhodum.
Rosæ Caninæ Fructus.

Galbulus.
Juniperus Communis.

Legume.
Capsici Fructus.

Syconus.
Ficus Carica.

Nuculanium.
Uvæ.

Balausta.
Pomegranate Fruit.
TABLE OF PER CENTAGES, &c.

Table 1. Tannic Acid.

<table>
<thead>
<tr>
<th>Names</th>
<th>Per centage</th>
<th>Small quantities present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhatany Root</td>
<td>... 40</td>
<td>Hop</td>
</tr>
<tr>
<td>Tormentilla Rhizome</td>
<td>... 18</td>
<td>Senega</td>
</tr>
<tr>
<td>Pomegranate Root Bark</td>
<td>... 20</td>
<td>Cloves</td>
</tr>
<tr>
<td>Pale Catechu</td>
<td>... 40</td>
<td>Cinnamon</td>
</tr>
<tr>
<td>Bearberry Leaves</td>
<td>... 36</td>
<td>Bebeur Bark</td>
</tr>
<tr>
<td>Elm Bark</td>
<td>... 3</td>
<td>Winter's Bark</td>
</tr>
<tr>
<td>Oak</td>
<td>... 6 to 10</td>
<td>Logwood</td>
</tr>
<tr>
<td>Galls</td>
<td>... 40</td>
<td>Chamomile</td>
</tr>
<tr>
<td>Kino</td>
<td>... 40</td>
<td></td>
</tr>
<tr>
<td>Black Catechu</td>
<td>... 40</td>
<td></td>
</tr>
</tbody>
</table>

Table II. Volatile Oils.

<table>
<thead>
<tr>
<th>Names</th>
<th>Per cent</th>
<th>Small quantities present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrrh</td>
<td>... 2'5</td>
<td>Winter's Bark, Buchu Leaves, Cusparia Bark</td>
</tr>
<tr>
<td>Copaiba</td>
<td>... 40</td>
<td>Mastich, Elemi, Bals. Peru, Bals. Tolu.</td>
</tr>
<tr>
<td>Cloves</td>
<td>1/8th its weight</td>
<td>Logwood, Senna, Kousso, Pimento.</td>
</tr>
<tr>
<td>Assafœtida</td>
<td>... 4</td>
<td>Galbanum, Ammoniacum, Sumbul.</td>
</tr>
<tr>
<td>Chamomile</td>
<td>... 2 to 3</td>
<td>Elder Flowers, Valerian, Pellitory, Santonica</td>
</tr>
<tr>
<td>Dill</td>
<td>... 7'5</td>
<td>Arnica, Lobelia, Bearberry Leaves, Nutmegs</td>
</tr>
<tr>
<td>Cubebs</td>
<td>... 10'5</td>
<td>Cinnamon, Sassafras, Serpencytary.</td>
</tr>
<tr>
<td>Star Anise</td>
<td>Not known</td>
<td>Mezereon, Cascarilla, Blk. Pepper.</td>
</tr>
</tbody>
</table>

Table III. Fixed Oils.

<table>
<thead>
<tr>
<th>Names</th>
<th>Per cent</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustard (black)</td>
<td>... 28</td>
<td>Nutmegs</td>
</tr>
<tr>
<td>" (white)</td>
<td>... 36</td>
<td>Male Fern</td>
</tr>
<tr>
<td>Linseed</td>
<td>... 22 to 27</td>
<td>Ergot</td>
</tr>
<tr>
<td>Almonds (bitter)</td>
<td>... 50</td>
<td>Stramonium Seeds</td>
</tr>
<tr>
<td>" (sweet)</td>
<td>... 36 to 50</td>
<td>22 to 30</td>
</tr>
</tbody>
</table>
Table IV. Resins and Oleo-resins.

<table>
<thead>
<tr>
<th>Names</th>
<th>Per cent.</th>
<th>Small quantities present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podophyllum Rhizome</td>
<td>3 to 4</td>
<td>Canella Alb.</td>
</tr>
<tr>
<td>Gamboge</td>
<td>...</td>
<td>Cusparia.</td>
</tr>
<tr>
<td>Guaiacum Wood</td>
<td>...</td>
<td>Kouso.</td>
</tr>
<tr>
<td>Myrrh</td>
<td>...</td>
<td>Sumbul, Pellitory.</td>
</tr>
<tr>
<td>Copaiba</td>
<td>...</td>
<td>Arnica, Lobelia.</td>
</tr>
<tr>
<td>Benzoin</td>
<td>...</td>
<td>Capsicum, Rhubarb.</td>
</tr>
<tr>
<td>Scammony Root</td>
<td>...</td>
<td>Sassafras.</td>
</tr>
<tr>
<td>Gum Scammony</td>
<td>...</td>
<td>Cascarilla.</td>
</tr>
<tr>
<td>Jalap</td>
<td>...</td>
<td>Cubebs.</td>
</tr>
<tr>
<td>Hop Glands</td>
<td>...</td>
<td>Ginger.</td>
</tr>
<tr>
<td>Mastich</td>
<td>...</td>
<td>Male Fern.</td>
</tr>
<tr>
<td>Elemi</td>
<td>...</td>
<td>Indian Hemp.</td>
</tr>
<tr>
<td>Balsams of Peru and Tolu</td>
<td>...</td>
<td>Black Pepper.</td>
</tr>
<tr>
<td>Assafoetida</td>
<td>...</td>
<td>Mezereon.</td>
</tr>
<tr>
<td>Galbanum</td>
<td>...</td>
<td>Pimento.</td>
</tr>
<tr>
<td>Ammoniacum</td>
<td>...</td>
<td>Logwood.</td>
</tr>
<tr>
<td>Burgundy Pitch</td>
<td>Mostly Resin.</td>
<td>Winter's Bark.</td>
</tr>
</tbody>
</table>

Table V. Alkaloids, &c.

<table>
<thead>
<tr>
<th>Per cent.</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opium (morphia) ...</td>
<td>8</td>
</tr>
<tr>
<td>Guarana (guaranine) ...</td>
<td>5</td>
</tr>
<tr>
<td>Cinchona, yellow (quinine) ...</td>
<td>2</td>
</tr>
<tr>
<td>Cinchona, red (alkaloids) ...</td>
<td>2</td>
</tr>
<tr>
<td>Nux Vomica (strychnia) 1/2 to 1</td>
<td></td>
</tr>
</tbody>
</table>

Table VI. Various Active Principles.

<table>
<thead>
<tr>
<th>Per cent.</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam of Peru (cinnamic acid) 6</td>
<td>Benzoin (benzoic acid) ... 15 to 20</td>
</tr>
<tr>
<td>Tolu (?</td>
<td>Manna (mannite) ... 60 to 80</td>
</tr>
<tr>
<td>Elaterium (elaterin) ... 20</td>
<td>Rhubarb (raphides) ... 40</td>
</tr>
</tbody>
</table>
METHODS FOR EXTRACTING THE B. P. ALKALOIDS, RESINS AND GLUCOSIDES.

Aconititia.

Dissolve out the natural salt of the alkaloid from the root by rectified spirit, recover the spirit by distillation, mix the residue with water, filter, precipitate the aconititia with solution of ammonia, dry the precipitate and digest it in ether (in which some of the impurities are insoluble), recover the ether by distillation, dissolve the residue left in the retort in water acidulated with sulphuric acid, precipitate the alkaloid by solution of ammonia, wash and dry.

Atropia.

Dissolve out the natural salt of atropia from the root by spirit, precipitate the acid (malic acid) and some of the colouring matter by the addition of lime, filter and add sulphuric acid, to form sulphate of atropia (which is less liable to decomposition during the operations), recover the spirit by distillation, add solution of carbonate of potash till nearly neutral, by which means resinous matter is precipitated, filter and add excess of carbonate of potash to precipitate the atropia, dissolve out the atropia by shaking the liquid with chloroform; remove the chloroform solution, distil off the chloroform, dissolve the atropia in warm spirit, free from colouring matter by means of animal charcoal, evaporate and set aside for the atropia to crystallize out.

Strychnia.

Subject the seeds to steam, dry them rapidly and grind them to a powder, exhaust this with spirit, distil off the spirit and dissolve the extract in water, precipitate the acid (igasuric acid which becomes decomposed into lactic acid) and colouring matter with acetate of lead, filter (by which means acetate of strychnia is obtained in the filtrate); evaporate and precipitate the strychnia with solution of ammonia, wash and dry. The strychnia so obtained is contaminated with brucia, from which it is freed in the following manner: dissolve in rectified spirit, distil off most of the spirit, evaporate and set aside to crystallize, pour away the mother-liquor (which contains the brucia), wash the strychnia with spirit and water (to remove brucia), until
the washings cease to give a red colour with nitric acid (showing absence of brucia), dissolve the strychnia in boiling spirit and set aside to crystallize.

Morphia.

Infuse opium in water and strain, concentrate the infusion, add solution of chloride of calcium (to form meconate of calcium and hydrochlorate of morphia), evaporate until it becomes solid on cooling, and press the mass in a calico bag, the dark liquid which is expressed contains most of the colouring matter, but very little morphia; dissolve out the hydrochlorate of morphia from the pressed mass with boiling water, evaporate the liquid until it solidifies and press again, if the expressed liquid is much coloured, repeat the operation a third time. Dissolve the pressed cake in boiling water, decolourize by means of animal charcoal, filter and add solution of ammonia in slight excess to precipitate morphia, wash the morphia in cold water, and dry.

Sulphate of Beberine.

Exhaust the bebeeru bark with water acidulated with sulphuric acid, concentrate, remove most of the acid by the addition of lime (taking care to keep it still acid), filter, precipitate the beberine with solution of ammonia, wash, dry and dissolve in spirit (in which some of the impurities are insoluble), distil off most of the spirit, neutralize with dilute sulphuric acid (to form sulphate of beberine), evaporate to dryness, dissolve the sulphate of beberine in water, evaporate to a syrup and spread on glass plates to dry at 140°F.

Veratria.

Exhaust the disintegrated cevadilla seeds with alcohol, distil off most of the spirit, pour the residue into water (by which means much resin is precipitated), filter and precipitate the veratria with solution of ammonia, purify by washing it with water, then dissolve it in dilute hydrochloric acid, decolourize by means of animal charcoal, filter, precipitate with solution of ammonia, wash and dry.

Sulphate of Quinine.

Exhaust the yellow cinchona-bark by maceration and percolation with water acidulated by hydrochloric acid (by which means a solution of hydrochlorate of quinine is ob-
tained), add solution of soda to the liquid in order to precipitate quinine, dissolve the precipitated quinine in the proper proportion of hot dilute sulphuric acid, evaporate and allow the sulphate of quinine to crystallize out.

Digitalin.

Dissolve the digitalin out of the digitalis leaf by means of rectified spirit, distil off the spirit, dissolve the residue in water with a little acetic acid, decolourize by means of animal charcoal, filter, neutralize most of the acetic acid with solution of ammonia and add tannic acid (with which it forms an insoluble tannate of digitalin), wash, then rub and heat it with spirit and litharge (which forms insoluble tannate of lead and sets free digitalin, which is dissolved by the spirit), decolourize by means of animal charcoal, filter, evaporate to dryness, wash out impurities with ether, and dry.

Santonin.

Boil Santonica with slaked lime and water (soluble santonate of lime is formed), strain, precipitate the santonin with hydrochloric acid, wash it with solution of ammonia (to remove resin), dissolve in spirit and decolourize by means of animal charcoal, filter while hot, set aside to deposit crystals of santonin, and purify by recrystallization from spirit.

Jalap and Scammony Resins.

Both resins are prepared by making tinctures of the roots, and precipitating the resin from these tinctures by the addition of water.

Podophyllum Resin.

The B.P. process for the preparation of this resin is to make a tincture with rectified spirit of podophyllum rhizome, and to pour this tincture into water acidulated with hydrochloric acid, the water precipitates the resin from the tincture; and in presence of the hydrochloric acid some berberine dissolved out from the podophyllum rhizome is also precipitated.

Another method of preparing podophyllum resin is to pour the tincture into a solution of alum, which precipitates the resin in a compact granular form; it is extremely probable that podophyllum resin is frequently prepared in this way, for commercial samples of the resin frequently contain alum.
Acids are bodies which contain hydrogen capable of being displaced by metals, have a sour taste, redden blue litmus paper, and combine with pure caustic potash or soda, evolving water and forming salts.

Albumen is an organic substance containing nitrogen, and coagulates when boiled with water.

Alkalies are bodies which possess a more or less corrosive taste, turn red litmus paper blue, and combine with acids to form salts.

Alkaloids are organic bases containing nitrogen, they are regarded as derivatives of ammonia, in which one or more of the atoms of hydrogen are displaced by organic radicals. They resemble ammonia—

Firstly.—By giving off analogues of ammonia gas when heated with caustic potash.
Secondly.—By combining with the hydrogen as well as with the acidulous radical of an acid.
Thirdly.—By their containing nitrogen.
Fourthly.—By their hydrochlorates giving precipitates with perchloride of platinum.

Aloins are regarded as complex phenols, that is, phenol in which hydrogen is displaced by various radicals.

Balsams are bodies containing a volatile oil, resin, and either cinnamic or benzoic acid.

Balsamic resins are bodies containing resin, with benzoic or cinnamic acid.

Casein is an albuminoid substance, differing from albumen by not being coagulated by heat; resembling albumen by being precipitated by acids.

Chlorophyl is the name given to a resinous substance which gives the green colouring matter to plants. It consists of two colouring matters, a blue called phyllocyanin, and a yellow called phylloxanthin. It is only developed under the influence of light. The decomposition of carbonic acid gas by plants is probably due to this substance.
Colouring matters are bodies which absorb one or more of the coloured rays of light, and reflect the complementary rays.

Dextrin is an isomer of starch resembling it in its percentage composition, but differing from it in properties. Thus, starch is insoluble in cold water, while dextrin is soluble; starch gives a deep blue colour with iodine, dextrin does not. It may be formed from starch by simply exposing starch to a temperature of 320° F. for a short time, by boiling starch with dilute sulphuric acid, or by boiling starch with water, to which a little malt has been added.

Elæoptens are liquid hydrocarbons occurring in volatile oils.

Extractive matter is the name applied to substances whose composition has not been determined, and which can be extracted by solvents.

Fats are solid bodies, being compounds of fatty acids with organic bases.

Fibrin is an albuminoid substance contained in blood, coagulating spontaneously, in this differing from albumen, casein, or gelatine.

Fixed Oils are liquid compounds containing fatty acids in combination with organic bases, and cannot be distilled without decomposition. Drying oils are those which, by absorption of oxygen, become converted into resinous masses.

Gelatine is a nitrogenous substance which unites chemically with some of the water in which it is boiled, and on cooling, this new compound solidifies.

Glucosides are organic substances which, when boiled with a dilute acid, assimilate the elements of water, yielding glucose or grape sugar as one of the products.

Gums are substances which dissolve in water, yielding a thick mucilaginous liquid coaguable by alcohol or solution of acetate of lead.

Gum Resins are compounds of gum with resin, the gum,
in which may be dissolved by water, forming a mucilage, which then assists in suspending the resin forming an emulsion.

Insipissated Juices are bodies obtained by submitting the juices of plants to spontaneous evaporation.

Isomeric bodies are those which agree in centesimal composition but differ in their properties.

Oleo Resins are solutions of a resin in a volatile oil.

Pectin is vegetable jelly, and is the substance to which the gelatinizing properties of vegetable juices are due.

Raphides are crystalline structures occurring in older cells, and which consist for the most part of oxalate of calcium.

Resins are solid bodies, closely resembling stearoptens, but differ from them in not being volatile.

Soaps are compounds of the fatty acids, with inorganic bases.

Starch is a compound of carbon, hydrogen, and oxygen, existing chiefly in those parts of plants removed from the influence of light, where it is stored up for the future nourishment of the plant. Before it can be used by the plant, it is converted first into dextrin and afterwards into sugar. When boiled with dilute sulphuric acid, it is converted first into dextrin and afterwards, by the assimilation of the elements of water, into grape sugar.

Stearoptens are solid camphor-like bodies, which are volatilized by heat. They form the solid portion of a volatile oil, and consist of oxidized hydrocarbons.

Sugar is a compound of carbon, hydrogen, and oxygen, which, by fermentation, yields alcohol and carbonic acid gas. It has a sweet taste, and is soluble both in water and alcohol. It contributes to the nourishment of plants, being derived from the starch contained in them.

Volatile Oils are usually compounds of liquid hydrocarbons called elaeoptens, and solid oxidized hydrocarbons called stearoptens. They are volatile, and can be distilled without decomposition. The elaeoptens being more volatile than stearoptens, they can be separated by fractional distillation.
APPENDIX.

QUESTIONS IN MATERIA MEDICA.

The following questions are inserted to afford an indication of the style and scope of examination of the subject of Materia Medica:—

1. Into how many subdivisions is the vegetable kingdom divided?
2. What parts of Aconitum Napellus are official?
3. Where is aconite cultivated?
4. Is Podophyllum Radix a root or a rhizome? State the difference between the two.
5. Is Helleborus Niger official? with what has it been frequently adulterated? and give the best means of distinguishing this adulteration.
6. What kind of a fruit is star anise; from what source is it obtained; and what is its use?
7. What is the source of the true Winter's bark?
8. From what other source is Winter’s bark principally obtained?
9. Give the natural orders and habitats of the following drugs:—Calumba Radix, Winter’s bark, Star Anise, Staphysagrie Semina, Hellebori Nigri Rhizoma, Podophylli Radix, and Aconiti Radix.
10. What is the active principle of aconite due to? and state in what part of the plant it chiefly resides.
11. What is the composition of podophyllum; what percentage of resin does it yield; and give its mode of extraction.
12. Why does the B. P. order water acidulated with hydrochloric acid; how much acid should be used; and give the therapeutic properties of the resin and its dose.
QUESTIONS IN MATERIA MEDICA.

13. To what is the colouring matter of calumba due?
14. In what drug was the alkaloid berberine first discovered?
15. Name at least three adulterations of calumba, and state which of the three contains tannic acid.
16. In what part of the globe are the Straits of Magellan, Ibo, Zambesi, and Cordofan?
17. Name all the drugs which contain saponin.
18. From what source is the Christmas rose obtained, and what are its peculiarities?
19. How would you distinguish aconite from horseradish when scraped?
20. What is the test between aconitia and pseudo-aconitia, and state which is principally found in commerce.
21. With what is aconitia combined in Aconitum Napellus?
22. How many kinds of aconite are there, and which yields the most aconitia?
23. What parts of the plant are used in making the Extract, Tincture, and Liniment of Aconite?
24. What test is applied by the natives as to the quality of calumba?
25. What is the cause of the depression in the centre of calumba?
26. What is the cause of the small holes often seen in calumba; which are considered the better, those with holes or those without; and why are small pieces considered better than large ones?
27. What kind of dehiscence has star anise? how many seeds are contained in each carpel?
28. How would you distinguish Canella Alba bark from Winter's bark? Give a physical and a chemical test.
29. In what state does the berberine exist in calumba?
30. What per centage of starch is contained in calumba, and how would you detect its presence?
31. Why is cold water used in making infusion of calumba?
32. In what portion of the root does the active principle generally reside?
33. Name the natural orders of Bryonia Dioica, Frasera Walteri, and Coscinium Fenestatum?
34. Is oleum anisi a volatile or a fixed oil?
QUESTIONS IN MATERIA MEDICA.

35. Name two substances often used to adulterate oil of aniseed; for what purpose they are used; and give the best means of detecting their presence.

36. Name all the official drugs belonging to the natural order Menispermacae.

37. Into how many divisions is the sub-kingdom Phanerogamia divided?

38. What substances are obtained from the following plants:—Pistacia Terebinthus, Pistacia Lentiscus, Boswellia Thurifera, Canarium Commune, Mucuna Pruriens, and Pterocarpus Santalinus?

39. What is frankincense? What is it principally used for?

40. Will myrrh form an emulsion with water; if so, what is it due to?

41. Name six official preparations which contain myrrh.

42. Where are the Island of Scio, Coromandel, Malabar, and the Grecian Archipelago?

43. What is the cause of elemi becoming hard on keeping?

44. Give a brief account of the collection of myrrh, and state the difference between myrrh in tears and myrrh in sorts.

45. Myrrh when broken frequently presents internally a number of white spots or veins. What is the cause of these?

46. State which of the following drugs are official in the B. P., 1867:—Chian Turpentine, Mastich, Frankincense, Cowhage, Kino, Elemi.

47. What is the powder seen mixed with mastich? What is the origin of its name?

48. Give the composition of the following drugs:—Mastich, Myrrh, Elemi, Broom Tops, Kino, Tragacanth, and Liquorice.

49. Name four drugs which belong to the natural order Rutaceæ.

50. Give the natural orders and botanical names of the following:—Sinapis, Stramonium, Areca, Benzoinum, Jaborandi, and Pareira.

51. What is myrrh adulterated with; how would you distinguish its adulteration; and from what source is it obtained?
52. Why was myrrh called Turkey Myrrh, and from what country is myrrh now imported?
53. To what division of the vegetable kingdom do the following natural orders belong:—Coniferae, Filices, Liliaceae, Smilaceae, Melanthaceae, and Graminaceae?
54. Give the natural orders of the following drugs:—Galbanum, Sassafras, Buchu, Armoraceae Radix, Star Anise, and Conii Folia.
55. What are the official preparations of elemi, broom, and tragacanth?
56. What is the sweetness of Glycyrrhizae Radix due to, and what is Solazzi juice?
57. Why is the root decorticated, and where is it cultivated?
58. What is the adulteration of tragacanth, and how would you detect its adulteration?
59. What is the test between tragacanthin and arabin?
60. What is the cause of some pieces of tragacanth looking white, while others have a yellow appearance?
61. What preparation does red sandal wood enter into?
62. Name a poisonous principle found in broom. To what does it owe its diuretic properties?
63. Name all the official drugs belonging to the natural orders Guttiferae and Cruciferae.
64. What is the difference between kinos and catechus?
65. Name the four kinds of kinos met with in commerce, and state which was first known in this country.
66. Name four adulterations of senna; state which is poisonous.
67. Which kind of senna is most adulterated, the Alexandrina or Tinnivelly?
68. Which of the two should be used in the B.P. preparations?
69. Where are New Granada, Calabar, Salvador, and Campeachy?
70. How is Balsam of Peru obtained?
71. How would you detect the presence of copaiva and spirit in Balsam of Peru?
72. Give the natural orders of kino, squill, cusso, lettuce, safflower, and copaiba.
How would you distinguish a thallogen from an acrogen?
What are the distinctive characters of the sub-class Monochlamydeae?
How is cinnamic acid formed in Balsam of Peru?
How would you distinguish cinnamic acid from benzoic acid?
What is the cause of Balsam of Tolu becoming hard by keeping?
How would you detect common resin occurring as an impurity?
What is the difference in composition between Balsam of Tolu and Peru?
To what does Calabar bean owe its activity?
What is the difference between Extractum Physostig-
matis and Extractum Belladonna when applied to the eye?
Point out the hilum, foramen, and chalaza on a Calabar bean.
From what part of the tree is logwood obtained?
What are the crystals frequently found on the logs?
Name five drugs which belong to the natural order Ranunculaceae.
Which senna yields the most active principle? To what are its purgative properties due?
What is cassia pulp official for?
What name is applied to the spurious dissepiments in the cassia pod?
How would you estimate the quality of cassia pods?
In what way is the pulp obtained from the pods?
Distinguish between the ventral and dorsal suture in them.
How is opium obtained, and when should it be collected?
Are the incisions made in the ripe or the unripe capsules, and what would occur if the incisions were made right through the capsule?
Which are maw seeds, the seeds of the white or black poppy? Are they used for any special purpose?
Do poppy capsules, as used in medicine, contain any of the alkaloids found in opium?
95 Name four different varieties of opium found in commerce, and two not.
96 Name the best variety and the per centage of morphia it yields.
97 Which variety is covered externally by the capsules and seeds of a species of Rumex?
98 Name the varieties which are enveloped in the following leaves. Poppy leaves. Oriental plane.
99 What kind of venation has the latter leaf?
100 How would you distinguish Persian from the other kinds?
101 Which kind is it that does not darken on keeping?
102 Name the principal adulteration of opium.
103 How would you estimate a sample of good opium?
104 Why is it objectionable to use opium of too soft a consistence?
105 Describe the B. P. process for making morphia.
106 In what state does morphia exist in opium?
107 How would you obtain meconic acid from opium?
108 What is the action of neutral ferric salts upon it, and how would you distinguish the colour produced, from ferric sulphocyanide?
109 Is morphia an alkaloid? Is it acid, neutral, or alkaline?
110 What is the action of morphia on iodic acid and ferric salts?
111 From what source is codeia obtained?
112 How would you distinguish it from morphia?
113* What is paramorphia, and how may this be distinguished from morphia?
114 Name a neutral principle which exists in opium in the free state.
115* What is the definition of an alkaloid? Give four reasons why they are believed to be derivatives of ammonia.
116* In what state does narcotine exist in opium? How may it be extracted, and distinguished from morphia and codeia?
117* What is formed when it is dissolved in sulphuric acid?
QUESTIONS IN MATERIA MEDICA.

118 What proportion of opium is contained in the following preparations:—confectio opii, pil. saponis co., pulv. kino co., tinctura opii, tinctura opii ammoniata?

119 From what source is the true pareira root obtained?

120 From what source is the false pareira root obtained?

121 By whose authority have we learned that the source of the false pareira is not that of Cissampelos pareira?

122 Give two or more characters which will distinguish the true from the false.

123 How would you distinguish the root from the stem?

124 What is the composition of the true and false pareira?

125* With what alkaloid is the bitter principle of the Cissampelos identical?

126 Name all the official preparations in which pareira root is used.

127 Name four official drugs whose composition has not been clearly ascertained.

128 What are the therapeutic properties of pareira?

129 With what are cocculus indicus likely to be confounded?

130 Describe a cocculus indicus fruit.

131 How would you estimate its quality? Is it official? For what purpose is it used?

132 Is cocculus indicus a berry or drupe? State the difference between them.

133* Name the two alkaloids existing in the pericarp, and state how you would distinguish one from the other.

134* Name the neutral principle found only in the seed.

135 For what purpose is the red poppy official? Is this the variety known as corn poppy?

136 Which makes the better preparation, the dried or the fresh petals?

137 What percentage of morphia do they contain? At what particular time should they be gathered?

138 How many varieties of the papaver somniferum are there?

139 From what portion of the poppy is opium obtained?

140 How would you distinguish between the white and black varieties?
141 When are poppy capsules most active, and when should they be gathered?
142 What is the star-like portion seen on the top of the capsule?
143 What kind of dehiscence and placentation has the poppy?
144 Without breaking open the capsule, how could you ascertain the number of placentas in the cavity of the ovary?
145 Name a substance which is contained in black mustard seeds and not in the white.
146 What is the composition of black mustard?
147 What is the pungent odour due to when the black mustard seeds are rubbed with water?
148 Which kind of mustard (the black or the white) is used in preparing the flour of mustard, and why?
149 Name three official drugs which contain no volatile oil ready formed, but when distilled with water readily yield the oil.
150 Describe the formation of the volatile oil.
151 With what is the flour of mustard frequently adulterated? How detect it?
152 Why should not boiling water be used in preparing mustard for the table?
153* What is the composition and formula of the volatile oil of mustard?
154 To what is the acrid taste of the white mustard seeds due?
155 Name a substance contained in the white, which does not exist in the black.
156 Do white mustard seeds yield any volatile oil when distilled with water, and why?
157 Name two drugs which contain myrosin and myronate of potassium?
158 Name an official preparation into which the volatile oil enters?
159 How are Acotyledonous plants propagated? How many cotyledons do they contain, and what kind of germination and venation have they?
160 How do you know when a plant belongs to the sub-class thalamifloræ?
161 What is the cause of the pungent odour produced when horseradish is scraped?
162* With what volatile oil was the oil of horseradish believed to be identical?
163* What is the difference between them?
164* How would you prove that the volatile oil does not exist ready-formed in the root?
165 Why is the root ordered to be scraped and not powdered?
166 To what natural orders do the following drugs belong?
 Cassia pulpa, scoparia cucumina, amygdala dulcis, arnicae radix, and taraxaci radix?
167 Are violets official? For what purpose are they frequently used?
168* What are the effects of acids and alkalies on the colouring matter of violets?
169 Name all the official drugs, and one adulteration, belonging to the natural order Amyridaceæ.
170 What is the principal character of Senega root by which it may be known?
171 In which portion of the root does the active principle reside?
172 With what is Senega root frequently adulterated, and how are the adulterations detected?
173 What is the composition of Senega root?
174 To what is the frothing of infusion of Senega due?
175 What are the therapeutic properties of Senega?
176 Name two official preparations of Senega, with their strengths and doses?
177 Name four drugs which belong to the natural order Melanthaceæ.
178 Give the botanical names and natural orders of the following drugs:—kamala, pale catechu, squinting cucumber, matico leaves, ipecacuanha, and hop.
179 From what sources are the Para, Savanilla, and Peruvian rhatanies obtained? State which is the official, the best, and the difference in characters.
180 To what are its astringent properties due?
181 Name three official preparations of its own, and one other into which it enters.
182 Give the habitats of Krameria triandria, Senega, armoricæ radix, sinapis nigra, and alba.
183 What relation does the plant of the Linum usitatissimum bear to the common flax?
184 What is lint, tow, and linen?
185 What per centage of fixed oil is obtained from linseed, both with and without heat?
186 Why are the seeds not crushed in making the infusion?
187 What is cotton wool? To what natural order does it belong, and for what is it official?
188* What is the composition of cotton?
189 Why is linen preferable to cotton for dressing wounds?
190 Is althææ radix official? When should it be gathered? For what purpose is the epidermis removed?
191 Why is heat applied in the extraction of the concrete oil of Theobroma?
192 What is cocoa and chocolate?
193 In what does prepared cocoa differ from ordinary cocoa?
194 What advantage has the oil of Theobroma over other oils?
195 What per centage of oil do the seeds yield?
196 For what preparation is the oil official? Name a substance which is considered by some to be superior to oil of Theobroma, for this purpose?
197 What alkaloids, &c., are found in the seeds?
198 What is Guarana? What does it resemble in shape, is it official, for what purpose is it used, and how is it administered?
199 What is its composition?
200 Name three drugs which contain an alkaloid similar to theine.
201 What is the natural order and habitat of Guarana?
202 Which orange peel is official, the bitter or sweet, fresh or dried, and for what preparations?
QUESTIONS IN MATERIA MEDICA.

125

203 Why is the rind ordered to be deprived of its inner white portion?
204 What are the numerous dots covering the rind?
205 What is the bitter extractive of orange called?
206 Is the rind the only portion of the plant which is official?
207 What portion of the lemon is official?
208 Do the remarks applied to the orange differ in any respect to those applied to the lemon?
209 Give the natural orders of paullinia sorbilis, fraxinus ornus, larix europaea, secale cereale, and isonandra gutta.
210 Is bael fruit the ripe or unripe fruit? From what source is it obtained?
211 What is frequently found mixed with bael fruit?
212 How would you distinguish bael fruit from mangosteen fruit?
213 What is the cause of canella bark appearing in quills?
214 Why is it called spurious Winter's bark?
215 Into what preparation does canella bark enter?
216 What is the powder known by the name of hiera picra?
217 What is gamboge?
218 What is the difference between pipe and lump gamboge, and which is the better quality?
219 From what portion of the tree is it obtained?
220 What are the depressions seen on pipe gamboge?
221 How would you estimate the quality of gamboge?
222 With what is it frequently adulterated, and how would you detect it?
223 What is the composition of gamboge, and give the percentage of its constituents?
224 Will gamboge form an emulsion with water?
225 What official preparation of gamboge is there?
226 Is copaiba a true balsam? Why?
227 How is copaiba collected?
228 With what is copaiba frequently adulterated? From what source is the adulteration obtained? And give two means of detecting it.
QUESTIONS IN MATERIA MEDICA.

229 What is the cause of the opacity of gum acacia?
230 How would you distinguish Senegal gums from gum acacia?
231 What percentage of water is contained in gum acacia?
232 State what metal is found in gum, and in what state it exists.
233 When mucilage of acacia is mixed with a solution of subacetate of lead, what is the gelatinous precipitate formed?
234 Is gum acacia soluble in proof spirit?
235 Which kind of rose petals is used in preparing aqua rosa, confectio rosa, infusum rosa acidum, and syrupus rosa?
236 From which kind of rose is the volatile oil (called otto of roses) obtained, and by what process?
237 Give the official names of the cabbage rose, red rose, dog rose, and rosa canina.
238 What kind of a fruit is the hip?
239 Describe briefly the hip, and state what the so-called seeds which they contain really are, and why they are ordered to be removed.
240 What is the difference in composition between the various roses?
241 Why are the red rose petals ordered to be kept away from the light?
242 Is black catechu official? For what purpose is it used? and from what portion of the wood is it obtained?
243 Is it of the same natural order and source as the pale catechu?
244 Give the distinctive character by which it may be recognized.
245 Give the natural orders and botanical names of the following:—Indian hemp, dulcamara, ginger, cascara, cacao butter, chirata, crocus, long pepper, black catechu, tragacanth, socotrine aloes, chamomile flowers, and pellitory root.
246 How would you distinguish between bitter and sweet almonds by appearance?
247 From which of the two almonds is the fixed oil principally obtained, and why?
248 From which is the volatile oil obtained?
249 What percentage of fixed oil is contained in the bitter almond?
250 What does the brown coat of the seed and the white portion inside constitute?
251 How many cotyledons are contained in one seed; does it belong to the Exogens or Endogens?
252 What are the small projections visible at the apex of the seed when opened?
253 Name a substance which exists in the bitter but not in the sweet almond.
254 Describe the production of the volatile oil when the bitter almonds are rubbed with water.
255 Where would you find the albumen in an almond?
256 When there is no albumen present, what name is applied to the seed?
257 Name another drug which is similar in composition to the bitter almond.
258 What is the poisonous principle in the essential oil of almonds? Give the percentage.
259 How would you render it non-poisonous?
260 Of what do the almonds, as we see them (in the shell), consist of?
261 What kind of almond is ordered to be used in the Pharmacopoeia?
262 What kind of almond is used in making the official mixture and powder?
263 Is Tormentillae Rhizoma official? To what are its astringent properties due?
264 Name all the official drugs with one adulteration which belong to the natural order Gentianaceae.
265 What is the composition of cherry-laurel leaves?
266 What products are formed when they are distilled with water?
267 For what purpose are they official?
268 Name three drugs where the entire plant is used; four drugs in which the flowers and tops only are official.
269 What are the properties of cusso?
270 To what does it owe its activity?
271 What peculiarity is there about the infusion?
272 What portion of the plant is a clove?
273 What is the radiating part and the small round ball situated on the top of the clove?
274 Give the botanical names and natural orders of gentian, chirata, enebes, digitalis, black pepper, capsicum, and cloves.
275 What are mother cloves?
276 What is the active principle of cloves?
277 Name four volatile oils which are heavier than water.
278 How estimate the quality of cloves?
279 For what preparations are they official?
280 Why are pimento berries called allspice?
281 Why are they ordered to be gathered unripe?
282 What is the small ring seen on the top of the berry?
283 Where does the active principle reside?
284 What takes place when oleum pimentae is put into water?
285 What are the official preparations of pimenta?
286 Give the natural orders of the following drugs:—mezereon, nux vomica, quassia, rhubarb, jalap, senega, elim bark, and valerian.
287 From what source is sumbul root obtained?
288 What odour does it resemble?
289 How many varieties are there in commerce, and which is the best?
290 State how you would distinguish one from the other?
291 To what are the active properties of sumbul due? Is it official?
292 What kind of an inflorescence is sambucus niger.
293 To what is the odour due, and for what purpose is it official?
294 How would you distinguish yellow cinchona bark from carthagena or coquetta bark?
295 Is there more than one variety of yellow cinchona? in what state do they occur?
296 How would you distinguish quilled yellow from pale cinchona bark
QUESTIONS IN MATERIA MEDICA. 129

297 Of what portion of the bark does the yellow consist?
298 What is the cause of the grooved depressions seen on its outer surface?
299 Which bark has the shortest fracture?
300 From what source is the carthagena bark obtained?
301 Is it official? if so, for what purpose?
302 Give the composition of the red, pale, and yellow cinchona barks.
303 In what state does the quinine exist in the bark?
304 Which kind of bark is known as Loxa, or crown bark?
305 Where is Loxa, and Chimborazo?
306 In what state does the red cinchona occur in commerce?
307 How would you distinguish the red cinchona in quills from the other quilled barks?
308 Name an adulteration of red cinchona, and state how you would detect it?
309 Is the red official? if so, for what purpose?
310 What are the properties of cinchona bark?
311 Name five official preparations made from the yellow, one from carthagena, two from the pale, and all you know from the red cinchona bark.
312 Give the botanical names and natural orders of ergot, filix-mas, quercus cortex, hemidesmi radix, krameria, and lobelia.
313 When should conium leaves be gathered?
314 For what purpose are they used, and why is it called the spotted hemlock?
315 What is the shape of the leaves?
316 What part of the plant is used in making the extract, succus, and cataplasma conii.
317 What kind of a fruit is conium?
318 Do the vittae in conium contain any volatile oil?
319 Which fruit is official, the ripe or the unripe?
320 When should conium fruit be gathered?
321 To what do they owe their activity?
322 With what is the active principle combined?
323 Name the official drugs which belong to the following natural orders:—Polygonaceae, Simarubaceae, Loganiaceae, Thymelaceae, Anacardiaceae, and Polygalaceae.

324 What is assafoetida?

325 Where are the Punjaub, Afghanistan, Smyrna, Molucca Islands, Penang, Abyssinia, Malaga, Mogadorc?

326 How is assafoetida collected?

327 What kind of appearance does assafoetida present when broken?

328 What is the action of light upon it?

329 With what is it often adulterated?

330 What per cent. of volatile oil is contained in assafoetida?

331 Name five official preparations which contain assafoetida.

332 How would you distinguish galbanum from ammoniacum.

333 From what source is galbanum obtained?

334 What are the therapeutic properties of galbanum, assafoetida, ammoniacum, and conii.

335 Name all the official drugs which belong to the natural order Euphorbiaceae.

336 What are the natural order of cardamoms, colocynth, and digitalis?

337 Which is the better ammoniacum, the tears or the lump?

338 Name the official preparations containing ammoniacum?

339 For what are the following fruits official:—anise (dil.), fennel, coriander, caraway?

340 What is the small disc surmounting the fruits called?

341 Where are Molucca Islands?

342 How is oleum cajuputi obtained?

343 To what is the green colour of the oil due?

344 With what is the oil frequently adulterated?

345 From what source is pomegranate root bark obtained?

346 Name three root barks which are used in medicine.

347 What kind of a fruit is the pomegranate?

348 Name two barks frequently used to adulterate pomegranate root bark, and state how you would distinguish them.

349 Name six official cremocarps.
350 What per centage of tannic acid is contained in pomegranate root bark?

351 Name four official berries.

352 What kind of fruit is colocynth?

353 In what way does a pepo resemble a berry, and in what does it differ?

354 How many varieties of colocynth are there in commerce? and state which is the best.

355 Why is the pulp ordered to be freed from the seeds?

356 About what per centage of seeds is contained in colocynth fruit?

357 How would you distinguish the different varieties?

358 To what does colocynth owe its activity?

359 Name all the official preparations of colocynth.

360 Give the botanical names and natural orders of canella alba, Tampico jalap, scammony root, sambuci flores, fig, and mastiche.

361 Name all the official drugs which come under the natural order Cinchonaceae.

362 Name all the official Hesperidia.

363 From what source is elaterium obtained?

364 Describe the process of its collection, and state why light pressure only is ordered.

365 In what part of the fruit does the elaterium principally reside?

366 Why is it called squirting cucumber?

367 How many kinds of elaterium are known in commerce, and which is the best?

368 Name two substances used to adulterate it.

369 How would you estimate the quality of elaterium?

370 How would you extract its active principle, and what per centage should it yield?

371 What kind of a root is ipecacuanha?

372 In what portion of the root does the active principle entirely reside?

373 What are the smooth portions often seen in a sample of the root?

374 How many varieties of ipecacuanha are there? Name them.
State which is the best, and give the per centage of cortical portion and medullarium in a good specimen.

Name two adulterations with characters.

What per centage of emetine is contained in the root?

In what state does the emetine exist?

Name four official preparations which contain ipecacuanha.

What are the natural orders of cotton wool, mentha viridis, guaiacum lignum, granati radix in cortex, hordeum decorticatum, galls, and lavandula?

Name three official drugs which belong to the natural order Myrtacae.

How would you distinguish the pale catechu from the black?

From what source is the pale obtained?

Which kind of catechu is known in commerce as terra japonica?

Will pale catechu sink or float in water? How is it prepared?

What per centage of tannic acid is contained in the pale catechu?

Is this tannic acid of a different variety to the ordinary kind? If so, state how you would distinguish them.

Name four official preparations containing pale catechu.

Which valerian is the best, the wild or cultivated?

When should valerian be collected, and why?

Name which of the following drugs are rhizomes and which roots:—helleborus niger, valerian, arnica, serpanty, male-fern, ginger, podophyllum, aconite.

Does the volatile oil exist ready formed in the wood?

For what purpose is valerian official? Give all its preparations.

What is pellitory of Spain?

How would you distinguish pellitory from dandelion?

Is pellitory official? What is its composition and therapeutics?

What part of the plant is santonica?

Why has it received the name of worm seed?

How many varieties of santonica are there? which is the official?
QUESTIONS IN MATERIA MEDICA.

400 Why are the others not used?
401 How would you recognise the official kind from the rest?
402 To what does santonica owe its active properties?
403 Which chamomile flowers are official, the single or double?
404 How would you distinguish between the two?
405 Which yields the most volatile oil?
406 What is the circular green body at the base of each flower head?
407 What is the difference between thalamus and receptacle?
408 Which are the florets of the ray, and the disc? Which of the two are pistillate only?
409 Where are the bracts called paleae situated?
410 Name two adulterations of chamomiles; give their botanical names, and state how they may be distinguished from the true chamomiles.
411 Name the official preparations of chamomiles?
412 Where are Calabar, Cape of Good Hope, Singapore, Siam, Malabar, and the Bahama Islands?
413 What are the natural orders of myristica, rhamnus catharticus, sarsae radix, serpantariae radix, and uvæ ursi folia?
414 Is the fresh or dried root of dandelion official, and for what purpose?
415 When should taraxacum be collected?
416 Why should it not be collected immediately after a frost?
417 Of what kind of vessels are the concentric ring composed in a transverse section of taraxacum?
418 Does the active principle reside in the woody portion or in the juice?
419 In what portion of the root does the juice entirely reside?
420 Name three official preparations of taraxacum.
421 Name the natural orders which belong to the sub-class Monochlamydeæ.
422 Name eight official drugs which belong to the natural order Rosaceæ.
423 Is arnica root a true root or a rhizome?
Are arnica flowers official? Are they considered as efficacious as the root?

For what purpose is arnica official?

What portion of the plant of lobelia is official?

In what form is lobelia generally imported?

What alkaloid is found in lobelia, and what is there particular about it?

What are the properties of arnica, lobelia, and uvæ ursi?

What portion of the plant of lobelia is official?

In what form is lobelia generally imported?

What alkaloid is found in lobelia, and what is there particular about it?

What are the properties of arnica, lobelia, and uvæ ursi?

Name two official preparations of lobelia.

What are the botanical names of bearberry leaves, monkshood, thorn apple, bitter apple, and dandelion?

With what are uvæ ursi leaves frequently adulterated?

How would you distinguish this adulteration?

To what do bearberry leaves owe their activity? Give the per centage.

Is uvæ ursi official? if so, for what purpose?

Give the natural orders of cinnamon, caraway, assa-fœtida, cassia, sumbul radix, camphor, and nectandrae cortex.

Is benzoin a true balsam? Why?

How is benzoin collected?

How many kinds of benzoin are known in commerce? State which is the best.

How would you distinguish the best from the inferior?

Name three drugs which, when broken, present an amygdaloid appearance.

Which kind of benzoin has the impression of a cloth upon it?

What is meant by the terms head, belly, and foot benzoin? State the difference between them.

What per centage of acid does it yield?

Give three or more ways of preparing the acid.

Will tincture of benzoin mix with water? Why?

Where are Siam and Sumatra?

What are the principal characters of the sub-class Corollifloræ.

What are the natural orders of marigold, laurocerasi folia, senna indica, and amygdala amara?

Name all the drugs imported from Mexico.
QUESTIONS IN MATERIA MEDICA.

135

451 How many varieties of manna are there?
452 What is the difference between flake manna and manna in sorts?
453 What is the cause of the flat appearance seen on one side of a piece of manna?
454 What per centage of mannite is contained in manna?
455 Name the drugs which belong to the following natural orders:—Styraceæ, Oleaceæ, Asclepiadaceæ, Loganiaceæ, Gentianaceæ, Convolvulaceæ.
456 With what is hemidesmus root likely to be mistaken?
457 How would you distinguish them?
458 Name a substance contained in hemidesmus root?
459 What root is the so-called Indian sarsaparilla?
460 For what purpose is hemidesmus official?
461 Is nux vomica as seen in commerce the fruit or the seed?
462 What is the little mark seen in the centre of the concave side?
463 What name is applied to the ridge which runs from the centre to the circumference of the seed?
464 At the termination of this ridge at the circumference is seen a small protuberance; what is it?
465 Does nux vomica contain any albumen? if so, what kind is it?
466 When split open two small projections are seen, one resembling a small ovate leaf. Give the names of these, and state which of the two resembles the leaf.
467 Name two alkaloids found in nux vomica seeds.
468 State which is the most poisonous, and the per centage they contain.
469 With what are the alkaloids combined in the seeds?
470* What is brucia considered to be, if not a distinct alkaloid?
471 Is brucia poisonous?
472 To what is the poisonous property of nux vomica bark due?
473 Give two tests which will distinguish brucia from strychnia.
474 Name two official preparations of nux vomica.
475 Are St. Ignatius' beans official; if so, for what purpose?
QUESTIONS IN MATERIA MEDICA.

476 How would you distinguish St. Ignatius' beans from nux vomica?
477 What per centage of strychnine do they contain?
478 Do they contain any brucia?
479 How would you distinguish gentian root from belladonna root?
480 What three portions are visible in a transverse section of gentian root?
481 Name four official preparations of gentian?
482 To what is the bitterness of gentian due?
483 What part of the chiretta plant is official?
484 Where is it cultivated?
486 How is it imported?
487* Name an adulteration of chiretta, and state how you would detect it.
488 What is the bitter principle contained in chiretta?
489 Where is scammony cultivated?
490 What peculiarity is there about the root? is it official, and for what purpose?
491 What per cent. of resin and gum does it contain?
492 When is scammony root the richest in resin?
493 What is scammonium?
494 How is it obtained?
495 For what purpose is scammony sometimes covered externally with chalk?
496 Describe the fracture of a good specimen of scammony?
497 What is the cause of an emulsion being formed when touched with the moistened finger?
498 How would you detect chalk occurring as an impurity in scammony?
499 How would you detect starch in scammony?
500 Give two or more means of detecting guaiacum resin in scammony.
501 Give the best means of detecting and estimating the amount of earthy matter in a specimen of scammony?
502 Is scammony entirely volatile on ignition?
503 How would you detect jalap resin when mixed with scammony resin?
What per cent. of resin should a good sample of scammony yield?

For what purpose is scammony official?

For what purpose is scammony resin official?

Is jalap a tuber or a tubercule?

From what source is it obtained?

Give the characters of a good specimen of jalap.

By what name is the official jalap known in commerce?

Name two adulterations of jalap.

How would you distinguish tampico jalap in powder from the official jalap in powder?

Give the characters of tampico jalap.

What per cent. of resin is contained in the true jalap?

How is jalap resin prepared?

How is scammony resin prepared? give two ways.

What proportion of jalap is contained in the pulvis jalapæ co. and tinctura jalapæ?

What is the natural order and botanical name of woody nightshade.

When should it be gathered?

What is the cause of its extreme lightness?

Name an alkaloid it contains.

For what purpose is it official?

What is the so called Guinea or pod pepper?

Give its natural order and habitat.

What parts of belladonna are official?

When should the leaves be gathered?

With what root is belladonna likely to be confounded?

What alkaloid is obtained from the root?

In what state does the alkaloid exist in the root?

Which is the most powerful, the root or the leaves?

Name the official preparations of the leaves and the root?

What is the botanical name of thorn apple?

What alkaloid exists in stramonium seeds?

With what other alkaloid is it identical in composition and properties?

Are stramonium leaves official? if so, for what purpose?

Which are official, the dried or the fresh leaves of hyoscyamus niger?
QUESTIONS IN MATERIA MEDICA.

537 Are the leaves of the annual or biennial official?

538 How would you distinguish between a tincture prepared from the annual and the biennial leaves?

539 What is the difference in properties between belladonna and hyoscyamus?

540 To what are the active properties of henbane due?

541 Name a preparation obtained from the fresh leaves, also one obtained from the dried leaves.

542 What is the natural order of digitalis?

543 Where is it cultivated, and into what preparations does it enter?

544 When should the leaves be gathered?

545 Name three adulterations of digitalis.

546 Which of the adulterations possess a fetid odour?

547 How would you distinguish digitalis from its adulterations?

548 To what do digitalis leaves owe their activity?

549 From what sources are the following oils obtained:—oil of rosemary, lavender, peppermint, and spearmint?

550* To what sub-class does rhubarb belong?

551 From what source is the official rhubarb obtained?

552 When should rhubarb be collected, and why?

553 For what purpose are the holes made in rhubarb?

554 Which of the rhubarbs is now seldom met with in commerce?

555 Name all the official varieties of rhubarb.

556 Is the English official?

557 Give the principal characters of the Russian.

558 Give the principal characters of the East Indian.

559 Give the principal characters of the Dutch trimmed.

560 How would you distinguish the English from the other varieties?

561 Which kind contains the most raphides?

562 Which kind contains the least raphides?

563 What are raphides?

564 From what source is English rhubarb obtained?

565 With what is powdered rhubarb frequently adulterated?

566 How would you detect the presence of turmeric when mixed with powdered rhubarb?
QUESTIONS IN MATERIA MEDICA.

567* Give the composition of rhubarb, and state to what the activity is due.

568 What is the difference in properties between large and small doses?

569 Is the nutmeg as used the entire fruit or seed only?

570 Where do nutmegs come from?

571 To what is the veined appearance due when cut?

572 What kind of albumen has a nutmeg?

573 Name four kinds of nutmegs, and state which is the best?

574 From what source is the long nutmeg obtained?

575 What is mace?

576 What is the difference between an arillus and arillode?

577 How is mace preserved?

578 What is the composition of nutmegs?

579 Name an official preparation which is made from the volatile oil.

580 What portion of the bark is cinnamon?

581 Give its habitat and botanical name.

582 How is it that cinnamon occurs in a number of quills?

583 Name a bark principally used to adulterate cinnamon, and give the best means of distinguishing them.

584 How would you detect cassia bark in powder when mixed with powdered cinnamon?

585 State which contains tannic acid.

586 Does cinnamon bark contain cinnamic acid?

587 Are cassia buds official? What are they?

588 With what are they likely to be mistaken?

589 What is camphor? How is it obtained?

590 To what extent is it soluble in water?

591 Give the best means of powdering it.

592 Is camphor ever adulterated?

593 Name another kind of camphor often met with.

594 From what source is it obtained?

595 How is artificial camphor obtained?

596 What proportion of camphor is contained in the water, liniments, spirit, and tincture?

597 From what source is sassafras obtained?

598 Which is the most active portion of the plant?
599* Give the composition of sassafras.
600 From what source is bebeeru bark obtained?
601 Where are British Guiana and Java?
602 What alkaloid is contained in bebeeru bark, and to what extent?
603 For what purpose is the bark official?
604 Is serpantary root a true root or rhizome?
605 Name the official preparations of serpantary.
606 To what is the bitter substance of serpantary due?
607 Give the natural order of mezereon bark.
608 State which is official, the bark of the stem or the bark of the root.
609 How would you distinguish the bark of the daphne mezereum from the bark of the daphne laurola?
610 State which is principally found in commerce?
611 For what purpose is it official?
612 What are the great characters of cascarilla bark?
613 From what source is it obtained?
614 How would you distinguish it from pale cinchona bark?
615 Is croton oil a fixed or a volatile oil?
616 How would you distinguish croton seeds from castor oil seeds?
617* What proportion of nucleus, shell, and oil do they contain?
618 How many kinds of croton oil are known in commerce?
619 State how you would distinguish the two kinds.
620 What acid is contained in croton seeds?
621 Is castor oil a fixed or a volatile oil?
622 What is the small protuberance seen at one end of the seed?
623 In what does castor oil differ from most other fixed oils?
624 What is meant by the term cold-drawn?
625 Are the testæ of the seeds injurious when taken internally?
626 What is kamala? Where is it imported from?
627 What is the light coloured powder mixed with kamala?
 How can it be separated?
628* What does kamala contain?
629 What are the properties of kamala?
QUESTIONS IN MATERIA MEDICA. 141

What kind of a fruit is black pepper?
What is the difference between the white and black?
When should black pepper be gathered?
What is the composition of pepper?
For what purpose is pepper chiefly used?
For what purpose is it official?
How would you distinguish between cubebs and black pepper?
Name the drugs which contain the following active principles:—cubebin, piperine, rottlerine, and beberine.
From what source are matico leaves obtained?
How would you distinguish matico from digitalis?
Name an adulteration of matico.
What are its properties and official preparations?
Which portion of the bark is elm bark?
When should it be collected?
What is its composition and official preparation?
What per cent. of tannic acid does it contain?
From what portion of the tree is the official oak bark collected?
Give its botanical name and natural order.
When should it be collected and why?
What per cent. of tannic acid does it contain?
What are its properties and official preparation?
What are galls? How are they produced?
What is the cause of the holes seen in galls?
Which are considered the best, those with or those without holes?
How many varieties are there in commerce? State which is the best.
What per cent. of tannic and gallic acid do galls contain?
What is prepared styrax? How is it obtained?
In how many forms does styrax occur?
State which is official.
Of what does the solid storax consist?
Is storax a true balsam? If so, why?
From what portion of the plant is Indian hemp obtained?
662 What name is applied to the resinous exudation?
663 What is the difference between the hemp plants grown in England and those grown in India?
664 Name two official preparations of this drug.
665 What is the hop? Where is it cultivated?
666 Describe a strobile. Where is the lupuline situated?
667 To what is the bitter principle due?
668 What per cent. of resin is contained in hops?
669 Name three official preparations of hops.
670 What is resin obtained from?
671 From what is Canada balsam obtained?
672 Is it a true balsam, and why?
673 Of what does it consist?
674 What is common frankincense?
675 What is Burgundy pitch?
676 Of what does the commercial article principally consist?
677 Give a test which will distinguish between the spurious and the genuine.
678 For what purpose is it official?
679 For what purpose is tar official?
680 Is oil of juniper a fixed or a volatile oil?
681 Is juniper berry a true berry or a galbulus? State the difference between the two.
682 What is the tri-radiate groove seen on the top of the fruit?
683 How would you distinguish between juniperus communis and juniperus sabinae?
684 When should savin tops be collected?
685 To what do savin tops owe their activity?
686 Name three official preparations of sabinae.
687 Give the botanical names of the following:—larch bark, ginger, cardamoms, turmeric, saffron, and sarsaparilla.
688 How would you recognise larch bark?
689 To what does it owe its activity?
690 Name an official preparation of larch bark.
691 Is gum juniper official; for what purpose is it used, and from what source is it obtained?
692 With what is it likely to be mistaken?
693 From what is huile de cade obtained?
694 What portion of the plant is ginger?
695 When should ginger be collected?
696 Name two varieties found in commerce, and state which is the better.
697 What is meant by uncoated ginger?
698 How are the darker kinds of ginger bleached?
699 Upon what does the pungency depend?
700 How many kinds of cardamoms are there?
701 Which is the best?
702 What kind of dehiscence has the cardamom capsule?
703 What per cent. of oil do they yield?
704 Why are the pericarps ordered to be rejected?
705 Where are Malabar and Ceylon?
706 What is the action of alkalies on turmeric?
707 What portion of the plant of crocus sativa is official?
708 What is hay-saffron?
709 What is cake saffron?
710 Name five adulterations of saffron, and state how you would detect the presence of each?
711 Is saffron official? if so, for what purpose?
712 Name the two divisions of sarsaparilla.
713 Name the four mealy kinds.
714 Name the three non-mealy.
715 State which is official?
716 How would you prove that the smilacine resides entirely in the woody zones?
717 How would you distinguish between the mealy and non-mealy?
718 State which of the following are mealy:—Vera Cruz, Lima, Brazilian, Jamaica, Honduras, and Guatemala.
719 How would you distinguish the Jamaica from the other kinds?
720 Name a substance contained in sarsaparilla which is contained also in rhubarb?
721 Why is sarsaparilla ordered to be cut transversely?
722 Is squill a corm or a bulb? State the difference between the two.
723 How many varieties are there?
724 Which is considered the best?
725 Why is squill not kept in the bulb?
726 Why should squill be kept in a bottle?
727 Name a poisonous principle found in squill.
728 What is the diuretic principle of squill?
729 What is the difference in strength between the fresh and dried powder?
730 What are aloes?
731 How are Barbadoes aloes collected?
732 How would you distinguish Barbadoes from socotrine?
733 Which is considered the best kind?
734 Where are Barbadoes, Socotra, and Mexico?
735 Give the principal characters of socotrine by which it may be recognised.
736 Is hepatic aloes official?
737 To what is the opacity of hepatic aloes due?
738 What is the difference between the socotrine and hepatic?
739 From what source is Cape aloes obtained?
740* What is the composition of aloes?
741 What is the difference between the amorphous and crystalline aloin.
742* Is aloin a glucoside?
743* Which acid is it that acts upon aloin?
744* What is formed when nitric acid acts upon nataloin?
745* What is formed when nitric acid is added to barbaloin?
746 Name three preparations in which Barbadoes aloes is used.
747 Name eight preparations which contain socotrine aloes.
748 What is meadow saffron?
749 When should colchicum autumnale be collected?
750 Is colchicum biennial or annual?
751 What is there peculiar about the colchicum plant?
752 What is the concavity due to on the slices of the corms?
753 Name an adulteration of colchicum, if any.
754 What alkaloid is contained in the seeds and corms?
755 In what state does it exist?
756 State which parts of the plant are used in preparing the following:—extract, tincture, and wine.
QUESTIONS IN MATERIA MEDICA.

757 What are the properties of colchicum?
758 What is the composition of male fern?
759 Name an official preparation.
760 What is ergot?
761* Of what does ergot consist?
762* Name the three phases in the development of ergot.
763 To what does ergot owe its properties?
764 What per cent. of this substance does it contain?
765 What per cent. of fixed oil does it yield?
766 What is cevadilla?
767 What kind of a fruit is it?
768* How would you distinguish colchicia from veratria?
 Give four ways.
769 For what purpose is green hellebore official?
770 Is it a root or rhizome?
771 With what is the veratria combined?
772 How would you distinguish the three kinds of hellebores?
773 In what does the white differ from the green?
774* Give three or four ways of preparing podophyllum resin.
775* What proportion of podophyllum resin B. P. is soluble in ether? State to what the yellow colour of the resin is due.
776* What per centage of aconitia is obtained from aconite root? Will aconitia give a precipitate with perchloride of platinum?
777* From what source is pseudo-aconitia obtained? and state how you would distinguish it from aconitia.
778* With what is aconitia frequently adulterated or mixed?
779* Is morphia soluble in ether, chloroform, or liquor potassae?
780* How may codæia be separated in the manufacture of morphia from opium?
781* Give three tests which will distinguish codæia from morphia.
782* How would you distinguish between narcotine, thebain, and codæia?
783* Is meconine an alkaloid? Why?
784* How would you distinguish myrosin from ordinary albumen?
785* From what portion of the seeds is the fixed oil of mustard obtained?
786* What is the cause of soap frothing when mixed with water?
787* What is the action of liquor potassae on gambogic acid?
788* What is the action of nitric acid on guaiacic acid?
789* Name the volatile oil which is most soluble in water.
790* What is the action of liquor potassae on myrrh?
791* Name the best test for the purity of copaiba.
792* Which of the two resins of cusparia is soluble in liquor potassae, the hard or soft? and which gives the red colour with nitric acid?
793* What is formed when gum acacia is treated with nitric acid?
794* Is the glycyrrhizin the sweet principle of liquorice root?
795* Give the best mode of detecting alcohol in bals. Peru.
796* How could you convert cinnamic acid into benzoic acid?
797* How would you obtain the volatile oil from bals. Peru?
798* How would you detect styrax occurring as impurity in bals. Peru?
799* Give a good method of extracting amygdalin from bitter almonds?
800* What per centage do they contain?
801* Name another official drug which contains amygdalin, and its per centage.
802* Give a mode of separating the two oils of which oleum caryophylli is composed.
803* How would you detect phenol occurring as impurity in oil of cloves?
804* Which of the two oils is Eugenic acid?
805* With what is Maltese elaterium coloured?
806* How would you detect colocynth seeds in the extract of colocynth?
807* Describe the process for extracting colocynthin.
808* Has conia acid or basic properties when mixed with water?
809* What is formed when it is brought into contact with the fumes of nitric or hydrochloric acid?
810* What action has the atmosphere upon conia?
811* How has the alkaloid conia been artificially made?
812* Of what does the insoluble portion consist when black catechu is treated with water? What percentage is soluble?
813* How would you estimate the amount of tannic acid in catechu?
814* How would you distinguish pale cinchona from cascarilla?
815* Why is chloroform used in estimating the cinchonas?
816* For what purpose is the lead used in estimating cinchona for quinine?
817* Describe Carle’s and De Vrij’s process for the estimation of cinchonas; state which you consider the better, and in what they differ?
818* How would you detect amorphous quinine when mixed with the crystalline quinine? State which is the better preparation.
819* What percentage of emetine is contained in ipecacuanha?
820* Give the best means of extracting it.
821* In what menstrum is it soluble?
822* Give the composition of volatile oil of valerian.
823* How would you prepare valerianic acid, valerine, and valerol, from valerian root?
824* What is the milky juice of taraxacum?
825* How is taraxacin extracted?
826* With what is arnica rhizome frequently adulterated? How would you detect the adulteration?
827* Name a substance which exists in the flowers but not in the root of arnica.
828* How is santonin extracted?
829* Name a good solvent of santonin.
830* What decomposition takes place when santonin is exposed to the air?
831* Give three means of distinguishing between spurious and genuine manna.
832* Is mannite the purgative principle of manna?
QUESTIONS IN MATERIA MEDICA.

833* What is mannite? Give its formula.
834* Is olive oil obtained from the fruit or seeds?
835* Name the best and worst quality of olive oil.
836* What is the cause of the impure oil going rancid?
837* To what is the odour of rancid oil due?
838* Of how many portions does olive oil consist? Name them, and state the per centage of each. At what temperature does it congeal and liquify?
839* How would you obtain oleic acid from olive oil?
840* How would you prepare strychnine from brucia?
841* Give two or more tests for strychnia, and the best antidote to be given in case of poisoning by this alkaloid?
842* How would you distinguish between hyoscyamine and atropia?
843* Will hyoscyamine decompose when distilled?
844* What per centage of digitalin is contained in digitalis?
845* Give a good method of extracting digitalin.
846* How many resins are contained in rhubarb? Name them.
847 How would you estimate the amount of raphides in a sample of rhubarb?
848* What per centage of fixed and volatile oils do nutmegs yield?
849* How could you remove the bitterness of bebeeru bark?
850* Is the sp. gr. of camphor always the same; under what conditions does it vary?
851* How would you distinguish between Borneo and laurel camphor?
852* How is the volatile oil of cinnamon obtained?
853* What is the action of nitric acid on the volatile oil?
854* How many kinds of castor oil are there? Which is the best?
855* How would you distinguish piperin from cubebin?
856* How are hops propagated?
857* What is formed when hops are distilled with water?
858* How is lupuline extracted?
859* When does oak bark contain the most tannic acid?
860* What is formed when resin is burnt without access of air?
861* What is the definition of the terms proximate and ultimate analysis?
862* How is smilacin prepared?
863* What takes place when the volatile oil of cardamoms is placed in contact with iodine?
864* What is the colouring matter of saffron?
865* How are the crystalline and amorphous aloins prepared?
866* What is the action of nitric acid on barbaloin, socaloin, and nataloin?
867* What is formed when aloes is heated with liquor potassae?
868* Give two views of the composition of ergotin.
869* How is ergotin extracted?
870* How is secalin prepared?
871* What is carmine? How is it prepared?
872* What is lake?
873* Why is aloin believed not to be an alkaloid?
<table>
<thead>
<tr>
<th>INDEX.</th>
<th>PAGE.</th>
<th>PAGE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia Gummi</td>
<td>49</td>
<td>Byttneriaceae</td>
</tr>
<tr>
<td>Aconiti Folia</td>
<td>12</td>
<td>Buchu Folia</td>
</tr>
<tr>
<td>" Radix</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Acotyledones</td>
<td>98</td>
<td>Caesalpinia, Sabiaceae</td>
</tr>
<tr>
<td>Actaea Racemosa Rhizoma</td>
<td>15</td>
<td>Cajuput, Oil of</td>
</tr>
<tr>
<td>Adulterations</td>
<td>100</td>
<td>Caliciyflora</td>
</tr>
<tr>
<td>Alexandrian Senna</td>
<td>47</td>
<td>Colubrum Radix</td>
</tr>
<tr>
<td>Alkaloids, Methods for Extract</td>
<td>109</td>
<td>Camboja</td>
</tr>
<tr>
<td>Aloe Barbadensis</td>
<td>95</td>
<td>Camphora</td>
</tr>
<tr>
<td>" Socotrina</td>
<td>95</td>
<td>Canellaeae</td>
</tr>
<tr>
<td>Althea Radix</td>
<td>30</td>
<td>Canella Alba Cortex</td>
</tr>
<tr>
<td>Americanum, Thun</td>
<td>89</td>
<td>Cannabinaceae</td>
</tr>
<tr>
<td>Ammoniaeum</td>
<td>59</td>
<td>Cannabis Indica</td>
</tr>
<tr>
<td>Amygdala Amara</td>
<td>52</td>
<td>Caprifolitaeae</td>
</tr>
<tr>
<td>Amygdala Dulcis</td>
<td>52</td>
<td>Capsici Fructus</td>
</tr>
<tr>
<td>Amyridaceae</td>
<td>41</td>
<td>Capsule, Papavonis</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>40</td>
<td>Cardamonum</td>
</tr>
<tr>
<td>Anethum Graveolens</td>
<td>59</td>
<td>Carnum Carum</td>
</tr>
<tr>
<td>Aniseed, Oil of</td>
<td>15</td>
<td>Caryophyllum</td>
</tr>
<tr>
<td>Anthemidis Flores</td>
<td>65</td>
<td>Cascarilla Cortex</td>
</tr>
<tr>
<td>Appendix</td>
<td>109</td>
<td>Cassia Cortex</td>
</tr>
<tr>
<td>Aqua Auranti Florys</td>
<td>32</td>
<td>" Pulp</td>
</tr>
<tr>
<td>Aristolochiaceae</td>
<td>81</td>
<td>Cassia Buds</td>
</tr>
<tr>
<td>Armoraciae Radix</td>
<td>27</td>
<td>Catechu Nigrum</td>
</tr>
<tr>
<td>Arnica Radix</td>
<td>66</td>
<td>Catechu Pallidum</td>
</tr>
<tr>
<td>Aseclepiadaceae</td>
<td>69</td>
<td>Casalpiniae</td>
</tr>
<tr>
<td>Assafetida</td>
<td>58</td>
<td>Chian Turpentine</td>
</tr>
<tr>
<td>Atropazaeae</td>
<td>74</td>
<td>Chirata</td>
</tr>
<tr>
<td>Aurantiaceae</td>
<td>32</td>
<td>Cinchoneae Flavae Cortex</td>
</tr>
<tr>
<td>Auranti textileae</td>
<td>32</td>
<td>" Pallida</td>
</tr>
<tr>
<td>Balsamum Peruvianum</td>
<td>45</td>
<td>" Rubra</td>
</tr>
<tr>
<td>" Tolutanum</td>
<td>46</td>
<td>Cinnamoni Cortex</td>
</tr>
<tr>
<td>Bela Fruetus</td>
<td>33</td>
<td>Cocculus</td>
</tr>
<tr>
<td>Belladonnae Folia</td>
<td>74</td>
<td>Colchici Corneus</td>
</tr>
<tr>
<td>" Radix</td>
<td>74</td>
<td>Semina</td>
</tr>
<tr>
<td>Benzoinum</td>
<td>68</td>
<td>Coloezynthidis Pulpa</td>
</tr>
<tr>
<td>Compositae</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Coniferæ</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Conii Folia</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>" Fructus</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Constantinople Opium</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Convolvulaceæ</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Copaiba</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Coriandrum Sativum</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Cornus, Colchici</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Corolliflœ</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cortex, Aurantii</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Canella Albae</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>" Cascarillæ</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>" Cassiae</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>" Cinchona Flava</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>" " Pallida</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>" " Rubra</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>" Cinnamomi</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>" Cuspariae</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>" Granati Radicis</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>" Laricis</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>" Limonis</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>" Mezerei</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>" Nectandrae</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>" Quercus</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>" Simarubæ</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>" Ulmi</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>" Winteri</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Cowhago</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Crocus</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Crotonis, Oleum</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Crucifera</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cubœa</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Cucurbitaceæ</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Cureçana</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Cupulifera</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Cuspariae Cortex</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Cusso</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Dicotyledones</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Digitalis Folia</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Dulcamara</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>East Indian Opium</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Egyptian Opium</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Elaterium</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Elomi</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Ergota</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Ericaceæ</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Euphorbiœœ</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>European Opium</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Faba Sancti Ignatii</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Felices</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Fœniculum Dulce</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Filix Mas</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Folia, Aconiti</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>" Belladonnaæ</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>" Buchu</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>" Conii</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>" Digitalis...</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>" Hysocyami</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>" Lauro-ceraci</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>" Matica</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>" Stramonii</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>" Uvae Ursi</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Frankincenso</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>" common</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Fructus, Anethi</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>" Anis</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>" Belmontae</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>" Capsici</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>" Carui...</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>" Conii...</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>" Coriandri</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>" Fœniculi dulcis</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>" Rhammi</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>" Rosæ Caninae</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Galbanum</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Galla</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Gambogo</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Gentianacoæ</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Gentianaæ Radix</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Glycyrrhiza Radix</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Glucosides,MethodsforExtracts</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Gossypium</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Granati Radicis Cortex</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Gualaci Lignum</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>" Rosina</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>INDEX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Guarana</td>
<td>...</td>
<td>31</td>
</tr>
<tr>
<td>Gummi, Acacia</td>
<td>...</td>
<td>49</td>
</tr>
<tr>
<td>Guttifera</td>
<td>...</td>
<td>34</td>
</tr>
<tr>
<td>Haematoxyli Lignum</td>
<td>...</td>
<td>47</td>
</tr>
<tr>
<td>Hollebor Nigri Rhizoma</td>
<td>...</td>
<td>14</td>
</tr>
<tr>
<td>Hemidesmi Radix</td>
<td>...</td>
<td>69</td>
</tr>
<tr>
<td>Hyoscyami Folia</td>
<td>...</td>
<td>75</td>
</tr>
<tr>
<td>Indica, Senna</td>
<td>...</td>
<td>48</td>
</tr>
<tr>
<td>Ipecauanha</td>
<td>...</td>
<td>62</td>
</tr>
<tr>
<td>Iridaceae</td>
<td>...</td>
<td>92</td>
</tr>
<tr>
<td>Jalape Radix</td>
<td>...</td>
<td>73</td>
</tr>
<tr>
<td>" Resina</td>
<td>...</td>
<td>73</td>
</tr>
<tr>
<td>Juniperi oleum</td>
<td>...</td>
<td>90</td>
</tr>
<tr>
<td>Kamala</td>
<td>...</td>
<td>83</td>
</tr>
<tr>
<td>Kingdom, Vegetable</td>
<td>...</td>
<td>4</td>
</tr>
<tr>
<td>Kino</td>
<td>...</td>
<td>44</td>
</tr>
<tr>
<td>Krameria Radix</td>
<td>...</td>
<td>28</td>
</tr>
<tr>
<td>Labiatae</td>
<td>...</td>
<td>76</td>
</tr>
<tr>
<td>Laricis Cortex</td>
<td>...</td>
<td>90</td>
</tr>
<tr>
<td>Lauraceae</td>
<td>...</td>
<td>79</td>
</tr>
<tr>
<td>Lauro-ceraci Folia</td>
<td>...</td>
<td>53</td>
</tr>
<tr>
<td>Lavandula Vera</td>
<td>...</td>
<td>76</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>...</td>
<td>43</td>
</tr>
<tr>
<td>Lignum, Gualaci</td>
<td>...</td>
<td>35</td>
</tr>
<tr>
<td>" Haematoxyli</td>
<td>...</td>
<td>47</td>
</tr>
<tr>
<td>" Pterocarpi</td>
<td>...</td>
<td>44</td>
</tr>
<tr>
<td>" Quassia</td>
<td>...</td>
<td>38</td>
</tr>
<tr>
<td>" Vitae</td>
<td>...</td>
<td>35</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>...</td>
<td>94</td>
</tr>
<tr>
<td>Limonis Cortex</td>
<td>...</td>
<td>32</td>
</tr>
<tr>
<td>Limonis Succus</td>
<td>...</td>
<td>33</td>
</tr>
<tr>
<td>Linaceae</td>
<td>...</td>
<td>29</td>
</tr>
<tr>
<td>Lini Semina</td>
<td>...</td>
<td>29</td>
</tr>
<tr>
<td>Liquidambaraceae</td>
<td>...</td>
<td>86</td>
</tr>
<tr>
<td>Liquorice Root</td>
<td>...</td>
<td>43</td>
</tr>
<tr>
<td>Loboliaceae</td>
<td>...</td>
<td>67</td>
</tr>
<tr>
<td>Lobolia</td>
<td>...</td>
<td>67</td>
</tr>
<tr>
<td>Loganiaeae</td>
<td>...</td>
<td>69</td>
</tr>
<tr>
<td>Logwood</td>
<td>...</td>
<td>47</td>
</tr>
<tr>
<td>Lupulus</td>
<td>...</td>
<td>87</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>...</td>
<td>15</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>...</td>
<td>30</td>
</tr>
<tr>
<td>Manna</td>
<td>...</td>
<td>68</td>
</tr>
<tr>
<td>Masticho</td>
<td>...</td>
<td>40</td>
</tr>
<tr>
<td>Maticae Folia</td>
<td>...</td>
<td>84</td>
</tr>
<tr>
<td>Melanthaceae</td>
<td>...</td>
<td>96</td>
</tr>
<tr>
<td>Menispermaceae</td>
<td>...</td>
<td>16</td>
</tr>
<tr>
<td>Moutha Piperita</td>
<td>...</td>
<td>76</td>
</tr>
<tr>
<td>Mentha Viridis</td>
<td>...</td>
<td>76</td>
</tr>
<tr>
<td>Methods for Extracting the B.P.</td>
<td>...</td>
<td>109</td>
</tr>
<tr>
<td>Alkaloids, Resins & Glucosides</td>
<td>...</td>
<td>82</td>
</tr>
<tr>
<td>Mezorci Cortex</td>
<td>...</td>
<td>49</td>
</tr>
<tr>
<td>Mimoseae</td>
<td>...</td>
<td>77</td>
</tr>
<tr>
<td>Monochlamydas</td>
<td>...</td>
<td>91</td>
</tr>
<tr>
<td>Monocotyledones</td>
<td>...</td>
<td>44</td>
</tr>
<tr>
<td>Myristaceae</td>
<td>...</td>
<td>78</td>
</tr>
<tr>
<td>Myristica</td>
<td>...</td>
<td>78</td>
</tr>
<tr>
<td>Myrrha</td>
<td>...</td>
<td>41</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>...</td>
<td>53</td>
</tr>
<tr>
<td>Natural Orders</td>
<td>...</td>
<td>6</td>
</tr>
<tr>
<td>Nectandrae Cortex</td>
<td>...</td>
<td>81</td>
</tr>
<tr>
<td>Nux Vomica</td>
<td>...</td>
<td>69</td>
</tr>
<tr>
<td>Official Fruits, Table of</td>
<td>...</td>
<td>106</td>
</tr>
<tr>
<td>Oleaecae</td>
<td>...</td>
<td>68</td>
</tr>
<tr>
<td>Oleum Anisi</td>
<td>...</td>
<td>15</td>
</tr>
<tr>
<td>" Cajuputi</td>
<td>...</td>
<td>54</td>
</tr>
<tr>
<td>" Crotonis</td>
<td>...</td>
<td>82</td>
</tr>
<tr>
<td>" Juniperi</td>
<td>...</td>
<td>90</td>
</tr>
<tr>
<td>" Ricini</td>
<td>...</td>
<td>83</td>
</tr>
<tr>
<td>" Ruta</td>
<td>...</td>
<td>37</td>
</tr>
<tr>
<td>" Torebinthine</td>
<td>...</td>
<td>88</td>
</tr>
<tr>
<td>" Theoicróme</td>
<td>...</td>
<td>31</td>
</tr>
<tr>
<td>Olibanum</td>
<td>...</td>
<td>42</td>
</tr>
<tr>
<td>Opium</td>
<td>...</td>
<td>21</td>
</tr>
<tr>
<td>Orders, Natural</td>
<td>...</td>
<td>6</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>Papavoris Capsulae</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>Papilionaceae</td>
<td>...</td>
<td>43</td>
</tr>
<tr>
<td>Paracirre Radix</td>
<td>...</td>
<td>18</td>
</tr>
<tr>
<td>Persian Opium</td>
<td>...</td>
<td>22</td>
</tr>
<tr>
<td>Per Centages, Table of</td>
<td>...</td>
<td>107</td>
</tr>
<tr>
<td>Peru, Balsam of</td>
<td>...</td>
<td>45</td>
</tr>
<tr>
<td>INDEX.</td>
<td>PAGE.</td>
<td>INDEX.</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Petala, Rhæados</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>" Rosa Centifolie</td>
<td>...</td>
<td>50</td>
</tr>
<tr>
<td>" Gallicæ</td>
<td>...</td>
<td>51</td>
</tr>
<tr>
<td>Phanerogamia</td>
<td>...</td>
<td>12</td>
</tr>
<tr>
<td>Physostigmatis Faba</td>
<td>...</td>
<td>46</td>
</tr>
<tr>
<td>Pimenta</td>
<td>...</td>
<td>54</td>
</tr>
<tr>
<td>Pimpinella Anisum</td>
<td>...</td>
<td>59</td>
</tr>
<tr>
<td>Piperaceæ</td>
<td>...</td>
<td>84</td>
</tr>
<tr>
<td>Piper Album</td>
<td>...</td>
<td>84</td>
</tr>
<tr>
<td>" Nigrum</td>
<td>...</td>
<td>84</td>
</tr>
<tr>
<td>Pix Burgundica</td>
<td>...</td>
<td>89</td>
</tr>
<tr>
<td>" Liquida</td>
<td>...</td>
<td>89</td>
</tr>
<tr>
<td>Podophylli Radix</td>
<td>...</td>
<td>13</td>
</tr>
<tr>
<td>Polygalacæ</td>
<td>...</td>
<td>28</td>
</tr>
<tr>
<td>Pterocarpi Lignum</td>
<td>...</td>
<td>44</td>
</tr>
<tr>
<td>Pyrethri Radix</td>
<td>...</td>
<td>64</td>
</tr>
<tr>
<td>Quassiacæ Lignum</td>
<td>...</td>
<td>38</td>
</tr>
<tr>
<td>Quercus Cortex</td>
<td>...</td>
<td>85</td>
</tr>
<tr>
<td>Questions</td>
<td>...</td>
<td>109</td>
</tr>
<tr>
<td>Radix, Aconiti</td>
<td>...</td>
<td>12</td>
</tr>
<tr>
<td>" Althææ</td>
<td>...</td>
<td>30</td>
</tr>
<tr>
<td>" Armoraciæ</td>
<td>...</td>
<td>27</td>
</tr>
<tr>
<td>" Arnicaæ</td>
<td>...</td>
<td>66</td>
</tr>
<tr>
<td>" Belladonnæ</td>
<td>...</td>
<td>74</td>
</tr>
<tr>
<td>" Calumbæ</td>
<td>...</td>
<td>16</td>
</tr>
<tr>
<td>" Gentianæ</td>
<td>...</td>
<td>70</td>
</tr>
<tr>
<td>" Glycyrrhizaæ</td>
<td>...</td>
<td>43</td>
</tr>
<tr>
<td>" Hemidesmi</td>
<td>...</td>
<td>69</td>
</tr>
<tr>
<td>" Krameriæ</td>
<td>...</td>
<td>28</td>
</tr>
<tr>
<td>" Pareïæ</td>
<td>...</td>
<td>18</td>
</tr>
<tr>
<td>" Podophylli</td>
<td>...</td>
<td>13</td>
</tr>
<tr>
<td>" Pyrethri</td>
<td>...</td>
<td>64</td>
</tr>
<tr>
<td>" Rhei</td>
<td>...</td>
<td>77</td>
</tr>
<tr>
<td>" Sarsæ</td>
<td>...</td>
<td>93</td>
</tr>
<tr>
<td>" Scammoniæ</td>
<td>...</td>
<td>71</td>
</tr>
<tr>
<td>" Senegaæ</td>
<td>...</td>
<td>28</td>
</tr>
<tr>
<td>" Serpantariaæ</td>
<td>...</td>
<td>81</td>
</tr>
<tr>
<td>" Sumbul</td>
<td>...</td>
<td>59</td>
</tr>
<tr>
<td>" Taraxaci</td>
<td>...</td>
<td>66</td>
</tr>
<tr>
<td>" Valérianaæ</td>
<td>...</td>
<td>64</td>
</tr>
<tr>
<td>" Veratri Viridis</td>
<td>...</td>
<td>98</td>
</tr>
<tr>
<td>Ranunculaceæ</td>
<td>...</td>
<td>12</td>
</tr>
<tr>
<td>Resina</td>
<td>...</td>
<td>88</td>
</tr>
<tr>
<td>" Guaiaci</td>
<td>...</td>
<td>35</td>
</tr>
<tr>
<td>Item</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Star Aniso</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Stramonii Folia</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Stramonii Somina</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Styraceae</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Styrax Preparatus</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Sucus, Limonis</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Sumbul Radix</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Table of Official Fruits</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Taraxacii Radix</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Terobinthina Chia</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Terobinthinae Canadensis</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Terobinthinae Oloium</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Thalamiflorae</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Theobroma, Oil of</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Thus Americanum</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Thymolaceae</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Tinnivelly Sonna</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Tobacco Leaf</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Tormentilla Rhizome</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Tragacantha</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Trobizond Opium</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Ulmaceae</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Ulmi Cortex</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Umbelliferæ</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Uva</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>" Ursi Folia</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>" per centages</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Valorianaee</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Valerianaee Radix</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Vegetable Kingdom</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Voratri Viridis Radix</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Violae</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Violaceae</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Vitaceae</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Vite, Lignum</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Vomica, Nux</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Zingiber</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>
BURGOYNE, BURBIDGE, CYRIAX, & FARRIES,
16, COLEMAN STREET, LONDON, E.C.,
WHOLESALE DRUGGISTS
AND DRUGGISTS' SUNDRIESMEN,
Manufacturers of Pure Chemicals, Pharmaceutical, Photographic, and other Preparations,
IMPORTERS AND DISTILLERS OF ESSENTIAL OILS.

Prize Medal, Sydney Exhibition, 1879–80.

Our Laboratories (which are under the immediate supervision of one of the Principals) are fitted with all the newest appliances, and we are enabled to execute indents at the shortest possible notice for every description of Drugs, Chemicals, and Pharmaceutical Preparations, of guaranteed purity.

New Remedies Stocked as soon as Introduced.
We shall be glad to forward Samples gratis, and give specially low quotations for Goods bought in bulk or original packages.

Manufacturers of Concentrated Fruit & Soluble Essences.

SPECIAL QUOTATIONS TO LARGE BUYERS.

SOLE CONSIGNEES OF
SALICYLIC ACID and all SALICYLIC SALTS (after KOLBE'S Patent.)
JOBST'S PURE QUININE, SANTONINE, &c.
KAHLBAUM'S PURE ALCOHOLIC COMPOUNDS.
PARKE DAVIS & CO.'S AMERICAN PREPARATIONS.
MALTO PEPSYN.
DOSIMETRIC MEDICAMENTS of PROFESSOR BURGGRAEVE.
J. ORME & CO.,

LATE

M. JACKSON & Co.,

MANUFACTURERS OF EVERY DESCRIPTION OF

Apparatus for use in Teaching or Experimenting in the Sciences of Chemistry, Electricity, Magnetism, Acoustics, Light, Heat, Hydrostatics, Mechanics, &c.

IMPORTERS OF

Finest Bohemian Glass, Berlin Porcelain, Pure Chemicals for Analysis, &c.

Agents for the Science and Art Department.

Price List, with nearly 1,000 Illustrations, post free, 1s. 1½d.

65, BARBICAN, LONDON, E.C.
THE CHEMISTS' JOURNAL.

PUBLISHED EVERY FRIDAY, PRICE ONE PENNY.

Subscription, post free for one year, Six Shillings and Sixpence.
Subscriptions may be sent by P.O.O., payable to W. Raynor, at the
General Post Office, or in Halfpenny Postage Stamps.

THE aim of THE CHEMISTS' JOURNAL is to protect and advance the
Trade Interests of all Registered Chemists and Druggists, their
Assistants and Apprentices. Connected with no institution nor trading
firm, the Editor is free to treat all topics in a perfectly unbiased and
independent manner, and his determination is to provide Pharmacists
with a Journal which all shall admit to be a thoroughly representative
organ of the Trade, and at a price which is merely nominal. Since its
establishment in May, 1880, THE CHEMISTS' JOURNAL has acquired a
large circulation, which, week by week, is steadily increasing. The
undermentioned departments of the Journal will sufficiently show its
extensive scope, and also its excellence as a medium for advertisements
of all novelties, new preparations, new books, and indeed of all matters
which it is desired to bring before the notice of the British Pharmacist.
The principal features of THE CHEMISTS' JOURNAL are:—

Leading Articles on needed reforms or Trade questions of present
interest.

Correspondence Column, in which all Trade grievances, and questions
affecting the welfare of Pharmacy, &c., may be freely discussed.

Notes and Queries for obtaining information relating to Practical
Dispensing, New Formulæ, and questions of practical importance to the
Pharmacist.

New Preparations, Novelties and Inventions. In these columns
New Remedies, proprietary or otherwise, New Processes and Apparatus,
and Trade novelties are described.

Students' Column, to assist Apprentices in studying Pharmacy,
Chemistry, Materia Medica, &c.

Articles on Pharmaceutical, Medical, and Chemical Subjects. This
Department of THE CHEMISTS' JOURNAL is intended to bring into one
focus reports, either in full or in abstract, of all original researches of
interest and practical value to the Pharmacist. Papers on the history
of Drugs and manufacture of Chemicals; on counter prescribing, &c.,
are also specially written by able contributors for this Journal.

Exchange Column for the exchange of shop-fittings, books, instru-
ments, sundries, &c.

Price List and Trade Report, keeping Pharmacists informed as to
the weekly fluctuation of the market.

Reports of the Proceedings of Societies and associations of Chemists
and Druggists throughout the Kingdom.

Law and Parliamentary, giving reports of legal cases affecting the
Trade, &c.

Trade Changes and Notes of Passing Events in the Chemical World.

Office—12, LITTLE TOWER STREET, LONDON, E.C.
The Chemist and Druggist contains a hundred pages or more monthly. It presents concisely all the important pharmaceutical items of the month, and contains a large number of original articles by the best writers. Among its special features may be mentioned its Trade Report, Corner for Students, Exchange Column, Foreign Correspondence, Notes of Novelties, Portrait Gallery, &c. For business announcements it is an unequalled medium.

PUBLISHED ON THE 15th OF EACH MONTH.

Annual Subscriptions, 10s., including twelve numbers of the Monthly Journal and one Annual Diary, all forwarded post free. The Diary issued at the close of each year. Single copies of the "Chemist and Druggist," 1s. post free. Single copies of the Diary, 3s. post free.

REMITTANCES PAYABLE TO EDWARD HALSE.

ADVERTISEMENTS PAYABLE TO EDWARD HALSE.

<table>
<thead>
<tr>
<th>Advertisement Rate</th>
<th>Each Insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Page</td>
<td>£5 0 0</td>
</tr>
<tr>
<td>Half</td>
<td>2 15 0</td>
</tr>
<tr>
<td>Third of Half</td>
<td>2 0 0</td>
</tr>
<tr>
<td>Quarter Page</td>
<td>£1 12 0</td>
</tr>
<tr>
<td>Sixth of Quarter Page</td>
<td>1 5 0</td>
</tr>
<tr>
<td>Eighth of Quarter Page</td>
<td>0 18 0</td>
</tr>
</tbody>
</table>

A Discount of 10 per cent on seven, or 20 per cent on thirteen insertions, prompt quarterly payments, the seventh or thirteenth, as the case may be, appearing in the Diary and Text Book.

Advertisements for the disposal and purchase of businesses, of employers wanting assistants, and of miscellaneous matters, are charged 4s. 6d. for seven lines or under, and 6d. for each additional line. Payable in advance.

Assistants wanting situations can insert their advertisements for the nominal sum of 1s. for every twelve words or less. Payable in advance.

A Specimen Copy sent free to any part of the world.
A MANUAL OF VEGETABLE MATERIA MEDICA.
With 100 Coloured Illustrations and Map of Habitats.
By GEORGE S. V. WILLS, F.L.S., F.R.M.S., Principal of the Westminster College of Chemistry and Pharmacy, London, S.E.
Price 10s. 6d.
An Edition, without Plates, is issued at 5s. 6d.

WILLS' ELEMENTS OF PHARMACY,
Compiled as a TEXT BOOK FOR STUDENTS preparing for the Pharmaceutical Minor Examination.
Price 6s. 6d.

WILLS' COMPANION TO PRACTICAL BOTANY.
Price 3s. 6d.

WILLS' DICTIONARY OF BOTANICAL TERMS.
Price 1s.

WILLS' HANDBOOK TO PRACTICAL ANALYSIS.
Price 2s.
With Appendix, 3s. 6d.

WILLS' MATERIA MEDICA CABINET.
FOR HOME STUDY.
Comprising 150 carefully selected and characteristic Specimens of Roots, Barks, Leaves, Seeds, Fruits, Flowers, Gums, &c., neatly packed in Wooden Box.
Price, Complete in Box, 5s.

** All the foregoing works may be obtained direct from the College, Trinity Square, London, S.E.; SIMPKIN, MARSHALL and Co., Stationers' Hall Court; H. KIMPTON, 82, High Holborn; HARRIS and Co., Drury Lane, Liverpool, or through any Bookseller in the United Kingdom.
THE SESSION extends from September 1st to July 20th, during which time five separate COURSES OF LECTURES are delivered, commencing on the following dates: September 1st, October 27th, January 1st, February 25th, and April 29th.

SUBJECTS:—Chemistry, Botany, Materia Medica, Pharmacy, Physics, Light, Heat, Electricity, and Magnetism.

Two Commodious LABORATORIES are open daily, except Saturday, for PRACTICAL CHEMISTRY and ANALYSIS.

FEES:—Per Month, £3 3s. Per Course, £4 4s.

EVENING CLASSES held three times a week. Fees very moderate.

UNIVERSAL POSTAL SYSTEM, established for the purpose of assisting Gentlemen engaged in business, or residing in the Country, and unable to attend the College.

FEES:—Preliminary Course, 10s. 6d. Minor or Major Course, £1 1s.

For Revised Prospectus and further Particulars, apply personally, or by letter, to Messrs. WILLS & WOOTTON, Westminster College, Trinity Square, LONDON, S.E.

Buck and Wootton, Printers, 126, Westminster Bridge Road, S.E.