$$
\begin{aligned}
& \text { CORBAMX } \\
& \text { POPULATION. }
\end{aligned}
$$

bby,

Digitized by the Internet Archiye in 2015

ADVERTISEMENT.

As this Edition extends to no more than Two hundred and fifty copies, of which a considerable proportion originally appropriated, the remaining will be had only at $\mathrm{N}^{0} 5$, Hercules'Buildings Lainbeth; where applications shall receive due attention, and where letters to the Author on the subject of his work may be addressed.

NATURAL AND MATHEMATICAL LAWS

concerning

POPULATION, VITALITY, AND MORTALITY; -

the modifications which the law of mortatity receives, when reflraed to DIfFERENT CLASSES OF PCOPLE; -

AND GENERALLY THE MOVEMENTS OF POPULATION, IN ITS PROGRESS OF RENEWAJ;

WITH

TABLES OF MORTALITY,

APPLIEABIE TO FIYE CLASSES OF EACH SEX;

AND
OTHER TABLES, EXPRESSING TIE RELATIONS DETHFEN CAPITAL AND WCOME, UNDER THE OPERATION OF COMDOLND-INTEREST:

BY

FRANCIS CORBAUX,

Avthon of "An Inquiry into the National Debt, and" into the Mcans and lhe Mrespet of its Ratemption, wiht a Plan for redeming that Dett, upon the prinoiple of Tirminable Anmuilies," cte. cle,

INDEX.

Page
Chapter I. - Of a primary Law of mortality, and its modifications. 1
II. - Of preceding attempts at ascertaining the Law of mortality, - the conditions required for such ascertainment, - and the sources of error to be guarded against. 7
III. - Of the Life-intensity's presumed increase, during a late period 1.
IV. - Of what is now required for practical purposes, in respect to ascertaining the Law of Mortality. 28
V. - Of the Decrement of human life. 32
VI. - Of Life's intensity, variously considered; as Absolute, Collective, and Specific. 56
VII. - Of the Contradistinguished effects produced by a Stationary and by a progressive population. 38
VIII. - Of Life's absolute intensity, chiefly referred to a Stationary population. 45
IX. - Of ascertaining life's Absolute intensity, when the population has continued progressively increasing or decreasing. 49
X. - Of life's Absolute intensity, ascertained on the foregoing principle, with reference to the indiscriminate population of France. 53
ras*
Cnaptea AI, - Of Life's Absolute intensity in England, inferable on the forcgoing principle. 66
dif. - Of Life's collective intensity, contradistin- guished from the absolute 68
SIU. - Of the Equation of life. z^{2}
MY. - Of the distmbeted poptlation, supposed sta- tionary, and its relative quantity inferable from the Decrement. -6
XV. - Of the relative quantities of deaths at successive ycars of age, as represcnicd by a scries of differences between the terms of the decre- ment. ${ }^{88}$
XVI. - Of Life's specific intensity, at each exclusively considered ycar of agc. So
MVII. - Of Lovgevity. 89
MVII. - Of Eight perions, naturally dividing the course of human life. 9:
AX. - Of Interpolation, or a method of comecting the serics of Specific intensities. 97
XX. - Of the tables admitted, by an Act of the British Parliament, to regulate the valuation of Life-annuities granted by the Exchequer. 10.1
XXI. - Of the comparative quantities of Birlls, Male and Femalc. 117
XXII. - Of the quantitics of Periodic Marriages, compared with the Population. 13:
XXIII. - Of the average quantity of Birtls, altributable to each Marriage. 142
XXIV. - Of ascertaining the quantitics of Births, attributable to marriages contracted by females at cach specific age. 15.
Char. KXY. -. Of five classes, both Male and Female, to be discriminated in any population. 156
XXVI. - Of the Law of Mortality, modified relatively tothe Five classes before described ; distinguis-ling the Male from the Female; andqualifying each class, of those respectivesexes, by the measure of life's Absoluteintensity represented under the correspondingmodifications.164
Appendix to Chapter XXVIth. - The Law of Mortality, developed under its modifications referred to the diseriminated sexes of five classes. 171
XXVII. - Of some prominent features exhibited by the Law of Mortality. 175
XXVIII. - Of applying the Law of Mortality, towards redueing contingent or reversionary sums to a present value. 17
XXIX. - Of Institutions founded on an application of the Law of Mortality; and in particular, of an Institution for Assuring, at the time of Marriage, Endowments to the issue there from. 190.
XXX. - Of the Law of mortality differently represented by various authors. 19^{6}
Fiist-Appendix to Chapter $X X X^{\text {th }}$. - The Decrement of life, or relative quantities of individuals attaining each suecessive year of age, to that of one hundred; as variously represented by twenty- five statements of the Law of Mortality, mostly by different authors, and admitting the births in equal quantities. 201
Second Appendix to Chapter $X X X^{t h}$. - The Specific intensities of hife, or the Rates of Mortality referred to each interval of age; as resulting from twenty-five different statements of the Laiv, by various authors. 205
TableS that eximbit the relations between Capital and Income, and that solve all questions depending on the oferation of Compound-Inteaest. 203

ERRATUM.

Page 134.-Chapter XXIII, - read Chapter XXII.

PREEACE.

The present subject was but incidentally treated in the "Doctrine of compound-interest";" of which, after distributing copies to friends and to subcribers, I preserved only the set of Tables that terminate this volume and are perpetually applicable, as they exhibit under various points of view the relations between Capital and unrestricted Income.

Innumerable transactions, in reference to contingent property depending on the chances of human life, take place on an assumption that such contingencies are correctly appreciated; yet it is certain that the representations hitherto set forth of the Law of Mortality, and implicitly admitted as grounds of computation, generally fail of the requisite accuracy, besides their being inadequate to the demands of contradistinguishable cases. The defective character of those Mortality-tables is rendered apparent, from occasional
attempts at their improvement; but which attempts, uncontrolled by any definite principle, have left the natter scarcely less enveloped in obscurity than it was a century ago. Indecd the introduction of some additional tables, profcssing - though constructed in defiance of Nature's laws - to advance our information as regards the gradual waste of life, create greater embarrassment, consequent on such accession of discordant and contradictory results. The object is, now, to provide a remedy for thosc deficiencies.

Many fundamental questions, - relating to the average term of life, -to the comparative rates of mortality at specific years of age,-and generally to all movements of the population in its progress of renewal,-arc however so complicated, from their subordination to local or transient circumstances, that the rescarches in this branch of science encounter endless impediments. Its having devolved on myself, to fathom those questions and strive against their incessantly recurring difficulties, should be imputed to the absorbing avocations of men more eminently gifted; which prevented their anticipating me. Perhaps somc may have abstained, on considering the extent of sacrifice required for the completion of so arduous an enterprizc. Let no onc therefore suppose that
it has been unwarily ventured upon. Great is the diffidence with which I proceeded; diligent to remove all causes of error, ardently desirous of promoting available knowledge, and regardless of every personal inconvenience; yet trusting to devoted perseverance, for results that should ensure attention and entitle me to temperate judgment.

Those results principally unfold ten Sets of Tables, referable to the discriminated sexes of five classes; into four of which any considerable population may in different proportions be divided, and another class collectively representing the whole. Each set describes its appropriate modification of the Law of Nortality, whence follow all corresponding deductions ; but personal limitations compel, as yet, the omission to publish such useful, interesting and numerous deductions, from each modified law in particular. A complete system of them extends even to the tabulated values of contingent sums, severally describable, as Annuities, Reversions, etc., and depending either on individual lives of each understood class and sex, on the joint-continuance of lives in plurality, or on the eventually last-surviving life; according to the respective ages, single or combined, of such considered lives, and to distinct rates of

Interest in the investment of Capital; independently of solving many important questions, not of a pecuniary description.

Other questions, hitherto unsettled, concerning the relative quantities of births Male and Female, the quantities of periodic Marriages compared with the amount of any Population, as also the average of births generally attributable to each marriage, are carefully investigated from incontestable data; and it is shewn, that all observed variations. of such rcsults proceed from ascertainable causes, amongst which the population's special distribution, into relative quantities of each sex and existing within certain intervals of age; a distribution materially influenced by such population being either stationary, or elsc in progress of increase or of decrease. Further a method is given, from which the average of births in expectation, by each marriage contracted at any specific age of the female, may be determined with sufficient approximation for practical purposes.

Embracing every part of a subject until now treated on loose grounds, and próceeding on principles confirmed by digested experience, my endeavours have constantly tended to establish an harmonious
connexion between each part and the whole; as also between the successive results developed in each series referring to any specific modification of the Law of Mortality, and between all corresponding results under its varied modifications.

The best view of collective objects is that which connects them. Statistics, the vogue in this age, though new only by name, constitute a science of facts presented under their natural relation, and vesting them with the character of evidence; but failing certain conditions, scarcely surmised by the factcollectors who abound, it sinks into a science of deception. To omit none of the elements a complicated question may be composed of; - to discern, in the appreciation of facts, those properly comparable; - to ascertain them in quantity sufficient for attaching the due measure of probability to any conclusions from them, and for admitting those facts to found a general rule; - to excludel such as, from the mode of their collection, should be justly suspected of error, - are conditions the fulfilment of which is not the business of every meddler. They involve immense difficulties, which to overcome requires the union of sagacious penetration with many previous acquirements. Since the Baconian philosophy was introduced,
the inductory process, so fruitful in discoveries and important results, has been too much neglected; and misconceptions have prevailed, respecting what is meant by Experience. The experimental and inductory methods claim mutual assistance, without which the path of knowledge shall inevitably become obstructed; and it has been my study to render them equally available.

An apology however is called for, consequently to my having sometimes used dogmatical language, necessitated by the introduction of much unprecedented matter, and to occasional semblances of obscurity easily penetrable by those for whom chiefly I have written; resting my claim to public favour on other merits (if any) than that of style, which here should be of minor consideration.

The substance of this volume was embodied in a Memorial submitted to the Academy of Sciences, at Paris; four commissioners from which are appointed for its investigation. That deference was due in a quarter whence the materials have been in great measure supplied, and I confess gratitude for the very liberal spirit with which I have been met in that sanctuary of knowledge. It was intended to postpone the present
publication until a judgment there intervencd, subsequently to the Commissioners' report; but as the latter being brought up suffers unavoidable delay, it becomes proper to answer, without further loss of time, the expectation of scientific friends to whom my work has been long announced. It shall nevertheless be imperative on me to communicate, on some early opportunity, the results of that official investigation, when terminated.

Aware of this production's liability to improvement, I shall thankfully avail myself of any communication the enlightened amongst my cotemporaries might think proper to favour me with, to that effect, and even in the shape of criticism.

My last protracted sojourn on the continent having compelled me to confide this edition to a foreign press, I trust nevertheless that the minute attention bestowed on correcting the proofs, and a repeated collation of the tables, as also of all other numerical expressions herein comprized, will have completely assured the absence of disgracious errors.

After sparing neither my substance nor protracted labours, towards enlarged utility, I contemplate ulti-
xvj
mately to found an Institution for prospectively providing, at the time of Marriage, Endowments to each child that may issue therefrom, in whatever number ; equitably propórtioning all contributions, according to the wife's age on the respective contracts being entered into. A few particulars regarding that Concern, - which, as my property, I shall devolve to the public on suitable terms, - are stated in one of the following chapters.

Francis Corbaux.
Paris, $31^{\text {st }}$ August 1833.

Natural and mathematical laws

concerning

POPULATION, VITALITY, and MORTALITY.

CHAPTER I.

Of a primary Law of mortality, and its modifications.

Abstract

1. Amongst the points of resemblance, between our own and other species of the animal kind, is a similar tendency to ultimate resolution of the component parts of organisation, into their elements. The comparative periods at which this phenomenon is to occur, with reference to each species in particular, must first depend on differences in character and complication of that organization, as also in quality of the substances it has incorporated; whence greater or less capability of resisting the many causes of destruction by which the individual may be assailed. They will further depend on the degree of activity possessed by the organic fluids, and lastly on various influences of the surrounding medium. Those united circumstances most likely determine a certain standard of powers, adequate to support the vital principle throughout some limited period originally intended; assuming all external conditions of existence best appropriate to - and congenial with - each species respectively. Such limitation is then the

more probable, as, regarding a great number that include our own species, the process of respiration, through which that vital priuciple retains its action, indicates combustion, howcver slow.
2. Confining to the human species this view of the matter; if we admit in the utmost degree favourable, towards preserving the well-constituted individual, all secondary circumstances, -not only the external, but even those depending on the exercise of frec agency, - the duration of life, as primarily assigned, shall certainly exceed its utmost term apparent on modern record; and although to ascertain such extreme period may transcend the efforts of calculation, it may without inconvenience be assumed at an arbitrary maximum, to which any law of mortality ought to bear reference.
3. This primary law of nature, however, is incessantly disturbed from the influence of secondary causes. It consists with the iufirm disposition of man, that his inclinations and passions, excellent as they may be in some tendencies, should in their effects often prove injurious to limself and to his fellow-creatures; hence the assigned term of life is liable to abridgment at each of its stages, from innumerable causes combined according to time, place, circunstance, and resulting in a great measure from social arrangements. The variable proportions of untimely deaths, at different years of age, depend on greater or less inequality in the distribution of social advantages and disadvantages; on the circumstances of climatc, soil and produce; on the mode of living, the characteristic temperament, the general habits, the confirmod abuscs; and besides many other causes, merely accidental, a great deal on the government and neighbourhood, from which proceed the alternations of war and peacc. The latter causcs, indeed, are not very dissimilar with the circumstances affecting the brute
creation; amougst which, the domesticated species, and others peculiarly exposed to hostile enterprize, become subject to rates of mortality far different from the original intention.
4. The two sexes, differing in organization, in their allotted functions, and in the degree of activity of their faculties, shall further be liable to a corresponding difference as to the absolute term of life, as also to still greater and fluctuating differences in their respective rates of mortality at equal phases of existence; though the one and the other sex existed under all other circumstances as nearly alike as could be supposed.
5. Considering the variable degrees of intensity with which each of those combined causes is susceptible of operating, it must be easily conceived that the law of mortality admits innumerable modifications, more or less inportaut to discriminate in its application to practical purposes.
6. Yet, in the present state ofcivilization, there is throughout Europe, and even beyond its limits, such assimilation of habits, customs and inclinations, with so nearly corresponding a distribution of occupations and other principal circumstances, that the rates of mortality, referable to each year of age respectively, do not appear very dissimilar in regard to the aggregate populations of extensive countries. Material differences, nevertheless, are remarkable in those rates applied to subdivisions of each population; consequeutly to great dissimilarity in the general conditions attendant on the existence of various classes of individuals. Amongst the inferior class, unwholesome or excessive labour, accompanied with partial deprivation of the nocessaries for sustaining life and health, occurs in populous towns, rather than in agricultural parts of the country; as also, in a greater measure, the influence of degrading vices
on the chances of mortality; and all those are paramount causes of its elevated rates, whilst any disadvantage arising from difference of soil or of climate, especially the latter, _operates but in less degree to the same effect. Therefore the tables deduced from direct observation in all countries, on the mortality of large towns, exhibit human life in its worse aspect; and they singularly contrast with analogous results of observation limited to the select classes, whose lot is to exist under a series of conditions eminently favourable to the protraction of life.
7. Those conditions, without regard to differences of individual constitution, chiefly consist in the certain and adequate supply of wholesome food, as also of other means on which the preservation of health may depend; in the exemption from injurious or intolerable labour, and in a reduced measure of detrimental habits. Admitting any specific class, to which such and a few other favourable conditions shall best apply; it is every where to be found, with reference to an equal quantity of periodic births, that the proportions according to which the lives drop at successive years of age are incomparably less, in that class, than in its counterpart, or class subject to notable disadvantages in social order.
8. The modifications to which any general law of mortality is liable are thence so diversified, under the view of special applicability, that the joint-continuance of two select lives of similar age and sex may obtain, during a long series of years, a probability superior to that of any single life of the same sex and age, but belonging to another class; though both classes were equally susceptible of being stipulated with, for the purpose of valuing contingent sums made to depend on such lives. Notwithstanding this matter of fact, it has long been of daily occurence to stipulate, concerning lives that belonged to a class in
more or less degree select, consequently to the application of a law of mortality so described as even to preclude any population from maintaining its level : those transactions being an unwarrantable deviation from the most common notions of justice, on whatever side might lie the advantage.
9. Neither, in England, Dr. Price's law deduced from the Northampton observations, nor in France the one computed by Duvillard from data chiefly collected in populous towns, could have approached a fair expression of the standard of vitality in those respective countries at large and at the time being; though both have been, during a long while, admitted for indiscriminate application. The same is remarkable of Dr. Halley's law, deduced from observations at Breslaw (in Germany), and exhibiting results of great similarity with the first two combined. If it be considered that marriages average a fraction less than four births each, at the same time that sixteen births admit, according to those laws of mortality, no more than seven survivors at twentr-six completed years of age, taken also on an average as the age for marrying by both sexes; and even supposing every individual, without exception, then to marry, however impossible this generally is; it follows that each succeeding generation should, consequently to such laws, have suffered a diminution of one-eighth part of the population, wich on the contrary has progressively increased. Making allowance for inaccurracies whatsoever in these round statements, they sufficiently attest that experiments confined to populous towns, where the inferior class of people exist under circumstances peculiarly unfavourable, are incapable of supplying correct data towards. ascertaining the real standard of vitality in any country.
10. Independently of such modifications as the law of mortality may receive from local circumstances, or from
distinctions of classes and of sexes, there are further modifications which from many other causes are likely to arise in process of time. The conditions of existence, as affecting any mass of population, may in numerous respects improve or degenerate; and without adverting in particular to canses depending on government, neighbourhood, manners or customs, it will be sufficient to remark that the influence exercised by prevailing diseases, on the rates of mortality, is perpetually fluctuating. Some diseases, of pestilential or contagious character, retain, during a longer or shorter period after their first invasion, a considerable intensity of morbid influence, which subsequently declines; whilst other diseases, more or less destructive, become in turn predominant. The present age is not undikely to mark some notable change in this respect, and perhaps no longer on the side of amelioration. It is obvious, however, that Permanence is not an attribute of the Law of mortality.

CHAPTER III.

Of preceding attempts at ascertaining the Law of mortality; - the conditions required for such ascertainment; - and the sources of error to be guarded against.
11. It could not answer any useful purpose, ncither consist with the motives of this publication, to dilate on a critical history of many attcmps at ascertaining the law understood to regulate the waste of human life. The talented men to whom the world stands indebted for those laborious researches arc mostly our cotemporaries, entitled to respect, which can suffer no diminution from their having sometimes lapsed into error, or rather inadvertence; when the subject for investigation was so intricate, as, at least, to require being met by an unmixed avocation. Sufficient will.it be, for all purposes of comparison, hereafter to collect in the shape of synoptic tables, the results to which those authors severally arrived. In a single instance of exception, the latitude is however taken of a more detailed inquiry into the bases latcly sanctioned by an Act of parliament, for computing the values of life-annuities thereafter to be charged on the British exchequer.
12. Before the matter under consideration had acquired its prcsent and daily growing importance, materials collected from the observation of facts, at various times and places, were already wroughi upon, towards discovering the law of mortality amongst mankind in a civilized state.

But to obtain such results as, without inducing injurious errors, might be applied to pecuniary agreements, (being a special object of the investigations,) various modifications of the data, consequently to notalle differences in the conditions of existence between distinguishable classes in a whole population, should have been taken into the account; whilst a reference of those data to the discriminated sexes was not less an indispensable requisite, inasmuch as existing under dissimilar conditions, throughout their active life, neither the one nor the other could accommodate with any imaginable law common to both. Those materials afterwards acquired greater extent, and it was attempted to distinguish between the male and the female. Yet comparing all analogous results, referred to the one and to the other sex, they mostly fail to harmonize in some essential point, and frequently are discrepant in different parts under mutual dependance, when those results are considered in any specific modification of the law of mortality; whether it so happen, from too narrow limitation of the facts observed upon in each instance, from mistaking altered proportions in the distribution of an increasing population, for those that exclusively belong to a stationary one, which is always a fundamental supposition in those computations, - or from any other cause. On further remarking the contradictions with each other, which almost all the hitherto concluded tables of mortality exhibit, it becomes obvious that not one of them,-though it were constructed with mathematical precision, upon data carefully and completely collected during a sufficient period, within any local circumscription, - could be susceptible of generalized application.
13. Data collected on a limited scale, from the registries of births and of deaths, are in all respects inadequate. On an extensive scale they are at best disproportionate in some of their details; and singly considered, in their crude state,
those collections of either description could never be available as decisive experiments. Previously to being admitted, they first require confirmation from - or corroboration with other corresponding data; and secondly, to undergo methodical adjustment on settled principles. Until then, such results are merely susceptible of notation, as possessing an uncertain quantum of probability; to be taken into consideration, after a comparison with analogous results of observation, and when a moral value shall with judicious discrimination have been assigned to each in particular. From further motives that shall be adduced, other data less liable to error, such as lists of tontine-nominees, of life-annuitants, or of insured-lives, are equally precluded from admittance without preliminary correction; the unavoidable defect, of all which data, consists in a paucity of their distributed quantities, namely, of the living and the dying at each year of age; quantities usually admitted as chance may have produced them, or at least under such corrections, only, as could make but a distant approach to regularity in each series and their progressive differences. Let us take a more extended view of this part of 'the matter.
14. Towards warrantably using the unmitigated results of observation on the mortality of any considerable town, as we will suppose for the sake of exemplification; there would first be required, both at the commencement and termination of the period observed upon, a correct census of the population distributed according to successive years of age, which should be ascertained without error proceeding from careless indifference or from any other cause; secondly, that the registry of deaths were exempt from misrepresentation of ages, whilst it is of common occurrence to substitute round numbers, or else the multiples of 5 , for ages differing only from these by a year or two; thirdly, that the observations were extended to the fate
of all infants committed to the charge of nurses in the surrounding country; fourthly, that a correct account were kept of all individuals who, being born in the place, may have removed in their pursuits whatsoever, and of their arges at the time of such removal; fifthly, that a similar account embraced the whole of travellers, settlers, artisans, labourers and others, according to their respective ages at their incomings and outgoings, during the entire period of the undertaken observations; sixth and lastly, that such period were sufficiently extended, for rectifying, through a fair average of the events in different years, and regarding the rates of mortality, all casual disproportions which never fail to arise, whether from the influence of seasons of abuudance contrasted with those of scarcity, or from prevailing diseases and other temporary calamitics, to which the individuals within certain limits of age may become liable, prcferably to any other. Those various data should also have reference to ascertained quantities of aunual births, during the same period of observation; in order to establish the general character of such local population, whether as stationary, or as progressively increasing or decreasing, and in what ratio of either. From the difficulty of procuring accurate information on so many points, and on a large scalc,-difficulty increased by the additional requisite of discriminating the sexes in each instance, - the inference is, that the necessary data for concluding, by the means and under the circumstances just described, any Law of Mortality entitled to unhesitating confidence, are nearly of impossible attainment. Those difficulties, certainly, could not quite escape the penetration of men qualified for cugaging in researches of this kind; but the full bearing of inevitable inaccuracies, with which the obtained results were tainted, must have been unperceived or underrated in most cases, especially when the population continued progressive during the period observed upon; and data altogether incorrect and incomplete were consequently con-
sidered admissible, with less solicitude concerning previous rectification than ought to have been entertaincd.
15. Metropolitan localities, whatever facilities they may otherwise afford for collceting statistical information of various kind, are less capable than any other of supplying the correct elements for a law of mortality. Consequently to their multifarious prcrogatives, inducing a perpetual ingress and egress of persons resorting there for temporary purposes, those localities exhibit confused masses of population with only ephemeral identity; whence all natural proportions, between the living and the dying at corresponding years of age, arc falsely represcnted.
16. All countries of Europe are not in an equal degree favourable to supplying cfficient data. In France, in Prussia, in Sweden, in Denmark, and in some other dominions of less extent, the legal obligation, strictly enforced, of immediately inscribing in authentic registers the lirths and deaths that occur, -with all possible reference to identity in the latter case,-affords valuable means of solving the principal questions for which those data are intended. In England, we are lamentably deficient in this respect, from the carelessness with which such matters are legislated upon, and from the unjustifiable neglects tolerated by established custom in the records of life and of death; hence the numerous fallacies and contradictions with which our periodic returns of population are replete, as also the clumsy averages, which in despair, and from mercantile habit, we are satisfied in admitting. Much praise indeed is due to gentlemen of local influence, for their persevering efforts, occasionally to supply useful information concerning the movements of population in certain towns and districts; but their observations are nccessarily confined yithin limits too circumscribed for answering general
purposes, to which the single excritions of individual zeal must always prove insufficient.
17. The most available data, towards obtaining a correct representation of the law of mortality, referable however to an exclusive class, would unquestionably result from observations amongst the annuitants, or else amongst lives having been the subject of an insurance; admitting that such observations cmbraced adequate quantities of either, and also a period of sufficient extent for tracing the greater number of individuals to the extremity of their, lives. But we are still unprepared for completely fulfilling those conditions. Lifc-annuitants, of the several governments, have not been in requisite number for admitting, conformably with their respective ages at the time of entrance, a subdivision from which the proportions of periodic survivors could be exhibited as approaching to regularity in their series; and the insured are under a similar predicament, though in less measure than the lives precedingly described. If even all the insurance-offices consented to publish the results of their experience, (any inconvenience of doing which is scarcely conceivable as applying to old established concerns,) it could avail only as affording a series of probabilities liable to more or less correction; whilst the short experience amongst recent concerns of that description possessed very little value. Again many conventional restrictions, attaching to life-insurance, permit the law of mortality to be traced from that source but with an exception of the first ten years; as also such law, inferred from observations upon the annuitants, must exclude a greater or less number of those first years of life, consequently to a paucity of nominees at those early ages.
18. Supposing adequate quantities of observable lives, either of the one or of the other description, the results
will still be vitiated from a circumstance probably not attended to ; and the inconvenience of which, if perceived by those who engaged into computations from such data, appears at least to have been underrated. This circumstance requires explanation; bearing in mind that those classes, both the life-annuitants and the assurable-lives, possess in greater or less degree the character of selection, to which therefore must be exclusively referable any law of mortality concluded from the experience they afford.
19. Regarding insured lives in particular : - A list of individuals at various years of age is indefinitely recruited, whilst the lives it represents are successively dropping, in whatsoever proportions; and the admitted on that list are, in all instances, ascertained at the time being to exist under circumstances qualifying them as select lives of their specific ages; being accordingly susceptible of lower rates of mortality, than those appertaining to individuals of corresponding ages amongst the indiscriminate population. Whether the list increase or decrease in number, by process of time, is immaterial to consider; but it is an important remark, that most of those lives will, subsequently to entrance, and from various causes, abdicate in greater or less degree such primary character, of selection, as was the condition of their admittance; so far indeed, that at later periods, it should in all probability have been denied to a considerable proportion of those earlier entered individuals. Let us now suppose, after protracted experience of such a state of things, - thus opcrating referably to the rates of mortality exhibited at each year of age, that a table computed from the whole were understood to represent the natural law of mortality concerning such a class of select lives; that law shall obviously be tainted with error, throughout its details. The error will be greatcst as regards the earlier ages, and less with reference to the more advanced; because the gradual dcreneration
will have proceeded during a longer time, in the former, than in the latter case; and because lives of recent selection will, at every stage, have been assimilated with degenerated ones; thus confounding, at each distinct year of age, the lower with the higher rates of their respective mortality. Not only those rates, or the Specific intensities of life referred to each year of a ae, must consequently be found in excess, decreasing however from the earliest to the latest ; but what is commonly called "Expectation", being the average duration of life, - measurable amongst all individuals at any minimum of age, and taken together with those above such age, - must then be misrepresented in corresponding and similarly decreasing excess.
20. For effectually obviating this inconvenience, by which the results of experience extended to annuitants are also more or less affected; and in order to obtain a correct representation of the gradual waste of life, with reference to those classes, it would be requisite to trace the progress of mortality amongst the collective number of individuals entered as select at each year of age, at all times discriminated from others who entered at earlier ages.' Failing which distinction, there remains the only alternative of an arbitrary rectification and adjustment of the series of life's intenseness, otherwise the rates of mortality at sueessive years; a process which, sagaciously conducted, may yield results sufficiently approaching the truth for practical purposes. The above remarks particularly apply to the tables constructed from the experience of the "Equitable", assurance-office; lout on which tables it is not the present intention to exercise any further criticism. *
ar. Resuming the consideration of indiscriminate pope-

[^0]lations, whether of a whole country, any town, or particular district; let us now suppose the population to have remained stationary, or very nearly so, for a series of preceding years, continued with the period of observation; and let us assume correct returns of the deaths cccurring at each year of age during that period; which requires, for greater accuracy of the results, to be more extended proportionably with the limitation of such population observed upon. The clements for constructing a Law of Mortality, referable to any particular locality, will then be complete; without need to ascertain the periodic quantity of births, which under those conditions becomes inferable from the returned deaths only. It is immediately consequent on a stationary population, or periodic equalization of the births and deaths, that the quantity of individuals attaining any stated age is constantly represcnted by the total of deaths occurring at agcs more advanced; whence arises an ascertainment also of the quantities of the living at each year of age, the sum of all which represents a certain quantity of aggregate population, referable however to a plurality of years equal to the term of observation. It again follows, from those various quantities bearing a mutual relation, that, dividing the latter quantity by the number of years which the period of observation may have embraced, the quotient shall exhibit an actual quantity of permanent population; that the distribition of this, into actual quantities of the living at eachi completed year of age, will be announced by the quotients of their respective quantities, divided by the same number of years; and that the rate of mortality, affecting each year of age in particular, will result from dividing the relative quantity of individuals who entered upon that year of existence, by the relative quantity of deaths during the next periodic interval. Those rates will from a series conveniently expressing the intensities of life, referably to each age and to the period of one year next ensuing; a correct determination of which series
is the precise object of the "Law of Mortality," it in fact and more properly speaking constitutes.
22. Should any experienced state of things accord with this preceding description, the following method usually. employed for constructing such a law, or rather a series leading to its ascertainment, will be applicable.
23. After having ascertained the respective quantities of individuals who failed to complete their first, second, third, or other more advanced years of existence, all referred in due proportions to such annual periodicity; the successive subtraction of those quantities from the annual births, or radix corresponding with the completed year zero, and represented by the total of annual deaths at all ages, shall exhibit a scries of survivors at the commencement of each year. This serics does not precisely constitute the law of mortality, for which it is commonly mistaken; but it properly represents the periodic Decrement of life throughout its assumed extent, this identity of expression being consequent on the stationary character of the population. Yet the total of those quantities of individuals, cntering upon each year of agc, represents not accurately the amount of actual population, because some part of those who enter on any onc year will fail to complete it; and a second process must therefore be gone through, for rectifying that inaccuracy. The quantity of lives taken at the age zero, and all of which have not completed their first year, may bc considered as having averaged a half-year's existence; the quantity of those who completcd a first, but not a second year, may he averaged at 1 I $/ 2$ years each; also the quantity of lives completing a second year, though not a third, may be averaged at $21 / 2$; and thus procecding, for every subsequent year of age, the sum of those successive products shall represent the agrregate population. This process may
however be abridged, by summing up the quantities of individuals who annually entered on each year of age, and subtracting from the whole one-half of the annual births.
24. But when the population has been, during any protracted period, in progress either of increase or of decrease, the quantity of annual births can no longer be inferable from the recorded deaths; nor can the quantity of the living at any assignable age be assimilated, as in the above-stated case, with the total of deaths thereafter occurring; because the permanent proportions, justly assumed in that case, are in the present more or less disturbed, especially as regards the distribution of any amount of population, into relative quantities of individuals at various stages of existence. All analogous results will then be obtainable through other methods; which, together with those of inferring from the decrement of life various further-series, are reserved for discussion hereafter.
25. One of those further series, conveying an appropriate expression of the Law of Mortality, will represent the Specific intensities of life at successive years of age, and measured with reference to the interval between each of those years and the next ensuing. That important series constitutes the Law itself, inasmuch as its analysis ought to exhibit, with mathematical accuracy, even the elements of increase or of decrease in those successive expressions of intensity, always regularly progressing. Such law of mortality can only result from a methodical rectification of the former series; which, and though produced from direct experience, inevitably involves numerous irregularities, arising from the capricious operation of chance. It is remarkable, that of twenty-five (or more)different series hitherto set forth as expressing the Decrement of life, the one computed by Duvillard, and referred to the population of France, should have
afforded a solitary instance of its rectification upon any definite principle.
26. Notwithstanding that the natural law, supposed to regulate at each stage of human existence the proportion of individuals destined to attain any other specific age, may at first seem to elude detection, the absence of positive information in that respect is thus capable of being in great measure obviated by a course of well-directed experiments. Observations prosecuted through the single exertions of individual zeal could scarcely embrace, for a considerable length of time, all requisite details concerning the entire population of any extensive dominion; hence the tables concluded from observations usually limited to certain localities, where only those details could he obtained with tolerable accuracy, or to classes of people collectively existing under definite conditions, have always proved errqneous, when assumed to represent the gradual waste of life in the respective countries at large.

CIIAPTER III.

Of the Life-intensity's presumed increase, during a late period.
27. Whether or not any sensible increase in the average term of life has taken place since the latter part of the expired century, with regard to some principal nations of Europe, is an important question arisen within the last few years; and there appears sufficient ground for admitting the affirmative, yet with much doubt concerning the extent of such increase. This affirmation, in its generality, involves an assumption that the conditions of existence amongst whole masses of population have received material improvement; which, as a main fact, is not sufficiently proved by the results of computation, upon data oftenuncertain, and more frequently misapplied. Neither is such proof afforded by the better ascertained fact of a progressive population, during the interval of time alluded to; for this may partly be ascribable to a quite different cause. It is obvious, however, that the question should have reference to distinct classes, who may not have equally participated in the supposed improvement. This is most likely, also, to have taken place in different proportions, referably to the discriminated sexes and to specific intervals of age ; but the means of investigation being inadequate, to trace the question through those various distinctions, we must for the present be content to consider it in a general point of view.
28. According to fourteen years of the latest experience in France, where correct returns are regularly supplied; if its average population, during that interval, be divided by an
average quantity of its annual births, as also distinctly by an average quantity of the annual deaths in that country, and a geometric proportional be taken between the two quotients, the result will be found $35 \cdot 74$; cxpressing, by a number of years, the absolute intensity of life, or its average duration.* This quantity is to be compared with analogous results, specially referable to the same country; first with $28 \cdot 76$, resulting from Duvillard's statements, referred indeed to its indiscriminate population, but more properly to be considered as proceeding from an cxperience limited to the towns**; secondly with $32 \cdot 26$, resulting from a modification of those statements, conscquent on the having abstracted all assumed influcnce of the small-pox upon the rates of mortality; and thirdly with 34.90 , resulting from Dcparcieux's researches, confined to lives of a select description; observing, as regards the latter, that the data relative to the first threc years of life have, - for the purpose of completing the clements required for a law of mortality, - been hypothetically supplied, according to Kcrssehoom's cxperience amongst the Dutch annuitants. It is likely that $3_{\mathrm{I}} \cdot 83$ years, proceeding from an amalgamation of the first and third of those results, may approach a correct expression of the avcrage term of life throughout France, towards the periods referred to; whence the incrase in that country, within a lapse of 70 or 80 years, has apparently cxtended to 3.9 I, or a fraction short of four years. A great part of Duvillard's researches having been directed to ascertain the amount of influence exercised by the small-pox on the general mortality, which influence he has shewn to have abated $31 / 2$ years

[^1]from the average duration of life therc, and at the period referred to; it beeomes worthy of remark, that an addition of the latter quantity, to the above 31.83 years, nearly reproduces the expression of life's absolute intensity in Franee, referred to an average of the last fourteen years of recorded experience; henee an increased vitality apparently equalizing with the influenee of the abovenamed discase, at a former period. It will however be observable liereafter,aceording to statements in ehapter \mathbf{X}, - that the intensity, after increasing to full 36 years, with reference to a period embracing the five years 1821-1825, has suffered some notable diminution for the sueeceding five years, or averaged period 1826-183o.
29. Exelusively considcring the forty counties of England : we have, as analogous results, aecording to M. Rickman's statements in a recent publieation professed to be a digest of the population-returns ordered by Parliament, 41.6 years average duration of life, being a quantity equally apparent from the first and from the second decennal returns; as also 44.7 years, likewise apparent from both the third and fourth, whieh last returns are carried to the year 1830. Werc those results admissible as correet, we should have to eompare them in the first place with $25 \cdot 18$, dcduced from the Northampton observations, embracing the 46 years that terminate with 1780 ; and secondly with the results of various. other experiments, either referred to select parts of the country noted for peeuliar healthiness, or to specific classes, sueh as assurable lives, possessing a quality superior to that of the population at large; amongst all which, M. Milne's statements, relative to the town of Carlisle between the ycars ${ }^{1} 769$ and 1787 , yield $33 \cdot 72$, the highest comparable quantity. Allowing for numerous omissions, doubtless involved in those deeennal returns, and in all probability more extensive as regards the last two; besides further allowing for any inferiority of the Northampton population in parti-
cular, when compared with that of the whole country; there still must remain between the contrasted results, under all requisitc corrections, such a difference as could scarcely be attributable to any other cause than some real improvement in the standard of English lives.

3o. It would however be absurd to admit, in the average duration of life, an increase of $191 / 2$ years, rendered apparent from comparing the results of the Northampton experience with those of the last decennal returns; at the same time, the wretched system under which the rccords of births and of deaths are kept in this country leaves the greatest difficulty in reconciling the very considerable difference here observed. That of 3.07 years, just now assumed to exist between the compared results for France generally and for the aggregate of its towns, is doubtless exceeded by the actual difference of life's intensity throughout England, and that which relates in particular, to the manufacturing town of Northampton; but assuming as a probable maximum, on the score of the latter particularity, a further extension of three years, we obtain $3!\cdot 25$, - not without much probability of approximating the truth, - to express the intensity in England, with reference to a period nearly corresponding with that of the anterior french obscrvations; the respective intensities then differing no more than in the fraction 0.66 of a year, to the disadvantage of our own country. We continue at fault, however, in the attempt to account for a remaining difference, not less than thirteen years, betwcen the latter expression of life's intensity and the one brought out by the official returns of more recent date; which there scems no alternative from concluding to involve manifold errors.

3i. If an amalgamation could be admitted, of the two extreme results, deduced from the Northampton and from the Carlisle observations, in the same manner as it has been
assumed in regard to Duvillard's and Deparcieux's tables of mortality, we should again find the mean duration of life about 32 years; but this mode is objectionable, inasmuch as the periods, to which the two former sets of observations refer, do not possess the requisite coincidence. Nevertheless, as the apparent results would, uuder such an admission, very nearly assimilate the expressions of life's intensity in England and in France, both referred to periods more or less remote from the present, an indication is thereby afforded, that the assumptions indulged in the preceding paragraphs are unlikely to be much at variance with the truth.
32. But the amalgamation alluded to is ineligible on other grounds. Without injustice to the talented author of the Carlisle tables, there is a probability of their yielding expressions of intensity more elevated than they should obtain; considering their reference to an indiscriminate population, observed at a period even anterior to the introduction of vaccination, which only took place at Carlisle in the year 1800 . Unless it were an established fact, that the lives at Carlisle generally possessed great superiority over those of the kingdom at large, - such a superiority as at least to assimilate them with the select class of Assurable lives, from which all individuals unfavourably circumstanced are positively excluded, -there remains no other alternative than to suppose that many important modifications, hereafter shewn to attend an increasing population, have been overlooked. And it will be seen at the same time, that, in such case, an approximate expression of life's absolute intensity shall result from dividing the population, averaged during the period observed upon, distinctly by the averaged annual births, as also by the averaged annual deaths of that period, and from admitting a geometric proportional between the two quotients; which coincide oniy when the population is stationary.
33. Perhaps we may come nearer the truth by comparing the Northampton results, under their aforesaid correction, with those further announced by M. Rickman, of a specific experiment extended to 18 years terminating with 1830 , on the mortality of the single county of Essex, lately much improved in healthiness. In that instance, we find the comparable quantity of 34.47 years, average duration of life; exhibiting some approach to the results of authentic data relative to all France and referable to the same period. Then, admitting $3 \mathrm{I} \cdot 25$ years to express that duration at a former period, the improvement in this country would have extended to $3 \cdot 22$ years, whilst the corresponding improvement in France to $3 \cdot 9 \mathbf{r}$.
34. Not only it should be borne in mind that those compared results, referable to England, rest on a very loose foundation; but also an allowance is to be made for M. R's probable inaccuracies. However disinclined to cavil at the valuable statements for which we are indebted to him, and highly appreciating his meritorious researches, a few remarks on those statements are indispensably called for; supposing that any distinctions he may have taken are not here misunderstood.
35. In consequence of abstractedly considering the quantities of deaths, as alone capable of supplying the elements for a Law of mortality, although an increase of population continued in progress during the observed period of eighteen years, those Essex tables, inferred from such exclusive data, must bring out in excess the expression of life's Specific intensity * referred to each year of age, except the very advanced; in the same manner as probably has

[^2]occured respecting the tables for Carlisle. Moreover, the proximity of Essex, to the metropolis, occasions a periodic and considerable emigration from that county; of individuals mostly female, in search of service or in other pursuits, at stages of life when the rates of mortality are notably inferior to that of the aggregate population ; whence, all identity disappearing, the natural proportions between the living and the dying, within certain limits of age, must be greatly disturbed. It may further be, that from not having adverted to this circumstance, in the attempt at discriminating the sexes, M. R's tables, distinctly referred to the one and to the other, exhibit the Absolute inteusity of female life in an insignificant degree only superior to that of the male. Indeed this inadvertence becomes obvious, upon analyzing the tables of mortality which the author has introduced; wherein it is made to appear that the rates of mortality, from the ages of 10 to 43 years, were much lower for the male than for the female sex; a result at variance with the best establishied facts, and proving that a considerable proportion of the female population, within that interval of age, must have removed from the scene of observation, though belonging to the original account.
36. Some recent returns under the authority of parliament, and stating, with regard to the populations of certain towns in England, the proportions of survivors at the respective ages of five and of twenty years, out of any equal quantity of births, do not generally exhibit human life in a much more favourable aspect than the Northampton observations already alluded to. Neither do they, on the whole, appear to corroborate the assumption of an improved vitality; but they confirm what has been said in the foregoing pages, concerning the remarkable disadvantages to which the populations of towins generally, and of manufacturing towns in a still higher degree, are obnoxious.
37. Thus deficient in data of sufficient accuracy and certitude, for establishing any measured difference between the Absolute intensity of life in England, at two periods remote from each other; there remains only a moral probability attached to the alleged increase of that intensity, and arising from the discrepancies of various results equally liable to correction. Such probability would receive considerable support from the distinct and better authenticated fact, of an increase not less than fiftry per centum, in the British population, within the last thirty years (a proportion of increase very superior to that which has taken place in France during the same interval of time); were it not that such increase may partly be ascribed to an independent cause, namely the average proportion of periodic births, respecting which our public records are contradictory with palpable facts, as they also are in many other points of desirable information. Admitting, in round numbers, that proportion of increased population; it is reducible per annum, and during those thirty years, in the inferior ratio of \mathbf{I} or 36 ; whilst a similar result should be obtained through the single circumstance of about onetwentieth part's increase in the understood quantity of periodic births, otherwise by 3.85 resulting from each marriage, instead of 3.67 only ${ }^{*}$; and that to some circumstance of this description the observed increase of british population may in great part be owing, is at least within the scope of probability.
38. A greater or less increase of the measured vitality in England, within the last half-century, appears however to be upon the whole unquestionable; though announced with so much exaggeration, in late publications, that their authors seem rather possessed of inclination for the mar-

[^3]vellous, than acquainted with principles proper to guide through the intricacies of such a subject as the present, and which they merely glanced over.
39. It is presumable that other nations of Europe have, in various degrees, partaken of the cause of this increased vitality. The principal causes, regarding France particularly, consist in the ameliorated circumstances under which the mass of its population exists, and which are self-evident; in improved habits of life, and better management of health, especially during infancy; as also in the benefits of vaccination, most extensively introduced there, and which, notwithstanding well-founded doubts of its efficacy as an absolute preservative against the small-pox, does very materially mitigate the dangerous character of that contagious disease. The laśt two causes will have not less contributed their beneficial influence in favour of this country; but there is not an equal certainty of the previous cause having operated on our general population, the progressive quantity of which affords not a complete testimony of improvement in their circumstances. The systematic concentration of property; the monopoly of all social advantages; the unequal pressure of a public debt, even not justly that of persons, and still less of the unborn; the conversion of salutary institutions into instruments of oppression; an ostentatious charity substituted for equal justice, with an extensive code of abuses and arbitrary proceedings governing with influence superior to that of the positive laws, cannot fail in daily adding to the accumulated miseries of a contemned and trodden-down population.

CHAPTER IV.

Of what is now required for practical purposes, in respect
to ascertaining the Law of Mortality.
40. The foregoing will have sufficiently proved, that local experience is inadequate to the supply of data, for a Law of Mortality susceptible of generalized application and permanent use. The synoptic tables, hereafter, will confirm that such results of abstract observation, though proceeding from laborious researches often conducted with great sagacity, forfeit all claim to confidence, from their discrepant and contradictory character; besides its being universally acknowledged, that the indiscriminate application of those tables, to social concerns, has never ceased to generate miscalculations more or less injurious in their cansequences. Considering again the varied modes in which the law of mortality is applicable to human transactions, even of an opposite nature, whence suitable modifications of that law are called for, according to differences of sex and of the classes severally dealt with; together with the perplexing hesitations attendant on the necessity, in each particular instance, of preferably appropriating, at all risks, any onc of those tables introduced at various periods, under a diversity of circumstances, and mostly founded on assumptions differing from the real state of things ; it becomes urgent to adopt for the future, and on definite principles, such a mode of settling all questions concerning the applicability of specific tables, as may best secure against grievous and incessautly impending mistakes.
41. Failing more eligible means, probably hopeless, the only resource appears to consist in supplying a set of co-ordinate tables, immediately referable to the discriminated sexes, and to such definite classes of each as may for greatest convenience be contradistinguished in any population ; a primary condition being, that those modifications of the law of mortality should, under every point of view, harmonize on a general comparison with each other, in the relative results of any one of them, - and in all their inferable consequences. Those tables must necessarily be deduced from the mass of data hitherto collected, and each of which is understood to possess an uncertain measure of probability, or moral value, assignable to it in regard to the whole. Thus all discrepancies, in the results of actual observation, may severally concur to mutual correction, when proceeding under the control of settled principles, founded upon enlarged as well as digested experience; and contradictions, otherwise difficult to avoid, will then be best guarded against, whilst all general facts and phenomena will become capable of faithful representation, even to the utmost attainable stage of human life.
42. The plan thus traced, and executed through methods reserved for subsequent discussion, evolves Ten different modifications of the Law of Mortality, referred to Five classes of each sex. Any preferable application, of either, will be naturally suggested and justified by the specific quality of lives, the contingencies depending on which required an ascertainment of their respective values; and such application will be unattended with danger of committing errors of any consequence.
43. Granting, on a general principle, that no Law of mortality could possess the attribute of Permanence, because sreater or less fluctuations of the elementary data shall
inevitably occur through lapse of time; whatsoever inconvenience arose from this circumstance would the more easily find its remedy, as any increase or decrease of life's inten sity may not be unlikely to affect in nearly equal proportions the various years of age. The apportionment of any observed difference may then take place, by corresponding augmentations or diminutions, throughout the whole series expressing the Specific intensities at successive years, or else confined within certain limits of age, as the case may demand. Otherwise any two proximate modifications of the law, referred to the same sex, might be amalgamated in requisite proportions; thus producing an additional modification, suitable to the case. But it must constantly be borne in mind, that the aggregate quality of lives, in any considered population, obtains a positive and appropriate expression, from any ascertained relation between the quantity of the living at all ages, and that of the periodic births, as also of the periodic deaths, proportionally compensated.
44. This fulfilled task resembles that of the historian; who first gathers confused and contradictory memorials, tainted with partiality or prejudice, and having reference to the times he purposes to describe; who analyzes them, with the view of assigning to each testimonial its just value, from rational probability; endeavours to discriminate those parts which may on sufficient grounds be received, from others that should be rejected, according as the assumed facts obtained confirmation, or otherwise were destroyed by contrasted reports, and according as he detects the various influences of party-spirit or of individual passions, as also those of personal interest or vanity; thus establishing, from due consideration of the whole, a chain of events characterized under their true relations.
45. Before entering into particular statements, it will be proper to announce and develop the principles proceeded upon; which, together with their train of consequences, may be deemed incontestable.

CHAPTER V.

Of the Decrement of human life.

46. Conscquently to imperfect conecptions respeeting the Law of Mortality, and by an extraordinary exception in scientific proccedings, this matter of consideration has hitherto stood emancipated from all control of ruling prineiples; whilst embarrassed with denominations, either inappropriate or unmeaning. The rcader must be dispensed from travelling over those rugged and unsteady paths, whieh may improve by the dismissal of barbarisms, sueh as expeetation of life, and decrements; the former having been employed for expressing the measured intensity of life, understood in a collective sense, as shall hereafter be explaincd; and the latter having been unwarrantably used in the plural, to signify relative quantities of dcaths occurring at successive years of age, and being mere deductions from the Law of mortality, but not its regulators. Let us however retain the denomination of decrement, in the singular, colleetively to express the decreasing series of survivors at periodic intervals, out of any quantity of births assumed to be simultaneous:
47. The decrementum, or Decrement of life, is a tablc deduced from the ascertained or assumed Law of mortality, for which it has not unfrequently been mistaken. It exhihits, by a progressively decreasing serics, certain quantitics of individuals who respectively outlive each year succeeding the birth, or outlive any other periodic interval, which
might be arbitrarily admitted instead of the annual interva usually understood. Of that series, the original term, denominated radix, expresses any quantity of births supposed to have taken place at the same instant; or in other words, any quantity of individuals entering upon their first year of age, - i. e. eompleting the year zero, - inasmuch as the preferable computation by annual periods is generally received; and from such original term of the series are produced all the others, in their due proportions of progressive reduetion, aecording to a predetermined law.
48. If, instead of being annual, the periodie intervals could be discriminated momently, the Deerement would at the same time fulfil a second indication, being that of the quantities of individuals simultaneously existing at the ages represented by those suceessive periods, amongst the whole population, expressly understood to be stationary; as the quantity of periodie births would then exactly compensate and represent the periodic waste of life amongst the whole, in the same manner as each quantity of individuals, advancing one stage, would - by a difference from those who attained only the preceding - represent with similar aceuracy such waste confined to individuals of ages further advanced. Under that hypothesis of a momently periodicity, the addition of all quantities suecessively stated in the decrement would further exhibit a total of permanent population, always supposed of stationary eharacter; such total bearing a definite relation with the equal quantities of periodie births and deaths. But it follows from the admission of certain arbitrary periods, that the identity of the two series is disturbed; the quantity of survivors, as stated at the commeneement of any one of those periods, not continuing to live thronghout the next interval, whieh by a mere fiction is then supposed to be the case; whilst that fiction would beeome a reality, if momently intervals could be introduced in the staied decrement. Yet, as
regards any total amount of the quantities so stated, when the periodieity whatsoever is definite, - such amount compared with that of the relative population, or the living at all ages, - the former will invariably execed the latter, by a quantity equal to one-half of the radix; whenee and admitting annual intervals, as eustomary, a summation of the deerement shall represent in exeess - of one-half the quantity of annual births or deaths (indifferently) - the anount of aetual population.
49. In the same manner as the deerement represents suceessive quantities, $y_{0}, y_{1}, y_{2}, y_{3} \ldots y_{x}$, of individuals completing the respeetive ages understood by x; the series of suceessive differenees, $\Delta y_{0}, \Delta y_{1}, \Delta y_{2}, \Delta y_{3} \ldots \ldots \Delta y_{x}$, represents the quantities of lives failing to eomplete the periodie term then entered upon. Whenee the latter series also exhibits imperfeetly the quantities of deaths, oceurring amongst all individuals at various fraetional ages, eomprised between any two proximate and eomplete periods. But those implied inaceuracies, of representation, bear similar proportions in the two corresponding series; and $\Sigma \Delta y=y$. execeds, loy an invariable quantity $\frac{y_{0}-y_{1}}{2}$, the total of deaths that oeeur at all fraetional ages during the annual or any other period, the same as Σy exeeeds by $\frac{y_{0}}{2}$ the exact quantity of population relative to the Radix.
50. The Deerement of life may, with reference to a stationary population, be geometrieally illustrated to the eye. If on a line marked at equal distances (the abcissa), to represent periodie intervals, perpendicular lines (the ordinates) be raised at each of those distanees; and if each of those perpendieulars be limited to elevations so proportioned, as to eorrespond with the quantities of individuals entering upon the different years of age, the junetion of those sueees-
sive limits will form an irregular curve, constandy inclining from the limit of the perpendicular representing the quan. tity of births, until it reaches the other line indicative of the ages; thus shewing, by its termination, the period at which all lives shall have dropt. This curve of mortality is not however of much practical use; but it has sometimes been set forth, especially by M. Duvillard ${ }^{*}$, as the means of solving various questions by geometrical process, the less important here to consider, as the solution could only imperfectly approximate the truth, consequently to physical limitations, with which the numerical mode of computation is unfettered.

5 I . The properties of the Decrement are manifold. . In the first place it presents, without intermediate calculation, all the mathematical expressions of probability, that a life of any stated age shall endure throughout a further period also stated; thus enabling a ccurately to compute the values of life-annuities, and the present values of other sums depending on the contingencies of life or of suryivorship. It next is the root of many useful deductions from the Law of Mortality, and which shall be noticed bereafter.

[^4]
CHAPTER VI.

Of Life's intensity, variously considered; as Alsolute, Collective, and Specific.
52. Life; or Vitality, is to be understood as an active power, inherent to its subject; and admitting such power to be measurable, it shall possess intersity in comparative degrees. A more convenient mode could not be found, of measuring the intensity of life, than by reference to some definite extent of time, during which the life is - or may be - carried on. But that intensity applies under different relations. Considered, first, as an average term of life, appertaining to the individuals of all ages who constitute any entire population or class selected from it, the intensity is then Absolute, expressing the precise measure of a Generation. Secondly, the average term may refer to such part only of that population, entire or select, as includes all individuals from any minimum of age upwards, exclusively of all others at inferior ages; and then the partly restrictive denomination of Collective intensity shall best apply; observing that a reference of the latter, to an original period, namely that of the birth (when the exclusions amount to zero), will produce a coincidence of this with the former expression, as to quantity. Third and lastly, a s'pecific intensity of life is to be contradistinguished from the two preceding, as further restrictive; and in like manner expressing the quotient resulting from a division of that quantity only, who annually enter upon any specific year of age, by the corresponding quantity of those amongst them who fail to live throughout
the next periodic interval, which for distinctuess we will continue to admit of one year.
53. Those several averages, or relative quotients, implied by the Absolute, the Collective, and the Specific intensities of life, are also to be understood as reciprocally expressing quantities annually renewed; either amongst the entire population, or select class of all ages, -amongst any part of the one or of the other, excluding those who exist at ages inferior to any conventional minimum, - or amongst such individuals, only, who of that population or class enter upon a stated year of age.
54. The respective subjects of those definitions will be best treated under distinct heads; after having noticed certain results peculiarly attendant on a progressive population.

CHAPTER VII.

Of the Contradistinguished effects produced by a Stationary and by a Progressive population.
55. Admitting always a Stationary population: it is consequent on the prriodic substitution of any quantity of births, for an equal quantity of lives dropt at all ages during the last cxpired interval ; and on the further substitution, in the detail, of individuals advancing from each year to the next in succession, for respectively cqual quantities of reduction by deaths, amongst all who cxisted at the latter year of age and upwards; not only that the population should continuc permanent as a total, but that, in its distribution into quantities of individuals cxisting at each age, all those fragments of population should also maintain invariable proportions between themselves and the whole. Ncverthcless, the assumed stationary character is a mere fiction, indispensable towards accuracy in the calculations that rest on the Law of Mortality, and are required to proceed on undisturbed grounds; whence, and although no population continues absolutely stationary, such a law cannot be constructed without previously accommodating to that supposition the data supplicd by actual observation.
56. In a progressive statc of the population, whether increasing or decreasing, this supposed permanence of proportions becomes disturbed; as also is the relation, more or less approaching to identity, between the quantities exhibited by the decrement and those of the actually living at
corresponding years of agc; the difference, in the latterrespect, being only that the former are quantitics of individuals entering on specific years, but all of whom do not outlive the next interval. In case of an increasing population, and according to the ratio of its progression, the altcred distribution will produce a greater or less excess of population at the earlier ages, averaging a rate of mortality inferior to that of the whole; together with a corresponding deficiency of lives existing at morc advanced years, and whose average rate of mortality is superior to the rate affecting the aggregate population. ,The contrary results will take place in case of a decrease; whence the Absolutc intensity of life could, in neither the one nor the other case, obtain an expression from dividing the amount of population by the periodic births, nor by the periodic deaths; as the respective quotients, of those divisions, must diverge according to the greater or less clevated ratio of the progressive increase or decrease, and to the period elapsed since the commencement of eithcr.
57. If it could be ascertained, first, that a nearly stationary population had at any time subsisted during a considerable number of years; secondly, that from such time, and during any subsequent period, the population had continucd progrcssively increasing or decreasing; thirdly, the ratio of the annual increasc or decrease; and fourthly, that, during the stated period of progression, the intensity of life had nevertheless continued invariably the same 'as before; all consequent modifications in the distribution of the increased or decreased population, either at the expiry of that supposed period, or at any previous term, would then be easily determinable. But those united data are scarcely to be obtained; and when, in their absence, any population is found considerably deviating from a stationary condition, the resort to hypothetical inductions may at best lead to uncertain results,
towards an approximate inference of the actual distribution of the population.
58. It is from not duly and correctly appreciating those distinctive circumstances, that many persons occasionally engaged in statistical discussions, but failing to consider this matter under its various aspects, have arrived at exaggerated conclusions, concerning the presumable inprovement of vitality during the last half-century, or more protracted period; especially from having limited their consideration to the proportion between any quantity of population and that of the periodic deaths, cxelusively of the births.
59. A progressive increase has the further effect of reducing the proportion of periodic marriages, compared with the quantity of population, - all other influent circumstances continuing the same, - because of the simultaneously increasing excess of individuals then existing at earlier than the marriageable ages; and that effect is reversed when the population decreases. A subsequent chapter, exemplifying the first of those instanecs, will afford occasion for enlarging on this effect concerning the relative quantity of marriages. And lastly it will be seen that a progressive state whatsocver, of any population, is not without effect on the average quantity of births to each marriage, as also on the proportion between the illegitimate births and the legitimate.

Go. A decreasing population involves political evil; and the difference of results, in opposite cases, is considerable. Suppose two countries, at any time equally peopled; but such equality to be consequent, in the one, to a proyressive increase, and in the other to a progressive and corresponding decrease. The former community shall possess, towards all advantageous purposes, a greater
number of productive mombers than the latter; and by reaction of the effect upon its cause, there shall also exist in the first a superior proportion of individuals at the ages most favourable for reproducing their specics. The relative resources will thercfore diverge more and more; whence any remarkably progressive increase or decrease of population must be admitted a principal sign of advancing or declining power, the ultimate consequences of which may with probability be anticipated.
61. All populations tend to increase, when not exposed by a troublesome neighbourhood to perpettal war, and when - not inhabiting an unproductive soil - they are neither permanently obnoxious to peculiar calamitics, nor under the yoke of on unenlightencd, umprotecting and oppressive government; amongst which disadvantages, those arising from the soil form the greatest obstacle, inasmuch as they altogether discourage from intermarrying and render marriages less fruitful, whilst other disadvantages may be either remedied or compensated for. The foresighted Dr. Franklin's earnest recommandation to his countrymen, at the origin of the American insurrection, was early marriage. But cven under the most favourable circumstances, what should have becn a blessing may bccome the curse of a country; and from a vicious principle introduced into the social systcm, multitudes may be born only to wretchedness. Agriculture is, almost every where, the main concern and leading occupation. An extensive subdivision of the soil best scrves the general intercst, from yielding a greater mass of produce; whence the adequate maintenance of a healthy, laborious and contented population; the numbers of which, instead of being burdensome, then form the real strength of a country. The contrary system exclusively favours the all-absorbing spirit of speculation, and a concentration of property, detrimental to the paramount interest of the community at large. Then of
the soil's produce, cultivated at less expense of manual labour, a greater proportion finds its way to market, for the exclusive benefit of the landlord and of the gentleman-farmer; but a smaller part is consumed on the spot, and a great proportion of unemployed population ean only be supplied with the first neeessaries at third or fourth hand. The interested supporters of sueh a system, unwilling to release their grasp, feign to aseribe the eonsequent evil to any other than its real eause. Charity, as it is called, is first tried for a palliative, in various shapes best disguising the selfish apprehensions from which it is wrung ; whilst the miserable sufferers are praised for their patient submission to intolerable wrong. Desperate emigration, the next step, is preferably promoted, whieh deprives the eommunity of its most valuable members; and depopulation, sinking a country in relative power and resoure es, will sooner or later be the ultimate result. A fit subject of taxation, to be substituted for other more oppressive of its branehes, might be all land-tenements execeding a certain extent and value combined; with a progressive seale.
62. Notwithstanding the invaluable advantages of an increasing population, under wholesome administration, such increase is naturally limited by the means of subsistenee; but, long before these prove inadequate, the correctives of war and pestilenee seldom fail to elieek the redundancy of numbers.

CHAPTER VIII.

Of Life's absolute intensitx, chiefly referred to à Stationary population.
63. The expression of life's Absolutc intcusity, applicd to an entire population or to any discriminated, class, and resulting from a division of the living at all ages by the periodically returning quantity either of the births or deaths, - thus supposing the population to be stationary, - is an indicative feature, qualifying that population or class, comparatively with any other. It therefore possesses much statistical importance; a more elcvatcd total of such relative population implying a better quality of lives, considered in the aggregate.
64. This total of the living does not however coincide with the sum of the successive quantities of the Decrement, which procced from the election of an annual preferably to any other periodic interval, and represent the individuals enteringupon each year of age. A perfect coincidence, in this respect, could take place but under a supposition of the shortest periodic intervals imaginable. Yet, as the difference amounts always to one-half of the radix, or quantity of annual births, according to what has alrcady been stated in the 23^{d} paragraph; it will be sufficient, for obtaining a correct expression of the Absolute intensity, or number of years' average duration of life, to assume the sum of all terms of the decrement, - to divide that sum by the radix, - and to subtract half-unity from the quoticnt.

65 Any superior intensity, thus measured, of one population or class over another, without regard to difference of sex, is mostly derived from the eircumstances attending early stages of life; for it is not so much the greater quantity of ehildren actually horn, under any standard of population, as the more considerable proportion of survivors, that contrihutes to render such population comparatively numerous. When infaney is subjected to unfavourable conditions of existence, no consideration of peculiar healthiness in advaneed life, or of remarkable longevity amongst those attaining it, could afford adequate compensation for the curtailment resulting in any population, from either a deficiency of wholesome nutriment, or of preservative care, during the first few years of existence. In one eountry or district fully enjoying those advantages, though from other circumstances the rates of mortality beeame very elevated after traversing the meridian of life, the population that resulted from an equal quantity of periodic hirths might still be as three to two, eompared with that of another country or district, in which infancy suffered under deprivation and negleet; notwithstanding that, from advantageous eircumstances of soil and climate in the latter, the mortality proceeded at a very slow pace-amongst the survivors, and that the observation of facts tended there to establish elevated probabilities of life's continuance during old age. The synoptic tables of mortality, colleeted in this volume, exhibit by their contrasted results, referred to Holland and to Montpellier, a remarkable instance of such very eousiderable difference produced by the abovementioned causes, in the relative population.
66. It is every where aeknowledged and confirmed by experience, that female life possesses, in the aggregate, a superior intensity to that of the male. If therefore an equal quantity of periodic hirths be supposed of each sex, in any community where both existed under similar eireumstances, as far as the difference in their avocations may admit; the
relative quantity of female population shall more or less exeeed, at all times, that of the male sex; those eomparative quantities being permanent when the population is stationary. The difference indced is such, that illustrating this remark by a refcrenee to the population of Franee at large, the quantity of females who periodieally complete their eighteenth year is already greater, in that country, than the quantity of males eompleting the same; after which year of age, the exeess of female survivors eontinues to inerease until an extremely advanced term of life; although it is ascertained that the male births oecur there, (at least for the present time,) in the superior proportion of seventeen eompared with sixteen births of the female sex. The male part of any population might however exceed in actual number the female, consequently to a still superior proportion of periodic births of the male sex.
67. But the measure of inequality, as to an Absolute intensity applying to the discriminated sexes, is not alike amongst eontradistinguished classes in any population, nor is it perfeetly alike between different aggregate populations; which in both cases depends on their relative qualities. The inequality is a minimum, when the population or selected class is characterized by the greatest superiority, and a maximum when the quality is most inferior, ; the variations taking place between $23 / 4$, or perhaps less, and four years or more, of the Absolute intensities brought into comparison with cach other. This is easily coneeivable; as the more unfavourable to the preservation of lifc and of health may be the eonditions of existenee common to both sexes, the heavier must be the pressure of aeeumulated disadvantages falling to the lot of the male in partieular. It is in some degree probable, that the inequality of whieh we are speaking may be exelusively oeeasioned, in all cases, by the different though natural avocations of the respeetive sexes; and the admirable manner in which an equipoise is never-
theless maintained, by a corresponding excess of male births, shall be subsequently exemplified.
68. The Absolute intensity, once ascertained from a course of well-directed observations, becomes a foundation of the Law of Mortality, computable with reference to the entire population, the select class, or the distinct sex exclusively considered of its class. As it further implies an aseertainment of the relative total of such entire or partial population, compared with the periodic births and deaths understood to be compensated; the problem, remaining to be solved, is that of the corresponding decrement, and distribution of such total - or relative and permanent quantity of stationary population, - into respective quantities of the living at successive years of age. The final Decrement here alluded to, rectified and adjusted upon the definite principles hereafter set forth, may thus differ more or less in its details, from the provisional decrement produced in a crude state by actual experience.
69. The superiority of relative population, consequent on an elevated expression of life's Absolute intensity, has peculiarly remarkable effeets with reference to individuals of the class more favoured than any other in social order. Their command of abundant gratifications, and of that salutary assistance which in the concerns of health is especially invaluable during infancy; together with their exemption from unwholesome cmployments, and possession of further privileges, obtain for them in ultimate result a very considerable advantage over all other classes, in respect to the quantity of survivors at mature age, out of a supposed equal quantity of births in each class. Of such survivors who attain their fortieth year, those amongst a superior class appear to be in the proportion of about four to three, compared with the survivors amongst the indiscriminate population either of Eugland or France; and that advantage is even extended as five to
three, or thereabouts, when the comparison is made between the two cxtreme classes of individuals. Thus, and notwithstanding that the inferior class may contribute a rather superior proportion of births to each marriage, it occurs that the relative population, represented by the Absolute intensity of life, is considerably greater of the first class; and it becomes justly questionable, whether any observed increase of population should not be chiefly attributed to the classes which have the privilege of existing under a set of conditions especially favourable to the preservation of life and health at all ycars of age, nearly to the exclusion of an inferior class. Another consequence is, that great numbers amongst the progeny of the superior classes must be incessantly sinking into the inferior; which may sufficiently account, every where, but more particularly in this country, for the tenacious cagerness shewn by families advantageously circumstanced, to sccure for themselves, and for their relatives in various degrees, a preference extending to monopoly of all profitable occupations depending on the gift of government; whether such preference be merited or not. When so doing, they merely obey a blind and irresistible impulse.
70. Inasmuch as the measurc of Absolute intensity chiefly depends on that of the generally diffused comforts of life, as also more or less on the staudard of moral character in any country, both of which may be susceptible of improvement; it should not pass unnoticed by the ruling powers. The expression of that intensity seldom differs materially between one civilized country and another, when referred to their agoregate and respective populations; because, with the exception of very few, there exists amongst them nearly a balance of their distributed advantages. The difference however is very considerable, as regards the extreme classes, contradistinguishable in every country ; and this difference preferably results from the morc or less advanced stage of early, life, at which the Specific intensity, after having pro-
gressively increased from the period of the birth, turns to a decrease. Until a perfeet development of the human frame, the vital principle is supplied in excess, over its consumption through the well-regulated excercise of our faeulties ; but this supply is liable to be prematurely arrested, consequently either to deprivation or to misuse. In an inferior elass of the population, the Speeifie intensity eommences to decrease even before the eompletion of a tenth year; whieh deerease does not take place until the fifteenth or sixteenth, in a superior class; and admitting nature's intentions to be better consulted than they usually are, whilst the human faculties, duly supported, were neither overwrought nor otherwise abused, the progressive increase would probably continue to the twentieth year; thus forming a more vigorous race.
${ }_{71}$ It is demonstrable, under the same supposition, that life's Absolute intensity in the indiscriminate sexes might extend to 55 years, or more; whieh under the present circumstances is limited to 46 years or thereabouts, for the most favoured class, and is reduced to about $28 \mathrm{x} / 2$ years for an inferior class still suseeptible of reciprocal agrecment, in pecuniary transactions founded upon the probabilities of life's continuance. Aeeording to that ratio of increased vitality, the quantity of births would be double that of the deaths during any equal interval of time; the population would also extend to the double of its original quantity, in less than 39 years, and be multiplied five times at the expiration of 90 years; admitting adequate means of subsistence, and all other influent circumstances to continue as before.

CHAPTER IX.

Of ascertaining life's Absolute intensity, when the population has continued progressively increasing or decreasing.
72. When a progressive state of the population, increasing or decreasing, has continued during an uncertain period, any consideration of the various means through which that population might resume its former equipoise could only embarrass the main question : i.e, how to rectify the data supplied by experience, of the periodic births and of the periodic deaths at distinct years of age, each referred to the disturbed proportions according to which the population is then distributed consequently to the circumstance of that progressive state; in order that such rectified data, in accordance with ascertained rates of mortality, may correspond with the stationary condition, to be assumed, though only fictitious.
73. The first step, towards this rectification, is to obtain a correct expression of life's Absolute intensity; being an intermediate term between the diverging quotients of the population, divided on one part by the annual births, and on another part by the annual deaths; dismissing the exclusive consideration of either. Those quotients may however be reserved; the one, stating a relation between the population and the births, as a comparative minimum; and the other, stating a corresponding relation with the deaths, as a comparative maximum, both to be understood in case of an increasing population; which implies the
conversc in case of a decreasing population. The problent then stands as follows.
74. Problem:-

A population in progress of increase, from a doubtful period, is ascertained to consist in a quantity $\Sigma y-\frac{y_{0}}{2}$ of individuals at all ages; its exact distribution remains unknown, consequently to such increase having disturbed the original proportions; but a stationary population of equal amount, and liable to similar rates of mortality referable to the respective ycars of age, should be correctly represented by the decrement $y_{0}, y_{1}, r_{2}, y_{3}, \ldots y_{x}$; thic radix of which, compared with the first-mentioncd quantity, is :: $1: n$. The series $\frac{\Delta y_{0}}{y_{0}}, \frac{\Delta y_{1}}{y_{1}}, \frac{\Delta y_{2}}{y_{2}}, \frac{\Delta y_{3}}{y_{3}}, \ldots \ldots \frac{\Delta y_{x}}{y_{x}}$, expresses those rates, as actually understood with reference to each year of age immediatcly completed; but from the quantity of births being supcrior to that of the deaths during similar intcrvals, the latter series, representing the proportions of periodic deaths at the respective ages on the supposition of a stationary population, is so modificd as to exibit an inferior total, being : : $: m$, when comparce with $\Sigma y-\frac{y_{u}}{2}$. Amonsgt many independent causes, susceptible of opposing the coincidence of n with m, is, that in the eventual distribution, the quantity of lives at early agcs, and collectivcly yielding a rate of mortality less than the general average $\frac{1}{m}$, are superabundant; whilst a decreasing population would have produced the contrary cffcct of their comparative deficiency, accompanied with a superabundance of lives at ages more advanced and yielding an average rate of mortality more elevated than $\frac{1}{m}$. Supposing that the population, at any futnre
time, resumed a stationary character, and maintained its equilibrium during a term of years sufficient for restoring the natural proportions of distribution now disturbed, this without regard to whatsoever operative causes producing such a result; and further admitting; as an esseutial condition, the general circumstances under which the population exists to continue unchanged, -whence the invariable preservation, throughout all that time, of the proportions between the quantities y_{x} and Δy_{x} respectively corresponding with each year of age signified by x, so as ultimately to realize the decrement as above; - the question is, in that case : What should be the coincident proportional fraction, superior to $\frac{1}{m}$, as also inferior to $\frac{1}{n}$, and expressing the quantity of annual births, become equal to that of the annual deaths, when both arc compared with the relative quantity $\Sigma y-\frac{y_{0}}{2}$ of population?
75. The problem, thus reduced to its precise terms, appcars insoluble by any dircct means, in the absence of correct data cstablishing a definite period during which the population continued to progress, together with the progressive ratio, referred to the original and unobserved part of such period; but that problem may be solved by approximation in a satisfactory degree, consequently to inductions from the positive data supplied daring the latter and experimental part of the same period; as will presently be seen.
76. During the supposed passage, from a progressive to a consolidated stationary state the comparative excess of youthful population must gradually diminish, and this single circumstance elevate above $\frac{1}{m}$ the proportion of amnual deaths to the whole population; at the same
time as the proportion $\frac{1}{n}$. of annual births compared with that population relatively reduced from year to year, must by analogous gradation fall to an inferior standard; whence those fractional and diverging expressions must approach more and more, at each successive and periodic interval. Should indeed those two operations be produced by any combination of causes, concurring towards the assumed result of a stationary population, those causes must probably continue in a great measure under mutual dependance; and then the term of coincidence could not be remote from a geometric proportional between $\frac{1}{n}$ and $\frac{1}{m}$, if even this proved not an identical expression. But having assumed, as an essential condition, that the general circumstances of the population's existence rrould continue the same throughout the whole interval of time, whence the rates of mortality at specific years of age should also remain undisturbed; it follows that the conversion, from a progressively increasing to a stationary state, could not in such case be produced by any other than the single cause of a reduction in the periodic births; and the real question being not of any anticipated stationary state, which might partly arise from increased rates of mortality, but concerning a relation with the latter and fictive state to which an actually existing distribution of the population is to be reduced, the identity of the coincident term, with a geometric proportional between $\frac{1}{n}$ and $\frac{1}{m}$, may be considered as incontrorertible.
77. Discarding from consideration any other causes that might in some degree disturb this identity, though they escaped all research; there remains to ascertain whether or not the position obtains, by sufficiently extended experience. such confirmation as to warrant its admission on a general principle.

CHAPTER X.

Of life's Absolute intensity, ascertained on the forvgoing principle, with reference to the indiscriminate population of France.
78. Periodic returns, concerning all movements of the French population, have long been established on a system capable of supplying efficient data towards the various objects of these researches; and for the last sixteen years, those returns have embraced additional details, which we shall hereafter find importantly available. Let us first compare, as regards the present question of life's Absolute intensity, the results of that experience for each year, distinctly considered, during a period of fourteen years, commencing with 1817 and terminating with the last returns, which are for 1830^{*}.

YEARS.	POPULATIONS ascertained to correspond with the middle of each year respectively.	BIRTHS during each specified year.	DEATHS during each speeified year.	QUOTIENTS of the population divided by the births.	QUOTIENTS of the population divided by the deaths.	GEOMETRIC proportionals between the two quotients.
1817	29878034	944125	748223	$31 \cdot 64627$	39.93200	35.54854
1818	30073936	949192	751907	$31 \cdot 68372$	39-99688	$35 \cdot 59846$
1819	30271221	987918	788055	$30 \cdot 64157$	38.41257	$34 \cdot 30768$
1820	30471084	958933	770706	31.77603	39.53659	$35 \cdot 44463$
1821	30659311	963358	751214	31.82546	$40 \cdot 81302$	36.04016
1822	30871455	972796	774162	31.73477	39.87725	$35 \cdot 57380$
1823	31070089	964021	742735	$32 \cdot 22968$	$41 \cdot 83200$	36.71828
1824	31291375	984152	763606	31.79526	$40 \cdot 97842$	36.09598
1825	31511921	973986	798012	32.35369	39.48804	35.74321
1826	31687895	993191	835658	31.90514	3791970	34.78266
1827	31845428	980196	791125	$32 \cdot 48884$	$40 \cdot 25335$	36.16330
1828	32034499	976547	837145	32.80385	$38 \cdot 26636$	35.42999
1829	32173901	964527	803453	33.35718	40.04453	36.54823
1830	32334975	967864	809753	3340859	$3^{9} 9 \cdot 93190$	36.52492

[^5]79. Were it not that those results, for each distinet year, must have been greatly influenced by lternations of abundant and defieient crops, as also of prevalent diseases and other passing events, the foregoing proportionals might have exhibited suceessive quantities nearly equalized, notwithstanding the variously diverging quotients respectively producing them, or otherwise exhibited a series uninterruptedly progressing by inerease or by decrease; the former shewing that the Absolute intensity of life had continued the same, during the whole period observed upon, or the progressive series exhibiting by regular gradation the progress of that intensity's improvement or deterioration; and the general prineiple, set forth in the preceding ehapter, would equally have found confirmation in either the one or the other case. In order therefore to neutralize, in some degree, the effeets of accident; let us, under various points of view, consider those annual results as fragments only of other results, respectively founded upon more extended observation, and first compare the corresponding proportionals produced by ten periods, each embracing the experience of five consecutive years.

Periods.			UNiTED deaths during five jears.			

at Paris, and generally entitled to confidence. Opportunities of investigation, afforded to the writer of this volume, have enabled him however to rectify errors in the data there given for the year 1818 ; as will be perecived by a

8u. Towards partly correcting the inconsiderable irregularities still apparent; let us further consider the results of seven united years, in each successive experiment :

PERIODS.	POPULATIONS	BIRTHS.	DEATHS.	QUOTIENTS by the births.	QUOTIENTS by the deaths.	PROPOR- TIONaLS.
1817-1823	213295130	6740343	5327002	31-64485	$40 \cdot 04060$	35.59579
1818-1824	214708471	6780370	5342385	31.66619	$40 \cdot 18963$	35-67425
1819-1825	216146456	6805164	5388490	31.76212	4011262	35.69401
1820-1826	217563130	6810437	5436093	31.94554	40.02197	35.75645
1821-1827	218937474	6831700	5456512	32.04729	$40 \cdot 12407$	$35 \cdot 85900$
1822-1828	220312662	6844889	5542443	32-18645	39.75011	35.76891
1823-1829	221615108	6836620	5571734	$32 \cdot 41589$	$39 \cdot 77489$	$35 \cdot 90736$
1824-1830	222879994	6840463	5638752	32-58259	3952648	$35 \cdot 88696$

81. Taking another view of the matter, by comparing the results deduced from each year's experience combined with that of all preceding years, or comparing a series of generally averaged results; we find, -

PERIODS.	UNYTED populations.	UNITED Jirths.	UNITED deaths.	QUOTIENTS of the populations		PROPOR- TIONALS.
				by the births.	by the deaths.	
1817.	29878034	944125	748223	31.64627	39.93200	35.54854
1817-1818	59951970	1893317	1500130	$31 \cdot 66505$	39.96460	35.57357
1817-1819	90223191	2881235	2288185	31.31407	39.43003	35-13851
1817-1820	120694275	3840168	3058891	31.42943	39-45687	35-21515
1817-1821	151353586	4803526	3810105	31.50879	39.72425	35-37880
1817-1822	182225041	5776322	4584267	$31-54689$	39.75009	35-41175
1817-1323	213295130	6740343	5327002	$31 \cdot 64485$	$40 \cdot 04060$	35-59579
1817-1824	244586505	7724495	6090608	31.66375	$40 \cdot 15798$	$35 \cdot 65884$
1817-1825	276098426	8698481	6888620.	31.74100	$40 \cdot 08037$	35.66779
1817-1826	307786321	-9691672	7724278	31.75782	$39 \cdot 84661$	35.57304
18171827	339631749	10671868	8515403	31.82496	39-88439	35.62751
1817-1828	371666248	11648415	9352548	31.90702	39.73956	$35 \cdot 60858$
1817-1829	403840149	12612942	10156001	32.01792	39.76370	35.68125
1817-1830	436175124	13580806	10965754	$32 \cdot 11704$	$39 \cdot 77612$	$35 \cdot 74200$

comparison with those here set forth; and it is proper to observe, in addi'ion, that the whole series of last returns, as statcd in each Anuual, remains subject to probable correction in the one next succeeding, consequently to a few Departments (counties) usually neglecting to send in due time their own quota; whicl partial returns are thence temporarily supplied through a method of approximation.
82. Either of the last three views goes much further, than the preceding and original one, to confirm the principle established in the foregoing $\underset{y}{c}$ chapter; inasmuch as the utmost difference, between any two quantities of each concluding series, is in those three cases very inconsiderable. The series of proportionals being generally progressive by increase, with insiguificant deviations only, as resulting from the combination of fortuitous events, shew also that the intensity of life, in France, had scarcely discontinued improving at the close of the experiments; although the vacillating progression, observable in the latter terms of those concluding series, are one sign - amongst others - of au approaching discontinuance of such improvement. The various results, thus arrived at, give occasion to the following further remarks.
83. A constant decrease in the relative quantities of births, compared with the corresponding quantities of population at the stated periods, was naturally consequent on that population's progressing; whence arises, in its distribution, a constant increase of the included proportion of infants; such decrease of relative births being then referable to the same cause as that reducing the relative quantities of periodic marriages (for which see the $59^{\text {th }}$ paragraph); besides which, as will hereafter appear, the average of births to each marriage has not increased, but rather the contrary. On the other hand, an equally observable increase - though inconsiderable - of the relative deaths, under a similar comparison, shews that the distribution of the actual population has, from the same cause, acquired some tendency towards the natural proportions referable to a stationary condition ; the youthful, or collective part of populatiou whose rates of mortality are inferior to the generally averaged rate, having of late years less and less preponderated.
84. The series of ruotients, of the respective populations
divided by the corresponding quantities of deaths, has proceeded much more irregularly than the series of quotients resulting from a similar division by each corresponding quantity of births; which arises from the periodic mortality being always affected, by casualties, in a more considerable degree than the periodic births.
85. Leaving out of the question the opposite circumstances of emigration and of forcign settlers, an increase of population may take place, either by a greater number of periodic births, - by a reduced number of periodic deaths, - or by a combination of both; in the same manner as a decrease of population should be traceable to the reverse of those calises. Now it does not appear, by the foregoing statements, that the numerical increase of periodic births, in France, has contributed to that of its population, any more than in a very insignificant degree; whilst, on the contrary, the proportions of those births, to the population at the time being, has constantly diminished. At the same time, it appears that the periodic deaths have increased in quantities superior to those of the increased births, whilst the proportions which those deaths bear to the population have in a slight degree increased also; but as the latter proportions have still fallen considerably short of those according to which that population itself has continued increasing, it necessarily follows that the increased intensity of life in France, during the period observed upon, must be owing to an improvement in the general conditions of existence in that country, exclusively of any other cause, and especially to the exclusion of any small numerical augmentation in the quantities of annual births; part of which improvement is attributable to the cessation of war, and therefore affecting only the male sex.
86. From the middle part of those fourtecn years' term of observation, the numerical quantities of population's increase,'
and still more the proportions according to which that population has continued increasing to the present time, havebeen in progress of notable diminution; which indced is accounted for, by the increase of periodic deaths having always, since that middle term, exceeded the increase of corresponding births. It may therefore be considered probable, that the Absolute intensity of French lives, in their aggregate, has at length attained its masimum of improvement, or thereabouts.
87. Let it lastly be remarked, that such improvement of the Absolute intensity, or of life's average duration in France, must in a great measure be attributed to consecutive good crops, at the same time as to an exemption from the calamitics of war and of pestilence, during the whole period of the stated experience; and moreover, that the course of events, posterior to the last year's rccorded births and deaths, will in all probability be found to have abated some portion of that absolute intensity, as latterly stated with reference to that country.
88. Failing the supply, from analogous obscrvations in other cxtcusive countries, of results corroborating those obtained relatively to the population of France, the latter appear fully confirmative of the gencral principle first set forth ; i.e. that in casc of any progressive population, whether the progrcssion be increasing or decreasing, the Absolutc intensity of life obtains a corrcct expression, by a geometric proportional between the respective quotients of the actual amount of such population, distinctly divided by the quantities of annual births and of annual deaths. Those present results further establish the measure of such Absolute intensity, or average term of life in France, as extending either to 35.87957 , to 35.88696 , or to $35 \cdot 7$ 亿200 ; according as were preferably admitted the avcrage results of the last five, or of the last seven years' observations, or else the results so
averaged of the whole fourteen years during which they have hitherto been continued. No aecurate eonelusions could be drawn, in that respect, from an exelusive consideration of the results confined to any single year.
89. It were desirable' that a complete experience had extended to distinet results, for the male and for the female sex. The data for 1817 , and for all subsequent years, are in that respeet satisfactory; but the previous eensus of population not having established the then existing quantities of eaeh sex, their subsequent distinetion is likely, during a further long period of years, to remain problematieal; and the differenee of life's Absolute intensity, contradistinguished for the male and for the female part of the French population, ean at present be discovered only through indireet means.
90. The possessed data, aided with a few sufficiently warranted assumptions, may however be available towards aseertaining by approximation such difference of intensity. Let us first consider the Freneh population, in the year 18i7, as compounded of two parts, not very remote from equality; one part, by births in the proportion of 21 males to 20 females, referably to a former period, when that proportion was acknowledged; and another part, by births in a rather more elevated proportion of males, or that of 17 to 16 female births, as aseertained by an average of the last eighteen year's experience in the eountry to whieh we allude; whenceits population, in the year ${ }^{1817}$, may fairly be assumed to have originated in births of which 19 males to 18 females. Seeondly, adverting to what has been stated in the $28^{\text {th }}$ paragrah, (ehapter III, eoncerning the inereased intensity of life within a eertain period, let it, further be considered that sueh eompounded population possessed an intensity even superior to 32 years, às mentioned in that paragraph with reference to a now distant period,
yet inferior to that of $35 \cdot 37880$, as stated in the $79^{\text {th }}$ parasraph to result from an average of the 5 years 1817 -1821; whence we shall in all probability make a near approach to the truth, by admitting the french population, as formed in the year 1817 , to have gencrally possessed 34 years' Absolute intensity of life. And thirdly, we shall be justified in introducing, as another element of computation, the difference of four ycars between that intensity for the discriminated scxes ; because the operation of a destructive war, protracted during one quarter of a century, must necessarily have produced an incquality to that extent. From those assumptions, the population, as given for the year 1817, should have consisted of $\frac{29878034 \times 19 \times 32}{(19 \times 32)+(18 \times 36)}=14463252$ Males, and of $\frac{29878034 \times 18 \times 36}{(19 \times 32)+(18 \times 36)}=15414782$ Females. Thence establishing the population of cach scx, for every succeeding year, by adding to those respective quantitics the ascertaincd excesses of the births over the deaths, from year to year, the following sets of comparable results are obtained.
91. Results of cach ycar's individual expericuce :

MALE SEX.

YEARS.	POPULATTONS	BIRTHS.	DEATHS.	by of births.	EnTs puatiọn, by the deaths.	PROPOR- TIONALS.
1817	14463252	488457	382813	29.61009	37.78151	$33 \cdot 44718$
1818	14568896	488978	376412	29.79451	38.70464	33.95863
1819	14681462	509311	398260	2882612	36.86401	-
1821	14897069	497621	377062	${ }_{29.93657}^{29}$	${ }_{39.50827}$	${ }_{34} \cdot 39102$
1822	15017628	501094	391443	${ }_{29}^{29.96968}$	38.36479	33.9084
1823	15127279	496517	376101	30.46679	40.22132	35.00592
1824 1825	15247695 15369680	507770 503532	385785 400444	30.02875 30.52375	39.52381 38.38160	34.45070 34.22792
1826	15472768	511898	419613	30.22627	${ }_{36} 873990$	${ }_{33} 388503$
1827	15565053	505307	399864	30.80316	38.92587	34.62715
1828	15670496	501669	421956	31-23673	37-13774	34.05967
1829	15750209	496163	405366	31.74401	38.854,30	35.11968
1830	15841006	496997	408558	31.87345	38.77296	3515433

FEMALE SEX.

YEARS.	POPULATIONS	BIRTHS.	DEATIIS.	QUOT of the po by the births.	ENTS ulation, by the deaths.	PROPOR- TIONALS.
1817	15414782	455668	365410	33.82898	$42 \cdot 18490$	37.77660
1818	$15 \quad 505040$	460214	375495	$33 \cdot 69093$	$41-29228$	$37 \cdot 29846$
1819	15589759	478607	389795	32.57319	39.99477	36-13531
1820	15678571	464555	380884	33.74966	$41 \cdot 16364$	37-27276
1821	15762242	465737	374152	33.84365	$42 \cdot 12792$	37.75927
1822	15853827	471702	382719	33.61196	41.42681	37.31536
1823	15942810	467504	366634	34.10198	43.48427	38.50843
1824	16043680	476382	377821	33.67819	42.46373	37.81668
1825	1614224	470454	397568	34.31201	$40 \cdot 60243$	37.32494
1826	16215127	481293	416045 391261	$33 \cdot 69076$ $34 \cdot 28248$	$38 \cdot 97446$	$36 \cdot 23643$
1827 1828	16 280 16375 164 003	474889 474878	391261 415189	$34 \cdot 28248$ $34 \cdot 45938$	$41 \cdot 61001$ 39.41338	37.76896 3685324
1829	16423692	468364	398087	3506609	$41 \cdot 25654$	38.03558
1830	16493969	470867	401495	35.02893	$41 \cdot 11210$	37.94882

92. The average results of each Five consecutive years' experience will be:

MALE SEX .

YEARS.	POPULATIONS	BIRTHS.	DEaths.	$\begin{gathered} \text { QUOT } \\ \text { of the po } \\ \text { by births. } \end{gathered}$	ENTS ulation, \qquad by the deaths.	PROPOR- TIONALS.
1817-1821	73403192	2478745	1924369	29.61304	38.14491	$33 \cdot 60925$
1818-1822	73957568	2491382	1932999	29.68536	$38 \cdot 26052$	33.70129
1819-1823	74515951	2498921	1932688	29.81924	38.55560	33.90721
1820-1824	75082184	2497380	1920213	30.06438	$39 \cdot 10096$	$34 \cdot 28624$
1821-1825	75659351	2506534	1930835	30.18485	3918478	34.39166
1822-1826	76235050	2520811	1973386	30.24227	38.63160	$34 \cdot 18051$
1823-1827	76782475	${ }_{2}^{2} 525024$	1981807	30.40861	38.74367	34.32406
1824-1828	77325692	2530176	2027662	$30 \cdot 56138$ 30.90176	38.13539	$34 \cdot 13898$
$1825-1829$ $1826-1830$	77828206 78299532	2518569 2512034	2047243 2055357	$30 \cdot 90176$ $31 \cdot 16978$	38.01611 38.09534	$34 \cdot 27484$ $34 \cdot 45900$

FEMALE SEX.

YEARS.	POPULATIONS	BIRTHS.	DEATHS.	QUOTI of the pop by the births.	NTS ulation, by the deaths.	PROPOR- TIONALS.
1817-1821	77950394	2324781	1885736	33.53020	41.33685	$37 \cdot 23375$
1818-1822	78389439	2340815	1903045	33•48809	$41 \cdot 19157$	$37 \cdot 14064$
1819-1823	78827209	2348105	1894184	33.57056	41.61538	37-37716
1820-1824	79281130	2345880	1882210	33.79590	42.12129	$37 \cdot 72966$
1821-1825	79744800	2351779	1898894	33.90829	41.99540	37-73582
1822-1826	80197685	${ }_{2}^{2} 267335$	1940787	33.87678	41.32225	$37 \cdot 41476$
1823-1827	80624233	2 370522	1949329	34.01117	41.35999	$37 \cdot 50602$
1824-1828	81045426	23377896 2	1997884	$34 \cdot 08283$	$40 \cdot 56563$	$37 \cdot 18321$
1825-1829	81425438 81 777166	2369878 2370291	2018150 2021777	$34 \cdot 35849$ 34.50090	$40 \cdot 34658$ 40.44817	$37 \cdot 23235$ 37.35637
1826-1830	81777166	2370291	2021777	$34 \cdot 50090$	$40 \cdot 44817$	37-35637

93. The average results for each Seven consecutive years will be :

MALE SEX.

FEMALE SEX.

94. And the results of each year's experience combined with that of all preceding years :

MALE SEX.

YEARS.	POPULATIONS	BIRTHS.	DEATHS.	QUOT of the po by the births.	ENTS ulation, by the deaths.	PROPOR- TIONALS.
1817	14463252	488457	382813	29.61009	37.78151	33.44718
1817-1818	29032148	977435	759225	29.70238	38.23919	$33 \cdot 70156$
1817-1819	43713610	1486746	1157485	29.40220	37.76602	$33 \cdot 32272$
1817-1820	58506123	1981124	1547307	29.53178	$37 \cdot 81158$	33.41621
1817-1821	73403192	2478745	1924369	29.61304	$38 \cdot 14491$	33.60925
1817-1822	88420820	2979839	2315812	29.67302	38.18134	$33 \cdot 65941$
1817-1823	103548099	3476356	2691913	29.78639	$38 \cdot 46636$	$33 \cdot 84929$
1817-1824	118795794	3984126	3077698	29.81729	38.59891	33-92513
1817-1825	134165474	4487658	3478192	29.89655	$38 \cdot 57389$	33.95879
1817-1826	149638242	4999556	3897755	29.93031	$38 \cdot 39088$	33.89765
1817-1827	165 180 83 795	5504863	4297619	$30 \cdot 01043$	$38 \cdot 44066$	33.96499
1817-1828	180873791	6006532	4719575	$30 \cdot 11285$	$38 \cdot 32416$	3397131
1817-1829	196624000	6502695	5124941	$30 \cdot 23731$	$38 \cdot 36610$	34.06006
1817-1830	212465006	6999692	5533499	$30 \cdot 35349$	38-39614	$34 \cdot 13879$

FEMALE SEX.

YEARS.	POPULATIONS	BIRTHS.	DEATHS.	QU0T of the po by the births.	ENTS ulation, by the deaths.	PROPOR- TIONALS.
1817	15414782	455668	365410	33.82898	42-18490	37.77660
1817-1818	30919822	915882	740905	$33 \cdot 75962$	41.73251	37.53497
1817-1819	46509581	1394489	1130700	33.35242	41.13344	37.03916
1817-1820	62188152	1859044	1511584	33-45168	41.14105	37.09767
1817-1821	- 77950394	2324781	1885736	33-53020	41.33685	37.23375
1817-1822	93804221	2796483	2268455	33.54364	41.35160	37.24356
1817-1823	109747031 12590	3963987 3740369	$\begin{array}{llll}2 & 635 & 089 \\ 3 & 012 & 910\end{array}$	$33 \cdot 62360$ $33 \cdot 63057$	$41 \cdot 64831$ 41.75058	37-42147
1817-1824	125 141939 952	3740369 4210823	3012910 3 410	$33 \cdot 63057$ 33.70670	41.75058 41.61672	$37 \cdot 47126$ $37 \cdot 45347$
1817-1826	158148079	4692116	3826523	$33 \cdot 70506$	$41 \cdot 32945$	$37 \cdot 32307$
1817-1827	174428454	5167005	4217784	33.75814	$41 \cdot 35547$	$37 \cdot 36421$
1817-1828	190792457	5641883	4632973	$33 \cdot 81716$	$41 \cdot 18143$	$37 \cdot 31808$
1817-1829-	207216149	6110247	5031060	33.91290	$41 \cdot 18737$	37.37270
1817-1830	223710118	6581114	5432255	33.99274 ,	$41 \cdot 18182$	37.41500

95 . Those series of geometric proportionals, resulting from an application of the data to each discriminated sex, go still further to confirm the principle first advanced; that, generally, such proportional between the quotients of the existing population, separately divided by the periodic births and by the periodic deaths, exhibits the Absolute intensity of life; and this proves equally true, with regard to either sex in particular, as with regard to the indiscriminate sexes in a whole population. If again that Absolute intensity be considered at the close of those fourteen years' experience; it is perccived to be 34.45900 years for the male sex, whilst cxtending to $37 \cdot 35637$ for the female, when considered on an average of the last five years; as also to be $34 \cdot 43048$ years for the males, and $37 \cdot 413 \mathrm{r} 4$ for the females, on an average of the last seven years' results; and lastly to be $34 \cdot 13879$ years for the males, and $37 \cdot 41500$ for the females, on an average of the last fourteen years, or of the whole period observed upon ; whilst the results for the very last year, or for any other specific year of that period, should be disregarded, as having too much depended on fortuitous events.
9^{6}. But those sets of comparative series further convey information on other points. First, it is seen that the increased intensity oflife, during the considered period, belougs almost exclusively to the malc sex, with scarcely any participation of thefemale; consequently to which, thedifference between their respective inteusities, and assumed to be of four years during thecircumstances of war, has been reduced to about three and a half on an average of the first nine years of the experience, or from the commencement of 1817 to the end of 1825 , as also latterly reduced to three years only, according to an average of the seven years 1824-1830, both inclusive; and indced our hypotheses, in the $90^{\text {th }}$ paramraph, are justified by the harmony of those results. The intensity of female life appears, however, to have augmented in the first instance, and afterwards to have declined; whilst the gradual
augmentation of the male intensity proved constantly progressive. Secondly, the relative quantities of periodic deaths, referred to the population of each respective sex at the time being, continued only fluctuating, as to the males, without sensible difference between the results at the commencement and termination of the wholc expcrience, though generally increasing with regard to the females; whilst the quantitics of periodic births, also relative to the population at the time being, have regularly decreased in both scxes, which is naturally consequent on such population's progressing by increase, as already mentioned. Third and lastly, the excess of periodic births over the periodic deaths, or the periodic increase of numerical pupulation, has constantly proved more considerable for the malc than for the female sex; consequently to which, and during the 14 years observed upon, the former have increased by 1466193 , whilst the latter by 1148859 only (${ }^{*}$); and allowing for 16 females born to 17 males, within any given time, the comparative excesscs, of the births over the deaths, have been generally as six to five in favour of the latter sex. Whence it occurs that the excess of female population over the male, which was 9^{51530}, for the year 1_{181}, has been reduced to 634196 at the expiration of the year 1830 ; quantities failing however to be possessed of the desirable accuracy, inasmuch as the respective populations, male and female, have not, for the first of those years, been stated without the aid of a few assumptions, probably approaching very nearly to the truth; which is left for the judgment of the reader either to admit or to reject, until better information may be obtaincd. It is not unlikely that this comparative increase, of male births, might be traced to a cause hereafter explained in chapter XXI.

[^6]
CHAPTER XI.

Of Life's Absolute intensity in England, inferable on the
foregoing principle.
97. Without repeating what has been said in the $30^{\text {th }}$ and subsequent paragraphs, relatively to the contradictory character of all data supplied by the official returns in England; it will be sufficient, for shewing the impossibility of drawing any satisfactory conclusion from them, to compare their results refcrred to the forty counties, as statcd in Mr. Rickman's rccent publication, page 3ı. We thus have the expressions hereafter, of lifc's Absolute intensity, as brought out by those returns.

FOR PERIODS of ten years tach.	QUOTIENTS of the population, divid́ed hy the baptisms.	QUOTIENTS of the population, divided by the burials.	PROPORTIONALS, or inferable intensities.
1790 to 1800	36	48	$41.5635^{\text {years }}$
1800 to 1810	34	51	$41 \cdot 6255$
1810 to 1820	35	57	$44 \cdot 6655$
1820 to 1830	37	54	44.6990

98. The author has stated on that occasion, and from the same source, corresponding data referred to the county of Essex in particular ; being as follows, and included in the above:-

67

FOR PERIODS of EN YEARS EACH.	$\begin{gathered} \text { QUOTIENTS } \\ \text { of } \\ \text { The population } \\ \text { divided } \\ \text { by the baptisms. } \end{gathered}$	$\begin{aligned} & \text { QUOTIENTS } \\ & \text { of } \\ & \text { the ropolation, } \\ & \text { divided } \\ & \text { by the burials. } \end{aligned}$	PROPORTIO- Nals, or inferable intensitils.
1790 to 1800	35	44	$39.2428^{\text {years }}$
1800 to 1810	34	46	39.5324
1810 to 1820	36	60^{-}	46.4758
1820 to 1830	37	54	44.6990

99. But we are further supplied by him (page $34^{\text {th }}$) with the results of some independant observations, respecting the population of that county, and embraciag a period of 18 years, to 1830 inclusive; from which has been constructed a table of mortality, exhibiting no more than $34 \% 4646$ years' Absolute intensity of life, throughout Essex. It need only be said, in addition to the remarks regarding that specific table and stated in our $33^{\mathrm{d}}, 34^{\mathrm{a}}$ and $35^{\text {th }}$ paragraphs, that the latter result, in all probability, comes much nearer to the truth, as expressing the intensity of life at present throughout England, than any of the results that proeeed from official returns corresponding with the same period. Further there does not appear any satisfactory grounds of inference, that such intensity, in England, were even in the smallest degree superior to that which has been deduced from authentic and incontestable data relative to the indiscriminate population of France; although a mere glance at those returns may possibly have led to that erroneous conclusion.

CIIAPTER XII.

Of Life's collective intensity, contradistinguished from the absolute.
100. Limiting our view to such part only of the population as may have either attained or surpassed any specific year of age, the measure of vitality, collectively belonging to that selection among the whole, is expressible by a quantity of years, being the average term of their lives' further endurance; in the same manner as the Absolute intensity is expressed with reference to the population at all ages, whether indiscriminately of a whole country, or only of a particular class. Hence an indentity of the Absolute and of the Collective intensities of life, when the latter applies to the birth, or completed year zero; which, in that case, is the understood minimum of age, referred to such collection of individuals.

10i. The Collective intensity, likewise denoting a quantity of population annually renewed, or measuring a generation under this limited view, would be correctly expressed by the quotient of those considered individuals, divided by the relative radix, being a quantity of individuals annually attaining the understood minimum of age (in other words borne or born to that age); if the former quantity were correctly to be represented by a summation of the decrement, from such radix inclusively. But in consequence of the successive quantities, there statcd, representing always in excess those lives which actually exist of all fractional ages intervening between any two proximate and completed years
generally signified by x, as already explained in the $64^{\text {th }}$ paragraph; it is neccssary to subtract half a year from the above-mentioned quotient, in order to obtain a correct expression of this intensity, when such total of quantitics stated in the decrement is admitted for a dividend.
roz. The intensity thus described and generally signified by m, with refcrence to each completed year of age successively understood as a minimum, forms a scries m_{x}, relative to the corresponding terms of the decrement. The lapse of cvery succecding year might naturally lead to infer an invariably progressive decrease in those average of forthoming years; whereas that series procecds on the contrary by increase during the first few years of life. This is because the rates of mortality considerably preponderate at such very early ages, the lives becoming more and more consolidated as they happen to have survived those few successive intervals; and it is only after those rates have ceased remarkably to decrease from each year to the next, that the Collective intensity also commences decrcasing. Its maximum refers to an age varying no more than between the fourth and sixth completed years; which term, uninfluenced by difference of sex, appears to occur rather sooner in case of a superior quality of the considered lives; the relative quantity of survivors, then possessed of greater Specific intensity of lifc, being the most considerable in that case. Sussmilch's tables of mortality for the population of Brandenburgh, and those of Dr. Halley for the population of Breslaw, may be quoted as affording exceptions to this rule, both referring that maximum to seven years of age; but those tables, besides their irregular construction, have proceeded from observations in many respect deficient, owing to the causes noticed in the $12^{\text {th }}$, $13^{\text {th }}$ and $14^{\text {th }}$ paragraphs. Mr. Finlaison's tables exhibit another and indced more singular exception of this kind; as they admit not, at any stage of life, the increase of its

Collecture intensity. An investigation of his tables is however reserved for a separate chapter.
103. The intensity considered in the above point of view has the more inappropriately been denominated "Expectation of Life ", as it fails cither to express or to imply any specific probability; whilst the "Equation of Life", to be treated of in the next chapter,- and expressing, with refcrence to any given age, the further term of years which there is an equal probability of outliving or not, - may the more justly be admitted for the true Expectation, as the probability of life's continuance, to that precise term, is greater than that of its terminating either at any earlier or at any later period.
104. Demoivre, Simpson, and since their time other Bristish authors, have variously applied the series m_{x}, towards obtaining, by abridged methods, the solution of questions conccrning the values of sums depending on lives and on survivorships; but the results mostly consist of approximations, sometimes remote, and yet considered practically useful when greater accuracy is not required. The ncarer approach to correct results is obtainable, by that means, when the lives or population are of an inferior description; as the numerical quantities of periodic dcaths differ less, from any year of age to any other, in that case, than in the case of a superior quality of lives.

1o5. The Collective intensity may further apply to the joint-contianaace of two or more lives, as also to the life of an eventual survivor; whether the stated lives be of similar or of different description, in respect to age, to class, and to sex. Its consideration may then be attended with greater practical utility, than when the view of that intensity is limited to single lives; and the more so, as a tolerable approach to correct results is, in the former of those cases; all that may rationally be expected.
106. To ascertain this intensity, or average duration of joint-life, which we will suppose limited to two individuals; let the Decrement applicable to each, according to their class and sex, be proportioned to a common radix referable to their respective ages, however different; and multiplying into each other the corresponding two terms of those decrements, for such and every succeeding year of age, a third decrement will arise, exhibiting the proportions according to which the original quantity of couples should gradually become disunited. This last decrement will retain, as regards the joint-lives, all the properties attributable to that of individual life; and the various conclusions are to be drawn in the same manner, from the one as from the other, espe-cially all those relative to questions concerning probability. Should the two lives be of similar age, class, and sex, the process will then be simplified by multiplying into itself each term of the common decrement; and if, being of the same class and sex, the ages differed only by a few years, it might be sufficient, towards a certain degree of approximation, to proceed os already said and admitting an average between the two ages, provided that neither were less than twelve or fourteen years.
107. For an eventual survivor, the average term of forthcoming years is immediately deducible from the averages ascertained for each individual life, as also for the joint continuance; and the latter being an assignable term of the shorter life, the term which should be assigned to the longer obviously amounts to the united averages of the former two, minus the average belonging to the latter, or $m+m^{\prime}-\mathrm{M}$; since, taken together as described, they must in all cases be supposed to contemplate an equal quantity of those reunited and future years of life.

CHAPTER XII.

Of the Equation of life.

108. The Equation of life, or term of forthcoming years which therc is an equal probability of being attained or not, by the individual of a stated age, may be generally exprossed by n_{x}; and is immediately deducible from the appropriate Decrement, according to the sex and class. Should it be required thus to ascertain any cxtent of future years, most probably attributable to an individual lifc of the specific age x; that 'cxtent n_{x}, as determined in the next paragraph, shall be the correct expression, differing more or less from i_{x}, or the avcrage duration; which difference, at certain ages, may be relatively considerable.
1.09. 'It follows from the Decrement's definition, that departing from any onc of its terms, or quantity expressed by y_{x}, any subsequent term $y_{x+n}=\frac{y_{x}}{2}$ must indicate the ycar of age morc probably attainable than any other; as, at the age $x+n$, there shall survive exactly one-half of the individuals cxisting of the age x; whence the probabilities are cqual, for any onc of them, to be amongst the number of the living or of the dead, at that future period. A single glance at the decrement would point out that period $x+n$, if this were expressible otherwise than by a fractional quantity of ycars; but it will be almost always intermediate between two proximate y ears of age, $x+n-f$ and $x+a+1-f$; leaving f, or the accompanying fraction,
to be ascertained by calculation; and thus $y_{x+n-f}-y_{x+n}$ $: y_{x_{+n}-f}-y_{x+n+1-f}:: f_{i}: \mathbf{I}$, whence $f=\frac{y_{x+n-f}-y_{x+n}}{y_{x_{+n-f}-y_{x+n+1-f}}}$.
109. That such determination, of the accompanying fraction of a year, were perfectly correct, would require the rates of mortality to be exactly the same for all equal intervals during the two completed years $x+n-f$ and $x+n+1-f$; but this could only arise from supposing equal rates referred to those two proximate years of age. Assuming however the difference of those rates to be inconsiderable, an ascertainment of f, as above, will makc the nearest approach to utmost accuracy which is likely to be requisite for any practical purpose. When $x+n$ refers to a very advanced age, those rates, probably, will so much differ as to require considcration; and then resort may be had to an arbitrary correction of the fraction f, which otherwise must be rather too small, in proportion as it approaches towards unity $\left({ }^{*}\right)$.
110. When referred to the birth and to an indiscriminate population, the Equation of life may represent a shorter term of years than the average of its further condurance, or the expression of Collective intensity; and especially regarding the male sex of an inferior class, the two expressions may thus differ considerably. But in casc of a select class, n_{0} shall always be found superior to m_{o}; because the elevation of the former quantity chiefly depends

[^7]on the slow progress of the decrement in early lifc. With the single exception of a reference to the first year of existence, and for a loug series of subscquent years, the Equation of life in all cases exceeds more or less its Collective intensity. The period of the latter's commencing to preponderate, after which it retains the superiority in a constantly increasing proportion, depends on the distiuctions of class and of sex. That period take places at 44 completed years, for the male sex, and at 50 for the female, when both belong to a superior class of selection; at 36 years for the male, and at 44 for the female, of a class subject to conditions of existence less favourable than those affecting the indiscriminate population; and as regards the latter, exemplified by that of France, at 44 years for the male, and at 48 for the female sex. From those considerations, it becomes important to avoid mistaking the average term of any life's further endurance, for the Equation of such lifc, especially at advanced age.:
112. The Equation referred to Joint-lives is determinable through a combinaison of their respective decrements, as mentioned in the $106^{\text {th }}$ paragraph; but that of the longest life, or equation refcrable to an eventual survivor, requires a special process for its ascertainment. After ascertaining \mathbf{N}, or the most probable term of any two lives' joint-continuance, the survivor having at its expiry attained the age $x+\mathbf{N}$, a further lapse of time n^{\prime}, required according to the greatest probability, for reducing any quantity of the living at the age $x+\mathbf{N}$ to precisely one-half of that quantity or to $\frac{r_{x+N}}{2}$, will be indicated by the Decrement relative to such single life of the stated age and sex; whence $\mathrm{N}+n^{\prime}$ shall be the most probable term of life's forthcoming years, for that supposed survivor, presently existing at the age x. A similar process, supposing the other life to be of a different
description and aged x^{\prime}, will determine a corresponding term of its most probable endurance beyond \mathbb{N}, or carrying such life to an age $x^{\prime}+\mathbf{N}$. Thus in case of marriage, or of any other life-association between two individuals, the value of a contingency, depending either on the dissolution of such association or on the extinction of both lives, under the one as well as the other supposition of survivorship, shall become susceptible of ascertainment, with sufficient accuracy for all practical purposes.

CIIAPTER XIV.

Of the distributed population, supposed slationary, and its relative quantity inferable from the Decrement.
113. In a foregoing chapter, where the Decrement of life and various properties of that series arc described, it has been shewn that the total quantity of any population supposed stationary, together with its distribution into quantities of the living at different years of age, respectively bear invariable relations to the quautity of births periodically compensating for the deaths; and it has further been shewn, that the quantities successively expressed by y_{x}, of survivors completing each year of age and entcring upon the next, are in constant excess of one-half the difference between the two proximate quantities γ_{x} and f_{x+1}, over the real quantity of the living at various intervals of age from x to $x+1$ respectively completed years. From those considerations, it is easy to deduce another decreasing series z_{x}, that shall exhibit the collective quantitics of the living at all ages, exclusively of those only who may not have completed the year of age signified by x; hence and by immediate infcrence, the collective quantities also of the living between any interval of age whatsoever.
114. The method of that deduction is simple, and requires no further elucidation than to observe that the successive differences, between each term and the next of the series z_{x}, shall correctly represent the quantities of individuals actually liviug at various intervals of age, from
x to $x+1$; as also those differences will form another series Δz_{x}, corresponding with and modifying the series y_{x}, or decrement of the living.
115. That series z_{x} constitutes a permanent Law of the distributed and relative population, assumed to be stationary. But supposing any other population in progress either of incrcasc or of decrease, through in quantity bearing isimilar relation with a geometric proportional between the periodic quantities of births and of deaths, which implies an equal measure of the Absolute intensity of life between those supposed populations; the abovementioned equipoisc of distribution will be more or less disturbed in the latter case, according to the periodic ratio of such progression, and to the term elapsed since its commencement, as already explained in the $56^{\text {th }}$ and $57^{\text {th }}$ paragraphs. Two populations however might exist, possessing an equal measure of life's Absolute intensity; yet such equal measure arising from different elementary quantities of the relative births and of the relative deaths, which yielded a proportional common to both populations; but in that case, neither could the law of distribution be cxactly the same, nor the Specific intensities be alike at each corresponding ycar of age; and the respective circumstances, or conditions of existence, would be more or less different in the detail, notwithstanding that the advantages and disadvantages of those circumstances exhibited an equal balance in their aggregates.
116. What has bcen stated in the two preceding chapters, relatively to the consideration of joint-lives, implies an extention of the principles there stated to a series Z_{x}; which shall indicate a law of the distributed population, supposed to consist of couples, substituted for individuals, such sas might result from, a corresponding decrement $Y_{x}=J_{x}^{2}$.

CHAPTER XV.

Of the Relative quantities of Deaths at successive years of age, as represented by a series of differences between the terms of the Decrement.
117. The series Δy_{x}, expressing any relative quantities of deaths that may occur at successive years of age, in a stationary population, has so often been mistaken for the Law of Mortality, as to require the characteristics of that serics to be presented under a distinct head. Indeed the lcading principle, upon which some rcceived mortality-tables appear to have been constructed, consists in a certain arbitrary adjustment of those successive quantities of deaths, in nearly arithmetic progrcssion, ánd not unfrequently admitting even their continued recurence in equality; whercas the ultimate appearence of any regular progression, in that scries Δy_{x}, whether increasing or decreasing, should be only a secondary result of the fundanental law, regulating in the first instance,-- and not without due regard to physiological considcrations among the rest, - a series cxpressive of life's Specific intensity corresponding with each year of age; the series y_{x}, or Decrement, being its primary result.
118. A distinguishing character of the Law of Mortality, applicable to a superior class of selection, which class is announced by an clevated ratio of lifc's Absolute intensity, is to establish a greater numerical disproportion between the maximum of periodic deaths, and their first minimum occurring at an carly age , when the Specific intensity of life has attained its maximum; whilst in case of an inferior class, or of any entire population existing under unfavourable conditions, either of which will be marked by a depressed
ratio of that intensity, such numerieal disproportion may be only ineonsiderable. If that first minimum should be elevated, whilst the maximum quantity of deaths oecurring at any speeifie year of age should be reduced, thus making a greater approaeh to equality in the suecessive terms of the series Δy_{x}, an essential indieation will thereby be afforded, of iuferiority in the eonditions under which may exist the entire or else the partial population yielding those results.
r19. The superior or the inferior quality of any population, or diseriminated class, is further marked; the former, by more advaneed periods at which the depressed first minimum, as also the elevated maximum of numerical deaths, take plaee; and the latter quality, on the contrary, by earlier periods that admit the respective max. and first min. whatsoever of those deaths. Exemplifying those remarks, aceording to various modifieations of the law of mortality whieh it has been a chief purpose of this work to eonelude and apply to five different elasses of each sex ; and referring each modification to a common radix of one million supposed annual births, eompensating for an equal number of annual deaths, we find: -

CIIAPTER XVI.

Of Life's specific intensity, at each exclusively considered year of age.
120. Hitherto the Intensity of life has been considered, first, as measuring a proportion annually renewed, either of a whole population, or of any discriminated class among the rest, without distinction of ages; and secondly, as measuring the analogous proportion referred to all individuals collectively, within that population or class, but limited by any understood minimum of age, and including all exceeding it. We have now to take into consideration corresponding expressions of life's intensity referred to each set, respectively, of individuals existing at specific and exclusive years of age, being just completed; and it may be necessary here to repeat, that the Law of Mortality is nothing else than a determination, controlled by definite principles, of the series signified by q_{x}, as expressing those Specific intensities.
121. The materials, for constructing such a law, consist of the provisional decrement originally deduced from data supplied by adequate experience, but requiring subsequent rectification in all cases, through a methodical regularization of the corresponding and Specific intensities resulting from it; consequently to which process of rectification, a final decrement shall appear, abdicating its leading character, and retaining only that of a subordinate scries y_{x}, as will have been seen in the $V^{\text {th }}$ chapter.
122. Those various expressions of Life's intensity, - the Absolute, the Collective, and the Specific, - posscss this analogy; that they respectively are quotients of the successive terms of a series, referred to each year of age x, and which terms shall have been divided by the difference between each of them and its next term, referable to $x+1$; whence
the Absolute intensity $m_{0}=\frac{\Sigma y-\frac{y_{0}}{2}}{y_{0}}=\frac{z_{0}}{\Delta z_{0}}$, the Collective intensity $m_{x}=\frac{z_{x}}{i \Delta z_{x}}$, and the Specific intensity $q_{x}=\frac{y_{x}}{\Delta y_{x}}$.
123. It is worthy of remark, that relatively to any class or sex, the Absolute intensity of life appears to coincide with its Specific intensity referred to the age of 55 years; with so little variation, that if any table of mortality exhibited in this respect a difference exceeding two years, such table would in all probability manifest further results bearing a character obviously contradictory with each other.
124. Nothing, in nature, remains stationary: The Specific intensity of life always progresses, increasing or decreasing; and this from assignable causes. The progression, whether of increase or of decrease, must be gradual ; marking its commencement, its maximum of the ratio, and its declining period at the termination of which that ratio becomes a minimum : without those circumstances, the increasing intensity cannot turn to a decrease, nor the latter to an increase. Yet, with this incontestable principle, the greater number amongst the tables of mortality hitherto constructed are considerably at variance.
125. No uniform law indifferently governs the waste of human life, throughout all its stages. At successive periods, which shall be hereafter defined, the Law of Mortality
undergoes inportant alterations, that depend upon inevitable changes in the general conditions of existenee, especially during active life; aecording to the sex-more partieularly, -as also, in some respects, to the class of individuals. The discrimination of those periods belongs to the department of physiology; and the considerations depending on this are not to be disregarded, when construeting any mortalitytable, if harmony is sought to be maintained in its different parts.
126. The Specific intensity of life, in both sexes, and expressed by q_{x}, -as measured with reference to the lapse of one year next ensuing, - is inferior at the birth to such intensity at any intcrmediate period from thence to an advanced age, attainable only by the privileged few. From the birth, it gradually inereases, so long as nature may eontinue its supply of additional vitality, in excess over its waste consequent on an enlarged exercise of our various faculties; but that period of inerease, whieh under the most favourable combination of circumstanees should in all probability extend to twenty years, or thereabouts, is always more or less abridged, from counteraeting eauses inevitably entering into operation; whence in the present state of things, the increasing progression of intensity is arrested, at periods whieh may vary from the tenth to the sixteenth year of age, aecording to the sex and to the class of people. After such period, to whieh a maximum of Specific intensity refers, the quantity q_{x} invariably decreases, though in modified proportions, until a eertain term of very advaneed age ; and then an anomalous increase, of short duration, onee more occurs, as shall hereafter be explained.
127. The Speeifie intensity of female life is superior to that of the male, under equal cireumstances, that of age included; yielding only such superiority, when an approach is made to the period of the just mentio-
ned anomalous increase. The difference, in respect to that superiority, and referably to the birth, - when the female superiority is more considerable than at most other periods, - may extend in the proportion of six to seven, or in that of seven to eight, according to the discriminated class amongst a whole population. It is remarkable, that external circumstances can have no influence on this result; ${ }^{2}$ as a similar manifestation takes place among still-born children, a much more considerable proportion of which belong to the male sex. That superior measure of original vitality in females, and apparently depending on circumstances of organization, rapidly decreases to the fifth, the sixth, or the seventh year of existence; the two sexes then exhibiting but a very inconsiderable difference of life's Specific intensity. From that period, to about the twenty-seventh year, but with a notable abridgment of this term as regards an inferior class, the female superiority re-ascends by regular gradation to an elevated maximum; after which a rapid decrease again takes place, terminating with the fortieth year or thereabouts, when the respective intensities become nearly levelled, for any but that inferior class; and those fluctuations are obviously the result of dissimilar callings in one sex and in the other, during that important period of their active lives. The female superiority then once more proceeds constantly increasing, to about the seventieth year, with an exception of the same inferior class, for which such second maximum is attained at about the fiftieth year of age; because it still retained, for that class only, a considerable elevation at the expiry of the preceding period of decline; and from this second maximum, the superior intensity of female life gradually diminishes to about the $82^{\text {d }}$ year, when it. ultimately yields that advantage to male life.
128. An original and limited period has already been
noticed, duriug which the Specific intensity increases for both sexes, by a rapid progression in the first instance, and subsequently in gradually reduced ratios, until the attainment of an absolute maximum. It is easily conceivable that the extent of this first period should be subject to considerable variations; and that admitting it carried even to the sixteenth year of age, under the most favourable circumstances, there are others under which it may-from an accumulation of human miseries-be abridged by nearly one-half, as in the case of the manufacturing classes in England, notwithstanding our vaunted civilization. Thus the rates of mortality, expressed by $\frac{1}{q_{x}}$, may vary according to the sex and class, from one death in the lapse of an ensuing year, out of 100 or 120 individuals at nine or ten years of age, to one out of 260 or of 300 at fourteen or fifteen years; until which completed terms, the Specific intensity of life shall invariably have progressed by increase.
129. About one fourth part of all individuals born, and belonging to an inferior class, die without having completed a first year's existence; whilst only one-eighth part, or thereabouts, of another class which may be selected as existing under a set of the most favourable conditions. Generally speaking, one-third of those deaths, in either case, occur during the very first month; onehalf during the first three months; and the remaining half is nearly equally divided between the last three quarters of that first year : an equality partly accounted for, by the accidents of dentition, with which those three periods are similarly affected.
130. At whatever year of age a maximum may be obtained of the quantity ψ_{x}, expressiug the Specific intensity of life, the uninterrupted decrease of that
quantity should thenceforth, and to the utmost term of life, be expected; which indeed occurs, provided that the natural course of things remain undisturbed. No medical man or. physiologist will deny, that the principle of vitality has a constant tendency to its extinetion, independently of any secondary or external causes. Admitting this position, as incontrovertible; it should follow, that, after the series η_{x} first commenced to decrease, it could not at any subsequent period resume an increasing progression, nor even remain a single moment stationary, without contradicting an express law of nature; thus leading, to the absurd conclusion of a probability, in more or less degree, favourable to immortality. Were it possible to conceive, as being successive quantities, $q_{x}=a$ and $q_{x+1}=a+1$, witliout supposing, from external and merely contingent causes, some favourable alteration in the general cireumstances of individual existence, during the interval comprised between x and $x+1$ years of age; no adequate reason could be assigned, why, if not a similar difference, at least a smaller such as $+\frac{1}{\infty}$, should not naturally take place from $q_{x+\frac{1}{}}$ to q_{x+2}^{1}, from this to q_{x+3}, and so on to infinity of time; and such oceurence of increased vitality could not possess even the smallest probability, between any two given years beyond max. q_{x}, that might not equally extend to any other two subsequent and successive years; hence to every other and similar interval, without end.

13ı. Alleged facts, however, have oceasionally becu opposed to the above argument; without considering that the probability of their having been ill-observed, or else badly reasoned upon, comes near to certainty, when such matter of fact has no better support than the infinitely small, chance that an established law of nature shall be subverted, or its course be interrupted. Let us ne-
vertheless allow any alleged facts, either well or ill. observed of that kind, the full value they could possibly possess ; and admit two distinct cases, in both of which the Specific intensity of life may apparently increase, during the interval between any one year and any other more advanced year of age.
133. First, it may happen that the greater number of individuals, whether male, female, or of both sexes, and existing within any interval of age exclusively, -became liable to excessively elevated rates of mortality, arising from peculiar but transient circumstances, that depended perhaps on social arrangements alone, and discontinued their influence at the expiry of an assigned period. In such case, the observed mortality at successive years of age might indeed represent, in the first instance, and while that influence continued, a series of excessive rates; and subsequently another series, more or less protracted, of rates progressively declining from that period. Yet adverting to the practical purposes of a Law of Mortality, - chiefly for reducing contingent sums to a present value, - it is immediately perceptible that its construction requires those influences to be abstracted, as not belonging to a natural state of things; without which, such law must defeat its main object. Reciprocal agreements, of a pecuniary descrip. tion, are essentially optional. The military engaged in war could not attach, to annuities dependent on their lives, values equal to those possessed by corresponding contingencies made to depend on the lives of other individuals collectively taken at similar ages; and any government or association, granting life-annuities on valuations computed from tables of mortality founded on any other hypothesis than that of a natural state, would inevitably lie under the disadvantage of mostly dcaling with parties subject to inferior rates of morta-
lity, referred to their respeetive ages, than the rates whieh those tables admitted.
133. Secondly, in very advaneed liee, -say from the $86^{\text {th }}$ to the $90^{\text {th }}$ year of age, aceording to the description of any population or elass, - an anomalous appearance of progressive inerease is manifested during a very few years, as to the Specific intensity of life referred to those respeetive ages onwards. Not that individual lives reeommenee actually to improve; but the great mass, comprised under the Law of Mortality, having then disappeared, - latterly in a very rapid progression, - the comparatively small number of remaining individuals at those ages are neeessarily of superior seleetion, consequently to their eontinuing to exist under a set of very favourable eonditions, ineluding the several advantages of primary eonstitution and others qualifying them as privileged persons; and these ultimately stand prominent, exclusively competing for protraeted longevity. Indeed this natural seleetion, of partieular lives, subsequently reeurs at different stages amongst eentenarians, which mostly depends on corresponding degrees of vigour in the primary eonstitution; whence arises that the rate of mortality, amongst any quantity of individuals having attained a very advanced stage of life, may in reality prove inferior to the rate exhibited amongst the much greater quantity of those who existed together at less advanced years. This anomaly was first observed by Wargentin in Sweden, and afterwards by Duvillard in Franee : it has since, been confirmed by our eotemporary Mr. Milne, and ought always to be taken into consideration, when tahles of mortality are eonstructing; beeause those results are perfeetly independent of external causes.
134. The greater number of mortality-tables refer to the age of ten eompleted years the maximum of Speeifie inten-
sity, having progressively increased from the birth, or q_{0}. Dr. Halley's tables for the population of Breslaw, Dr. Price's for that of Northampton, Duvillard's for France at a former period and limited to the population of its towns, have uniformly admitted various maxima referred to q_{20}; remarking that those different tables all apply to populations of an inferior description. The latter distinctive circumstance was probably overlooked, on a similar reference of the maxima, to the limited age of ten years, being extended to tables subsequently constructed; amongst which Mr. Milne's, relative to the population of Carlisle, as also those of Mr . Davies and of Mr. Babbage, both relative to Assurable lives. From the elevated measure of Absolute intensity announced by each of the latter three, they must be clearly understood as exclusively applicable to select classes; whence the above limitation is most likely founded in error.

CHAPTER XVII.

Of Longevity.

135. The vitality appertaining to old age is generally undervalued. The tables of mortality set forth at different periods, and by various authors, mostly assume the extinetion of life before its hundredth year; consequently to whieh the values of eontingent sums, that depend on lives exeeeding so years of age, are either precluded from appreciation, or at best eomputable from those tables at hazard and without any approaeh to aeeuraey. Sueh a view of the chances attendant on longevity is the more erroneous, as centenarians are well-eonstituted and healthy, exempt from infirmities affecting the sources of life, as also from chronie diseases of inevitable tendeney to abridge it; besides that they possess the further advantages of fixity to the soil, of uniform mode of living, and of general habits confirmed by experience to be best suited for them.
136. The privilege of longevity is chiefly prepared by the individual's primary eonstitution, the vigour of which may be infused in various degrees. To be completely effectual, this original advantage requires however the support of seeondary cireumstances, establishing a set of favourable eonditions, under whieh that individual's existenee shali have eontinued, and partly depending on the rational excreise of free ageney. The life thus privileged may, notwithstanding oeeasional departures from the strict rules of prudence, be yet protracted to an unusual length; whilst no imaginable concurrence of favourable eircumstances could
be capable of extending its term heyond the one originally assigned. It thence happens that longevity is not unfrequently propagated through suceessive generations, so long as the more essential conditions of a favourable description remain unaltered. Observations on the mortality of eentenarians seem to indicate a periodie recurrence of the anomaly deseribed in the preeeding chapter; but those observations have hitherto borne on quantities not suffieiently uumerous, for enabling to ascertain either the preeise periods, or the measure of inereased intensity of life probably attendant on a transition from any one of those periods to the next, as regards an aggregate of individuals so eireumstanced.
137. From the benefit of Longevity almost all are debarred, who partake mueh of life's indulgences; nor is it the portion of those devoted to mental oceupation. Easy and even afluent eireumstances are indeed favourable to the preservation of life during infancy, and may continue so to operate for a period more or less protracted; but those indulgenees, unless judieiously controlled, infallibly geuerate chronic diseases, tending to eurtail the natural term. On the other hand, an excessive exereise of the intelleetual powers, and generally a course of anxious life, oppose to longevity another obstacle, consequent on ineessant irritation of the nervous system; and though a eonsiderable exercise of those powers may not uncommonly allow extrance upon a rather advanced term, yet is life in that case rarely continued beyond eighty years, the individual being indebted, for such limited advantage, to his probably temperate habits, and to moderation in all other respeets. The reeorded instances of unusual longevity are, almost without exeeption, confined to old soldiers, who escaped the worse chances of war, and to peasants whose circumstances placed them but a single degree above want of the common neeessaries.

GHAPTER XVIII.

Of Eigit periods, naturally dividing the course of human life.
138. The waste of life is not governed by any uniform law, throughout every stage of our existence. At successive periods, the conditions to which that existence is subjected undergo important alterations, consequent on our varied callings, -before,-during, -and subsequently to the term of active life. Those callings are not the same for both sexes; neither, do the changes that occur, during the active part of the one and of the other's lives, correspond in respect to periodicity, character, or degree. It thence follows, that, from the period at which the Specific intensity has commenced decreasing, the progression of such decrease is governed by totally different laws, for the Males than for the Females; and that the differences, in their compared intensities of life, are extremely variable from one period to another.
139. Analyzing above a score of Mortality-tables, supplied by various authors, it is observable, notwithstanding their innumerable discrepancies and contradictory results, that human life divides into Eight periods, more or less protracted, yet perfectly distinct; and that the same conditions of existence are very nearly maintained throughout each period respectively, as regards each sex; but which conditions admit such modifications, on the transition from one period to another, that the Specific intensity of life proceeds on its decrease by alternately increasing and decreasing series
of the progressive ratios; both taking place from the ascertainable operation of combined causes.

1 40. During a first period, computed from the birth, the Specific intensity gradually increases according to a progressive law, which in the first instance is rapid, then gradually abating, until that intensity obtains a maximum at the conclusion of this first period, or about the age of puberty; say rather later, when circumstances concur towards that maximum being retarded, or on the contrary earlier, under a series of circumstances unfavourable to the individual; the latter being more frequent in the present state of things. The principle of this increase of intensity has been discussed in the $126^{\text {th }}$ paragraph.

14I. During a second period, the intensity commences to decrease, according to a progression the ratios of which are inccssantly more elevated. Its term extends to the twenty-fourth year, for the male sex, except of an inferior class; respecting which, a curtailment of the first period admitted, to the seventeeth year only, an increase of the proportions that regulated a diminishing intensity. For the female sex, this second period is protracted to the thirtieth year, when ncarly three-quarters of all marriages within the $53^{\text {d }}$ year of age are already contracted; but it is limited to the twenty-third year, as regards an inferior class, from the above-mentioned cause. This pcriod is, for the male sex, one of restlcssness, toil and danger : the human faculties are then exercised to the utmost, and life is more freely expended than at any other season. The female sex, of whom the assigned functions are quite different, and on whom greater restrictions are imposed, experiences a less rapid decrease of life's Specific intensity during the correspondinis period, which is of greater extent. Inflammatory diseascs,
often of fatal termination, arc mostly prevalent, for both scxes, during this second period.
142. A third period is marked by the intensity's continuing to decrease, but this by a progression the ratios of which come nearer and nearer to unity; until at the termination of that period the intensity may, according to the class and sex, approach a stationary quantity, even in the natural state of things. It generally extends to the $36^{\text {th }}$ year, for the male scx, and to a $44^{\text {th }}$ for the female; but with the abridgment of a few ycars, in regard to an inferior class of both. It is in course of such third period that the male sex mostly enter the married state; - that activity is moderated; - that impctuous passions relinquish a portion of their wonted empirc, - and that the usage of life is regulated with greater economy than before. The corresponding period of female life is carried on with greater uniformity, in the performance of duties salutary to health and conducive to happiness : it also admits, with regard to that sex, an incessant diminution in the proportions of intensity's decrease, without any appearance of disadvantage arising from maternal subjections. This third period develops only in a slight degrce the chronic diseascs, thereafter preparing more elevated rates of mortality.
143. A fourth period cxhibits the decreasing intensity in considerably accelerated proportions, from year to year; which proportions of the decreasc afterwards continuc with very little variation for a fcw years, during which again they possibly may diminish. The term of this period extends at least to the $57^{\text {th }}$ and at most to the $61^{\text {st }}$ year, for both scxes; except for the male of an inferior class, with respect to whom it appears blended with the next succeeding period. With that single exception, the propor-
tions expressed by $\Delta \lambda q$, of that decrease, obtain an absolute maximum for the male sex, as also a first maximum for females of all elasses. Chronic diseases, influencing the rates of mortality in a eonsiderable degree, then assume a more threatening aspect, especially as regards the female sex; whose health however consolidates, subscquently to overeoming the natural crisis whieh usually takes plaee towards the latter part of this fourth period. It is eharacterized by a comparative calmness of the human passions; but its not unfrequent attendants are the development of diseases that were only incipient, together with inereased liability to many others.
144. During a fifth period, the Specific intensity of life recommences a more rapid decline ; and the proportions of its deerease, whieh may even have abated towards the conclusion of the preceding period, obtain an absolute maximum about the $80^{\text {th }}$ year of age, regarding the female sex, generally, as also the males of an inferior elass. About the middle of that period, the maximum of deaths, in numerical quantity, takes place; which is more elevated for the female, than for the male sex, respecting which such maximum is anticipated by three or four years; and its superior quantity then results from no other eause, than the superior number of then existing females at the corresponding age.
145. A sixth, but very short period, then succeeds. Its term for both sexes, extends to the $87^{\text {th }}$ year for an inferior class, and to the $9{ }^{\text {st }}$ for a superior amongst all select elasses. It is remarkable for a rapid diminution, from each year to the next, of the differenees in the still decreasing intensities; the further decrease of which seems suspended at the expiration of that period, thus establishing a first minimum of Specific intensity.

During this sixth period, an immense majority fo the individuals who entered on its commencement disappear from the scene of life; leaving those only, who were originally constituted for longevity, to compete amongst themselves. This, together with the latter part of the preceding period, is the season of nearly absolute repose; in which the charaeter of prevailing diseases has changed, and whieh is not ineompatible with vigorous health.
146. The sesenth period, equally short, terminates for both sexes, and for all elasses, with the $94^{\text {th }}$ or $95^{\text {th }}$ completed years; and during its eontinuance, the Specific intensity of life apparently exhibits an incessant increase, asregards the colleetive masses considered at each year of sueh ages. This anomalous inerease arises from a eause explained in the $133^{\text {d }}$ paragraph; the proportions of which increase first proeeed by augmentation, and next by diminution; the natural deerease of intensity afterwards resuming its course. The preservation of life, during and subsequently to this seventh period, chiefly depends on invariably persevering in the mode of living and in other confirmed habits; as at those very advanced ages, but few unhealthy subjeets eontinue to exist.
147. The eighth and last period exelusively refers to centenarians; the law of mortality amongst whom is of more difficult aseertainment, than it is regarding any other period of life, eonsequently to the paueity of applicable data; further observing, that very little distinetion, if any, is then to be made, between classes otherwise distinguishable by the different circumstances of their existence.
148. Those various periods, considered with reference to either sex, as also to distinet classes of people, differ
not much as to their commencement, nor as to their termination; but it has already been remarked, that they do not respectivcly coineide as regards the eontradistinguished sexes, at lcast the secoud and third periods, embraeing an important part of active life. Whence, and during those two periods in particular, the inequalities of comparative intensity, between males and females at similar ages, undergo considerable fluetuations; those inequalitics being at one time a maximum, and at another time a minimum, within an inconsiderable lapse of years; say from the $26^{\text {th }}$ to the $43^{\text {d }}$, at the utmost.

CHAPTER XIX.

Of Interpolation, or a method of connecting the series of $^{\text {of }}$ Specific intensities.
149. For judiciously constructing a Law of Mortality, - the Absolute intensity of life, referable to any given population, being previously ascertained, - requires first to determine the commencement and termination of the respective periods described in's our preceding chapter; and, secondly, the due expression of life's Specific intensity at those respective stages. Such determinations, though only by approximation in the first instance, will remove considerable difficulties; a pre-ascertainment of the absolute intensity affording, in all probability, sufficient means ultimately to rectify all irregularities in the series q_{x} of Specific intensities, as also in the series f_{x} or Decrement, the summation of which must accord with that oxiginal datum; the only difference consisting in a modified distribution, referable to a stationary state of the population, which may have been progressively increasing or decreasing. Towards this accordance, many successive trials may be requisite; by means of arbitrary - though only slight modifications of the assumed expressions of intensity q_{x}, at the transition from each period to the next, until final adjustment. It is, in some degree, a work of patience; but all errors will thence find themselves mutually corrected, and there shall result from this mode of proceeding a Law of Mortality harmoniously proportioned in
all its parts, relatively to the specific class and sex being the object of consideration.
150. It cannot be concealed, that an interpolation of the successive terms q_{x}, for the first period, which is carried from the birth to the age of puberty or thereabouts, meets greater difficulty of execution, than the interpolation for any subequent period; and that the former may occasionally lie open to arbitrary determinations, which should always be sparingly and soberly resorted to. Nor is it to be imagined, that the crude results of direct experience may implicitly be relied on : the contrary is fully evinced by the enormous discrepancies of the various mortality-tables hitherto constructed, in respect to corresponding terms of the series, where the expressions of Specific intensity are considered in their passage from the first to a second, from this to a third, and from the latter to a fourth year of life, as also towards the approach to a maximum of that intensity. The operations of nature always proceed by gradation, conformable to some regular law, but never by abrupt transitions; and inasmuch as the purpose of a table of mortality is for generalized application, it becomes of necessity to regulate that early part, of the series q_{x}, relative to the first period, according to a systematic progression : absolutely not otherwise.
151. Suppose two Specific intensities, q_{0} and q_{x}, the former referred to the birth, and the latter to any completed year of age terminating the first period, during which the specific intensity of life invariably progresses by increase; and admit $\lambda \dot{q}_{0}$ and λq_{x}, logarithms of those quantities. Let the difference between those logarithms be the sum of another series $\Delta \lambda q$, formed according to the law of figurate numbers, resulting from several orders of differences alternately positive and negative; the last
of which orders, or subordinate series, composed of equal differences $\pm c$. Observing that the greater number of those successive orders of differences has the effect of accelerating the progression of increase, whilst the smaller would have that of retarding it; three or four orders, at most, should be adequate to establish a law of progression sufficiently approaching the results of crude experience, however irregularly the latter might progress; and to produce consistency as a whole. If the discrepancies between the one and the other series were so considerable, as to require their nearer approximation, always supposing the actual experience to have been correctly proceeded upon, - it will then be eligible, either to admit mean results between the two series produced by three and by four orders of differences, or else to admit another series of ultimate differences, the quantities of which positive for any part of the considered period, and negative for the remaining part, or the contrary; these having the effect of causing the immediately preceding order of differences alternately to exhibit increasing and decreasing quantities. The preference of any one of those methods is discretionary; the sole object being to regularize the primary results obtained in a crude state, with as little deviation as possible from a systematic law whatsoever; but if neither made a satis-. factory approach to those results, the original observations must then be presumed defective, more or less. It is apparent that this synthetic process, depending on the determination of a series of quantities c, either positive or negative, or on successive series of both, precludes every inconvenience; and that a rectification of any irregularities, incident to the data supplied by experience, may thus be arrived at; ascertaining that part of the series q_{x}, relative to an interval comprised between the birth and the term of that period which we first discriminated, the Specific intensity of life then commencing to decrease.
152. Inasmuch as the differences in present value of sums depending on the contingencies of life, at the severally completed years expressed by $x=0$, by $x=1$; and by $x=2$, are very considcrable; it may not be unimportant, for the purpose of obtaining a sufficient approach to correctness in those valuations, to detcrmine the decrement and probabilities of life, with reference to various intermediate periods between the birth and the first completed year, as also referably to an intermediate term between the latter and the completion of a second year of age. In regard to the former interval, the proportions according to which the lives successively drop during the first, second and third months of existence, respectively, and likewise during the fsubsequent three quarters completing a first year, have already been stated in the $129^{\text {th }}$ paragraph; the Decrement may then be adjusted, in conformity with such proportions of dcaths during those fractional intervals. Analogous results are to be obtained refcrably to a period $x=1 \frac{1}{2}$, sufficiently approaching the truth for all practical purposes; by admitting $q_{0}^{*}+q_{\mathrm{z}}$, to express the life-intensity attached to a first completed year, when measurcd in relation with the specific interval between $x=1$ and $x=1 \frac{1}{2}$; this interval supposed to participate, in an equal dcgree, of the intensitics attached to the latter half of that first year and to the first half of a second.
153. The interpolations, for periods subsequent to the first, are in many respects to be conducted from analogical considerations; and generally, three orders of differences, betvieen λq_{x} and λq_{x+n}, have been adopted in constructing the Laws of Mortality applicable to each class and sex, which it was our purpose to discriminate.

Let us now particularize the method of those suceessive operations.
154. Being given any two quantities, λq_{x} and λq_{x+n}, referred to the termination of consecutive periods; as also given their last eonneeting differences, $\Delta \lambda q_{x_{-1}}$, ${ }^{2} \Delta \lambda q_{x-2}$, and ${ }^{3} \Delta \lambda q_{x-3}$; the continued influence of each of the three latter, on λq_{x+n}, being ascertained, any arbitrary type of calculation, founded upon the law of fourate numbers, will enable likewise to aseertain the relative unit, or element c of that ealculation, referable to the last order of differences, duriag the period entered upon, and at the termination of which the quantity λg_{x+n} shall have been predetermined. That quantity c may indifferently be made positive, negative, or both alternately, at certain intervals best suiting the required adjustment of the terminating differences of the three orders; so as to faeilitate, at every suceessive proeess of this kind, the transition from one period to another, by a natural and easy connexion of inereasing and of decreasing quantities; avoiding the sudden breach of any one amongst those eonnecting links. Those proceedings embrace a great extent of diseretionary latitude; respecting which it is proper to reeall, that a succession of landmarks, q_{x}, are understood to be previously provided at the commencement and termination of eaeh period in particular, whence the important objeet of regularity may be fully obtained; and all deviations from the true law of procyression, however impossible preeisely to discover, - the more so from its being perpetually fluetuating, - are theu circumscribed within very narrow limits.

155 When the series of negative quantities $\Delta \lambda q$ have either toinerease or to deerease, the corresponding series ${ }^{\prime} \Delta \lambda q$ cannot naturally pass from the positive to the negative, nor from the latter to the former, otherwise than
by a succession of gradual proportions having their alternate maxima and minima, both in that second and in the third order of differences; and the small portion of discretionary latitude which we have admitted, being incessantly controlled by the series of facts actually observed, must remain exempt from objection; unless a permanent character were unduly attributed to those fortuitous results of experience, notwithstanding their discrepancies and the irregufarities of their mutual connexion. Hence an absolute conformity is to be sought only in the general and periodic results; whereas regularity of progression is at all times an essential requisite, under the view of an useful and generalized application of the Law of Mortality. All results, thus obtained, are certainly nothing else than systematic approximations; but in things of this nature, where positive data are - and ever must be - partly wanting, no one could possibly flatter himself with obtaining nearer approaches to absolute certainty.
156. The anomaly described in our preceding chapter, as attaching to the seventh period, does not prevent its interpolated quantities being determined by the method employed for all other periods; always carefully and gradually operating, in each of the elementary series that resolve into an ultimate serics λq_{x}, the transitions to and from that period. Regarding the eighth and last period, rather more obnoxious than any other to arbitrary determinations; and in order that the law of mortality may, with all possible correctness, exhibit the phenomena especially belonging to longevity, at its variously advanced stages, the following method of proceeding, to determine the remaining part of the series of Specific intensities, has appeared best to answer the desired pu'pose.
157. Whatever may be the quantity $\lambda \eta_{94}$, or Loga-
rithm of the Specific intensity measured for the ensuing year, from the completed $94^{\text {th }}$; suppose, for the male sex, nine equal subdivisions of that last period, each of which embracing twelve years; whilst eight only, in similar extent, of those subdivisions for the female sex; and assume the utmost term of longevity to coincide with the termination of the last subdivision, in both cases. Then, and according to the sex referred to, admit an abatement either of one-ninth or of one-eighth part of the quantity λq_{94}, at the expiry of each twelve years; as also $30 c$, to represent such equal quantities of abatement; and lastly, interpolate for each year of that interval, by successively abating $0, c, 2 c, 3 c, 4 c, 5 c, 5 c, 4 c, 3 c, 2 c$, c, and o; whence the Specific intensity will be represented. as stationary during three years, of which one to precede and another to follow each completed subdivision of the eighth and last period of life. It is very probable that, about the termination of such respective subdivisions, the corresponding expressions of intensity should admit further anomalous increases, as remarked in the 133^{d} paragraph; causing those expressions to proceed alternately increasing and decreasing, during six years respectively, though with preponderation of the decrease at each stage of advance. But this, as a matter of fact, is not sufficiently confirmed by indubitable experience, to allow of its being as yet introduced into the Law of Mortality.

CHAPTER XX

Of the talles admilted, by an Act of the British Parliament, to regulate the valuation of Life-annutities granted by the Exchequer.
158. It is not our purpose unnecessarily to dilate on the numerous Mortality-tables of which the public is already in possession. Amongst their different authors, Halley, Sussmilch, Kersseboom, Price, Simpson, Deparcieux, Duvillard, Mourgue, Milne, Davies, Babbage, Gompertz, Finlaison, and Riekman,-the latter half are our respeetable eotemporaries; and it may be suffieient to exhibit under a synoptie view the results at which they severally arrived, however diserepant, eonsequently to the diversity of time, place, and circumstance. In the number of those tables, however, are two constructed by Mr. Finlaison, and respeetively referred to the discriminated sexes, as also understood applicable to the speeific elass oi Life-annuitants and Tontine-nominees. They having been admitted, as a law of the land, to serve as regulators in the valuation of Life-annuities thenceforth to be granted by the Exchequer of this country; and the writer of these pages having conceived proper, at that time, to warn the legislature against blindly adopting a measure of such nature and importanee, without previously obtaining the opinion of a plurality of persons competent on a matter of their department; it beeomes the more imperative on him, here to eonsign his prineipal objections to those tables, as, - in disregard of his petition hereafter transeribed, - the ministerial influenee obtained a Bill to.
pass, sanctioning such a practical application of Mr. F.'s tables, as they are unlikely to meet any where else.
159. The following petition is copied from the official reports of the House of Commons; bearing date the $20^{\text {th }}$ March 1829, n° 2447, pages 1031 to 1034 :-

A Petition of Francis Corbaux, of No 5, Hercules Buildings, in the parish of Lambeth, County of Surrey, Gentleman, was presented and read; setting forth, That a Bill for enabling the Commissioners of the National Debt to grant Life Annuities, as also deferred Annuities of a similarly contingent description, is understood to be before the House, callcd upon for sanctioning a ccrtain scale of valuations applicable to those periodic and contingent payments, although every means of asccrtaining not only the accuracy, but (what is still more important) the specific fitness of such proposed scale, scem to be purposely withheld; the Petitioner humbly submits, that the possession of adequate information on the subject by the House is not attainable otherwisc than through the publication of any tables of mortality upon which that computation of relative values has necessarily been founded, whence the scientific men with which this country abounds being afforded an opportunity of investigating those elementary data would not fail to cast such light upon the matter in discussion as to remove from the House all causes of doubt or uncertainty; the Petitioner further submits that, from the sole motive of contributing to the advancement of general knowledge, he has devotcd many years, at great personal sacrifices, to arduous researches concerning the mattcr now before the Housc, and in particular as regards the natural law, according to which the waste of human life at its successive stages is governcd, as also regarding the very considerable modifications which that Law undergoes, consequently to a discrimination of the different circumstances attending the existence of a whole population, or of any sclect portion of it requisite to be taken into especial consideration, and that, laving applied analytical methods of his own, and of a most elaboratc description, to those researches, with a view to results more accurate and precise than those usually obtained from analogous investigations, he may, without incurring the charge of presumption, venture to assert his competency for entertaining a digested opinion on those subjects; in hope, therefore, that this apology for interference will be received with indulgence, the Pctitioner begs leave, additionally, to submit that a report commonly prevails of certain statements urged in the shape of information for the House, and in support of the above-mentioned Bill under its' consideration, but which statements, or rather allegations, are ascertained by him to be devoid of foundation, and completely at variance with the best authenticated facts; one of those allcgations appears to consist in the pretended discovery that a life aged fifty years, had a superior probability to that of another life aged forty years only, of

106

enduring for the term of one more year, viewing those two lives as respective averages, and it is said that this extraordinary and general position was thought to have been proved by a reference to specific tables of mortality, usually denominated the Northampton; justly fcarful, lest such an allegation, if received upon trust in the supposition of its emanating from indisputable authority, and if coupled with any others errors of which it warrants the suspicion as still more extensively vitiating the whole set of proposed valuations, obtained undue influence on the decision of the House, the Petitioner conceives it of urgent necessity that he should here consign a correct representation of the mis-stated fact, in order that their vigilance may be called forth to avert the misfortume of legislating in utter darkness upon a subject involving a series of complicated questions, beset with difficulties of which none but scientific persons can be sufficiently aware, thus endangering the high character for justice and for sagacity, which the British Nation and its Representatives in Parlianent are'accustomed to maintain; the Petitioner abstains, for brevity's sake, from dilating on a physiological principle, which at once disproves the possibility that any collection of persons aged fifty years should possess an intensity of life superior to that of another collection equally numerous, of persons aged forty years only, and in other respects existing under similar conditions with the former; that principle, known to inedical men, being that the phenomenon of respiration, whilst it maintains the vital spark, is also one of effectual though slow combustion, in proportion with whose advance the human frame retains in a less degree the power of repelling any causes of destruction by which it may be assailed; neither wilt the l'etitionner permit himself the latitude of adducing, as proof relatively to a controverted matter of fact, any results to which he may have arrived through his own researches, but, he begs leave unhesitatingly to state in the first place, that the Northamplon tables of mortality show, on the contrary of what appears to have been quoted from them, that if any quantity of deaths returned during the next twelve months, amongst a collection of individuals aged fifty years, be referred to one thousand living at that age, not less than one thousand three hundred and fifty-six amongst the living at forty years only, will be requisite for returning an equal quantity of deaths during the year following, or next interval of age; and secondly, the Petitioner, after carcfully analyzing not less than twenty different statements of the law of mortality published at various periods, as also in various countries or districts, each of which statements, deduced from a specific set of actual experiments, is cnabled beyond all possibility of mistake to state before the House, that on an average of the whole, a superiority is exhibited in the proportion of fourteen hundred and twenty-one to one thousand, as to the intensity of life at forty over that at fifty years of age, the superiority on the same side being also manifested by every one of those statements individually, whilst no set whatsoever of experiments on the mortality of mankind, and known amongst scientific men, has even the smallest tendency to revert this position; the Petitioner again has to submit, that inasmuch as the gradual
waste of life is demonstrated to proceed by a series of annual proportions, differing very considerably with reference to the discriminated sexes, it cannot become indifferent to admit or reject the application of a specific law of mortality for each sex in particular, but that he is perfectly convinced of the indispensable necessity to proceed upon distinct tables for male and for female annuitants, towards a correct valuation of the life-annuities that may henceforth be granted, without which, in this age of speculation, profitable systems would probably be acted upon to the detriment of public economy, through the selection of female nominees at suitable ages, which might also be attempted through a selection of peculiarly healthy nominees of either sex, and admitted at very advanced ages, in case that any adopted law of mortality were not perfectly appropriate; and in the latter respect the Petitionner begs leave to submit, for the consideration? of the House, a few concluding remarks, the peculiar importance of which he hopes to be allowed to press upon their attention; from a spirit of indiscriminate routine, it has been too prevalent a custom to assign in the construction of mortality-laws, a greater value to the fortuitous results of limited experiments, than they are entitled to possess, and to admit an indiscriminate application of those laws, whence enormous miscalculations have frequently been generated, which cannot be too much guarded against for the future; any law of mortality embracing a whole population can apply but to statistical purposes only; for all others, and especially with reference to financial or pecuniary transactions, the application of specific laws, deduced from an exclusive consideration of the classes of persons respectively to be dealt with, becomes an indispensable requisite; few, amongst those whose special attention has not been directed to these matters, are aware of the wide difference existing between the extremes, in respect to the classification of which an entire population is susceptible; in such classification the annuitants must be assumed to hold the first rank, as existing under a set of definable conditions nearly common to them all, and being peculiarly favourable to the preservation of life throughout its successive stages; whilst of the same population, that part which is the object of our Benefit-Societies may be considered very nearly as the other extreme; no public institution undertaking periodic payments made to depend on the continuance of life amongst the first of those classes, or else receiving from individuals of the other class periodic coutributions of a similarly contingent description, and computing in either case the present value of such contingencies according to the law of mortality referable to an indiscriminate population, could possibly escape ultimate ruin, whilst the reverse may happen in other instances, when the applied law is too favourable for the undertaking party; but with regard to the first remark, as connected with the. immediate object before the House, the Petitioner firmly believes that any series of cxperiments afforded by the Government Annuity-Office alone, must be still too circumscribed towards the construction of laws of mortality applicable, without danger of material error, to the discriminated sexes, and for an object so permanent as the one contemplated for the House to legislate
upon, and he conccives that their construction, in order to establish correct proportions, as also to maintain a proper gradation of those proportions in the respective valuations, ought to procced upon a much more enlarged basis, which cannot otherwise be supplied than through extensive research aided by mathematical analysis, without excluding the consideration of data supplied by other Countrics; it would he useless to conceal that our own Country can at best afford, very scanty materials towards that desirable object, consequently to a loose and imperfect system of registering the births, marriages, and deaths, especially in what relates to the ages of the parties concerned; to admit that the construction of any mortality-law, truly and equitably applicable to the Annuitants of this Country, should require its being proceeded upon a series of observations confined to British lives only, would be arguing from the most frivolous distinction, and demanding what at present is scarccly obtainable in any satisfactory shape; indeed, whether in Great-Britain, or in almost any other part of Europe, very little, if any distinction at all, is to be made between the values of lives existing under similar circumstances, and supposing that the class alluded to were defined, first, as possessing a physical Constitution and conformation exempt from any material defect ; secondly, as having the means of wholesome subsistence in all probability assured; thirdly, as being dispensed from employments endangering life, or obviously tending to abridge it; fourthly, as habitually residing on a salubrious soil; fifthly, as bcing free from disease or chronic complaints at the tine of their becoming nominees, besides a presumed non-liability to the small-pox; a Law of mortality deduced from the considcration of circumstances thus generally defined, whilst a discrimination of the sexes were provided, would without danger of important error be found applicable to all life-annuitants existing throughout the world; from all which considerations the Petitioner humbly prays the House, first, that ncither the prosent nor any other Bill for the purpose of enabling the Commissioners of the National Debt to grant Life Annuities on a specific scale of valuations, may pass the IIouse without their previously having ordered the publication of all grounds upon which such valuations are to be computcd, nor without having afforded the whole body of scientific men an opportunity of rectifying the elements of those computations, and of casting all possible light on that intricate and highly improvable subject; secoudly, that no Bill for sanctioning the valuation of periodic payments whatsoever, intended by the Government, and to depend on the contingericies of human life, may at any time so pass without its being provided for the computation of a distinct scale of their valuation with reference to each sex, as also without a previous sanction of the specific tables of mortality upon which such computations are to be founded; thirdly, that no Bill, such as above described, may pass without an adequate provision for preventing frauds which might be practised, through the substitution of living persins, for nominees whose lives were actually extinct ${ }^{2}$; fourth and last, that before granting their sanction to any scale of the valuetions above-mentioned, the House do take into its cnlightened considcration
such inconveniences as are not unlikely to arise from the admission of fluctuating values, to correspond with casual fluctuations in the market-price of other public securities, which inconveniences the Petitioner conceives to outweigh any others attending the adoption of a standard ratio of perpetual interest, towards computing the relative values of the different contingencies.
160. The tables, to which the matter of this chapter alludes, should be repudiated on the following grounds,
161. First : Because the Absolute intensity of female life is there exhibited in the very exaggeratcd excess of five years and seven-tenths, over that of male life; although the question is concerning a class of select lives, which admits only a minimum of superior intensity possessed by the former sex, or at the utmost an excess of three years.
162. Second : Becatise the Collective intensity, in regard to the one and to the other sex, is exhibited as invariably decreasing from the very first year of cxistence; although an increase, during the first five or six years, at least, is an incontestable result of the vitality's rapidly progressive consolidation after that first year; but which progression has never failed to become manifest, according to experience, proved by every one of the numerous Mortality-tables hither to constructed, except these two only.
163. Third : Because the Specific intensity of life is there presented, regarding the males, as eight times greater, and regarding the females as even nine times greater, for the interval separating the second from the third year of existence, than it is for the immediately preceding interval, or that from the first year to the second; being a most unaccountable and utterly inadmissible disproportion, to whatsoever minima such intensity might by possibility be reduced for the first year of life,-as also for the respective
sexes, - and to whatseover maxima it might upon justifiable grounds be elevated for the second year, especially with reference to a select class. It should howerer be remarked, that those tables have left entirely out of consideration every result concerning such first year of existence; which has required to supply the expression of its Specific intensity, in order to complete the decrement, and to discover, by summing up its successive terms for each sex, their respectively Absolute intensities, which any law of mortality has necessarily to render manifest. At the same time, the vacuity thus filled up, - by admitting for that first ycar, and with reference to each sex, measures of Specific intensity equal to those corresponding with the present writer's tables relative to the same described class of people, - will by no means be found to the disadvantage of those now criticised.
164. Fourth : Because, under the admission of those supplementaryresults, - without which, and if more elevated intensities were introduced for that Specific year, this fourth ground of objection would acquire but greater force, - it is made to appear that one-half of all females born, of the class referred to, attain the comparatively advanced age of fifty-seven and a half years, whilst a similar proportion of the males appeared to outlive their forty-eighth year of age, only. Although the latter result, as unconnected with the former, may unquestionably be admitted, an Equation of life so elevated at the birth has no example amongst any class of individuals congregated together in considerable number, even of the female sex exclusively; neither any example of a difference so enormous as ten years, between the Equation of life for the respective sexes and referred to the birth. Further observing, as regards the female, that not less than three-quarters of the whole are supposed, by Mr. F's tables, to attain the completion of twenty-one years; which is another result of these, quite
failing to be borne out by ascertainable facts. The various results observed upon, under this head, are set forth notwithstanding that the progressive increase of female life's Specific intensity is made to terminate with the elesenth year, whilst that of male life is exhibited as extending to the thirteenth completed year of age; which implies the subversion of an established fact,-i. e. that such increasing progression of intensity is generally carried rather further on, in case of the female, than in case of the male sex.
165. fifth : Because, - comparing the Specific intensities of life, as announced, - there appears two consecutive quantities $q_{3}=80.088$ and $q_{4}=96 \cdot 332$, relative to the male sex ; whilst, as regards the female, two other corresponding and consecutive quantities $q_{3}=91^{\circ} 092$ and $q_{4}=94.549$. Now at the ages of three and of four years, at which any consideration of sex has the least possible influence towards diversifying such results between the contradistinguished male and female, - when the conditions of their existence, and all other concomitant circumstances, are alike, - it is utterly impossible that a difference of the Specific intensity, referable to so short an interval, should thus extend to $20 \mathrm{I} / 4$ per centum in the case of males, and at the same time to no more than $33 / 4$ per centum in the case of females. Considerable disproportions of the same kind, between the compared intensities for both sexes, at intervals of a single year, again recur referably to the ages from 7 to 8 , from 12 to 13 , from 14 to 15 , from ${ }_{17}$ to 18 , and from 19 to 20 years, etc.; and disproportions so intolerable, between results which should naturally bear due analogy with each other, could doubtless not have failed to strike the author of the tables, had he but enlarged his general considerations as far as to those comparative intensities.

II 2

166. Sixth: Because a further discrepancy of mannitude is observable, in the corresponding results referred to the different sexes, and consisting of the Absolute intensity of femalc life being made to assimilate with the Specific intensity referred to 61 or 62 years of age; whilst the Absolute intensity of malc life is assimilated, with its Specific inteusity, cven cight years earlicr, or at the age of 53 or 54 ; thus showing, as in 'many other instances of compared results, that the advantages especially belonging to female life have been greatly overrated by the same author.
167. Seventh : Because the Spccific intensity of male life is misrepresented as equal, at the very remote ages of twenty-four and of forty-cight ycars; at the samc time as an increasing progrcssion, of that intensity, has been admitted during the first half of that interval, and then a decrcasing progression-even divested of regularity during the other half; in such manner, that the intensities at thirty-four and at thirty-five years of age are made to excced those at twenty-ihree and at twenty-four years, in clcvated proportions as eight to seven. The motives of objection to those contradictory results have been substantiated in the preccding paragraphs, $124^{\text {th }}, 130^{\text {th }}$, $131^{\text {st }}$, and $132^{\text {d }}$; consequently to which motives, such rclative statements, in the table referred to male lifc, ought to forbid its application for practical purposes; unless the individuals of that sex, and existing at a certain interval of age, were clearly shewn to be suljected, exclusively of those at any other ages, to special and disadvantageous circumstances, capable of disturbing in so material a degree the naturally and gradually decreasing proportions of the Spccific intensity of life at successive years of age, after the previcus increase had terminated. When statements are advanced, thus at variance with a law of nature, there is sufficient warrant for unhesita-
tingly pronouncing them absurd, notwithstanding a few favourable but probably fallacious appearances; and then it is ineligible to generalize such apparent results, without a previous and thorough investigation, which should satisfactorily account for the cause whatsoever of such obvious discrepancy.
168. Eighth: Because the Specific intensities of life, compared with respect to the contradistinguished sexes at similar ages, are occasionally exhibited in most exorbitant disproportions, favourable to the female; namely, at the age of twenty-three years, where that intensity is made to appear in a ratio of superiority as five to three, over the intensity possessed by the males; which elevated ratio is even exceeded for all ages comprised between the 53^{d} and 62^{d} year, and carried to an excess extended in the proportion of $r \cdot 77$ with reference to the particular years $55^{\text {th }}$ and $85^{\text {th }}$, as also to some others more advanced. Although the superior intensity of female life is fully established, yet is it circumscribed within narrower limits than the above, and attains a maximum at about twenty-five years of age; when, comparatively with the intensity of male life, it takes place nearly in the proportion already very remarkable of ten to seven, bui afterwards' obtains a rapid decrease to about the fortieth year; the respective intensities then becoming almost levelled, consequently to the male sex being rather favourably circumstanced at that time of life, from a more settled and better regulated mode of living than at preceding periods. But the tables, alluded to, exhibit even at the latter age a superior female intensity, in the proportion of six to five; which indeed should not, after the thirty-fourth year, re-appear until the sixty-fifth, nor then continue so elevated any longer than a few years. The present remarks are in accordance with enlarged experience, evinced by the analysis of a
great many tables of mortality, brought under a comparative point of view, in all their particulars.
169. Ninth: Because, regarding either of the two criticised tables, the series of Specific intensities q_{x}, resulting therefrom, - or preferably the corresponding series of logarithms λq_{x}, the question being of geometric proportions which the expressions of intensity bear to each other, - render conspicious, on proceeding to analyze, by deducing from such respective series various orders of their successive differences, that all notion of regular progression, in connecting with each other those quantities λq_{x}, or their elements, has been unthought of or disregarded; thus manifesting the absence of controlling principles whatsoever, in the construction of those tables, from materials employed in a most crude state.
${ }^{170}$. Tenth: Because a numerical maximum of the periodic deaths, - which, considering the reference to a superior class of selection, happens not very inaccurately to be rendered apparent at the $7 \mathrm{I}^{\text {st }}$ completed year of age for the Male sex, - is made to correspond with the completed age of 78 years as regards the Female, and then in an unwarrantably disproportionate excess over the former maximum, or that of male deaths; whilst in fact the latter, taking place even as late as the $71^{\text {st }}$ year, precludes for the other sex the occurrence of a corresponding event later than the $75^{\text {th }}$. The contradictory character of those statements is obvious; inasmuch as it will immediately strike the observer, that if any given quantity of either sex, and existing at seventy-one years of age, produccs three deaths within the next succeeding year, the necessarily much reduced quantity of the other sex and having outlived the more advanced age of seventycight years, - admitting equal quantities born of both, - could not, with even the smallest probability, produce
four deaths; which excess in the proportion of three to four, or thereabouts, is actually rendered apparent by those tables.
170. Eleventil: Because it is there stated, as outliving the $91^{\text {st }}$ year of age, a quantity six times greater of the female than of the male sex; a disproportion which, only three years later, is made to extend to ten times more female than male survivors; and again, three years further on, to upwards of twentr times more of the one than of the other. The excess of female survivors had already been presented in those tables, and refcrably to eightr-four years of age, as extending to twice the quantity of malcs, this even constituting a most inadmissible disproportion; whence any further commentary, uuder this head, is uncalled for.
171. Twelftil and last: Because the vacillating progression of each series, that express the Specific intensities of life at sticcessive years of age relatively to the res: pective sexes, proclaims a lamentable estrangement from any sort of settled principles, that should have guided and coutrolled the computation of tables intended for application to enlarged and public purposes, whilst laying claim to so imposing a sauction as that of the legislature. In the progressive quantities set forth by those tables, as well as in the natural deductions from them, a mathematical regularity, founded upon admissible principles, and due harmony between the various parts, not less than between each part and the whole, were not any thing short of indispensable requisites.
172. Each of the above-stated objections is forcible; and when taken collectively, they may be expected, in the judgment of scientific men, to outweigh even the authorities upon which the tables alluded to are at pre-
sent received. Without adverting therefore to objections of a minor description, it is safely to be pronounced, that any computations, which from those tables might be made of the values of contingent sums depending on human life, must in a greater or less degree be remote from accuracy; and that any professed tabulation of values, so grounded, could not fail to exhibit series of quantities unwarrantably disproportionate, with still greater disproportions and inaccuracies in the comparative valuations referred to the discriminated sexes.
173. The adoption of any principle, or method, implies the acceptance of all its possible consequences. Had Mr. F.'s attention been but for a moment arrested on one single consideration, - that an enormous and utterly inadmissible excess of nearly six years, in the average duration of female life over that of the male, became the unavoidable result of his other admissions, - he could not have failed to perceive many of those errors made the subject of the present chapter; and he must have shrank from seeking the sanction of a British parliament, to an assemblage of unharmonious and incorrect results, deduced from his undigested data.

CHAPTER XXI.

Of the Comparative quantities of Births, Male and Female.
175. This important question, of the comparative quantities of births belonging to each sex, has undergone frequent discussion, without precise result; and it requires to be solved from data ascertained on an extensive scale. The proportions which those quantities bear with each other are variable, according to time, place, and circumstance; the latter being apparently connected with some physiological cause, assignable only as more or less probable, from repeated coincidences of similar or analogous results equally traceable to such assumed cause. It may be remarked, that in France, in Prussia, and in some other countries, - where no inconsiderable portion of the male population has been periodically consumed by protracted and destructive wars, - the births of that sex have occurred in proportions more elevated, comparatively with the female births, than in countries wholly exempt from, or in less degree obnoxious to a like circumstance; and it is further remarkable, that the births in wedlock also take place, universally, in a more elevated proportion as to the males compared with the females. It is therefore likely, that some natural cause may operate to the same effect in hoth instances; and before inquiring into that cause, it will be proper to establish the results of the best authenticated data in our possession.
176. A general understanding, derived however from
data of great uncertainty, is that in Great-Britain the male births are to the female in the proportion of about 22 to 21 , cxactly corresponding with what appears to

- have taken place in France at a period not very far removed from the present; for we are informed by Mr. Milne, that on an average of the three years, 1800 , 1801 , and 1802 , the supcrority of malc births was there in the proportion of $1 \cdot 0477$. The same author statcs, with reference to experience in England and Wales, during 40 ycars ending with 1810 , that the malc births were as $1 \cdot 042$ to one of the female, being nearly as 25 to 24 ; and Mr. Nicander states nearly the latter proportion, or $1 \cdot 04595$, with reference to Sweden and Finland, during 20 ycars' obscrvations ending with 1795 . At the same time it is ascertained, by experience of the last twenty years or more in France, that marriages, there, produce sixteen malc births to only fifteen female; that the illcgitimate births of the respective sexes, occur in ncarly the same proportion as the gencral births formerly did; and that all birtlis, indiscriminately considcred, have been comparatively as seventeen males to sixteen females, or very nearly in that proportion.

177. The decennal returns of births, deaths, and population, throughout the extent of Grcat-Britain, fail to supply a satisfactory solution of the above question, relatively to this country; the returns of baptisms and of burials, - besides their being incomplete, - omitting the distinction of sexes, and inasmuch as the returns of population, at the expiry of each decennal period, though introducing that distinction, are justly suspected of crror. A discrimination of the sexes, referably to the births and to the deaths, through some mode independent of the church-registcrs of haptisms and of burials, - which are very far from completely accounting for the two former, - would be conclusive, as also of easier attainment
than correct data by a direct enumeration of the population of both sexes. We must therefore again resort to the public records in France, for complete, correct and authentic data; which with their compared results, towards a solution of the proposed question as regards that country, are as hereafter.
178. Those records, for the fourteen years commencing with 18 r 7 and terminating with 1830, convey the following information :

179. The following further results are deduced from the above stated data:

180. Those results, deduced from incontrovertible facts collected on a large seale, establish that the male births coustantly oceur in quantity superior to that of the female; that the proportion of the former births' superiority is not permanent, but fluctuating under a dependance on some variable and perhaps aseertainable cause; and that this cause, whatsoever, has continued to operate with a progressive deerease of intensity, throughout fourteen years of the latest recorded experience in France. The same results also establish, that the superior proportion of male births is much greater in respeet to those taking place in wedlock, than it is amongst the illegitimate; which romarkable circumstance indicates probable identity between a eause permaneutly operating, in the lattercase, and the cause which in the former produced a regularly progressive reduction of such male superiority. It is further remarkable, that the proportion of this superiority, amongst the illegitimate births, has undergone only slight and irregular variations, partly ascribable to.
the smaller compared quautities; leaving the results more under the dominion of chance, in this, than in the other case. Adverting to the commencement of this chapter, where warlike circumstances have been pointed out as probably determining an increased proportion of superiority in the male births, it is seen that such probability has derived support from the additional fact of a deviation from the regularly progressive decrease of that superiority for the years 1824 to 1827 , which period exactly coincides with the event of an army having bcen, á year or two previously, raised in France for the invasion of Spain; and those various circumstances, together with the announced inferenccs from them, are in perfect accordance with the principal fact, fully established with reference to all times and to all places, $i . c$. that the males, whose lives are of more precarious tenure, and whose Absolute intensity of life measures at lcast threc years less than the absolute intensity of female life, are at the same time born in quantity superior to that of the females; thus shewing Nature's constant tendency to maintain or to restore a requisite equilibrium between the sexes. Let us now recall those statements, from which our argument take its departure.
181. Admitting, at each stage of the fourteen years' experience, average results of the last five years, in order to obviate inevitable irregularities produced by the fortuitous events of specific years; it is found, in the distinct case of legitimate births, that, during the years 1817 to 1821 , those of the male have exceeded those of the female sex, as $1 \cdot 067612$ to unity; being in a proportion even superior to sixteen of the former, compared with fifteen of the latter : : a proportion ultimately, or on averaging the five years $1826-1830$, reduced to $1 \cdot 061487$, which is even inferior to that of ${ }_{17}$ compared with 16 . It is also found, in the distinct case of illegitimate births,
that the first five years have averaged a superiority as $1 \cdot 047336$ to unity, or nearly as 22 to 21 ; whilst the ultimate and equal period exhibits a superiority expressed by $1 \cdot 038366$, or nearly as 27 to 26 . And lastly it is found that all those births indiscriminately considered, whether in or out of wedlock, have taken place in the proportion of 1.066227 male to one female, or rather less than 16 of the former to 15 of the latter, in respect to the first five years of the experience; which proportion of superiority has, for the last similarly averaged period, been reduced to $1 \cdot 0598$, or as 17.7 to 16%.
182. Having regard also, at each stage of that Experience, to average results from its commencement to the periods successively arrived at, it is otherwise found, that amongst legitimate births the superiority of males has been originally 1.074277 , or nearly as $141 / 2$ to $131 / 2$, and ultimately 1.065112 or nearly as 16.4 to 15%; further that amongst illegitimate hirths, the superiority has gradually increased during the first half of the period to $1 \cdot 0$ 49263, or nearly as $21 \mathrm{I} / 2$ to $20 \mathrm{I} / 2$; thence decreased during the other half, to 1043877 , or nearly as 24 to 23 ; and lastly that all births without distinction, which had for the first year exhibited $1 \cdot 071958$ as the proportion of male superiority, or nearly as 15 'to 14 ,' have ultimately yielded that of $1 \cdot 063603$ only, or about $163 / 4$ to $153 / 4$, as an average result of the whole fourteen years' experience. It is then very likely, that in case of a renovated state of continental warfare, the excess of male births over the female, in France, would re-ascend to the proportion of $141 / 2$ compared with $131 / 2$, as in the specific year 1817 , if not become still more elevated; and those results of experience confirm the highly probable hypothesis, that any greater relative quantity of population, either male or female, when compared with that of the opposite sex, - and admitting those only of both who cxist at ages fitted for procreation, -
will tend to elevate the future proportion of births among the sex in which such relative quantity is the least.
183. During the same fourteen years' experience in France, the male population has increased by 1377754 , excess of the births over the deaths, whilst the female population by 1079187 only; ${ }^{\circ}$ and if we admit the statements in our $90^{\text {th }}$ paragraph, - subdividing the population of that country, in the year 1817 , into 14463252 males and $154 \times 48^{8} 2$ females, - it will appear that the excess of the latter, over the population of the former sex, was reduced in the year 1830 to 652963 individuals; which excess, in the quantity of females, extended to 951530 individuals thirteen years previously. It is further observable that, relatively to the then existing quantities of each respective sex, the male's increase has been in the proportion of six to five, compared with that of the female by such excess of births over deaths among the latter.
184. Another point worthy of being considered, and on which the last three series stated in the $179^{\text {th }}$ paragraph convey accurate information, is, that during those fourteen years' experience in France the relative quantity of illegitimate births, compared either with the legitimate or with all births generally, has constantly increased for the first ten years; after which, and for the last four years of that experience, such relative quantity has slightly decreased. Regarding each year individually, the proportion in 1817 was one illegitimate to 14.09320 legitimate births; the latter quantity reduced in 1826 to 12.70467 , and this raised in 1830, to one illegitimate birth compared with 12.97234 births in wedlock. An average of the first five years yields the proportion $:: 1: 13.77849$, and that of the last five the proportion $:: 1: 12.84805$; whilst the general average is :: $1: 13 \cdot 18250$, for the whole fourteen ycars' experience.
185. Towards a comparison of the preceding, with analogous results for the population of Great-Britain, we fail to be possessed of the requisite data. From such however as arc accessible, through the decennal returns under parliamentary authority, a fcw valuable inferences may be deduced. Adopting the principle, - that in case either of a stationary or of a progressive population, in stated amount, the respective quantities of each sex, though not ascertained, are detcrminable with near approach to the truth, by combining two clements only, i.e. the relative quantities of pcriodic births, respectively male and female, and the relative measures of life's Absolute intensity in each sex; - it has accordingly been proceeded, in the $90^{\text {th }}$ paragraph, to subdivide into respective totals of male and female the established population of France in the year 1817 . The statements in the $91^{\text {st }}$ paragraph have then shewn, - consequently to the periodic increase of those respective totals, by the births' excess over the deaths for each sex, - that the population of that country, in the year 1830, consisted of 15841006 males and of 16493969 females; those quantities being in the proportion of 1.04122 to unity, and expressing the relative superiority, in number of the latter sex, at the close of fourtcen years' experience. Admitting on the other hand, in order to procecd conformably with the above-mentioned principle, average results of the first seven years of that experience ; the Absolute intensity of male life has been found $33 \cdot 84929$ years, whilst $1 \cdot 065064$ the proportion of superiority as to the births of that sex, and the corresponding intensity of female life has also been found 37.42147 years; whence the quotient of this quantity, divided by the product of the preceding two, indicates $1 \cdot 03800$ as a proportionate excess of the female population over the male; and the látter quantity differing so little from 1.04122 , or the proportion of excess manifested with reference to the year 1830, it may safely be concluded
that any possible errors, which might be consequent on the computation, partly proceeding, from hypothetical admissions, must be circumscribed within very narrow limits. Then, considering 1004 to be a very probable expression of the female population's exccss over the male, in France, we have to compare with it the following results, deduced from official returns respecting GreatBritain, as far as their accuracy may be relied on :

YEARS.	MALE population.	FEMALE POPURATION.	relative quantities of females.
In 1800	5450292	- 492354	1400772
In 1810	6340214	6269650	0.98887
In 1820	7137018	7254613	1.01648
In 1830	8161618	8375780	1-02624

186. Notwithstanding the discrepancies of those rclative quantities; and observing only that the female supcriority of numbers here appears to have proceeded by increase, whilst in France it has been obviously proceeding by decrease; it is on the whole pcrceptible, that our female population exists in less excess than the female population of that country, over their respectively male populations. Further considering the quantity of female births, compared with that of the male, to be rather more considerable in Great-Britain than it is in France; it follows, that the above-stated proportions inferior to $1 \cdot 04$, could not result from any other cause than an inferior standard of female life's. Absolute intensity or average duration, in the former country, comparatively with that intensity in the latter. Whatever increase, therefore, such intensity may for sometime past have generally obtained in England,
it may be considered almost certain that its female population has failed to partake of it in a corresponding proportion; whilst it is highly probable that life's Absolute intensity for both sexes indiscriminately considered, in this country, remains inferior to its present standard in France.
187. The manifested proportions of superiority in the male births, over the female, must partly depend on the comparative quantities existing of each sex, not only amongst the whole population, but also amongst the males and females within certain intervals of age. In which point of view, it is remarkable that the Law of Mortality relative to an entire and considerable population,exemplified by that of France, in which the sexes however are discriminated, and admitting seventeen male births to sixteen female, - represents very nearly equalized quantities of survivors at twenty-one completed years of age, amongst the former, as also at fifteen years anongst the latter; and it is further remarkable, that compared according to the same law, as also under a similar admission, the quantity of males living between twentr-one and fifty-nine years of age, and the quantity of females living between fifteen and fifit-three years, - both those intervals of age supposed preferably eligible, - are likewise found very nearly alike. But it must always be understood, that those remarkable results are expressly referable to a Stationary population, from which condition the population of France is considerably divergent ; the data being wanting, towards a precise ascertainment of its actual distribution in that case. As any present divergency, from a distribution referable to the former case, ought to have a corresponding operation in regard to both sexes, the apparently excessive superiority of male births, compared with the female in that country, should be chiefly imputable to a greater or less disturbance, also, of
equilibrium between the existing numbers male and female, either within the above-stated intervals of age, or within any other best appropriated to the intercourse of sexes; and to such a law of nature is, doubtless, to be referred any observable disproportions between the quantities of periodic births of each sex in other countries.
188. The question may be worth a more diligent investigation than shall here be attempted:-Whether or not, among the many admirable fitnesses of means to Nature's final purposes, an equilibrium of the populations is maintained consequently to each sex being collectively supplied with a nearly equal quantum of vitality; reciprocally counterpoising the respective products of the births multiplied into any standard of life's intensity referred to certain intervals of age, and involving an adequate allowance for such variations of that intensity as depended on accidental modifications in the general conditions of human existence? - Further, may it not be, that in such providential dispensation, any disproportion in excess of quantity, as to the living of either sex in particular, and within certain limits of age, should determine with greater or less proximity a more elevated proportion of births of the other sex?-Again, to what cause should be ascribed a very remarkable difference of proportion, as to the births divided between the contradistinguished sexes, when those births are referred to the wedded state, or else considered in its absence? These are indications to be presented only in their greatest generality; and the conjectures to which they lead, in respect to sufficient causes, are not devoid of support from positive data, together with their results exhibited in the present chapter.
189. A gradual reduction in the proportions of male births' superiority over the female, iu France, has been stated in the $178^{\text {it }}$ and $179^{\text {th }}$ paragraphs, as also shewn
to coincide with successive periods more and more remozed from the last at which that country continued in a state of destructive warfare. The proportion of that superiority, stated at 1.071958 for the year ${ }_{1} 8_{17}$, is not unlikely to have been even more elcvated at preceding periods, when the male youth were periodically decimated; and it is not unlikely that a protracted peace would further abate from the considerably rcduced proportion at the close of the recorded experience. Inferring from those premises, that the quantities of each respective sex are mutually sufficient for each other, so long as the cquilibrium adverted to in the $187^{\text {th }}$ paragraph is maintained; it is easily. conceivable that, on such cquilibrium being disturbed, Naturc calls forth all the resources capable operating its re-cstablishment. Observing that the excess of malc births falls to a minimum, in the special case of illegitimacy, - being then the result of vitality's probably greater exaltation in the, male sex than in the other; - the reversed effect may from analogy be admitted, as probably attending the casc of any material subtraction from the quantity of malc population, within the limits of agc best appropriated for reproducing the specics. Suppose any extraordinary circumstance, which on the contrary had the effect of periodically subtracting any considerable quantity amongst the female population, between the sixteenth and fortieth years of age; it becomes probable that the comparative quantities of births would, after a year or two from the origin of such influential causc, be manifested under an aspect tending ofradually to restore the deficient quantity of that sex. A longer experience of correct records in France, than is yet possessed, and the aid of comparative experience in some other countries, would better enlighten this question of the truc proportion between the births of both sexes; but which clearly appears subordinate to variable circumstances.

129

190. The proportion which the quantity of illegitinate births bears to the legitimate, or else to the whole, is a matter of no unimportant question; and that proportion, depending on many causes, is also subordinate to variable circumstances. There exists, on public record, no data whatsoever towards solving that question as regards Great-Britain; but those data are completely obtained for France, as stated in the $178^{\text {th }}$ and $179^{\text {th }}$ paragraphs. The proportion now under consideration is there exhibited, respecting that country, by an uninterruptedly decreasing series, from one illegritimate birth comparable with 1409320 births in wedlock, during the year 1817, to one comparable with $13 \cdot 18250$ of the latter, on an average of fourteen years' experience, terminating with 1830 . The first five years of that period, being averaged, yield the proportion of one to 13.77849 ; gradually reduced to 12.84805 legitimate birihs, comparable with one illegitimate, on an average of the last five gears, or from 1826 to 1830 . Much regularity has also attended the decreasing proportion, even for each successive year individually considered, during the greater part of the period observed upon; but during the last few years a slight increase appears to have taken place, the proportion being as one to $12 \cdot 97234$ for the year 1830 . It should be borne in mind, that the proportion of which we are speaking is more or less influenced, among other causes, by the distribution of any population; which distribution, when this is progressive, becomes modified from what it is with respect to any population of a stationary character, though in equal number; admitting the Absolutc and the Specific intensities, together with all other circumstances, to be alike in both cases. The continued and increasing preponderance of youthful population may, concurrently with other causes, have occasioned the illegitimate births periodically to increase, in France, from being rather less than one fifteentic part, to a proportion even exceeding one fourteenth of all
births indiscriminately; and that special cause, to which the increase is partly referable, has probably operated with still greater effect in this country, where the population has increased by one-fifth, during the same interval of time producing in France the increase of its population in the of ratio one-twelfih part only. The proportion of illegitimate births to the whole, in the metropolis of France, is considerably more elevatcd than any amongst those above-stated; further to observe upon which could lead to no useful result. There is little reason to doubt, that in England, and cspecially with the inferior classes,-amongst whom less moral importance than inFrance apparently attends the circumstance of illegitimacy; - the proportion of births out of wedlock would, upon investigation, be found comparatively greater than it is in the latter country.
191. We have hitherto limited our consideration to the comparative births of children alive, distinctly of each sex. But observations at Paris, during the eight years 1824 to 183 I inclusive, shew that the still-born of the Male sex have been in excess, over the Female, in the proportion of six to five; and this, together with other corrcsponding experiments, should be admitted to possess its duc weight towards establishing, as regards the whole, a nearly correct proportion between the respective quantities of infants destined to be born of each sex. 'There appears then to exist some unknown cause, operating with a high degrec of energy, - as also exclusively depending on the difference of organization between one sex and the other,-which occasions, even previously to parturition, the destruction of malc infants prefcrably to the female; a cause partly retaining its original intensity during the first subsequcut year, but progressively attenuated, from that period until the completion of a fifth or sixth year of age, when the intensity of that cause becomes a minimum.
192. Analogous observations have been made by Mr. Mourgue, at Montpellier, as also by the latc Mr. Wargentin in Sweden; and it were desirable that they had been further extended. The former has found 346 stillborn of the male sex, and 269 of the female; whilst the latter, 1455 males comparable with only 1079 females of the said description; such respective quantitics accompanying others of infants born alive, both male and female, equally proceeding from certain given quantities of marriages. Considering only the superior quantitics of males over that of females, amongst the still-born, the proportion of that superiority appears to have been more elevated according to the experience at Montpellier, and still more so according to that of Sweden, than by the result of observations at Paris; at the same time as each of those proportions, supplied by direct experience, is considerably more elevated than that of the supcriority of males born alive, over the female, either in France or elsewhere.
193. There remains to establish in that respect, and as far as such limited experience may admit, the influence of those very elevated proportions of still-born Males; towards modifying the proportion previously discovered to have taken place amongst the children born alive of both sexes. Thus we find :-

194. The respective quotients resulting from a division of those superior proportions of conceptions, by the corresponding and inferior proportions of superiority amongst the males actually born alive, are for Paris $1 \cdot 00765$, for Montpellier $1 \cdot 005 \mathrm{r}_{7}$, - and for Sweden $1 \cdot 00699$; the average of all which, or mean quantity of the increased superior proportion amongst all males over all females born either alive or otherwise, is $1 \cdot 0066$; amounting to one-tenth part of the proportion of male's superior number as stated in the $179^{1 \mathrm{~h}}$ paragraph, consequently to this adjunction of the still-born of both sexes. Some observations in England, by $D^{\text {r }}$ Bland and Clarke; as quoted by Mr. Milne, yield the proportion of 580 male to 395 female still-births, quantities equally corresponding with ten thousand births alive; whence the superior number of the former appears to be 146835 , compared with unity of the latter; an excess greater indeed than was manifested even in Sweden.
195. The proportion of still-born individuals, compared however with those born alive, depends much on the circumstances by which the period of gestation may be accompanied. In this respect, the offspring of illegitimate connexion generally stand at a disadvantage; and it is observable that, at Paris, - where illegitimate births occur in a fivefold proportion, compared with those throughout France at large (*), 一the relative quantity of still-born nearly doubles what it has proved either at Montpellier or in Sweden. But as the tables of mortality, deduced from the Montpellier experience, limit the Absolute intensity of life to 25.29 years, - shewing the population of that place to exist under very unfavourable conditions, especially in early life, - the proportion there exhibited, of the still-

[^8]horn to all other births, should not be admitted to guide the object of our present calculation. The value apparently possessed by the remaining experiment, or that of Sweden, where the life-intensity makes a near approach to its standard both in England and France, may then be admitted as the least objectionable. Hence, and until a supply of data more conclusive is obtained, it may be considered that any superior proportion of male births over the female, both understood alive, should be increased in the ratio of 1,00699 , being rather more than the mean result of the three sets of observations; in order to obtain a nearly correct expression of the male superiority, in respect to the Conceptions of both sexes. Consequently, and reverting to the statements in the $178^{\text {th }}$ and ${ }^{1} 79^{\text {16 }}$ paragraphs, we find : instead of $1 \cdot 063603$, the proportion $1 \cdot 071038$ of male superiority, or about 15 to 14 , admissible in respect to all births indiscriminately in France, on an averaga of the fourteen years' recorded experience; and instead of rosg8oo, the proportion $1 \cdot 067208$ of that superiority, being as $153 / 4$ to $143 / 4$, equally admissible as an average result of the last five years of that experience. Regarding the births in wedlock, particularly, the corresponding proportions to be admitted become 1.072577 , instead of 1.065112 , or very nearly as $143 / 4$ to $33 / 4$ on a general average of those fourteen years; as also 1.068907 , instead of 1.061487 , or very neariy as $15 \mathrm{I} / 3$ to $14 \mathrm{I} / 3$, on an average of the last five years 1826-1830; and lastly, regarding the illegitimate births in particular, the admissible proportions, on a general average of the experience, should be $1 \cdot 05 i 174$, or rather more than 21 males to 20 females, instead of 1.043877 ; as also $1 \cdot 042856$, or the proportion of $241 / 3$ to $231 / 3$, instead of 1.035617 , on an average of the last five years.

CHAPTER XXIII.

Of the quantities of Periodic Marriages, compared with the Population.
196. The proportions according to which, comparalively with any quantity of population at the time being, marriages are contracted during an Annual or any other period, depend on many combined circumstances. Some of these, relating to conditions under which the individuals in greateror less number are understood to exist, amongst an entire population, may be only transient; but a circumstance of paramount influence, on those proportions, is the actual distribution of any given quantity of population, into subordinate quantities of the living at specific years of age, or else within certain intervals of age, as to each sex; and it has already been observed upon the differences of that distribution, in contradistinguishable cases, - of a stationary population, - of onc progressively increasing, - and of another progressively decreasing. The ratio of either progression, as also the period during which it may have continued, both exert their respective influences in modifying the distribution of which we are speaking. Admitting the continuance of a progressive increase, such as occurs amongst the populations under our present consideration, the relative quantity of periodic marriages, compared with the population ; must - all other circumstances supposed the same - decrease so long as the accession of iufants, below the age fitted to
a married state, shall exceed the due proportion of corresponding accession as to individuals attaining that age under the hypothesis of a stationary population; and the contrary, or an increased relative quantity of marriages, must commence taking place, whenever the still progressive population shall so far have abated its ratio of increase, as to produce a preponderate accession of individuals entering that fitted age. There simultaneously exists, therefore, two causes arising from the same source, yet mutually counteracting their respective operations, whilst the increase of population is not entirely discontined; from which follows, that under the last-mentioned circumstance, the quotients of any population divided by its periodic marriages, and expressing relative quantities of the latter, shall exhibit, from each period to the next, a constantly decreasing series, until an ultimate quotient corresponds with the permanent distribution belonging to a stationary state.
197. Let us now resort to the recorded experience, ascertaining its results under the operation of those influential causes; and first, from the data supplied in France, we have:

198. The preceding statement shews that the proportional quantities of marriages, relatively to the population, are subjeet to great variations when referred to specific years in suecession; this being consequent on the alternations of abundant and defieient crops, and likewise ou other eireumstances qualified as prosperous or adverse: all which have, at the time being, a considerable influence on the determination towards marriage. With regard to France in particular, the state of war, or even a mere antieipation of approaching war, has usually the effect of increasing the quantity of marriages at the time of such oecurrences, as affording the male youth a cause of exemption from military service; whence during the years 1822 and 1823 , - the invasion of Spain then being in progress of execution, - as also in the year 1830 on the apprehension of impending war, marriages were considerably more numerous than in either the immediately preceding or succeeding years; thus disturbing the progressive deerease, otherwise observable, of the series of quotients resulting from an annual division of the quantity of population by the quantity of marriages. By admitting average results, each of five consecutive years, the proportions which the marriages in France have borne to its population, form a series deereasing with very little interruption, from one marriage compared with 142.2400 individuals, being a result of the first five averaged years $18 \mathbf{7 - 1 8 2 1}$, to one marriage amongst $126 \cdot 1438$ individuals only, during the last five years terminating with 1830; and by admitting, each year, results generally averaged from the commencement of the experience in 1817 , when the proportion of marriages was found to be one in 145.5732 , the series of subsequent proportions has gradually deereased to one marriage amongst 131.4595 individuals, being an average result of the whole expericnce of fourteen years duration.
199. Comparing the foreroing results, with those of the same description and deduced from the decennal returns relative to the forty counties of England, it is found, as Mr. Rickman has stated them, that the ten years terminating with 1800 have averaged one marriage to 123 inhabitants; that the ten next succeeding years averaged one marriage to 122 ; the ten subsequent years, one to 127 ; and the last ten years, ending with r83o, one marriage to 129 ; a freneral average, according to those returns, having yielded one marriage to each $1251 / 4$ individuals, amongst the existing population of England at the time being. Supposing that thoze data were sufficiently correct for all purposes of the present comparison, it then would appear that the relative quantities of marriages in England continued rather decreasing, whilst those relative quantities in France considerably increased, as to corresponding periods of observation; which comparative circumstances, with reference to what has been set forth in the first paragraph of this chapter, indicate - regarding the population in England, - a periodic accession of infants below the marriageable age, to be still preponderating over the corresponding. accession of individuals to that age, whilst the reverse has occurred in France; and those opposite results should naturally be consequent on the British population continuing rapidly to increase, at the same time as the French population no longer increased in so elevated a ratio as before. The same comparative circumstances supply another valuable indication; i. e. that the marriages in England have generally occurred in relative quantities superior, when compared with its population, to the relative quantities of marriages in France; whence is inferable, that any ascertained increase of the Absolute intensity of life, in England, should be attributable in greatest part to more numerous and to earlier marriages than in France, with less influence of any amelioration as to the general condition of the perple to the same effeci; whilst, in the latter
country, the ascertained increase of life's intensity should chiefly be attributed to improved circumstances, and less than in England to the increased number of periodic births. Mr. Rickman's statements however shew, - regarding the county of Essex in particular, where the observations appear to have been carefully directed, - that during the four periods corresponding with those of the decennal returns for all England, the marriages have successively occurred is one in 125 , one in 130, one in 146 , and one in 154 individuals; which considerable reduction in the proportions of periodic marriages in Essex, renders the preceding remark still more applicable to that county than to the generality of England. Again the increased intensity of life throughout France, as évinced by our statements in the $91^{\text {st }}$ and next succeeding paragraphs, is clearly seen to have benefited its male population in a greater proportion than its female; which doubtless should be solely ascribed to the conversion of a state of warfare into another of peace, enjoyed during a period of fifteen years.
200. With reference always to a stationary population, it is found, amongst other results attending female life's superior intensity to that of male life; first, that according to the Law of Mortality applicable to France, and notwithstanding the great excess there ascertained of male births over the female, the quantities of survivors at eighteen years of age become equalized for both sexes; and secondly, that the males at all ages from 18 to 60 years, as also the females at all ages from 15 to 53 , both which understood in very nearly equal numbers under the above hypothesis, - should then exhibit a quantity of couples, either married or marriageable, amounting to ten times the united annual births of both sexes; the quantity of marriages, in each year, thence being in the proportion of one to about 36 of
those couples, or very nearly the same as the annually renewed proportion of the whole population. But in its. progressive state, the equilibriam of those various proportions is disturbed; and then the quantity of marriageable females shall be, over the quantity of males similarly circumstanced, in a greater or less excess, depending on any degree of the population's proving divergent from a stationary condition. Such divergency being at present more considerable in England than in France, the disproportion, in excess of marriageable females, must be superior in the former country; and to this circumstance, perhaps, may be ascribed the inexcusable arrogance of youngmen in these days, together with the not less extraordinary departure from female dignity in the other sex, who tolerates such presumptuousness. on occasions of contemplated matrimonial connexion.

20r. In the foregoing attempt at ascertaining any proportion which the annual quantity of marriages may, according to late experience, have borne to the population, it has been omitted to discriminate between marriages susceptible of becoming fruitful, and those in which the female parties should from advanced age be supposed incapable of obtaining issue. Assuming the age of fifty-three completed years, as an utmost term of female fruitfulness, the experience presently to be stated will shew that eighteen marriages in every thousand are to be considered as contracted above that age. The writer of these pages has gathered with the utmost care, from the registries of 121525 marriages at Paris, during the eighteen years $1813-1830$, the precise ages of all female parties who thus contracted; and the comparative quantities of marriages at each year of age, referred to one million of those at all ages, are accordingly exhibited under the following aspect; after methodically correcting, for the purpose of generalized application, the incidental

140

irregularities of progressing quantities. It were desirable to have obtained analogous information extending to marriages in the country; but the means failed of securing a requisite accuracy of the results.

completer	DISTABUTIION of 121525 marriages, according to	coraesponding distribution of	iaregulab differences, of the	corrected distribution.	regulanized differences.	totals.
	experience.	rriage	or decrease.	M.	$\Delta \mathrm{M}$	$\Sigma \mathrm{M}$
12 10 15	811	6669	9134	6669	+ 9134	6669
16 17	1920 3859	15803 32578	16775 99276	15803 32578	16775 15276	22472 55050
18	5816	47854	9394	47854	9394	102904
21	8017	65974	- 1888	65980	- 1785	288819
22 23	7788 7206	64086 59292	4794 3209 204	64195 60233	3962 4027	353014
23 24	7206 6815	${ }_{56083}^{59292}$	3209 .291	${ }_{56206}$	4006	469453
25	6461	53162	4411	52200	3950	521653
26	5924	48751	3937	48250	3863	569903
27	5446 5058	44814		44387 4,0640	3747 3607	614290 654930
28 29	5058 4548	41617 37425	4192 8625	40640 37033	3607 3447	654930 69193
30	4107	33800	3761.	33586	3271	725549
31	3651	30039	2473	30315	3082	755864
32 33	3890	27566 23798	3768 2288	27233 24349	2884	783097 807446
33 34 34	${ }_{2614}^{2892}$	23798 21510	22888	${ }_{2} 21667$	2479	${ }_{829143}$
35	2257	18572.	1851	19188	2275	848301
36	2032	16721	1922	16913	1963	865214
37 38 38	1798 1593	14799		14950 13254 154	1696 1471	880164 893418
39	1370	${ }_{11273}$	874	11783	1277	905201
40	1324	10899	1635	10506	1112	915707
41	1126	9266	918	9394	970	925109
42	1015 862	8348 7097	1259 559	$\begin{array}{r}8424 \\ \hline 7576 \\ \hline\end{array}$	${ }_{743} 8$	${ }_{941101}^{93525}$
63 44	862 795	7097 6538	359 321	${ }^{6833}$	653	947934
45	755	6217	387	- 6180	574	954114
	209	5830	967	5606	548	959720
47 48	591 586	4863 4886	$\begin{array}{r}37 \\ 4028 \\ \hline\end{array}$	5058 4475	583 592	${ }_{9699778}$
48	386 462	3798	${ }_{383}$	3883	548	973136
50	415	3445	502	3335	411	976471
51	354	2913	[$+\quad 59$	2924	319	979395
52 53	3360	2962	(576	2605 2367	${ }_{206}^{238}$	982000 98465
54	${ }_{267}$	2197	276	2169	204	986528
55	233	1921	65	1957	211	988485
	226	1856	325	1746	220	990231
57 58 58	186 132	1531 1086	445 53	1526 1302	224 224	991755 993059
58 59 60	132 125	1083	${ }_{4}$	1078	215	994137
60	126	1037		863		995000
Bletc.	578	4756		5000		1000000

202. The further ascertainment in our next chapter, of an average quantity of births attributable to each marriage, - together with previously ascertaining the Absolute intensity of life, as also any proportion between the respective quantities of legitimate and of illegitmate births, - may enable to establish, with nearer approach to certainty than through the medium of the series stated in paragragh $193^{\text {d }}$: the proportion that should be expected to appear, between the periodic marriages and any given quantity of population, when stationary; admitting always the maintenance of those conditions of existence whence the ascertained measure of such Absolute jutensity resulted.

CHAPTER XXII.

Of the Average quantity of Births, attributable to each Marriage.
203. The average quantity of births, assignable to each marriage, is a question which seems to have been at all times beset with difficulties; and those who entertained that question have arrived at results not only materially diverging, but often irreconcilable with established facts, besides resting on considerations very superficial, if not fallacious. The well-directed observations on this subject have been few. The authentic data collected in France, within the last sixteen years or more, afford however very valuable materials towards solving that question, with reference to a special but very extensive locality; and in the absence of corresponding data from elsewhere, on a scale capable of being contrasted with those materials, the results inferred from them may justly be admitted for generalized application. When that experience shall be further enlarged, so as nearly to equalize the annual proportions of recent marriages, concurring with the rest to produce any quantities of births within similar intervals of time, - which proportions have been greatly disturbed consequently to the increasing population, - it may be expected that the question before us will obtain as accurate a solution as could possibly be expected.
204. The average of births, to each marriage, does not
appear very considerably to differ, between any one country of Europe and another. Early marriages, as also moral habits, concur to elevate such average quantity; and this is not ascertainable with any approach to accuracy, when - as the case occurs in England - the legitimate and the illegitimate issue are blended into an indiscriminate mass, whilst the baptismal registries are misunderstood correctly to represent the births. An increasing population determines a more elevated proportion of early marriages, and therefore of corresponding births; both which circumstances are consequent on the proportion of youthful population - in the distribution of the whole - being then superior to what it is in a stationary population; and an apparent decrease of the births, compared with the marriages, will follow any diminution of the ratio according to which the population progressed. The latter of those results is exemplified by the statements hereafter.
205. The data supplied in France, by fourteen years experience terminating with 1830 - being the latest returns, -are with their results as follows; first comparing the legitimate births during each year, with the marriages of the same year.

YEARS.	MARRIAGES during each year-	BIRTHS during each year.	AVERAGE births to each marriage.	Marriages during five consecutive years.	BIRTIIS during five consecutive yaars.	AVEBAGE births to each marriage during Give years.	PERIODIC 2verages of births, from the commence ment.
1817	205244	881572	4-29524	-	-	-	4.29524
1818	212979	886206	4-16100	-	-		4-22688
1819	215088	922257	4-28781				4.24757
1820	208893	892584	$4 \cdot 27293$	-		-	4.25386
1821	221868	895872	4.03786	1064072	4478491	$4 \cdot 20882$	4.20882
1822	-247495	903048	$3 \cdot 64875$	1106323	4499967	$4 \cdot 06750$	4-10314
1823	262020	894359	3-41332	1155364	4508120	3.90191	3.98828
1824	231680	912978	3.94069	1171956	4498841	3.83874	3.98217
4825	243674	904594	3.71231	1206737	4510851	3.73806	3.95007
1826	247194	920. 720	3.72486	1232063	4535699	3.68139	3.92581
1827	255738	909428	3.55609	1240306	4542079	3.66206	3.88876
4828	246839	905843	3.66977	1225125	4553563	3.71681	3.86945
1829	248796	895176	3.59803	1242241	4535761	3.65127	3.84729
1830	270435	898594	3.32277	1269002	4529761	3.56955	$3 \cdot 80454$

206. But, as the births of any one ycar could not properly be referred to the marriages of that year, a rather nearer approach to correct results will be obtained, consequently to comparing the quantity of births in each year with that of the marriages during the year immediately preceding. Hence we find:-

YEARS.	MARBIAGES	YEARS.	BIRTHS.	AVERAGES of one year.	marRIages of five years.	BIRTHS of five yeass.	aVERAGES of five ycars	pertodic averages.
1817	205244	1818	886206	4-31786	-	-	-	$4 \cdot 31786$
1818	212979	1819	922257	$4 \cdot 33027$		-		$4 \cdot 32416$
1819	215088	1820	892584	$4 \cdot 14986$	-	-		$4 \cdot 26496$
1820	208893	1821	895872	4.28867				$4 \cdot 27084$
1821	221868	1822	903048	$4 \cdot 07020$	1064072	4499967	$4 \cdot 22901$	4.22901
1822	247495	1823	894359	3.61364	1106323	4508120	4.07487	$4 \cdot 11289$
1823	262020	1824	912978	$3 \cdot 188438$	1155364	4498841	3.89387	4.00823
1824	231680	1825	904594	3.90450	1171956	4510851	3.84899	3-9949?
1825	243674	1826	920720	3.77849	1206737	4535699	3.75865	3.96918
1826	247194	1827	909428	3.67901	1232063	4542079	$3 \cdot 68656$	3.93794
1827	255738	1828	905843	3.54207	1240306	4553563	$3 \cdot 67132$	3.89827
1828	246839	1829	895176	3.62656	1225125	4535761	$3 \cdot 70228$	3.87431
1829	248796	1830	898594	3.61177	1242241	4529761	3.64644	3.85287

207. It being unquestionable, that the quantities of marriages and of births, at any particular period, are both subject to the influences of good and of bad crops *, as also of other aecidental circumstanees; any observable progression, whether generally inereasing or generally deereasing, of the proportions between those corresponding quantities referred to successive years distinctly considered, must be expected considerably to fail of regularity; whence the foregoing series of those proportions, so referred, should be disearded from consideration, as incapable of leading, even to an approximate ascertainment of the rue average of births appertaining to each marriage at any time being.
[^9]If therefore we admit, as on former occasions, a series of results in regular succession and each averaging five consecutive years, to be the safest guide in this research, it appears that such series of average births assumes in its progressive decrease sufficient regularity for being entitled to confidence ; and that, owing to causes already assigned, the decrease has proceeded - not without remarkable rapidity - from 4.22901 , an average referable to the first five years of the recorded experiençe, even down to 3.64644 , being a corresponding average referable to the last five years; whence a reduction as :: $7: 6$, or thereabouts, within an interval less than ten years. It may be remarked, however, that during the last five years of such interval, the variations between those stated averages have been nearly insignificant; from which is inferable that an approach is now making towards such an average as a stationary population should exhibit. Let it further be remarked, that although an analogous series stated in the $205^{\text {th }}$ paragraph has been discarded, it nevertheless deserves notice under another point of view, as it is perceptible that each two corresponding series of averages should very nearly coincide in case of a Stationary population; whereas those series generally preponderate in the ultimate statement.
208. From those various considerations, as also that such series of averages had not entirely discontinued decreasing when the experience closed, a very small abatement in the last expressed quantity $3 \cdot 64644$, arbitrarily reducing it to 3.625 , or three and five-eighths births to each marriage in France under the actual conditions of its population's existence, should in all probability approach nearly to a correct average which is our object in the present inquiry. Yet the motive for preferring those elements of computation which are stated in the $206^{\text {th }}$ paragraph might be susceptible of a more extended operation, causing the
terms of each series to require on the contrary some small addition ; and then the correct average would come nearer to 3.66667 , or three and two-thirds births, instead of three and five-eighths only. Hence the question is left undecided between those two results.
209. With reference to a period already fifty or sixty years removed from the present, the late Mr. Duvillard's researches concluded to the adoption of three and a-half' births, assiguable on an average to each marriage in France ; but as such aseertainment appcars to have been only a secondary object with him, - besides that his data were collected in Towns, exclusively of the Country, - some doubt may be entertained as regards the accuracy of that conclusion by a rather rounded quantity. It is further observable, on this occasion, that the same author found one marriage to every 112 individuals of the population at that period; therefore the marriages, proportionally more numerous there than at present, in all probability took place at less early ages, and must have been rather less productive.
210. When investigations of this nature arc proceeded upon, it is proper to guard against a prevailing propensity to admit, merely for saving trouble, the general average of numerous sets of results afforded by protracted experience. Thus the general avcrage 3.85287 , of births to each marriage during the whole period of fourteen years' recorded experience in France, should be understood as considerably more elevated than any true average refcrable to the present, or probably to any other period. The influence of such elevated but delusive averages, as are cxhibitcd by the first few years of that experiencc, - when the marriages were in comparativcly inferior quantity, must long continue to present a
fallacions proportion, expressed by the ultimate terin of the series; and it is only after that iulluence shall have been neutraized, by long lapse of time, that the general average may nearly eoincide with any one relative to a short period, suel as the last consecutive five years. So long as the population continues to inerease, the antecedent marriages will eontribute in a decreasing proportion, comparatively with those of more recent date, to any actual quantity of periodie births; whence the quotient of that quantity, divided by any aetual quantity of marriages during the eorresponding period, must continue also to express averages in greater or less excess over the real. On the whole, it is obvious that the quantum of average births, appertaining to cach marriage, depends not less than many other general results on the aggregate eonditions - more or less favourable or unfavourable-under whieh the population referred to may exist. Let us now consult the analogous results of a few other well-directed observations.
211. Mir. Mourgue, at Montpellier, has found 21714 Births alive to result from 5_{926} observed Marriages, thus yielding 3.66419 to each marriage; which last quantity does not materially differ from an average of the last five years' experience throughout France. On the other hand, the late Mr. Wargentin's experience, relative to the population of Sweden, has shewn 92299 births alive to have procceded from 24073 marriages; yielding 3.834 r 3 births to each of the latter. This last average, more clevated than any ever found in England or in Franec, may be aseribable to a superiority of moral habits amonsst the Swedish population; which advantage its extended dissemination suffieicntly aceounts for. Henee the latter average, more roundly expressed by three and five-sixths births to cach marriage, may be considered as a maximum generally referable to a set ố favourable circumstances; whilst three and two-thirds
the more probable average at present, as also three and one-half a comparative minimum; either of which quantities preferably applicable, according as the contradistinguished cases may require for a complete surety in any contemplated transactions.
212. For further comparison, with the preceding results of extensive and indubitable experience, we do not find any other to rest upon sufficiently authentic data; and regarding analogous results deducible from the population-returns in Great-Britain, they are contradictory with each other, as also divested of value, from its having been omitted to discriminate between the legitimate and the illegitimate births. The decennal returns closing with the year 1800 yield the proportion of 3.579 or Baptisms, compared with each marriage; those closing with the year 1810 , the proportion of 3.80403 ; those closing with the year 1820 , the proportion of 3.85 I 25 ; and lastly, the returns closing with the year 1830 exhibit the proportion of 3.75944 baptisms; an average of all which proportions is 3.74843 . But births and baptisms are things very different. Even assuming their identity, as also the stated quantities both of the latter and of the marriages to be correct and respectively complete, there would still be to abate from that general proportion a quantity corresponding with the still uncertain ratio of the illegitimate births. We have seen that, in France, the latter have not, at any time of the recorded experience, been less than one-fifieenth part of all births indiscriminately; whence $3 \cdot 74843$ would be reducible to 3.49853 legitimate births referred to each marriage, whilst in all probability a more considerable reduction should take place, leaving an utterly inadmissible minimum as the result. There does not appear any sufficient reason for supposing that the proportion of illegitimate births, throughout the British dominions, were inferior to what it is in France; the contrary indeed
being rather inferable from the laxity of moral principle, in that respect, amongst our inferior classes. On the other hand, even the last-mentioned resulting quantity should the more be inferior to any correct standard referable to this country, as therei sscarcely any doubt of its marriages being in some degree more prolific than those taking place in France, where the increase of population has proceeded in a less elevated ratio.
213. But it has been shewn in the preceding chapter, that about eighteen marriages, in every thousand, are contracted by females at such advanced ages as to preclude the expectation of issue. If therefore the total qnantity of births in wedlock be compared with the total of marriages within the limits of fift-three completed years of age, as to all female parties, the maximum of average births, attributable to those marriages exclusively, would become $\frac{3 \cdot 83333}{982}=3 \cdot 90360^{\circ}$; the medium quantity of births would become $\frac{3 \cdot 66667}{\cdot 9^{82}}=3 \cdot 73388$, and their minimum $\frac{3 \cdot 5}{982}=3.56415$.
214. Having now three important data, referred to the actual and indiscriminate population of France; - first the Absolute intensity of life, expressed by 35.87957 years (see the $79^{\text {th }}$ paragraph), and also indicating the amount of relative population compared with the equalized births and deaths of each year, under the hypothesis of that population being stationary; - secondly the average quantity $3 \cdot 666667$, of births assignable to each marriage (see the $211^{\text {th }}$ paragraph); - third and lastly, on a general average of the last fourteen years' experience, the proportion of births in wedlock to be $\frac{131825}{141825}$ of the whole
(see the $179^{\text {th }}$ paragraph); all which data thus ascertained with the utmost attainable approximation to the truth; we are thence enabled further to ascertain, also by approximation in a satisfactory degree, the relative quantity of annual marriages that should occur in France, supposing that its population became stationary, and the present conditions of its existence to remain unchanged. By multiplying into each other the above-specified quantities, we find that, under the premised suppositions, one marriage should take place amongst 122.2823 individuals in the whole population. Comparing this last quantity with ${ }_{12} 6 \cdot 1438$, the ultimate term of a corresponding and decreasing series in the $197^{\text {th }}$ paragraph; it follows, that the present proportion of periodic marriages is susceptible of a small decrease only, for bringing it to the standard referable to a stationary population.
215. The corresponding results of official returus, in Great-Britain, do not materially differ from those lastmentioned ; but the relative quantity of its youthful population must preponderate over that of France, in their respective distributions, consequently to the increase of population having proceeded more rapidly in the former country; whence the marriages probably take place rather earlier, and yield issue in a rather superior proportion.

CHAPTER XXIV.

Of ascertaining the quantities of Births, attributable to marriages contracted by females at each specific age.
216. The purposes of an intended Institution, alluded to in the Preface of this book, required not only that the quantity of births assignable to each marriage, according to a general average, should be ascertained with all possible accuracy, but also that corresponding ascertainments should be obtained, with distinct reference to each year of age at which the females might contract such marriage. The means of solving this difficult question are much to be simplified, without vitiating the results, by leaving out of consideration the male party's specific age; which, in all cases, may be assumed to exceed by six years that of the female, towards establishing with sufficient approximation the probabilities of their joint-lives; being one amongst the necessary elements of computation. Having premised thus much, the following method has been proceeded with.
217. Admit x, as before, to represent a series of completed years of age, from 16 to 52 ; all which being respective minima, any of those ages will be correctly expressible by $x+0.5$, as a mean quantity; and further admit a_{x}, a series of ages assumed to correspond with the utmost term of fecundity, extending by equal intervals from 40.5 y ears, for females marrying under seve;teen completed,
to 52.5 years for those who married at this latest admitted age, the term of their fecundity then supposed to be outrun. Another series f_{x}, made to correspond with the successive years of age signified by x, shall thus exhibit 37 periods of fecundity decreasing by an arithmetic progression; attributing a 24 years' continuance of that faculty to the earliest of those ages, which term is gradually reduced to zero. Those respective periods have reference to certain maxima of age, generally expressed by $a_{x}+0.8$, and assignable as the latest of parturition; being 41^{-3} years with regard to the earlier marriages, as also $53 \cdot 3$ years regarding the latest assumed capable of having issue; the diminution of only two-third parts of a year being allowed to attend each advance of a full year, in the actual ages, from considering that early child-bearing has a tendency sooner to exhaust the reproductive powers, and to multiply the chances of accident susceptible of destroying the aptitude to procreate.
218. The years of virtual fecundity, generally expressed by| that series f_{x}, are next convertible, according to the probabilities of two lives' joint-continuance, into quantities more or less reduced, of years assumed to be average periods of the effectual or productive fecundity belonging to females at their respective ages x; and towards this conversion, the age of the male being always understood as represented by $x+\dot{6}$, an application is proper of the Law of Mortality referable to the respective sexes, as also to a class not inferior in quality to that of Assurablelives, inasmuch as marriage is always presumable to take place amongst no other than the healthy. A new series \mathbf{F}_{x} will thus be produced; its respective terms corresponding with those of the preceding series. Without further entering into the details of complicated calculations, it may be sufficient for the present purpose to state that such new series exhibits it first term F_{16}, expressing ahout 20 years.'
effectual, substituted for 24 year's' virtual fecundity; the subsequent terms gradually decreasing to $0 \cdot 25$, or onequarter of a year, and being a term $\mathrm{F}_{5 \text {, }}$ corresponding with any interval of female age above 52 completed years, until entrance into another year. It is observable, however, that such series F_{x} required a methodical adjustment of its differences $\Delta \mathrm{F}_{x}$, the regularity of which must have been in some degree disturbed by the irregular operation of the Law of Mortality, introduced as a requisite element.
219. Consequently to this mode of proceeding, any given quantity of legitimate births discontinues its reference to any specific quantity of marriages; the former becoming co-relative with the series F_{x}, expressing the years of fecundity collectively appertaining to those marriages, according to their distribution announced in the concluding paragraph of chapter XXII.
220. A further series g_{x}, consisting of the successive products $\mathbf{F}_{x} \nprec \mathbf{M}_{x}$, establishes the several quantities of years' fecundity collectively contributed by each year of age at which the marriages are contracted; and the sum of those products, generally expressed by Σg, is found (by the actual computations) amounting to 14153171 years of that fecundity understood to be contributable by one million of marriages at all ages, or more properly by 982000 marriages contracted within the limit of 53 years of age; whence $\frac{14153171}{0.982}=14.413$ should be the quantity of years' fecundity corresponding with $3 \cdot 666667$ average Births to each Marriage, or 3.9308 years to each birth alive; and it is also found, that those 14.413 years correspond between F_{26} and F_{27}, thus indicating that the marriages of females at 27 years of age yield the same
average of births as all marriages indiscriminately under the age of 53 completed years.
221. A last series n_{x}, formed of successive quantities generally' expressible by $\frac{\mathrm{F}_{x} \times 3 \cdot 666667 \times 0 \cdot 982}{\Sigma g}$, exhibits the various quantities of births respcciively assignable, on an average, to each marriage contracted at the specifically corresponding ages signified by x; whence it further appcars, that an avcrage of $5 \cdot 1322$ births appertains to the earliest marriages, whilst only a fraction 0.0636 to the latest within the understood limits of age; those quantities of average births, independently of the still-born, being susceptible of distribution into male and female, according to their recognized proportions. Should any other general average of births to each. indiscriminate marriage be admitted, preferably to the quantity $3 \cdot 666667$, the various averages n_{x} shall then be modifiable accordingly.
222. Although the question, of an average quantity of births assignable to each marriage contracted at any specific age of the wife, may hitherto have been prejudged insoluble; it is now seen that its solution is attainable, with sufficient accuracy for all practical objects.
223. With a view to the same intended Institution, further computations from the foregoing data, as also from, an application of the appropriate Mortality-tables hereafter introduced, have the result of ascertaining, with reference to the time of marrying at any specific age, a present value of equal sums supposed to be due or forthcoming at the expiry of each succeeding year, the quantity of which is generally expressed by F_{x}, such equal instalments substituted for the uncertain periods of births
in their generality; moreover ascertaining a common period, - found to be eight years and two months remote from the date of marriage, - at which those sums might equitably be resolved into a single payment, admitting the rate of interest at four and a half per centum per annum,

GHAPTER XXV.

Of five classes, both Male and Female, to be discriminated in any population.
224. The object of consideration now before us is that of various classes susceptible of being discriminated amougst any extensive population, with the view to apply a general Law of Mortality under its appropriate modifications corresponding with those respective classes; and the chief purpose of such application is to regulate, on equitable terms, all pecuniary contracts understood to involve a correct appreciation of the chances of life. The relative superiority, or the relative inferiority, of any specific class contradistinguished from any other, results from a comparison of the Absolute intensity of life, as measured with reference to each class in particular, and also with the distinction of each sex; which measure of intensity shall have been ascertained by adequate, enlarged, and digested experience.
225. An Absolute intensity more elevated, than its standard referable to the indiscriminate population, is mavifested in minor extent amongst a class of persons generally fulfilling the conditions required for admission to an insurance of their lives. Towards ascertaining such intensity of life, referred to that class, the experience supplied in Great-Britain has been in some degree extensive; but from its hitherto excluding all consideration of the lives under ten completed years of age, a necessity
has arisen to complete the tables resulting from an inves~ tigation of the data thus supplied, by admitting, as regards the earlier ages, such results as harmonized in proportions to correspond with those of experience obtained amongst the other classes.
226. A still more elevated degree of superior intensity, compared with its general average, is manifcsted amongst a class including the Life-annuitants and Tontine-nominees; all whom, from the circumstances of their existence, and from a more effectual exclusion of defective lives than is obtained amongst the aggregate of Assurables, reunite in a higher degree those conditions requisite for constituting a select class. Compared statements of crude facts, observed at various times and places amongst the life-annuitants and tontine-nominees, have - though liable to much correction in order to reconcile their inconsistencies supplied, on the whole, very valuable and probably sufficient data, towards ascertaining not only the Absolute, but also the Specific intensities of those lives at their successive years of age.
227. But there is further to discriminate a class, amongst which the Absolute intensity of life is cven superior to that of the two preceding. Though incapable of immediate exemplification, by individuals in very considerable number congregated together, it is nevertheless requisite to assume the virtual existence of such a class, however disseminated, and describable as consisting of comparatively Perfect lives; towards supplying, from its especial consideration, sets of corresponding tables that should secure either the State or private associations, as occasion offered, against eventual loss arising from individual speculations, so directed as possibly to defeat public objects; or elsc to answer any other purpose. Supposing, for example, a numerous collection of lives otherwisé
select; and that, amongst those only, any part were to be considered at the precise period of their contracting marriage; or supposing a transaction such as occurred during the last century, in which the French government contracted to grant annuities depending on the limited number of thirty female lives, carefully chosen amongst the inhabitants of Geneva; it is certain that, in neither of those cases, the contingencies depending on lives so described could be adequately valued by applying tables of mortality exactly corresponding even with the general class of life-annuitants and tontinc-nominees, than which no one supcrior has been at any time taken into consideration.
228. A fourth class, consisting in the agrregate population, indiscriminatcly considered, of any considerable country or district, is thus sufficiently described; and the Law of Mortality then applicable will be such as chielly to answer statistical purposes, or otherwise to afford the requisite security in transactions of a public nature, when the individuals, on whose lives the valued contingencics are made to depend, shall be distinctly understood superior or inferior to general lives; according as the contract may then be, cither to reccive the certainty against the contingency, or elsc to rcceive the contingent sums in exchange for the uurcstricted disbursement.
229. Regarding all classes of iuferior lives, it is sufficient to discriminate one only; bcing a fifth, composed of individuals who, - though existing under a set of conditions generally less favourable to the preservation of life and health at all ages, than those characterizing the cxistence of any population at large, - may nevertheless, and consequently to mutual agrecment, become the object of pecuniary transactions, rclative to contingent sums depending on their varions chances of life and of survivorship. This class, whose condition is still remote from
one of abjectedness, are mostly the object of Institutions abounding throughout Great-Britain, under the denomination of Benefit-societies; and it is of paramount importance that the laborious and provident, amongst that class, should be dealt with on terms of perfect equity, which can only be secured by applying to all transactions with them, of a contingent description, such a modification of the general law of mortality as may be found sufficiently appropriate.
230. Let us now recapitulate, regarding both Males and Females of those different classes, the conditions of existence considered as best characterizing then respectively.
231. Suppose any collection of individuals to possess in common the following qualifications:-First, an original constitution and conformation both exempt from defect, each individual ascertained to proceed from healthy parents, as also not to have been prematurely born;-Second, a presumable non-liability to the Small-pox, whether from any undoubted preservative, at least against its appearance in a dangerous character, or from having overcome that disease; -Third, circumstances in all probability affording the permanent means of sufficient and wholesome subsistence, as also of proper care towards the maintenance of health, especially during infancy; - Fourth, habitually to reside on a salubrious soil, with the benefit of pure air and of wholesome waters; - Fifth, exemption from employments susceptible of endangering life, or obviously tending to abridge it; -Sixth, the unquestionable enjoyment of mental health; -Seventh, to be of moral and temperate habits; -Eighth, freedom from anxious cares, and from sedentary occupation attended with excessive exercise of the mental faculties; -Ninth, to continue, if in very advanced age, the same diet and mode of living that led to such age; - Tenth, absteution from long voyages by sea, and from
other voyages obviously perilous, as also from chauges of climate that should probably impair the general health; - Eleventh, actually perfect health at any special period selected for consideration, such as when admitted a nominee to any life-annuity, or in case of other transactions of a pecuniary nature, that should require to apply, regarding the individual, an appropriate modification of the general law of mortality; - Twelfih and last, that the casualties of War, Famine and Pestilence, were understood not to exert any influence on the rates of mortality, amongst the argregate individuals otherwise circumstanced as above. It is certain that any collection of persons, re-uniting those conditions, would constitute the very first of all classes describable as Select, out of any considered population; and for practical purposes, the existence of such a class must necessarily be assumed.
232. Admitting, amongst the above-enumerated conditions of existence, that a few-though not positively excluded, - were merely neglected to be taken into consideration, as mostly escaping observation; therc still would remain a set of such favourable conditions, as should be quite applicable to a second class of selection, usually falling under the collective description of Life-annuitants and 'lontine-nominees; although many purchasers of annuities made to depend on the event of their lives' continuance, as also many sharers of tontine-speculations, may fail to unite all the conditions here supposed generally to qualify that class.
233. Should there further be discarded from consideration a few more of those conditions, essentially qualifying the first select class and in greatest part retained for the second ; absolutely insisting on no other than the 2^{d}, the $5^{\text {th }}$, the $6^{\text {th }}$ and the $10^{\text {th }}$, with the $1^{1^{\text {th }}}$ more or less mitigated, the $3^{\text {d }}$ condition being implied from the
nature of the transacion, and the $12^{\text {th }}$ generally assumed; a third class will thence arise, still paricipating in the advantage of selection amongst the whole population, as that class expressly excludes all individaals existing ander circumstances especially unfavourable. Such third class is appropriately denominated of Assurable lives, with which indeed a very considerable proportion of the population is susceptible of being assimilated.
234. The class taking rank as the fourth qualifies itself from an aggregate of all the circumstances under which any extensive population may actually exist ; and accordingly, it stands characterized by the measure of life's Absolute intensity, expressed by the proportion of such population's periodic renewal in case of its being stationary; or otherwise expressed by a geometric proportional between the diverging quotients, of the population distinctly divided by the periodic births and by the periodic dcaths, in case of its being progressively increasing or decreasing. The Law of Mortality referable to an indiscriminate pop'lation doubtless affords ample sccurity in its application to the transactions of life-insurance societics, and generally to transactions of all societies receiving periodic premiums or other contributions contingent on the endurance of lives qualifiable as select, in exchange for contracts to pay definite sums at periods either certain or uncertain; though it could not consist with the requisite security of such public institutions, to admit the contingent sums, thus receivable, according to valuations founded upon an application of mortality-tables strictly referablc to the classes of people dealt with. Great inconvenience attends the usual practice of life-insurance societies who preferably compute from the Northampton tables, which apply only to lives of a very inferior description; considering that a double error of no inconsiderable magnitude is thence fencrated : first, by materialy undervaluing the contingent
premium of insurance, and secondly by inferring a more proximate period than the probable one at which the insured sum should be disbursed; whilst any supposed remedy, consisting in the promise subsequently to restitute a certain portion of the excessive profit, must be ineffectual, as such restitutions, - in the shape of a bonus or in any other shape, - are inevitably regulated upon doubtful principles, as also according to arbitrary proceedings foreigu to the spirit of such contracts.
235. The fifith or inferior class, alluded to in the $229^{\text {th }}$ and $235^{\text {th }}$ paragraphs, necessarily excludes all Male individuals of the military and naval professions, as also a considerable mass of people so disadvantageously circumstanced in social order, that they are inevitably shut out from the benefit of reciprocal contracts. The lives of this class, in their generality and independently of discriminating the sexes, are represented with great approach to the truth, by the united mortality-talles of Duvillard, - referred to the population of towns in France at a former period, with liability to the Small-pox, - and of Dr. Price for the population of Northampton towards the same period; those tables differing little more than from the former's attributing, to lives under 56 years, Spccific intensities rather superior to those expressed by the latter, which on the contrary admits rather superior intensities above that age.
236. If it were inquired, respecting any probable distribution of the population, into relative quantities of each class; it would be, as regards the present population of France, in the following proportions, or thereabouts. Amongst every hundred, in the whole quantity, one of the first class, nine of the second, fifty of the third, and forty of the fifth joined with any still infcrior and rejected classes; the fourth forming a general average. Those unimportant indications, however, are given without
pretension to great accuracy, being only the result of calculation on more or less unsettled grounds; besides that differences, from the above proportions, should inevitably become apparent with reference to the contradistinguished sexes, as also to the various ages, and that the operation of time further tends to disturb more or less those proportions.

CHAPTER XXVI.

Of the Law of Mortality, modified relatively to the Five classes bcfore described; distinguishing the Male from the Female; and qualifying each class, of those respective sexes, by the measure of 'life's Absolute intensity represented under' the corresponding modifications.
237. It has been observed, in the $68^{\text {th }}$ and in the $149^{\text {th }}$ paragraphs, that the measure of life's Absolute intensity, ultimately rendered apparent by any Law of Mortality, should lee determined previously to attempting the construction of such a law; which may then be proceeded with, according to the principles and method set forth in ehapters XVIII and XIX. The general law which it is the present purpose to establish, relatively to entire populations without distinction of particular classes, and though exemplified by a elass rated the fourth in successive order, demands a prior consideration to that of any one amongst its eligible modifications. With this understanding, it is further to be premised, that a Law of Mortality roould be likely to fail answering the purpose of an enlarged application, if such law were coustrueted ou the exclusive grotinds of data referable altogether to any special locality and to a state of things there existing at an exclusive period. It has been seen that the facts on public record in France, during a long series of years, are the only source whence data indisputably correet could be obtained, towards diseovering the law's leading features; whilst any analogous experience, afforded by returns
concerning all movements of the British population, has, - from an incomplete system of public records, and from the inconsistency of their announced results, - proved utterly incapablc of supplying data on which a reliance could be placed. At the same time it is apparent, on the grounds explained in the chapters III and XI, that the Absolute intensity of life in England is in some degree inferior to' its measure in France, ascertained by indubitable experience. It appears on the other hand, and by statements in the $79^{\text {th }}$ paragraph, that such intensity in France had not progressed by increase beyond the first half of the observed period, after which it continucd vacillating by inconsiderable differences; denoting, on the whole, that the intensity of life in that country had probably attained its maximum, with indications of subsequent decline; whilst the progressive increase, during a first part of the recorded experience, should be ascribed to many successively favourable crops, together with improved circumstances of the population, consequently to a protracted state of peace and total absence of calamitous events.
238. Premising those considerations; and obscrving that it could not consist with the present object, to set forth, for general application, a Law of Mortality constructed from data referable to an extreme case; as also in order to meet the concomitant circumstances, - of a rather inferior standard of life's intensity in England compared with that manifested in France, and of a commenced reduction there, from the maximum of such intensity extending to full 36 years referably to an average of the five commencing with 1821 ; - it has been conceived preferable to adjust the Law of Mortality, intended for construction, with a standard of life's Absolute intensity represented by the population of each sex in France, on an average of the four year's experience 1817 to 1820 , both inclusive. By the statements in paragraph $94^{\text {th }}$, the averages corresponding
with that period are found to be 33.41621 years for the Male, as also $37 \cdot 09767$ years for the Female sex; and by a very near accordance with those quantities, the constructed Law of Mortality represents on one part $33 \cdot 4583$ and on the other part $36 \cdot 9^{583}$ year's Absolute intensity, or average duration of life; establishing precisely a difference of three years and a half, in excess of the Female's over the Male's. If it were at any time desirable to modify the law thus constructed, either elevating or reducing to any other standard the resulting intensities of male and of female life, the process of computation to that effect would not be very difficult; consisting only of raising or lowering each term of the series q_{x} in equal and adequate proportions, which is to be accomplished by either adding or subtracting equal quantities, to or from each of the corresponding a q_{x}; the application of which method may however require a few successive trials for completing the adjustment. In all transactions between individuals, the valuation of contingent sums depending on lives or on survivorships, - when mo sufficient motive arises for entering into any distinction of classes, - may with great equity be computed from the Law of Mortality thus constructed; which is hereafter detailed under the fourth class, and modified according to a due discrimination of the sexes.

239 . Regrarding the inferior class of lives; which, in its generality, appears to obtain a fair representation through jointly considering several tables constructed, - by Dr. Price with reference to the town of Northampton, - by the late Mr. Duvillard, and applicable to the towns in France, - as also by Mr. Mourgue, from his observations on the population of Montpellier with discrimination of the sexes; -those modifications of the law, which are adapted to the lives comprised in a fifth class, have the result of expressing an Absolute intensity, or average duration, respectively of twenty-six years and a kalf for the Male sex and of thirty

167

years and a half for the Female; thus admitting, between the one and the other, a difference of four years, which Mr. Mourgue in particular has ascertained to exist in an analogous case. Those resúlts have been determined after numerous attempts at reconciling the discrepancics observable in the tables above alluded to, with due attention to maintain the requisite harmony in respect to all other admitted modifications of the Law of Mortality, and to all corresponding expressions of life's Specific intensity at each year of agc. Hencc the tables accordingly introduced, and referred to that fifih class, may be considered especially applicable to all pecuniary transactions between public institutions and the individuals it comprises; when contingent sums, the receipt of which should depend on the endurance of such lives, are intended for reduction to a present value.
240. The results in the same manner brought out by the adopted modifications of a general Law, in their reference to the three classes described as select, may not require - after what has already been explained concerning those comparative classes - any further elucidation, than-merely to state the following leading features of that law, under those of its modifications regarding the differeut sexes of each class.

341 To the first select class, or that of lives making a near approach to physical perfection - on considering the present state of civilized countries, - an Absolute intensity, expressing the average duration of life, has bcen extended to 45° I years for the Male sex, and to 47.9 years for the Female; the difference, in favour of the latter, being thus limited to 2.8 years. And it is presumable that complete security, through an application of the modified Law of Mortality yielding those results, would in all cases be afforded, either to Governments or to Public institutions
whatsoever, on their granting life-amuitics, or contracting for any other contingent sums made to depend on select of lives, and receiving in exchange a present value of those contingencies.
242. To the class standing second in the order of selection, namely the class of Life-annuitants and Tontine-nominees, - all lives otherwise susceptible of assimilation with hem being included, - the resulting Absolute intensity considered in the greatest generality of such lives, is 41.9764 ycars for the Male and 44.9130 years for the Female sex. And all transactions of a contingent description, between private individuals, - when the contingent sums, reducible to a present value, are depending on the continuance of lives that obviously fall under the present description, - may with great equity be regiulated by applying a corresponding modification of the Law of Mortality, distinctly referred to the one and to the other sex of that second class.
243. The lcading results brought out by those modifications, of a general Law, which distinctly refer to males and to fcmales of the third select class, or that of lives who fulfil only the requisite conditions for being admitted to lifc-insurance, are 37.4781 years as regards the Males, and 40.6259 years as regards the Females; respectively expressing, with every correctness a careful investigation of the supplied data could admit, the Absolute intensity of lifc or its average duration amongst that third class.
244. From duly considering all difficulties attendant on the analysis of data that involve - as to the third class many omissions, and exclude the distinction of sexes, it has been a principal object, in providing that distinction, to maintain harmonions proportions with those established

169

relatively to other classes, regarding the Specific intensities of life referred to successive years of age and to each sex respectively.
245. The following tables exhibit the Law of Mortality, under its modifications referred to the five classes of each sex; such as those classes have been defined, in the present and in the preceding chapter.
246. Consequently to limitations at present unavoidable, those tables are much curtailed; reduced indeed to mere skeletons, consisting only of two principal series. These are : First, the Decrement of Life, as defined in chapter \mathbf{V}; observing that, in the original, the respective quantities are extended to nine places of decimals, which here are contracted into seven : Secondly, the Specific intensities of Life, as defined in chapter XVI and essentially constituting the Law of Mortality. All the developments of - and deductions from - that law, are omitted; but those two principal series are strictly sufficient for enabling to obtain any others; and all deductions may, for the present, be supplied by any Actuary willing to take the requisite, trouble.

UNDER ITS MODIFICATIONS REFIRRED TO THE DISCRIMENATED SEXES OF FIVE GLASSES
admitifing，in those modifications，equal quantities of Births

E DEGREMENT OF HIFE，or proportions of individuals who attain the sucgessively indicated years of age
（ SPEGIFIG INTENSIMIES OF EIFE，on rates of mortality during each yearly interval

	MALES．											females．									
	FIRST CLASS， or penpect lives．		second class， or hife－annoitants．		THIRD CLASS， or ASSUNABLE LIVES．				FIFTH CLASS， Or INFERIOA LIVES			FIRST CLASS， or penfect lives．		SECOND CLASS， or LIFE－ANNUITANTS．		thind class， or ASSUAABLE LIVES．		FOURTH CLASS， or \qquad		fifth class， or inyenion hives．	
	Doc	Iocmisite	mont	Intexitic	Dcer	Int	De	Itemitios．	Decremont			Serement．	Intesites	Decrement．	Oetenice	Decrem	Toromice．	Decrement	Thensites．${ }^{\text {d }}$	Decrenent	Iotasitioe
	1．0000000		．000000	${ }^{6,7904}$	1．0000000	5.779	10000000	${ }^{4.8705}$	1000000						77.768	1． Cocac 00		1．0000000	5.5660	1.0000000	4.6378
			2sslise			（12．445			cincin			Stich		cill		sinces			come	$\xrightarrow[\substack{7883898 \\ 6961010}]{ }$	
				cosis		cois	com		cosishe			come				cill		coide			
	1223	123．324	713861					cis	压531909	\％ 78.206					${ }^{116423}$	${ }_{6}^{69932}$	${ }^{975027}$	${ }_{66} 6.14$	${ }^{3,3,035}$		
9	cole						cota				9			col		${ }_{\text {cosem }}^{6}$				cisize	
${ }^{10}$	隹	${ }_{2}^{2123}$	${ }_{6} 6243536$	${ }^{\text {2085i132 }}$		－17．2147			${ }_{551238}$		10	7482205	$251 / 131$	219076		\％ 62.601				${ }_{5}^{50605393}$	
12	1 7 7199199		$\xrightarrow{\text { c9012 }}$		165		come				${ }^{12}$	com		（15587			208021		（180．083	Stictis	
	${ }^{3}$					（eate	，					cose		coly							（tase
${ }^{16}$	${ }^{7061322}$	226.339	${ }^{6521259}$	299，785	cisene	${ }^{195.371}$				－	${ }_{17}^{16}$			（722288		${ }^{6}$	29， 560		196．53n		230．469
${ }_{19}^{19}$			（tation								19818	${ }^{226263}$						coin		边	
20			${ }_{666637}^{60}$	${ }^{1858285}$		${ }^{156.0123}$		${ }^{1283158}$	4887164	${ }^{224748}$	20		${ }_{2710.083}$	691523	22227371	${ }^{6}$		${ }_{6007320} 6$		5220056	1077.127
	－		cisk				${ }_{5}^{665072}$		42211		${ }^{22}$			（sicsil		cititis	（198．996			S27080	（1017．022
	（ ${ }^{68}$				${ }_{5} 52927238$						$\begin{aligned} & 23 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	cosize				cismot			coside	coish	coile
26	670		${ }_{6} 638054$	121， 1205	${ }_{5853102}$	10.7883	${ }^{53888973}$	687306	${ }_{4}^{2}, 6,184$	${ }^{573} 3776$	${ }^{26}$	7016589	195．4881	${ }^{6123297}$	175．00618	${ }^{6252522}$		${ }_{5}^{5836397}$			
${ }_{2}^{27}$				（15．0022						${ }_{\substack{5547286 \\ 5472}}$	$\begin{aligned} & 27 \\ & 28 \\ & 28 \end{aligned}$				10， 123.2350		，		${ }^{112838354}$		${ }^{7411811}$
	${ }^{6}$				569320	${ }_{\text {a }}^{20.25854}$	$\underset{515925}{5150927}$	${ }_{7}^{76.95203}$	${ }_{4}^{431360}$		（ ${ }_{\text {co }}^{29}$	20，	${ }^{\text {cha }}$		${ }^{\text {a }}$		380		${ }^{10}$	${ }_{4}^{4650035}$	
	，	（12．22	${ }_{\substack{\text { coneys } \\ \text { 6axis3 }}}$	cose			506140			$\xrightarrow{2035}$	31	${ }_{\substack{613128 \\ 666422}}$	${ }_{\text {la }}^{13,9842}$	${ }^{5612}$		${ }^{1627}$	${ }^{1403}$	${ }^{50554}$		${ }^{4619054}$	（2，
－	${ }^{\text {a }}$						${ }_{4}^{48151462}$				$\begin{aligned} & 33 \\ & 34 \\ & 34 \end{aligned}$	coill							cill	53934	（183）
${ }^{36}$	614				${ }_{\substack{527769}}^{5}$		471		${ }_{36} 30$		36		106.6834	996				${ }_{5263036}$			
	（	$\begin{gathered} 101 \\ 99 \\ 99 \end{gathered}$									$\begin{aligned} & 37 \\ & 37 \\ & 38 \\ & 38 \end{aligned}$		ation		cois	（en		（in	cose	Sta	
4		${ }_{95} 97$			${ }_{4}^{50575741}$	${ }^{23} 2.4429$	${ }_{4}^{40202022}$		$\underset{\substack{\text { 3384529 } \\ \text { S31799 }}}{ }$		${ }^{39}$		${ }_{4}^{996.2651}$			－		${ }_{4}^{50} 4097575$			
${ }_{42}^{42}$	（883222	coin	${ }^{436}$			（70，750	6			${ }^{3176}$	${ }_{4}^{4}$	${ }_{\substack{0121611 \\ 616450}}$	${ }_{197}^{97}$		${ }_{\substack{\text { se } \\ 80.56646}}$	cishes		（			
4				析	45	${ }^{6} 48$	455132	cosk	299	\％	4	，	601		${ }^{461}$		663337				， 50
	${ }_{5581608}$	82323	${ }_{5197145}$	23.648	4611023	${ }^{62.6816}$	407925	${ }^{55} 5.973$	${ }_{296697}$	4	${ }_{4}^{4}$	${ }_{5} 9,737$	88，6211	2003	${ }_{757998}$	${ }_{5}^{5120 \times 3}$	${ }_{64} 6.45315$	44962	${ }_{581512}$	35697	${ }_{49} 44535$
${ }_{48}^{46}$	${ }^{\text {5nd }}$		cile	70，					20	${ }_{\text {cid }}^{688}$	${ }_{4}^{46}$	58774					¢ 0.1615	297			4， 4.5351
（	（ta			coishe			$\xrightarrow{\text { s779093 }}$	（ex	$\xrightarrow{22 \pi}$		$\begin{aligned} & 45 \\ & 49 \\ & 49 \\ & 50 \end{aligned}$	5558385	7 71.5652	${ }_{5} 520984$							cose
5185	${ }_{5}^{514}$	cid	475	$\underbrace{}_{\substack{558 \\ 528}}$		4		－ 42.75385	${ }_{2}^{23356454}$		${ }^{51}$	${ }_{\substack{5605850 \\ 6,2523}}$	cis． 6.515	（7902		${ }^{1646785}$			${ }_{4}^{4} 5.53517$	cinctin	
	${ }^{3}$	${ }^{32}$	473	（tas	（inction	399，255	${ }^{335675}$		$\xrightarrow{237888}$	coicle	$\begin{aligned} & 52 \\ & 53 \\ & 54 \\ & 54 \end{aligned}$						${ }^{4}$		citis30		
	5 4793149	${ }_{4} 8.30314$	4382	${ }^{4640907}$		${ }_{37529}$	326038		${ }^{21216403}$	${ }_{27}^{23} 7872$			${ }^{36} 469638$	${ }_{4}^{4} 47353$	489005	${ }_{4}^{4997274}$	$3{ }^{4} 4.84846$	${ }^{31235372}$	${ }^{36} 6739$	${ }^{28868629}$	${ }_{3181839}$
			407				203	238	${ }_{8}^{37}$				935		${ }^{16}$	${ }^{\text {774 }}$		5in	con		cos
	（ex			${ }^{3} 3^{2} 21231$	${ }^{\text {a }}$	cin	${ }^{26757509}$		Sis？	${ }_{20,607}^{20}$		415079		42816104		come	${ }^{\text {a }}$	边	3	${ }^{23339855}$	
的 62	1	3／1705	3 3 32，937	50，132	${ }_{\substack{\text { a }}}^{3191909}$			－	${ }^{170653}$		61	${ }_{4}^{4} 4$		${ }_{\text {coll }}^{4128838}$	（3）．959，	${ }_{122}^{122}$	${ }_{2}{ }^{29}$	${ }^{49}$	${ }^{\text {a }}$	\％	
（ ${ }_{6}^{64}$	（tall		${ }^{3,34,3,193}$		27.6 S76			coin	，			4865344	24，				19	cose			${ }^{\text {coser }}$
${ }_{6}^{65}$	（1）	${ }^{27} 2$		24，		21．224	$\xrightarrow{235359}$		${ }^{\text {14，5s599 }}$	10，462	${ }_{65}^{64}$	403836	20，785	${ }_{\substack{322802 \\ 362809}}^{3}$		627	$7{ }^{7}$	$\underbrace{2692915}$	${ }^{5}$	$\xrightarrow{1933}$	
	${ }_{5}^{56}$	${ }^{2414766}$		207145		177．037	${ }_{\substack{2}}^{2001512}$	4， 5	${ }^{1277825}$					3		${ }_{2 \text { 2076385 }}^{29035}$			－ 18.7084	${ }^{1752945}$	4．${ }^{1.6 .570}$
碞 ${ }_{6} 8$	（tas		coin	（eata			cincisici		（10）	（incisio	${ }_{69}^{68}$		${ }^{22} 5$	（3030650				$\underbrace{\substack{20}}_{\substack{2135303 \\ 2050203}}$		1419380	
	¢00		${ }_{2}^{25030503}$	${ }^{1873094}$	${ }^{2052105}$	${ }^{1,7.734}$		${ }^{12} 129937$	${ }_{\text {chen }}$	${ }^{121539}$		3320220	${ }_{21}^{23834}$	${ }^{2012324}$	${ }^{29054}$	${ }_{2}^{23312921}$	51.	$\xrightarrow{20220}$	${ }^{5}$		220
		－	$\underbrace{2358}_{22305958}$	${ }_{\substack{165355 \\ 15.469}}$	cisis60			（12．584	cin	（10．814	2	Sisesio				${ }_{\substack{2120611 \\ 206506}}^{20}$		－ 17.1855	${ }^{\text {a }}$	${ }^{121116167}$	${ }_{7}{ }_{7} 11.1953$
			coin		（isiss		边		come 6		2i3	－	come		coide		${ }_{\text {Sc }}^{5}$		${ }_{\text {a }}{ }_{5}^{\text {a }}$		
	${ }^{2125903}$	${ }^{142887}$	1788139		131133		${ }_{905168}$	8．7346	${ }_{56393}$	83810										${ }_{817312}$	${ }^{2}$
				－ 11.202		，${ }^{460}$	coini	72	${ }_{\substack{48881 \\ 475687}}^{4}$	96	76		cosk	5188	cistas		${ }^{31}$	cintiob	${ }^{6}$	cill	
	（ta						coick		（175		$\substack { 78 \\ \begin{subarray}{c}{78{ 7 8 \\ \begin{subarray} { c } { 7 8 } } \\{90} \end{subarray}$			－	（10．537			（incis			（ta
	82							5.6			20，		${ }^{10.2117}$					5			
	（1）	8.15	${ }_{710731}$	2，933				${ }_{511332}$	cole				为		（ex	边		\％			（e）
	${ }_{\text {cose }}^{5}$		（1031		3			54332		${ }_{4}^{46,692}$			${ }_{\substack{\text { s．0．033 }}}^{\text {c．}}$	2303	${ }_{\substack{23365}}^{71465}$			$2{ }^{\text {2 }}$	，	173s	${ }^{\text {a }}$
		8851 80727	cis				${ }_{\substack{16683 \\ 10832}}$		$\substack { 7838 \\ \begin{subarray}{c}{73,88{ 7 8 3 8 \\ \begin{subarray} { c } { 7 3 , 8 8 } } \end{subarray}$		${ }^{86}$					ciser	（1）	$3{ }^{3}$		$\xrightarrow{7350}$	${ }_{9}^{0}{ }_{5}^{43907}$
			coill					${ }_{\substack { 4 \\ \begin{subarray}{c}{4.920 \\ 5.564{ 4 \\ \begin{subarray} { c } { 4 . 9 2 0 \\ 5 . 5 6 4 } }\end{subarray}}$		${ }_{\text {che }}$					${ }_{\substack{6.4665 \\ 6.564}}^{\substack{\text { che }}}$						
				T101	$\xrightarrow[\substack{\text { a }}]{\substack{12372 \\ 102923}}$								${ }_{\text {2 }}$								
					26368	－6090			，	促	${ }_{\text {a }}^{23}$		$74.4{ }^{4}$		\％	${ }^{232365}$	¢9，	3 38944	$\underbrace{\substack{\text { che }}}_{4}$		${ }^{\text {a }}$
	${ }_{\text {95 }}^{54}$			${ }^{7} 7.6655$		（6．5000	$\underset{\substack{23170 \\ 1654}}{\substack{\text { a }}}$			${ }_{321}^{241}$			${ }^{7} 72389$	（17364	${ }_{\substack{7,0002 \\ 7,0002}}^{\substack{\text { a }}}$	${ }_{\substack{\text { 35183 } \\ 7053}}$	$\underbrace{* 3}_{3,}$	${ }_{2}^{2}{ }_{2}$	${ }^{1}$	${ }_{12353}^{1543}$	4．4．992
		simas	112979		69	${ }_{\substack{6,451 \\ 6,652}}^{\substack{6}}$	${ }_{\substack{1565 \\ 12666}}$						603	${ }_{\text {che }}^{1298574}$	（2966	（1000	（ex	8		${ }^{1}$	3－${ }_{3}^{4.9658}$
						（6．2352											（en ${ }^{37}$	边		（ex	
边	915										101			\％							
\pm				${ }_{6} 6.337$	coin	${ }_{5}^{5.3904}$		citize		4.4 .352	（10）	2073	230	521				${ }_{4}$	${ }_{\text {a }}^{5}$	${ }^{\frac{1}{4}}$	
\pm	（105	${ }^{\text {c／ick }}$	$\underset{\substack{3503 \\ 2939}}{\substack{4 \\ \hline}}$		$\underset{\substack{124 \\ 1.051 \\ 1}}{ }$		cke	${ }_{4}^{4.5367}$		${ }_{4}^{4 \times 4393}$	10.4	${ }^{415}$	$\substack{\begin{subarray}{c}{5.8789 \\ 5,784} }} \end{subarray}$	cisit		$\substack{\text { lisisi } \\ 9150}$		4 边	，${ }^{56}$	4 （ ${ }^{21853}$	（1aty
	（100	${ }^{6}$	${ }_{\substack{\text { 20，} \\ 2050 \\ 20512}}$		${ }_{8624}$		${ }_{\text {che }}^{1264}$	${ }^{4}$		${ }^{4.4123}$	\％oi	7139	784	${ }_{\text {2 }}^{17}$	54897		［173	$4{ }^{(1749}$		4 （88）	
	（tas				cosis		${ }_{7}^{965}$	${ }_{\text {a }}^{5}$		－	\％	coize		141490	${ }_{5}^{5.4} 5$			95	53，		${ }_{4}^{40.010}$
	${ }_{2176} 27$	61421	${ }_{11908}$	${ }_{5}^{58234}$	${ }_{305}$	50664		4.3789		4.2318			${ }_{5}^{54.460}$	9，994	${ }_{2281}$		速		4.4		${ }_{3} 3.921$
		57770	¢		$\substack { 2013 \\ \begin{subarray}{c}{213 \\ 1721{ 2 0 1 3 \\ \begin{subarray} { c } { 2 1 3 \\ 1 7 2 1 } } \end{subarray}$	5is					i11			520		2103		（15）	5in	¢	（188
	（1）				$\xrightarrow{1385}$	${ }^{4} 4.37802$		（1）					（incis		（e）				（tabe		
	（117					${ }_{4}^{437251}$	－ 110			3．6880	H2								527		${ }_{26}{ }^{3} 5$
		，	$\substack { 2127 \\ \begin{subarray}{c}{2177 \\ 127{ 2 1 2 7 \\ \begin{subarray} { c } { 2 1 7 7 \\ 1 2 7 } } \end{subarray}$	${ }_{\substack{4 \\ 4 \\ 4.8507}}^{\substack{4897}}$	$\substack { 189 \\ \begin{subarray}{c}{189{ 1 8 9 \\ \begin{subarray} { c } { 1 8 9 } } \\{185} \end{subarray}$	${ }^{\text {a }}$		（634		${ }_{\text {cki }}^{6,62}$	1115		${ }^{49796}$		${ }_{1}^{2}$				发起		退
	（120 2809	${ }_{5}^{50544}$		4，3272		4.4385		32．7397		426			4602		1．2688		$164{ }^{164985}$				
			－1088	${ }^{4}$	$\xrightarrow{2729}$			，		${ }_{\text {a }}^{\substack{\text { a }}}$		边		3	54				（18）		
	（124				$\xrightarrow{\substack{11}}$	（							$\begin{aligned} & 4.95969696 \\ & 3.6056 \end{aligned}$				（ta				（i，
	${ }^{127}$	4，		1		35\％				${ }_{\substack{1596 \\ 1005}}$		过	${ }^{3} 588$		（14，		Sisen				
	（tas	cos								${ }^{\text {O }}$				${ }^{7}$	（ta				27844		
	150	4．0002		${ }^{6}$ 3．879		${ }^{3} 84.429$				3445		80	3.507		${ }^{33744}$		3.650		27854		2736
	（ex	\％		cis								4．			26		（10，		9		（inct
	（135			（1）		cosk				${ }_{\substack{2.9536 \\ 2.8619}}^{\text {a，}}$											
	13	－35964		15.3 .6		5．388				，			${ }^{3}$		28692		\％ 76.6		，313		20，
		${ }_{5}^{3} 272$				${ }^{2} 8.8854$						，	${ }^{2} 787818$								
		3.23													4，4s						
	${ }^{1414}$			s．ond		\％							7020				边				${ }_{2} 2914$
				${ }_{2}^{29572}$		${ }_{2}^{2,7157}$		${ }^{193}$		${ }_{2}^{2} 2.378 m^{2}$	？	\％6	${ }_{2}^{2.5915}$		－		2i．290		${ }_{\text {2，}}^{2.1729}$		$\substack{2.10977 \\ 2.090}_{\substack{\text { a }}}$
	45， 5000000		42.7784		37978065		30.					48.400		45.112971		41.1259		37／48280		31.0	

GHAPTER XXVII.

> Of some p:ominent features exhibited by the Law of Mortality.
247. Bearing in mind what has been stated in our foregoing pages, concerning the method of constructing a Law of Mortality, and of deducing from it many useful'results; it may not be uninteresting for the reader to find here a synopsis of the prominent features which that law exhibits, including a few results susceptible of further extension by tabulating them referably to each year of age.
248. Confining this synopsis to the results, for each sex, of the general law applicable to an indiscriminate population, exemplified by that of France (see the paragraph 234 ${ }^{\text {th }}$, $237^{\text {th }}$ and $238^{\text {th }}$); the following are relative to one million of aunual births, and to an equal quantity of annual deaths, supposed to occur under the hypothesis of such population being stationary.

RELATIVE POPULATION and its distribution.
(See chapter XXIV.)
Permanent quantity of population, when
stationary; to result from one million
of births, annually compensating for
an equal quantity of deaths; observing
that a summation of all the terms of
the decrement shall exceed that quan-
tity by hàlf a million. (See para-
graph $488^{\text {th) }}$.

Permanent distribution of that quantity of stationary population; observing that the proportions of youthful shall exceed those here 'announced, when the population progressively increases, and the contrary when the population progressively decreases.
Living at and above 5 completed years. 29802080
At and above 10 years. $\quad 26700472$
At and above 15 » 23711199
At and above 20 20813581
At and above 30 " 14378646
At and above 40 10597002
33165248

At and above 5o » 652219^{3}
29 901 223
26743503

At and above 60 " $327^{6} 407$
23665696
${ }^{1} 779^{3} 908$

At and above 70 " . . . 1152730
12471423
788×660

At and above 80 » 224959
4171266

At and above 90 " 25389
1 60589^{8}

Centenarians generally. 2819 328829
33854

First minimum of the relative quantity of deaths, referred'to one million of annual births; which minimum takes place at 13 completed years, for the male sex, and at 15 for the female. .
Maximum of their relative quantity; occuring at 67 completed years for the male, and at 70 completed years for the female sex.
3539.499
$3125 \cdot 348$
3206

PERIODIC DEATHS.

(See chapter XV.)

$$
175
$$

Males.
Females.
Its comparison for both sexes at similar ages; or the proportions of superior intensity attending either sex, with reference to those ages, only, at which such superiority - during the intervening periods - alternately rises to a maximum or falls to a minimum, until it is assumed by the other sex :
Proportions of the Females' superiority, at the birth $1 \cdot 14^{3} 3_{2}$

-	at 4 completed years . . $1 \cdot 0529$		
	at 26	"	1.4278
-	at 43	"	- $\cdot 0364$
-	at 69	"	- 2178
-	at 81		$1 \cdot 0025$

Proportions of the Males' superiority. . . . $1 \cdot 0192$ at 82 comp. years.

—	1.0489	at 85

COLLECTIVE INTENSITY OF LIFE.

(See chap. XII.)

At the birth, and then being identical with the Absolute intensity.	33•4583	$36 \cdot 9583$
Its maximum, referable to the $5^{\text {th }}$ completed year and all superior ages, for . both sexes.	$46 \cdot 6857$	49.4248
Its first minimum, referable for both sexes to the $85^{\text {th }}$ and all superior years. . .	4-4560	$4 \cdot 2605$
Its measure of years, 'referable to the probably oldest individual including any possibly older ; that probable age being 128 years for a male, and 126 for a female.	2.5920	2.3358
Its measure referable to two joint lives, at the birth.	$16 \cdot 6574$	19.5862
Its measure at the birth, with reference to either of those lives aventually snrviving the other.	$50 \cdot 2592$	$54 \cdot 3304$

EQUATION OF LIFE.

(See chapter XIII.)

At the birth, the probabilities being then equal, of attaining, or not, the age of	31.883	$39 \cdot 671$
Its maximum, referable for both sexes to the $4^{\text {th }}$ completed year of age.	50.965	53.860
Its first minimum, referable for both sexes to the $86^{\text {th }}$ completed year.	$2 \cdot 956$	$2 \cdot 856$
Its measure of years referable to the probably oldest individual, then having completed 128 years, if a male, and 126 years if a female.		
Its measure referable to two joint-lives, at their birth .	$2 \cdot 188^{\prime}$	2.997
Its measuret then referable tol the even-艮是 tual survivor of those two lives. . . .	$5 \mathrm{r} \cdot 978$	$56 \cdot 858$

YEARS OF AGE.

At which the Specific intensity of life
equalizes with the Absolute intensity
referred to the population at large. . .
55
55
At which the ${ }^{\text {Equation }}$ of life ceases to exceed the measure of its Collective
intensity.
The utmost probably attainable by one individual only ; -

Amongst one million born in any
year. 128 126

Amongst those born during ten years. 134 ' 31
Amongst those born during one hundred years. I39136

Amongst those born during a thousand years..
At which the surviving females become more numerous than the males, although the births of the latter sex are understood to exceed those of the former ;

- First, supposing 21 male births to

20 female. 4 to 5

- Secondly, supposing 17 male births to 16 female. $\quad 17$ to 18
At which the surviving males recommence
being more numerous than the females;
-First, supposing equal quantities born of each sex. 109 to 110 years.
- Secondly, supposing 21 male births to 20 female. 107 to 108 years.
- Thirdly, supposing 17 male births to 16 female, as experienced in France of late years. 106 to 107 years.
At which any quantity of individuals
born are reduced, by the deaths :-

To one-half.	$31 \cdot 883$	$39^{\bullet} 671$
To one-third.	$54 \cdot 227$	$58 \cdot 687$
To one-fourth.	62.010	$65 \cdot 562$
To one-fifth.	$66 \cdot 014$	$69 \cdot 395$
To one-sixth.	$68 \cdot 615$	71.927
To one-eighth.	$71 \cdot 962$	$75 \cdot 138$
To one-tenth.	74-128	77.145
To one-twenty-fifth part.	$80 \cdot 725$	82.897
To one-hundredth part. .	$87 \cdot 365$	$88 \cdot 8: 7$
To one-thousandth part. .	$9^{8 \cdot 163}$	$99 \cdot 231$

At which any quantity of couples simul-
taneously born would be so reducible, by the death of any one of each two joint-lives: -

To one-half. .	2. 188	2.997
To one-third.	18:103	$27 \cdot 339$
To one-fourth.	31.884	$39 \cdot 672$
To one-fifth.	$39 \cdot 432$	46.540
To one-tenth.	$56 \cdot 007$	$60 \cdot 19^{\circ}$
To one-hundredth part.	74-136	'779155
To one-thousandth part.	82.026	$83 \cdot 996$
To a single surviving couple.	101 years.	102 years.

249. The above with other correspondinig statements, all referred to each year of age, to each sex, and to Joint as well as to Single lives of each discriminated elass, - together with the valuations, similarly referred, of eontingeneies variously described in our next chapter, form numerous sets of Tables that eonvey information on important points eoneerning social life.

CHAPTER XXVIII.

Of applying the Law of Mortality, towards reducing contingent or reversionary sums to a present value.
250. Among the useful purposes to which the law of mortality is applicable, a principal one, of daily recurrence, is that of ascertaining the present value of lifeannuities and of reversionary property. The only means of such ascertainment, with a desirable correctuess, are derived from a combination of the probabilities of life to be deduced from that law, with the rated interest of money; the latter being a mecessary element of computation. And when proceeding on this, the importance of exclusively applying au appropriate modification of the general law of mortality, according to the class and sex of the considcred lives, must now be fully understood.

25r. Several branches of those results are susceptible of bcing tabulated by anticipation; and taking joint-lives into view, the tabulations may cmbrace' a vast extent. On this matter, much labour has already been bestowed.
252. The celebratcd Euler computed the values of single lives, from Kersseboom's tables of mortality, 'at five per cent. interest; as also Mr. de St-Cyran, from the same tablcs, at various rates of intercst. Mr. Deparcicux likewise computed the values of single lives according to his own tables referred to the class of tontinenominees; as also Mr. de Florencourt, from the samc
tables he corrected. Mr. Dupré de St-Maur computed other tables of values, subsequently inserted in Buffon's work. After them, Mr. Milne supplied completc tables of the values of life-annuities, both on single and on joint-lives, computed according to various rates of interest and to the law he constructed from experience on the mortality of the town of Carlisle; which law has been eminently scrviceable to science, at a time when the Northampton law was too indiscriminately and often very injudiciously applied. Subsequently, Mr. Davies published further elaborate tables of valued life-annuities and reversions, computed in the same manner, and according to various rates of interest, combined with the law of mortality he concluded from the experience of the "Equitable" life-insurance office. The late Mr. Mazeres and the late Dr. Price had previously supplied analogous tables; the former, according to the law deduced from Deparcieux's observations on select classes of lives in. France; and the latter, according to his law concluded from the \cdot Northampton expcrience, as also to the law he concluded from Mr. Wargentin's observations on the mortality in Sweden. Other sets of tables, falling under a similar description, have lately been published by Mr. Finlaison; their computation being from a law of mortality the discussion of which has been the matter of our $\mathbf{X X}^{\text {th }}$ chapter. And lastly, the writer of these pages has considerably advanced his tabulated valuations of life-annuities, of reversions, etc., under the respective combinations of distinct rates of interest with each of the ten modifications here. set forth of the law of mortality: but the publication of those extensive tables must bc postponed, until leisure shall have been found for their completion, if then it may be reconciled with other considerations.
253. Meanwhile it may be proper to state the following principles and methods, upon which such computations are
generally to be proceeded with; as also to point out sone means of securing their accuracy, with all possibly economy of time and labour.
254. Retaining for the symbols x and y their preceding siguifications, - the former, that of any year of age completed by the considered individual,-and the latter, that of any quantity of survivors at, such age, out of a given quautity of births, according to the decrement referable to the appropriate law of mortality; let r further sisnify a fractional quantity, equal to one year's interest in a single instalment, supposing unity to represent the principal sum; and let also x signify a term of fortheoming years, to the expiration of which will be referred any sum then receivable or payable, when the question is of reducing such future sum to a present equivalent. Then $\frac{1}{(1+r)^{x}}$ shall express a present value of the sum certainly forthcoming at the expiry of the term signified by \mathbf{X}, that sum represented by unity discountable for that term at compound-interest according to its ratio r, at the same time as $-\mathbf{X}_{\lambda}(1+r)$ is the logarithm of that value, expressible only by a fractional quautity; and $u_{x}=\frac{y+x}{\gamma_{x}(1+r)^{x}}$ shall likewise express, by a still smaller quantity, the present value of a future and contingent sum also represented by unity and available at the expiry of the term $\cdot \mathbf{X}$, but conditionally on the assigned life actually of the age x being still extant at the further age $x+\boldsymbol{\lambda}$. That general expression u_{x}, the logarithm of which is ${ }_{\lambda} y_{x+\mathrm{x}}-\lambda y_{x}-\mathrm{X} \lambda_{2}(1+r)$, shall be the basis on which to rest the computation of any value hereafter signified by v_{x}, being, that of the annuity depending on a single life.

20̃5. Having admitted X generally to represcnt all successive
numbers of years, beyond that of the individual's present are x; if the corresponding values represented by u be accordingly computed, we shall have a series u_{x}, correctly expressing present values of the contingent unity incoming at the expiration of every succeeding year, until any term at which the corresponding value becomes so reduced as no longer to be of consideration; $v=\Sigma u_{\mathrm{x}}$, the sum of partial values u_{x}, shall then express the total value or Principal, by a quantity of years' 'murchase of such annuity, or of the income in a single payment at the expiration of each further year of the considered life : understanding, however, that no ultimate claim of income is to be grounded on any period of days elapsing between the last revolved year and the failure of such life.
256. The method of computing the value of an annuity made to depend on the joint continuance of two lives is perfeetly analogous with the preceding. Supposing those lives of the same class, sex and age, a series U_{x} will be formed of successivcly partial values $\mathrm{U}=\frac{y_{x}^{2}+\mathrm{x}}{y_{x}^{2}(\mathrm{I}+r)}$; whence $\mathbf{V}=\Sigma \mathbf{U}_{\mathbf{x}}$ shall be the value of such an annuity, also expressed by a quantity of years' purchase, with the same understanding as above.
257. Supposing again those lives to be of different ages, though of similar class and sex: if then the ages are respectively signified by x and by x^{\prime}, the preceding formula will be converted into $\mathrm{U}^{\prime}=\frac{y_{x}+\mathrm{x} \times \gamma_{x^{\prime}+\mathrm{x}}}{y_{x} \times y_{x^{\prime}} \times(\mathrm{I}+r)^{\mathbf{x}}}$; whence $\mathrm{V}=\Sigma \mathrm{U}_{\mathbf{x}}$ as before. But in case of the lives being of different sexes, or of different classes, it will be necessary to apply the appropriate modifications of the law of mortality; multiplying the quantity $\frac{y_{x+\mathrm{x}}}{y_{x}}$ whicli the one modification may represent, by its
corresponding quantity $\frac{f_{x^{\prime}+\mathrm{x}}}{y_{x^{\prime}}}$ according to the other, and dividing the product by $(1+r)^{\mathbf{x}}$; whence the process stated in the $255^{\text {th }}$ parargraph shall cqually yield a series U_{x}, the summation of which $\mathrm{V}=\Sigma \mathrm{U}_{\mathrm{x}}$, exhibiting the present value of the annuity on joint-life; always with the understanding aforesaid.
258. When the question is of tabulating, by anticipation, the values either of single or of joint lives, according to successive years of age, and to any given rate of interest, a great economy of time and of mental labour, as also a sccurity against incidental errors, will result from the following mode of proceeding.
259. Having stated in one column all logarithms of the successive quantities u_{x}, with reference either to any earliest age signified by x, or to the earliest two ages signified by x and by x^{\prime} in the case of joint lives, those logarithms being positive quantities, in expressing which, all the negative indices shall be omitted; every succeeding column, referring to agges more advanced, will be formed by the one immediately preceding, exclusively of its first term, and adding to each of its subsequent terms an equal quantity, being the arithmetic complement of that first term of the series. The motive is obvious. Each quantity, either u or \mathbf{U}, being produced by the probability that a single life aged x years,-or else two joint-lives as described, - shall endure another year, multiplied by the discounted value of unity for one year; it follows, that when such first year is expired the mere probability has become a certainty, as also that the discounted sum has recovered an intogral value, as regards either the life aged x having then attained the age $x+1$, or as regards the joint-lives both of which have in
the same manner advanced another year; whence the logarithm of the probability, and that of the discounted value, shall have respectively risen to o, from being negative quantities referred to the year of age immediately preeeding; and all other logarithms in the eolumn λu_{x} shall inerease by a similar quantity, to form the column λu_{x+i}. When thus proeeeding, errors will be guarded against, by observing, as a natural consequence, that the suecessive, quautities $\lambda u_{x+1}, \lambda u_{x+2}, \lambda u_{x+3}$, $\lambda u_{x+4} \ldots \ldots . \lambda u_{x+n}$, must be respectively equal to the corresponding quantities $\lambda u_{2_{x}}-\lambda u_{t_{x}}, \lambda u_{3_{x}}-\lambda u_{2_{x}}, \lambda u_{4_{x}}$ $-\lambda u_{3_{x}}, \lambda u_{5}-\lambda u_{4_{x}} \ldots \ldots \lambda u_{n+x_{x}}-\lambda u_{n_{x}}$, in the same order of suceession; whence no ineidental error could eseape deteetion. And further the chances of error will be diminished, as also a considerable saving of time will be obtained, by avoiding to appropriate in the logarithms more figures than strietly neeessary. Five are sufficient for the purpose of all desirable aecuraey, which then admits four decimal figures to express the most elevated among the fractional quantities u_{x}; and it would be a mere delusion to imagine that a nearer approach to absolute correctness, in a matter resting entirely on probabilities and approximations, could be obtainable through the introduction of any greater number of deeimal figures in the expressed valuations of annuities by quantities of years' purchase. The writer derived great economy of time from using Lalande's table of logarithms thus limited, and carefully transeribed within the smallest possible space. Errors may however arise on converting the ${ }^{\lambda} u_{\mathbf{x}}$ into their corresponding quantities u_{x}, by the tables of logarithms, although with ordinary attention they should but seldom occur when having only four figures to set down; as also further errors on summing up $v=\Sigma u_{\mathbf{x}}$. But a
ready method of detecting all such errors will be to note the suecessive differences $v_{x} \pm v_{x+1}, v_{x+1} \pm v_{x+1}$, $\nu_{x+3} \pm v_{x+3}$, ete., throughout the whole series of computed values; and to remark where the regular progression of those differences may be materially disturbed, thus pointing out any speeifie quantity v^{\prime}, or series $u_{\mathbf{x}}$, involving probable error. All that is here mentioned, referably to u and to v, equally applies to U and to V regarding annuities on joint-life.
260. The present value, or Principal, of an annuity contingent on the longest of any two lives, - whieh implies its being payable until both lives shall have dropt, - is immediately determinable from a previous aseertainment of the respective values of three equal annuities, two of which contingent on each of those lives singly considered, and the third on their joint-continuance. Supposing the values of the single lives respectively to be v and v^{\prime}, as also V to be the value of their joint continuanee, the value of the longest life shall obviously be, in all eases', $v+v^{\prime}-\mathbf{V}$, or the sum of the first two values abating the third, or value of the eventually shortest life; which neeessarily follows from the latter's ultimately proving identieal with the one or with the other of the two, whose contingencies were separately valued.
261. When stating the above rules, the life-annuities of different deseriptions have been exelusively considered as aecruing at the expiration of each revolved year, and as terminating with the last of those years preceding the failure of the life on which sueh ineome depended; but as other conditions may attach to the grant of any life-annuity, it is nceessary further to state the modifications of value conserfueat on each particular eondition,
differing from those first supposed and always assumed when the values are tabulated by anticipation.
262. In ease of an annuity stipulated to acerue at the commeneement - instead of the expiration - of every succeeding year, either of the valuations, eomputed as before, are to be inereased by unity or a whole year's purchase; the only difference then consisting in the first year's anticipated income, whieh indeed is nothing else than an abatement on the principal sum or purchase price.
263. There are two other cases, both independent of each other, as also of the preceding; but the solution of questions involved by those cases requires previously to ascertain another quantity, which we may generally signify by t. That quantity, - either t_{v}, t_{v}, or $t_{v+v^{\prime}-v}$, - expresses a term certain of years, during which, and by an equitable composition, the annuity of whatever description might be eontinued, instead of being made to depend on the uncertain duration of life. By eonsulting the elementary works that state invariable relations between these five quantities, - the annuity, - its cumulated amount at the expiry of any given term, - its value or the principal, - the ratio of interest, - and the term of years of the annuitys' continuance; and in whieh works it is further demonstrated, that any three of those quantities being stated, the other two become ascertainable; it will be found that the relative term t, according to the respectively predetermined values, is either $t_{v}=\frac{-\lambda(1-r v)}{\lambda(1+r)}, t_{\mathrm{v}}=\frac{-\lambda(\mathrm{I}-r \mathrm{~V})}{\lambda(\mathrm{I}+r)}$, or $t_{v+\nu^{\prime}-\mathrm{v}}$ $=\frac{-\lambda\left(\mathrm{I}-r\left[v+v^{\prime}-\mathrm{V}\right]\right)}{\lambda(1+r)}$.
264. Reverting to the two cases mentioned in the first
clause of the preceding paragraph : if the annuity continued payable, in due proportion, for any intervening period between the last revolved year and the demise of the understood life or lives, the value, predetermined without that condition, would in this case admit an increase ecfual to a hialf-year's income discounted at compoundinterest, with reference to the term t computed according to the above dircction; and if the annuity accrued by half-yearly op by quarterly instalments, in corresponding proportions, instead of accruing by single and annual instalments, the increased value would then, and according to either of those proportions, be $\frac{\left(1+\frac{r}{2}\right)^{2 t}-1}{(1+r)^{t}-1}$, or $\frac{\left(1+\frac{r}{4}\right)^{4 t}-1}{(1+r)^{t}-1}$.
265. As those cases of exception, to the general rule for valuing life-annuities, are perfectly independant of each other, they admit such combinations as to require the computations of increase, above the simple and tabulated values, to be governed by the respective analogics; observing always, that the fractional quantity signified by r is understood invariable, when performing different functions in the original and in the supplementary computations. Hence, and supposing anticipated accretions of only the half-yearly or the quarterly instalments, the increase of the annuity's value would be no more than a fourth or an eighth part of a years' income discounted for the term t, if notwithstanding such anticipation the annuity continued proportionally payable after the last revolved half-year or quarter, until the demise; whilst, on the other hand, cumulated proportions of the increased value should be consequent on a combination of the two cases stated in the preceding paragraph, or on a combination of cither with the condition of anticipated instalments; and the latter condition alone, if the instalments
were half-yearly or quarterly, would merely add a corresponding proportion to any predetermined value of the annuity.
266. As regards the prosent valuc of any reversionary property, available on the failure of a single life, - on that of either the one or the other of two lives jointly considered, - or else on the failure of both lives, - the ascertainment of such valucs entirely depends on that of the annuities contingent on those lives as respectively described; excluding the consideration of any one amongst the extraordinary conditions discussed in the $261^{\text {st }}$ and subsequent paragraphs.
267. Now admitting a to signify the reversionary sum, or the value of any other reversionary property; and further admitting b, B, and $b+b^{\prime}-\mathbf{B}$, respectively to signify the corresponding and present values of such reversions, after failure of a single life valued v,—after failure of any two lives the joint-continuance of which valued V ,-or after failure of both those lives the longest of which valued $v+v^{\prime}-\mathrm{V}$; there is, with reference to all cases, the following determinations of those present values:

$$
\begin{aligned}
& -b=\frac{a-a r v}{1+\frac{r}{2}}, \quad \mathrm{~B}=\frac{a-a r \mathrm{~V}}{1+\frac{r}{2}}, \text { and } b+b^{1}-\mathrm{B}= \\
& \frac{a-a r\left(v+v^{\prime}\right)-a r \mathrm{~V}}{1+\frac{r}{2}} .
\end{aligned}
$$

268. If the reversion valued B were conditional on the first failing, of the two lives, being one selected preferably to the other; the value of such conditional reversion would be, - proportionally with the amount of unconditional valuation, - as the fractional quantity expressing the probability of the selected life's surviving the other,-to unity or the sum of their reciprocal probabilities
of survivorship. Mr. Morgan's rule *, for computing those probabilities, is however without application in the case of two lives differing in sex or in class, and thence requiring a reference to distinct modifications of the law of mortality.
269. Having thus ascertained the equivalent of any reversionary property, it is easy further to detcrmine an annual sum substitutable for that equivalent and depending on the contingencies of life in the presupposed cases, of single, of joint, or of longest life; which annual sum is usually denominated Premium of Insurance. Such premium being nothing clse than an annuity, into which the principal sum is converted by mutual agreement, and considering that it is usually discharged by anticipation of each year in a single payment; it shall then be, either $\frac{b}{v+1}, \frac{\mathrm{~B}}{\mathrm{~V}+1}$, or $\frac{b+b^{\prime}-\mathrm{B}}{v+v^{\prime}-\mathrm{V}+\mathrm{I}}$, according to the specific case. But it must be understood, that any premium of life-insurance computed on those grounds, - however equitable, - leaves entirely out of consideration the charges of management, requisite profit, and liabilities necessarily incurred by public institutions, when transacting business of that nature.
270. It is immediately conseguent on what has just been stated, that the title to property, denominated Policy of Insurance on Life, possesses a value increasing with the advance of time since the contract was entered into. At any posterior period, the real value of the reversion, whether that value were b, B , or $b+b^{\prime}-\mathrm{B}$, will be more or less superior

[^10]to what it was originally; whilst the annuity or premium, charged upon that original value, will represent a smaller capital, at which it should be redeemable. The property in a Policy may therefore at all times be equitably purchased at the then present value of the reversion, according to the ages of the life or lives on which it depends; abating the present value, also, of the life-annuity as then describable. This simple rule applies to all possible cases; there existing no adequate motive for excluding from the benefit of life-insurance, either joint-lives, or a survivor's life. It is of no small importance for the public, at large, to be facilitated in ascertaining the fair value of such titles of property; a due information respecting which may render the unpretending individual less dependant on arbitrary dealing. Some offices of life-insurance are understood to notify, at the time of contracting, the gradually increasing valuiations from year to year, at which they are willing to purchase the policies originating with themselvés : a very laudable regulation, which all offices of that description ought to adopt. It is but seldom that contingent property of any kind, when thrown on the market, may obtain its full value; and a life-annuity in particular has, from special fitness, its greatest appreciable value when in the nominee's possession.
271. This chapter is confined to stating those applications of the law of mortality which relate to results susceptible of tabulation for occasional use. There are numerous other objects of application, the appropriate rules for most of which are to be found in various publications, chiefly those of Mr. Morgan. The circumscribed purpose of the present work further renders unnecessary that those statements should, embrace the joint consideration of any more than two lives, the valuation of contingencies depending on which might equally be called for.

CHAPTER XXIX.

Of Institutions founded on an application of the Lavy of Mortality; and in particular, of an Institution for Assiring, at the time of Marriage, Endowments to the issue therefrom.
272. The conversion of property exposed to peril or involved in doubt, into other possessing the character of certainty, is at all times attended with advantage, when obtainable by an equitable compromise of the unfavo:nable chances attaching"to the former. The reality of that advantage will not be destroyed, though profit should devolve to the parties neutralizing the risk or causes of uncertainty, unless such profit were exorbitant; and the beneficial results of \{promoting all provident dispositions, as also of affording the utmost facilities to render profitable the savings of income, are unquestionable. Those objects are in progress of fulfilment, through the instrumentality of numerous public Institutions and private associations, induced by the advance of general knowledge; some of which Institutions, being formed on the principle of a mutual assurance, which under wholesome administration admits the lowest standard of sacrifice by the assured parties, may be entitled to preference.
273. The associations for life-insurance hitherto stand prominent amongst all others. By Insurance of life is understood the contract for a sum reversible, when shall fail either any single life, the joint-continuance of any two or more lives, or else a last-surviving life of

191

several jointly considered; which reversionable sum is represented by an equivalent at the time of contracting, when the latter may be either discharged in a single payment, or be converted into an annuity under the denomination of premium, payable during the life or lives thus said to be insured. Such insurance may further take place against the ouly chance of life's dropping within a stated period, as also other modes of accommodation may he introduced; the particulars of all which are here unnecessary to be recalled. Amongst all provident transactions, this is one of the most important, viewed as a resource for millions of persons respectably situated, but whose periodic incomes shall in all probability terminate with their lives; as it resolves into certainty the pecuniary results to be expected from life's profitable employment, whilst limited to a probable duration according to age, to sex, or to class, and neutralizing the chances of that duration's eventual abridgment or protraction.
274. Excepting only the Savings-banks and the associations for insurance against fire, those institutions are generally founded upon an application of the Law of Mortality; and it is a great desideratum, that appropriate modifications of that law should at length be substituted for the Northampton tables, too indiscriminately applied in most cases. . Those tables exhibiting human life under a most unfavourable aspect, inasmuch as its Absolute intensity is there represented as scarcely exceeding twentyfive years, may indeed answer the purpose of security, when applied to the computation of premiums chargeable on life-insurance; but then the mark is so widely overshot, that those associations, encumbered with exorbitant profits thence arising, though not originally contemplated, become obnoxious to restitutions in diversified proportions, depending on arbitrary rules, and the worst feature of all which consists in a mode of dealing in utter darkuess; whilst
the sound principle, to be proceeded upon in transactions of that description, should be in the first instance to concede terms as favourable for the public as may consist with perfect safety to the general concern. A positive increase, in whatsoever proportion of the reversible sum insured,-that increase becoming a certainty,-would at all times be better appreciated than the prospect of a bonus extending to even the double of that proportion, but involved in uncertainty and made to depend on (perhaps) capricious rulcs of apportionment. On the other hand, the tables now uscd for computing the life-annuities to be granted by the Exchequer are objectionable on other grounds stated in our $\mathbf{X X}^{\text {th }}$ chapter.
275. It is, further to be remarked, that property bccome the subject of an insuirance is incapable of bearing taxation, for the benefit of the revenue; it being not less absurd than it is oppressive, to tax either provident economy, which cannot be too much encouraged, -or direful misfortune, as in the case of property destroyed by conllagration.
276. All provident institutions, in England, labour under a special inconvenience, one single glance at which may here be sufficient for the prescnt. Their accumulating capitals are unavoidably sunk, at every risk, in that overwhelming gulph,- the Funded Debt ; yielding only a scanty rate of interest, towards the utmost reduction of which all imaginable artifices are constantly practised, and the best talents in the country are enlisted. In this respect two questions arise, which we shall merely state, leaving their solution to the operation of time. - First, is the National Debt, from its origin, and considering the parties exclusively benefited througgh its having be en incurred fairly chargeable on the labour and industry of the nation, either in perpetuity as regards the interest of that debt,

19^{3}

or in any shape as regards the principal, under a supposition that its redemption were seriously intended; or rather, is it not exclusively chargeable on the property actually existing, of whatsoever description, an assessment upon which might ultimately be for the greater advantage of all classes, not excepting even the reluctant contributors, as also revive the country from its comparatively paralyzed state? - And Secondly, is a very low rate of interest, in the investment of money, truly beneficial to the community at large; or is it beneficial only to speculators, and to those who aim at the greatest concentration of property; to the detriment of others living by their personal exertions, the only source whence the country derives its powers called forth in the hour of need?
277. All reversionary expectations, depending on the chances of life and of survivorship, - however remote, uncertain, or complicated, - are nevertheless convertible into a present value, through applying the Law of Mortality; but if this application be made without judicious discrimination of the appropriate modifications of that law, considering the sex and class to which it is referable, the results of computation to that effect must differ so much from the truth as to defeat every purpose of distributive justice. Such conversions may occasionally prove an invaluable resource for persons peculiarly circumstanced. In our state of ultra-civilization, involving a most unequal distribution of the social advantages amongst a numerous population, Institutions resting on positive science, - directed on principles of strict equity, and above all, affording reciprocal guarantees, - should if possible extend to accommodating the public in respect to all its demands.
278. It is from those considerations, that the writer of
these pages has employed many years in maturing the Plan of an Institution, on the economic principle of mutual assurance, for providing at the time of marriage, and in behalf of the ehildren to be born thereof, sums payable on their attaining any agreed year of age; varying the contributions according to the wife's age at marriage, and supplying optional modes of their diseharge. The average of births in expeetation, at each speeific age of marriage being contracted; - the propor. tions, to each other, of all births male and female; - the proportions of individuals, belonging to either sex, who, amongst any quantity of births, attain the respective ages at which the endowments may be rendered available; - an average period, computed from the time of marriage, and to which all births may be referred; - lastly, the ratio of interest, aecording to which any accumulation of capital may safely be assumed, - are requisite elements from which the prineipal tables have been computed, towards equitably regulating all transactions of the above description; and it is seen by the foregoing chapters, that those clements are susceptible of determination with suffieient aecuracy. The general object of that Coneern is to guard large families against the vieissitudes of fortune, and females particularly against a preearious dependance; as also to relieve the solieitude of parents contemplating a numerpus offspring, the original contraet providing for each ehild in whatever number. The beneficent provision will then be obtained at less eost than through a transaction of life-insurance, and possess the advantage of not requiring the previous death of a parent. The moral tendeney of this proposed Institution, together with the permanent benefits it is intended to confer, cannot fail at length to be appreciated; and from those benefits extending to all classes, the highest will find an
equal inducement to join in the Prospective-EndowmentAssociation (${ }^{*}$).
${ }^{\star}$) It would not be inconsistent with the author's views to devolve that concern on Four, or more, amongst the leading Associations in the British metropolis, for the Insurance of Lives; in which case, his continued assistance to be liberally afforded, and the terms of such cession to be commensurate with just claims to which he is liable. The present opportunity is therefore taken of giving notice, that proposals to the above-mentioned effect, or for honourable co-operation with him, in the alternative of opening an exclusive concern as described, shall be respectfully met.

CHAPTER XXX.

Of the Law of Mortality differently represented by various authors.

279. In many parts of this book, it has been remarked on the objeetionable results of preceding attempts at ascertaining the Law of Mortality, whence the expedieney of stating those results in a shape favourable to their comparison; which will bring out, in a elear point of view, the diserepancies, contradietions, disproportions, and other irregularities of those results. This statement shall be of two parts:- First, a Synopsis of the Decrement of life, according to the different representations it has, received, and consequent on which are the corresponding expressions of life's Absolute intensity: - Secondly, a Synopsis of Life's Specific intensity at each year of age; being likewise eonscquent on those varied representations of the Decrement, and deduced according to the prineiple established in the $51^{\text {st }}$ paragraph.
280. Such of those Mortality-tables as may be worth commemorating are twenty-five in number; of which follows a review in suceessive order; eommeneing with the most elevated, and ending with the most reduced measure of life's average duration or Absolute intensity, as rendered apparent by the respeetive deerements, and deduced according to the general rule set forth in the $62^{\text {d }}$ paragraph.
I. Mr. Finlaison's tables, computed from his observations on the mortality amongst Females, being tontine-nominees and life-annuitants of the government in England and Ireland, at various periods
II. The same author's tables referred to the Male sex, of the above-stated class
N. B.-See, in chapter $\mathrm{XX}^{\text {th }}$, the remarks arising from an investigation of Mr. Finlaison's tables.
III. Mr. Babbage's tables, deduced from data supplied by an experience of the "Equitable" life-insurance office; not distinguishing the sexes, and admitting as regards the first ten years of life Mr. Milne's results from the observations at Carlisle.
IV. Mr. Davies's tables; also deduced from the "Equitable" experience above-mentioned; without distinction of sex, and supplying the results there omitted for the first ten years.
N. B. - See the remark in paragraph $19^{\text {th }}$, respecting the deductions from the assured-lives experience, and applicable to those results N°. III and IV.
V. Mr. Minse's tables, computed from Dr. Heysham's observations during the nine years to ${ }_{7} 87$ inclusive, on the mortality of both sexes in the town of Carlisle.
N. B. - See the remarks on those tables, in the $31^{\text {st }}$ paragraph.
VI. The same author's tables, computed from observations supplied by Mr. Nicander on the mortality amongst the Female population of Sweden and Finland; which observations embrace a period of 20 years, ending with $1795 \ldots$. . . . 37.542 亿
VII. The same author's tables referred to the indiscriminate population of both sexes in Sweden and Finland, and deduced from Mr. Nicander's above-menioned data ; further admitting 1021 male births to 979 female
VIII. Dr. Price's tables computed from Mr. Wargentin's observations on the mortality amongst the Female population in Sweden; which observations embrace a period of 20 years, to 1775 -inclusive.
$35 \cdot 7020$
ix. Mr. Deparcieux's tables, deduced from ohservations concluded in the year 1742, on select lives of both sexes in France, being Tontine-nominees entered in the years 1689 and 1696 , as also of individuals in monastic retirement, those last data referred to various periods between the years 1607 and 1745; further remarking, that the results for the first three years are supplied by Mr. de Florencourt and stated to be from Kersseboom's results. $34 \cdot 8955$
X. Mr. Milne's tables, computed from the data supplied by Mr. Nicander, respecting the Male population of Sweden and Finland, as related in No. VI.
XI. Mr. Kersseboom's tables, deduced from experience amongst the state-annuitants of both sexes, in Holland; according to a register of their mortality, embracing a period of 135 years, to 17 .. inclusive.
$34 \cdot 4702$
XII. Dr. Price's tables, deduced from M. Wargentin's observations on the mortality of hoth sexes in Sweden, during 20 years, to ${ }^{1775}$ inclusive.
N. B. - That author having proceeded on the erroneous supposition of births in equal quantities for both sexes; the tables here related are a rectification of his own, on the admission of 1021 male births to 979 female, as in N°. VII.
XIII. Mr. Rickman's tables, computed from observations during the 18 years that terminate with 1830 , on the mortality amongst Females, in the county of Essex, in England.
$34 \cdot 147^{3}$
XIV. The same author's tables, referred to the indiscriminate population of both sexes in Essex, from the above-related observations.
$33 \cdot 9697$
XV. The same author's tables, referred to the Male sex in particular, and deduced from the said observations on the mortality in the county of Essex.
N. B. - A rectification of the decrement, in each of the last three cases, should increase the absolnte intensity of life by half a year; consequently to Mr. R's having taken departure from a quantity of the living at various fractional parts of a first year of age, instead of proceeding from a supposed quantity of simultaneous births, being greater than the former ; respecting which distinction of quantities, see the definitions , in chapter V , as also see in the $34^{\text {th }}$ paragraph some further remarks on Mr. R's tables.
XVI. Dr. Price's tables referred to the Male population of Sweden, and deduced from Mr. Wargentin's observations related in No. VIII.
XVII. Mr. Duvillard's tables, computed from his observations on the mortality of both sexes in France, previously to the year ${ }^{1790}$, but which observations were confined to the towns; further remarking that the small-pox's influence on the rates of mortality, as respectively affecting each year of age, has been abstracted in those computations.
$32 \cdot 2557$
XVIII. Mr. Sussmlen's tables, deduced from observations on the mortality amongst the population of a part of the Prussian dominions, without distinction of sex, and combining the experience of three periods of ten years each to 1774 inclusive. $30 \cdot 6923$
XIX. Mr. Duvillard's tables of the mortality in the towns of France, without distinction of sex, and deduced from his observations related in N^{0}. XVII, without the abstraction there mentioned. $28 \cdot 763_{2}$
XX. Dr. Halley's tables, computed from observations continued during one hundred years from 1633 , on the mortality at Breslaw (Silesia), without distinction of sex
```
274518
```

XXI. Mr. Milne's tables, computed from observations supplied by Mr. Mourgue, on the mortality amongst Females in the town of Montpellier (France); and which observations embrace 21 years, ending with ${ }^{1792}$. ${ }^{2} 7 \cdot 3639$
XXII. The same author's tables, also deduced from the Montpellier observations, but indistinctly referred to both sexes, admitting the births in the proportion of 33 males to 3 , females. $25 \cdot 3$ o55
XXIII. Dr. Price's tables, deduced from a register of mortality in the town of Northampton, during the 46 years that terminate with 1788 ; without distinction of sex. $25 \cdot 182$ 2 $_{4}$
XXIV.'Mr. Milne's tables, computed from the Montpellier observations related in No. XXI; but exclusively rcferred to the Male population of that town. : $23 \cdot 3723$
XXV. Mr. Smpson's tables referred to the population of London, without distinction of sex; and computed from the returns of mortality during three periods of ten years each, respectively terminating with the years 1737,1768 , and 1780 . . 18.935 m

Or the Rates of mortality referred to each intehifal of age; as resulting from twenty-five diferent statements of the late, by various authors,

TABLES,

That exhbit the relations between Capital and Income, and that solve all questions depending on the operation of Compound-Interest.

The Tables hercafter, which formed part of the volume entitled "Doctrine of Compound-Interest," are thought proper to be now reproduced, considering their extensive and perpetual utility; after having destroyed the remainder of that volume, with the exception only of a very few copies. The practical purpose of those tables merely requires that their arrangement and application should be clearly explained.

On the first appearance thereof, a great number amongst men of business lapsed into a singular mistake. As the express stipulation of Compound-interest in reciprocal contracts is by law forbidden, they conceived at a first glance that they could have nothing to do with a book thus described; forgetting that a multitude of transactions, in which they are daily concerned, - such as when valuing terminable annuities comparatively with those in perpetuity, and in many other instances, -necessarily involve, as a matter of course, the consideratiou of compoundinterest; whatever the letter of the law may expressly provide on this subject.,

We have here to understand that Capital accumulates in more elevated proportions, not only when the rate of interest is superior, but also when its instalments embrace only short periods, such as the half-yearly, or else the quarterly,
substituted for an annual periodicity; whence the necessity. on tabulating the various relations, either between an original and an improved capital, or between the capital and the income produced by it, to refer each set of computed results, to every distinct consideration of that income. Therefore the results for practical application, so as immediately to solve without crror any propounded question, are here separately classed; with distinct reference, first to specific rates of interest, from that of three to that of six per centum per annum, as also proceeding by successive differences of onequarter per cent.; and secondly, to the special intervals of accretion, whether Annually, Half-yearly, or Quarterly.

In cvery one of those cases, distinctly, there are six serics of rcsults, the enumeration of which follows; they being sufficient towards the solution of all questions that may arise of this naturc, whenever the income of invested capital is regular and not contingent, but a matter of certainty.

A first class of questions relates to the Improved principal; and one column of the tables accordingly states the gradual accumulation, at compound-intcrest, of each unit in any originally invested capital.

The counterpart of those respective statements is given in another column, solving a second class of questions, or that of the Discounted principal; being the present value, expressed by a decimal fraction, of each unit in any sum certainly forthcoming at a future period referred to.

A third class of questions relates to the Cumulated annulty; respecting which there is a column that indicatcs the gradually increasing capital, formed by a periodic accession of further, income, in addition to its preceding instalmonts, and each time improved collectively with such capital.

The counterpart of this third class constitutes a fourth, of questions concerning the Annuity for cumulation. The latter denomination however involves some obscurity, which will disappear on substituting the more appropriate denomination of Redemption-fund; and the corresponding statements, in a specific column, shew the fractional part of unity, which at each instalment should be appropriated for improvement at compound-interest, so as to produce an entire and requisite capital, here represented by unity, at the expiry of any term of years.

A fifih class of questions is that of the present Value of the annuity, to be continued during a specific term of years, but no longer ; and the appropriate column, of those tables, expresses all such values by a quantity of years' purchase of the understood income for a whole year, whether this accrued by a single instalment, or by a plurality of instalments.

A sixth and last class of questions is the counterpart of the preceding one; and the column thereto answering shall, under the denomination of Ratio of the annuty, solve any inquiry concerning the proportion of income produced during a limited time only, by any capital here represented by unity, and supposed to be invested in that particular shape.

The tables thus constructed are of thirteen parts; each part embraces an extent of four pages, referring to a specific rate of interest, and sùccessively to all periods of time not exceeding one hundred years. Further each page has three subdivisions, comparatively exhibiting the divergent results of annual, of half-yearly, and of quarterly instalments; the rate of interest for one year, as also the considered pcriod of ycars, being respectively alike in those three cases. Although any rates inferior to three or supcrior
to six per cent. are excluded from the tabulation, our intelligent readers will perceive that in all such instances the tables are still available; requiring only to deal with the inferior rates of interest as if they referred to halfyearly instalments, at a double rate per annum; and with the superior rates by supposing them refcrable to a period of two years, whence only half that rate to a single year represented by half-years in the tables.

But the question may occasionally consist of the required term of years, for producing any pre-stated result, under a certain datum of the rated interest. In all cases of this description the tables will immediately point out two proximate periods, the one superior and the other inferior to that which is recfuired, - any difference being then no more than a fraction either of a whole ycar, of a half-year, or of a quarter; - and then the precise difference must be proportionate with any small quantities in which the two proximate results, announced by the table, may differ between themselves, as also from the previously stated quantity.

Lastly, the thirtcen scts of tables are headed by indications of the prices of public stock, funded at 3 , at $3 \mathrm{~s} / \mathrm{2}$, at 4 , and at 5 per cent. per ann., as corresponding with any specified ratc of interest. It is always to be considered, that such stated prices are those of the bare stock, exclusive of any portion which may have accrued of the next forthcoming dividend, and which portion is usually understood to be sold with that stock.
'The various objects to which all tables of this kind may apply have. been so of ten mentioned and described in other books, that our reverting to those objects, or reproducing special examples of such application, would be uscless.

catucs,

SOLVING THE QUESTIONS THAT DEPEND ON

$\mathfrak{C o m p o u m i d ~} \mathfrak{3 n t e r e s t}$,

ACCRUING either ANNUALLY, HALF-YEARLY, or QUARTERLY.

RATE of INTEREST: 3 per Cent. per Ann.——CORRESPONDING VALUE of

$\frac{4}{\frac{2}{4}}$	RATIO of INTEREST: ANNUALLY, o.03.			RATIO of INTEREST: HALF-YEARLY, 0.015 .			RATIO of INTEREST: QUARTERLY, 0.0075 .		
	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.
	1.0300000	1.0000000	0.970874	1.0150 .000 $1.0302 \% 250$	0.5000000 1.0075^{5000}	0.492611 0.9779	$\begin{array}{\|l\|l} 1.0075000 \\ 1.0150563 \\ 1.026692 \\ 1.0303392 \end{array}$	$\begin{aligned} & 0.2500000 \\ & 0.5018750 \\ & 0.7556391 \\ & 1.0113 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.248139 \\ & 0.49431 \\ & 0.73889 \\ & 0.981528 \end{aligned}$
4	…:			1.0456784	1.5826125	1.456100		$\begin{aligned} & 1.2688912 \\ & 1.5284078 \\ & 1.7898709 \end{aligned}$	1.222360 1.461399 1.698654
	1.0609000	2.0300000	1.913470	1.0613636	2.0454 517	1.927192	1.0615988	2.0532949	1.934153
							1.0695608	2.3186946	2.167897
				1.0772840	2.5761	2.391323	1.0775825 1.0856 1.44	2.5860 848	2.399895 2.6301 1
3	1.0927870	3.0909000	2.828612	1.0934433	$3.11+7755$	2.818594	1.0938069	3.1268966	2.858788
$\frac{1}{1}$...	1.1098449	3.6614	3.299107	$\begin{aligned} & 1.1020104 \\ & 1.1102755 \end{aligned}$	$\begin{aligned} & 3.4003483 \\ & 3.6758509 \end{aligned}$	3.085586 3.310756
${ }^{\frac{4}{4}}$				1.1096	4.960	3. 71006	1.1186 020	${ }_{3.9534} 198$	${ }^{3.5342} 49$
	1.1255088	4.18368	3.717098	1.126+ 926	4.2164196	3.742963	1.1269922	4.2330 т21	3.956078
				1.1433	4.7796658	4.180259	1.1354 1.1439 604	${ }_{4}^{4.51488} 185$	3.976256 4.1017
				1.1433	4.7796658	4.180259	1.1439604 1.1595 1	4.9886796 5.0846 5097	4.1947 4.417 105
5	1.1592741	5.3091358	4.579707	1.1605409	5.	4.611093	1.1611841	5.3798017	4.627005
				1.1779489	5.9316312	5.035559	1.1698930 1.1186 1	$\begin{aligned} & 5.6631008 \\ & 5.9555 \\ & 740 \end{aligned}$	$\left.\begin{array}{ll} 4.8107 & 00 \\ 5.0588 & 04 \end{array} \right\rvert\,$
$\frac{3}{4}$							1.1875072	6.2502 408	5.2633 29
	1.1940523	6.4684099	5.417191	1.1956182	6.5206057	5.453753	1.1964135	$6.5+711{ }^{16} 6$	5.172286
					7.		1.2053866	6.8162910	89
							1.2144 1.2235 1850 150	${ }_{7.4511} 7+4$	5.8859 6.0898 73
	1.2298739	7.6624622	6.230283	1.2317557	7.7251910	6.271691	1.2327117	7.7570583	6.292678
				1.250	8.3410	6.671617	1.2419571 1.2512 1.28	$\begin{array}{ll} 8.0652 & 362 \\ 8.3757 \\ 255 \end{array}$	6.493973
				1.250	8.3410	6.011017	1.212512 1.2606 1.263		${ }^{6.8920} 79$
	1.2667701	8.8923360	7.0196	1.268	8.966	7.065632	1.2701112	9.0037075	7.088913
		1.2880	9.6006	7.453825			
	1.3047732	10.159	7.786	1.3073	10.24 688	7.836280	1.2989036 1.3086454	$\begin{aligned} & 9.9634532 \\ & 10.288179 \end{aligned}$	$\begin{aligned} & 7.6706 \\ & 7.8617 \\ & 64 \end{aligned}$
							1.3184602	10.615340	8.051316
				1.3269	10.898	8.91 .3084	1.3283 1.3383 186 113	10.944 11.277 1943	8.2395120 8.426322
10	1.3439164	11.403^{879}	8.530 203	$1.3468^{\circ} 550$	$11.501{ }^{1032}$		1.3483456	11.611620	8.611735
				1.3670	12.235	8.950069	1.358 ± 612	$\begin{aligned} & 11.948708 \\ & 12 \end{aligned}$	8.795766 $8.978+28$
				1.308	12.23	8.950069	1.3789146	12.630485	${ }_{9} 9.159730$
11	1.3842339	12.807796	9.252624	1.38756	12.918	$9.310{ }^{\text {a }}$	1.3892564	12.975 214	9.339683
							1.3996 1.4101 188	13.399528	${ }^{9.518895} 9$
				1.4083	13.6	9.665431	1.4101734 1.4207 1	13.672 14.024 147 90	9.6955 9.8715 48
12	1.4257609	14.192030	9.954005	1.4295028	14.316760	10.01520	1.4314053	14.380178	10.04620
			\ldots	1.4509	15.031 512	10.35981	1.4421 1.4529 570		10.21955 10.39161
							1.4633 541	15.461804	10.56239
13	1.4685337	15.617790	10.63496	1.4797095	15.756984	10.69932	1.4748330	15.827767	10.73190
				1.4948002	16.493339	11.03381	$\begin{aligned} & 1.4858943 \\ & 1.4970385 \end{aligned}$	$\begin{aligned} & 16.196475 \\ & 16.567 \end{aligned}$	10.90015 11.06715
				1.4948002	16.493339	11.033 or	1.5082 663	$16.942 \quad 209$	11.23290
14	1.5125897	17.086324	11.29607	1.5172222	17.240739	11.36336	1.5195783	17.319275	11.397 42
			1.5399	17.999350	11.68804	1.5309751 1.5424 574	17.699 18.081 170 917	11.560 11.722 80
			1.5399	17.999 350	11.688	1.5540258	18.467598	${ }_{1}^{11.8838} 67$
15	1.5579674	18.598914	11.937 93	1.5630	18.76	12.00792	1.5656810	18.856034	12.04334
							19.947455	12. 20183
				1.586	19.55	12.32307	1.5892 1.60117 1.637	19.641 20.039 185	12.359 14 12.515 18
16	1.6047064	20.156881	12.56110	1.61	. 31414	12.63357	1.6131895	20.439418	12.67024
17	1.6528 476	21.761588	13.16612	1.6589964	21.966546	13.24086	1.6621252	22.070840	13.87869
18	${ }_{1}^{1.7024} 3331$	23.414 25.116 868	13.75352	1.70911395 1.7607 1.73		13.830 $1+40$ 14	1.7125527	23.751757	13.86091
19 80	1.7535 1.806112	25.116. 8688 26.870 374	14.32380 14.877 47	1.7607983 1.8140 184	25.359 27.133 $9+3$	14.402 $1+.957$ 1.48	1.7645102 1.8180 410	25.483 27.26813 138	14.4423 14.998 1
q1	1.8602916	28.676486	15.41502	1.8688471	28.961571	15.49703	1.8732 020	29.106732	15.538 49
22	1.9161034	30.536780	15.93692	1.9253330	30.844434	16.02031	1.9300334	31.001113	16.06248
23	1.9735865	32.452884	16.44361	1.9835262	32.784207	11.52824	1.9885 891	32.952 969	16.57103
24	2.0327941	34.426470	16.93551	2.0434783	34.782610	17.02128	2.0489212	34.964041	17.06461
25	2.0937779	36.459264	17.41315	2.1052424	36.841414	17.49985	2.1110839	37.036198	17.543 66

$\begin{aligned} & 4 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	RATIO of INTEREST: ANNU.dLLY, 0.03.			RATIO of INTEREST: HALF-YEARLY, 0.015 .			RATIO of INTEREST: QUARTERLY, 0.0075.		
	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Amnuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.
26	2.1565913	38.553042	17.87684	2.1688734	38.962446	17.96437	2.1751324	39.171081	18.00860
27	2.2212890	40.709633	18.32703	2.2344275	41.147586	18.41527	2.2411242	41.370806	18.45985
28	2.2879277	42.930922	18.76411	2.3019631	43.398771	18.85994	2.3091181	43.637269	18.89781
29	2.3565655	45.218850	19.18845	2.3715400	45.717999	19.2777	2.3791749	45.972495	19.32287
30	2.4272625	47.575415	19.60044	2.4432198	43.107326	19.69013	2.4513571	48.378570	19.73542
31	2.5000803	50.002678	20.000 43	2.5170661	50.568870	20.09040	2.5257293	50.857643	20.13582
32	2.5750827	52.502758	20.38876	2.5931444	53.104814	20.47893	2.6023579	53.411929	20.52443
33	2.6523359	55.1778811	20.76579	2.6715229	55.717407	20.85605	2.6813113	56.043710	20.90161
34	2.7319053	57.730176	21.13184	2.7529690	58.408956	21.22212	2.7626601	58.755337	21.26767
35	2.8138624	60.462081	21.48722	2.8354563	61.181876	21.57744	2.8464770	01.549233	21.62295
36	2.8989783	63.275944	21.83225	2.9211580	64.038599	21.92833	2.9328368	64.497893	21.96777
37	2.9852267	$66.17+222$	22.16724	3.0094500	66.981665	22.25711	3.0218167	67.398889	22.30244
38	3.0747835	69.159449	22.49246	3.1004 106	70.013686	22.589 07	3.1134962	70.449872	22.62726
39	3.1670270	72.234232	22.80822	3.1941205	73.137350	22.89749	3.2079571	73.598570	22.94251
40	3.2620378	75.40145	23.1147	3.2906628	76.355426	23.20366	3.3052839	76.842798	23.24847
41	3.3598989	78.663297	23.41240	3.3901231	79.670769	23.50085	3.4055636	80.185452	23.54543
42	3.4606959	82.023196	23.70136	3.4925895	83.086318	23.78932	3.5088856	83.699520	23.83364
43	3.5645168	85.483892	23.98190	3.5981531	86.605102	24.66932	3.6153424	87.178079	24.11337
44	3.6714523	89.048408	24.25427	3.7069072	90.230241	24.34111	3.7250289	90.834297	24.38486
45	3.7815958	92.719861	24.51871	3.8189485	93.964950	24.60493	3.8380433	94.601413	24.64835
46	3.8950437	96.501457	24.77545	3.9343762	97.812541	24.86100	3.9544864	98.482880	24.90409
47	4.0118950	100.39650	25.02471	4.0532927	111.77642	25.10957	4.0744623	102.48208	25.15230
48	4.1322519	104.40840	25.26671	4.1758034	105.86011	25.35084	4.1980782	106.60261	25.39319
49	4.2502194	108.54065	25.50166	4.3020171	110.06724	25.58503	4.3254445	110.84815	¢5.627 00
50	4.3839060	112.79687	25.72976	4.4320456	114.4015%	25.81235	4.4566750	115.22250	25.85392
51	4.5154232	117.18077	25.95122	4.5660041	118.86680	26.03300	4.5918869	119.72956	26.07415
52	4.6508859	121.69620	25.16624	4.7040116	123.46705	26.24718	4.7312010	124.37337	26.28791
53	4.7904124	126.34708	26.37499	4.8461904	128.20635	26.45508	4.8747419	129.15806	26.49536
54	4.9341248	131.13 749	26.57766	4.9926665	133.08888	26.65687	5.0226316	134.08792	26.69672
55	5.0821486	136.07162	26.77443	5.1435698	138.11899	26.85275	5.1750203	139.16734	26.89214
56	5.2346130	141.15377	26.96546	5.2990342	143.30114	27.04288	5.3320 263	144.40876	27.08180
57	5.3916514	146.38838	27.15094	5.4591975	148.63992	27.22743	5.4937956	149.79319	27.26588
58	5.5534010	151.78003	27.33101	5.6242018	154.14006	27.40657	5.660 ± 729	155.34910	27.44454
59	5.7200030	157.3.3 343	27.50583	5.7941933	159.80 644	27.58044	5.8322071	161.07357	27.61794
60	5.8916031	163.05344	27.67556	5.9693228	165.64409	27.74923	6.0091516	166.97172	27.78624
61	6.0683512	168.94504	$\begin{array}{lll}27.840 & 36 \\ 98.000 & 34\end{array}$	6.1497455	171.65818	27.91305	6.1914643	173.04881	
62	6.2504017	175.01339	28.00034	6.3356216	177.85405	28.072 07	6.3793084	179.31028	28.10811
63	6.4379138	181.26379	28.15567	6.5871158	184.23719	28.22643	6.5728514	185.76171	28.96197
64	6.6310512	187.70171	28.30648	6.7243978	190.81326	28.37626	6.7722664	192.40838	28.41130
65	6.3249827	194.33276	28.45289	6.9276498	197.58809	28.52169	6.9777315	199.25772	28.55623
66	7.0348822	201.16274	28.59504	7.1370308	204.56769	28.66286	7.1804302	206.31434	28.696 90
67	7.2459286	208.19762	28.73305	7.3527475	211.75825	28.79988	7.4075517	213.58506	28.83342
68	7.4633065	215.4 ± 355	28.86704	7.5749843	219.16614	28.93288	7.6322908	221.07636	28.96593
69	7.6878057	222.90686	28.99712	7.8039382	226.79794	29.05199	7.8638484	228.79495	29.09452
70	7.9178219	230.59406	29.12342	8.0398122	234.66041	29.18730	8.1024312	236.7* 771	29.21934
71	8.1553565	238.51188	29.24604	8.2828156	242.76052	29.30891	$8.3+82524$	244.94175	29.34048
72	8.4000172	246.66784	29.36509	8.5331637	251.10546	29.42701	8.6015316	25.3 .38439	29.45805
73	8.6520177	255.06720	29.48067	8.7910785	259.70262	29.54161	8.862* 951	262.08317	29.57217
74	8.9115783	263.71928	29.59288	9.0567889	268.55963	29.65285	9.1313760	271.04597	29.68293
75	9.1789256	272.63085	29.70183	9.3305303	277.68434	29.76083	9.4084146	280.28049	29.79041
76	9.4542934	281.80978	29.80760	9.6125456	287.08485	29.86564	9.6938583	289.79528	29.89473
77	9.7379222	291.26407	29.91029	9.9030848	296.76949	29.96738	9.9879621	299.59874	29.99598
78	10.030060	301.00200	30.00999	10.20ㅇ 406	306.74685	30.06613	10.290989	309.69963	30.09426
79	10.330962	311.03206	30.10679	10.510773	317.02578	30.16198	10.603209	320.10697	30.18963
80	10.640891	321.36302	30.20077	10.828461	327.61538	30.25502	10.924902	330.83006	30.28220
81	10.960117	332.00391	30.29201	11.155752	338.52505	30.34534	11.256354	341.87848	30.37204
82	11.288921	342.96402	30.38058	11.492934	349.76447	30.43300	11.597863	353.26211	30.45924
83	11.627588	$354.25 \quad 205$	30.45659	11.840308	361.34361	30.51809	11.949733	364.99110	30.54387
84	11.976416	365.88053	30.55009	12.198181	373.27272	30.60069	12.312978	377.07594	30.62600
85	12.335708	377.85695	30.63115	12.560871	385.56238	30.68085	12.685823	389.52742	30.70573
86	12.705780	390.19266	30.70985	12.945705	398.22351	30.75868	13.070700	402.35668	30.78310
87	13.086953	402.89844	30.78627	13.338019	$411.26{ }^{731}$	30.83421	13.467255	415.57516	30.85820
88	13.479562	415.985 .39	30.86046	13.74: 161	424.70537	30.90753	13.875840	429.19468	30.93108
89	13.883 949	499.46495	30.93248	14.156488	438.54959	30.97870	14.296882	443.22741	31.00181
90	14.300467	443.34 890	31.00241	14.584367	452.81225	31.04778	14.730576	457.68587	31.07047
91	14.729481	457.64937	31.07030	15.025180	467.50600	31.11484	15.177490	47258300	31.13710
92	15.171365	472.37885	31.13621	15.479316	482.64387	31.17992	15.637963	487.93209	31.20177
93	15.626506	487.55021	31.20021	15.947178	498.23928	31.24310	16.112406	503.74686	31.26453
94	16.095302	503.17672	$31.26 ? 33$	16.429182	514.30 606	31.30 ± 42	16.601243	520.04144	31.32545
95	16.578761	519.27 202	31.32265	16.925754	530.85846	31.36395	17.104912	536.83039	31.38458
96	17.075506	535.85018	31.38122	17.437335	547.91116	31.42173	17.623861	554.12869	31.44196
97	17.587571	552.92569	31.43808	17.964378	565.47927	31.47781	18.158554	571.95185	31.49765
98	18.115404	570.51346 588.62886	31.49328 31.54687	18.507351	583.57838	31.532 31.585 18	18.709470	590.31567 600.23668	31.55170
99	18.65886	588.62886	31.54687	19.066736	600.22245	31.58509	19.277100	609.23668	31.60416
100	19.218632	-607.28 773	31.59891	19.643028	621.43428	31.63638	19.861952	628.73173	31.65508
	Value of	etual An	3.33333	. . -	- - .	33.33333	- - - -	- - . -	33.35333

PERPETUAL STOCK : 3 p.C. 100 ; $3 \frac{1}{2}$ p.C. 116,6667 ; 4 p.C. 133,3333 ; 5 p.C. $166,6667$.

	RATIO of INTEREST: ANNUALLY, 0.03 .			RATIO of INTEREST: HALF-YEARLY, 0.015 .			RATIO of INTEREST: QUARTERLY, 0.0075 .		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.4636947	0.0259383	0.0559383	0.4610689	0.0256657	0.0556657	0.4597421	0.0255290	0.0555290
27	0.4501891	0.0245642	0.0545642	0.4475419	0.0243028	0.0543028	0.4462 012	0.0241715	0.0541716
28	0.4370768	0.0232932	0.0532932	0.4344118	0.0230 421	0.0530481	0.4330	0.0229162	0.0529162
29	0.4243464	0.0221147	0.0521147	0.4216669	0.0218732	0.0518732	0.4203138	0.0217521	0.0517521
30	0.4119868	0.0210193	0.0510193	0.4092960	0.0207869	0.0507869	0.4079373	0.0206703	0.0506703
31	0.3999871	0.0199989	0.0499980	0.3972 879	0.0197750	0.0497750	0.3959253	0.0196627	0.0496627
32	${ }_{0}^{0.3883} 370$	$0.0190{ }^{406}$	0.0490 460	0.3856332	${ }^{1.01888} 307$	0.0488307	0.3842 669	0.0187224	$0.0487{ }^{224}$
33	0.3770262	0.0181561	0.0481561	0.3743185	0.0179477	0.0479477	0.3729518	0.0178432	0.0478432
34	0.3660449	0.0173219	0.0473219	0.3633366	0.0171207	0.0471207	0.3619700	0.0170197	0.0470197
35	0.3553834	0.0165393	0.0465393	0.5526769	0.0163447	0.0463447	0.3513115	0.0162472	0.0462472
36	0.3450	0.0158	0.0458	0.342	0.015	0.0	6	0.0155212	12
37	0.3349829	0.0151116	0.0451116	0.3322866	0.0149295	0.0449295	0.3309268	0.0148381	
38	0.3252 262	0.0141593	0.0444593	${ }^{0.3225} 380$	0.0142889	0.0442829	0.3211824	0.0141945	0.0441945
39	0.3157535	0.0138438	0.0438438	0.3130752	0.0136729	0.0436799	0.3117248	0.0135872	0.0435872
40	0.3065 568	0.0132624	0.0432624	0.3038902	0.0130966	0.0430966	0.3025459	0.0130136	0.0430136
41	0.2976280	0.0127124	0.0427124	0.2949746	0.0125517	0.0425517	0.2936 372	0.0124711	0.0424711
42	0.2889592	0.0121917	0.0421917	0.2863205	0.0120357	0.0420357	0.2849908	0.0119575	0.0419575
43	0.2805429	0.0116981	0.0416981	0.2779204	0.0115467	0.0415467	0.2765990	0.0114708	0.0414708
44	0.2723718	0.0112298	0.0412298	0.2697060	0.0110828	0.04108	0.2684543	0.011009	0.0410091
45	0.2644386	0.0107852	0.0407852	0.2618522	0.0106423	0.0406423	0.2605494	0.0105706	0.0405706
46	0.2567365	0.0103625	0.04036	0.2541699	0.0102236	0.0402236	0.2528773	0.0101540	0.0401540
47	0.2492588	0.0099605	0.0399605	0.2467130	0.0098255	0.0398255	0.2454312	${ }^{0.0097} 578$	0.0397578
48	0.2419988	0.0095778	0.0395778	0.2394748	0.0094464	0.0394464	0.2382042	0.0093806	0.0393806
49	0.2349503	0.0092131	0.0392131	0.2324491	0.0090854	0.039	0.2311901	0.0090213	
50	0.2281071	0.008865	0.0388655	0.2256295	0.0087411	0.0387411	0.2243825	0.0086789	0.0386789
51	0.22146	0.0085338	0.0385338	0.219	0.008	0.0384128	0.2177754	0.0083522	0.0383522
52	0.2150	0.0082172	0.0382172	0.2195845	0.0080	0.0380993	0.2113688	0.0080403	0.0380403
53	0.2087503	0.0079147	${ }^{0.0379} 1147$	0.2063 476	0.0077999	0.0377999	0.2051391	0.0077425	0.0377 425.
55	0.1967672	0.0073 491	0.0373491	0.1944175	0.0072401	0.0372401	932	0.0071	0.0371856
56	0.1910361	0.0070845	0.0370845	0.1887136	0.0069783	0.0369783	0.1875459	0.0069252	0.0369252
57	0.1854719	${ }^{0.0063} 311$	0.0368311	0.1831771	0.0067277	0.0367277	0.1820235	0.0066789	0.0366759
58	0.1800 698	0.0065885	0.0365835	0.1778030	0.0064876	0.0364876	0.1766637	0.0064371	0.0364371
59	0.1748251	0.0063559	0.0363559	0.1725866	0.0062576	0.0362576	0.1714617	0.0062083	0.0362083
60	0.1697331	0.0061330	0.0361330	0.1675232	0.0060370	0.0360370	0.1661129	0.0059890	0.0359890
61	0.1647894	0.0059191	0.0359191	0.1626084	0.0058255	0.0355	0.1615127	0.0057787	0.0357787
62	0.1599897	0.0057138	0.0357138	0.1578377	0.0056226	0.0356226	0.1567568	${ }^{0.0055} 769$	0.0355769
63	0.1553298	0.0055168	0.0355168	0.1532070	0.0054278	0.035\$ 278	0.1521410	0.0053832	0.0353832
64	0.1508057	$0.0053 ¢ 76$	0.0353277°	0.1487122	0.0052407	0.0352407	0.1476610	0.0051973	0.0351973
65	0.1464132	0.0051458	0.0351458	0.1443492	0.0050610	0.0350610	0.1433130	0.0050186	0.0350186
66	0.1421488	0.0049711	0.0349711	0.1401143	0.0048884	0.0343884	0.1390931	0.0048470	0.0348470
67	0.1380085	0.0046031	0.0348031	0.1360036	0.0047224	0.0347224	0.1349974	0.00468820	0.0346820
68	0.1339889	0.0046416	0.0346416	0.1320135	0.0015627	0.0345627	0.1310223	0.0045333	0.0345233
69	0.1300863	0.0044862	${ }^{0} 0.03+4862$	0.1281404	0.0044092	00344092	0.1271 612	${ }^{0.0043} 707$	0.0343707
70	0.1262973	0.0043366	0.0343366	0.1243810	0.0012615	0.0342615	0.1234198	0.0042239	0.0342239
71	0.1226188	0.0041927	0.0341927	0.1207319	0.0041193	0.0341193	0.1197856	0.0040826	0.0340826
72	0.1190474	${ }^{0.0040} 540$	0.0340540	0.1171898	0.0039884	0.0339824	0.1162 584	0.0039466	0.0339466
7	0.1155800	0.0039205	0.0339	0.1137517	0.0038506	0.0338506	0.1128350	0.0038156	0.0338156
74	0.1122135	0.0037919	0.0337919	0.1104144	0.0037236	0.0337236	0.1095125	0.0036894	0.0336894
75	0.1089452	0.0036680	0.0336680	0.1071750	0.0036012	0.0336012	0.1062878	0.0035679	0.0335679
76	0.1057720	0.0035485	0.0335485	0.1040307	0.0034833	0.0334833	0.1031581	0.0034507	0.0334507
77	0.1026913	0.0034333	0.0334333	0.1009786	0.0033696	0.0333696	0.1001205	0.0033378	0.0333378
78	$0.0997{ }^{003}$	${ }_{0}^{0.0033} 2222$	0.0333222	0.0980161	0.0032600	0.0332600	0.0971724	0.0032289	0.0332289
9	0.0967 964	0.0032151	0.0332151	0.0951405	0.0031543	0.0331543	0.0943111	0.0031240	0.0331240
80	0.0939771	0.0031117	0.0331117	0.0923492	0.0030584	0.0330524	0.0915340	0.0030227	0.0330227
81	0.0912399	0.0030120	$0.03301 \varepsilon 0$	0.0896399	0.0029540	0.0329540	0.0888387	0.0029250	0.0329250
82	0.0885824	0.0029158	0.0329158	0.0870100	0.0028591	0.0328591	0.0862228	0.0028308	0.0328308
83	0.0860 024	0.0028228	0.0328228	0.0844573	0.0027674	0.0327674	0.0836839	0.0027398	0.0327398
84	0.0834974	0.0027331	0.0327331	0.0819794	0.0026790	0.0326790	0.0812197	0.0026520	0.0326520
85	0.0810655	0.0	0.0326	0.0795743	0.0025936	0.0325936	0.0788282	25	0.0325672
86	. 0787043	0.0025628	0.0325628	0.0772397	0.0025112	0.0325112	0.0765070	0.0024854	0.0324854
87	0.0764120	0.0024820	0.0324880	0.0749736	0.0024315	0.0324315	0.0742542	0.0024063	0.0324063
88	0.0741864	0.0024039	0.0324039	0.0727741	0.0023546	0.0323546	0.0720677	0.0023299	0.0323299
89	0.0720256	0.0023285	0.0323285	0.0706390	0.0022802	0.0322802	0.0699956	0.0022562	0.0322562
90	0.0699278	0.0022556	0.0322556	0.0685666	0.0022084	0.0322084	0.0678860	0.0021849	0.0321849
91	0.0678 911	0.0021851	0.0321851	0.0665549	0.0021390	0.0321390	0.0658870	00021160	00321160
,	0.0659136	0.0021169	0.0321169	0.0646023	0.0020719	0.0320719	0.0639469	0.0020495	0.0320495
,	0.0639938	00025511	0.0320511	0.0627070	0.0020071	0.0320071	00620640	0.0019851	0.0319851
94	0.0621299 0.0603203	$\begin{array}{ll}0.0019 & 874 \\ 0.0019 & 258\end{array}$	${ }_{0}^{0.0319874}$	${ }_{0}^{0.0608} 673$	0.0019444	0.0319444	0.0602365	0.0019 229	0.0319229
95	0.0603203	0.0019258	0.0319258	0.0590816	00018837	0.0318837	0.0584627	0.0018628	0.0318628
96	0.0585634	0.0018662	0.0318662	0.0573482	0.0018251	0.0318251	0.0567413	0.0018016	0.0318046
97	0.0568 0.0557 0.016	0.0018 0.086 0.0017 0.088	0.0318086	0.0556657	0.0017888	0.0317684	0.0550705	0.0017484	0.0317484
	0.0552 0.0536 0.058 0.058	-	0.0317588	0.0540326	0.0017136	0.0317136	0.0534489	0.0016940	0.0316940
	0.0535938	016	0.0316989	0.0524474	0.0016605	0.0316605	0.0518750	0.0016414	0.0316414
100	0.0520	. $0016 \underline{467}$	0.0316467	0.0509086	0.0016092	0.0316092	0.0503475	0.0015905	.315 905
		petual An	0.0300000			0.0300			0.

$\begin{aligned} & \text { M } \\ & \stackrel{\beta}{8} \\ & \% \end{aligned}$	RATIO of INTEREST: ANNUALLY, 0.0325.			RATIO of INTEREST: HALFYEAIRLY, 0.01625.			RATIO of INTEREST: QUARTERLY, 0.008125.		
	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Amnuity.	Imprnved Principal.	Cumulated Ananity.	Value of Annuity.
26	2.2968973	39.904531	17.37393	2.3122194	40.375981	17.462 00	2.3200429	40.616704	17.50688
27	2.3715464	42.201428	17.79490	2.3879771	42.706988	17.88417	2.3963682	42.965176	17.92929
28	2.4486217	44.5i? 975	18.20329	2.4662169	45.114367	18.29294	2.4752045	45.390909	18.33824
29	2.5282019	47.021596	18.59883	2.5470202	47.600622	18.68875	2.5566344	47.896443	18.73418
50	2.6103684	49.549798	18.98192	2.6301710	50.168337	19.07200	2.6407432	50.484406	19.11750
31	2.6952054	52.160167	19.35295	2.7166559	52.820181	19.44309	2.7276190	53.157508	19.48861
32	2.7827996	54.855372	19.71230	2.8056646	55.558909	$19.802+1$	2.8173 529	55.918550	19.84783
33	2.8732406	57.638172	20.06034	2.8975895	58.387370	20.15032	2.9103388	58.770426	20.19575
34	2.9666209	60.511412	20.39742	$2.9925{ }^{263}$	61.308502	20.48720	3.0057740	61.716123	20.53252
35	3.0630361	63.478033	20.72389	3.0905737	64.325343	20.81340	3.1046587	64.758729	20.85856
36	3.1625847	66.541069	21.04009	3.1918334	67.441028	21.12924	3.2067965	67.901431	21.17422
37	3.2653687	69.703654	21.34633	3.2964108	70.658795	21.43507	3.3122945	71.147522	21.47983
38	3.3714932	72.969023	21.64294	3.4044146	73.981989	21.73119	3.4212 632	74.500405	21.77570
39	3.4810668	76.340516	21.93021	3.5159571	77.414064	22.01792	3.5338167	77.963591	22.06215
40	3.5942014	79.821583	22.20843	3.6311541	80.958589	22.29555	3.6500731	81.540710	22.33947
41	3.7110130	83.415784	22.47790	3.7501 255	84.619246	22.56438	3.7501541	85.235509	22.60796
42	3.8316209	87.126797	22.73889	3.8729948	88.399841	22.824 .67	3.8941855	89.051869	22.86790
43	3.9561486	90.958418	22.99166	3.9998899	92.30 ± 304	23.07671	4.0222974	92.993765	23.11956
44	4.0847234	94.914566	23.23647	4.1309425	96.336693	23.32075	4.1546239	97.065350	23.36321
45	4.2171769	98.999290	23.47358	4.2662889	100.50120	23.55705	4.2913037	101.27088	23.59909
46	4.3545449	103.21677	23.70323	4.4060699	104.80215	23.78585	4.4324801	105.61477	23.82746
47	4.4960676	107.57131	23.92564	4.5504306	109.24 402	24.00740	4.5783009	110.10157	24.04856
48	4.6421898	112.06738	24.14106	4.6995212	113.83142	24.22192	4.7289189	114.73597	24.26262
49	4.7930610	116.70957	24.34969	$4.853+966$	118.56913	24.42963	4.8844921	119.52283	24.46986
50	4.9488355	191.50263	24.55176	5.0125169	123.46206	24.63075	5.0451833	124.46718	24.67050
51	5.1096726	126.45147	24.74747	5.1767473	128.51530	24.82549	5.2111610	129.57418	24.86474
52	5.2757370	131.56114	24.93702	5.3463586	133.73411	25.01406	5.3825990	134.84980	25.05280
53	5.4471984	136.83688	25.12060	5.5215270	139.12391	25.19663	5.5596771	140.29776	25.23487
54	5.6242324	142.28407	25.29840	5.7024346	14.69030	25.373 42	5.7425807	145.92556	25.41114
55	5.8070200	147.90831	25.47060	5.8892696	150.43906	25.54460	5.9315015	151.73851	25.58180
56	5.9957481	153.71533	25.63739	6.0822261	156.37619	25.71036	6.1266375	157.74269	25.74702
57	6.1906099	159.71107	25.79892	6.28150 .45	162.50783	25.87085	6.3281 931	163.94440	25.90698
58	6.3918047	155.90168	25.95537	6.1873191	168.840 .37	26.02624	6.5363795	170.35014	26.06185
59	6.5995384	172.29349	26.10690	6.6998628	175.38039	26.17671	6.7514150	176.96661	26.91178
60	6.8140234	178.89303	26.25366	6.9193775	182.13469	26.32241	6.9735246	183.30076	26.35693
61	7.0354791	185.70 705	26.39579	7.1460844	189.11029	26.46348	7.2029414	190.85973	26.49747
62	7.2641322	$192.7+253$	26.53346	7.3802192	$196.314+4$	26.60008	7.4399 055	198.15091	26.63353
63	7.5002165	200.00666	26.66678	$7.6220{ }^{7} 52$	203.75462	26.73235	7.6846653	205.68201	26.76525
64	7.7439736	207.50688	26.79592	7.8717537	211.43857	26.86042	7.9374773	213.46084	26.89278
65	7.9956527	215.25085	26.92099	8.1296643	219.37429	26.98442	8.1986064	221.49558	27.01624
66	8.2555114	223.24650	27.04212	8.3960251	227.57000	27.10449	8.4683261	229.79 465	27.13578
67	8.5238155	231.50202	27.15943	8.6711130	236.03495	27.22074	8.7469192	238.36674	27.25150
68	8.8008395	240.02583	27.27306	8.9552139	244.77581	27.333333	9.0316774	247.22084	27.36355
69	9.0868668	248.82667	27.38311	9.2486231	253.80379	27.44233	9.3319025	256.36623	27.47202
70	9.3821900	257.91354	27.48970	9.5516456	263.12756	47.51788	9.6389057	265.81248	27.57703
71	9.6871112	267.29573	27.59292	9.8645963	279.75681	27.65007	9.9560087	275.56950	27.67871
72	10.001942	276.98284	27.69290	10.187801	289.70155	27.74903	10.283544	285.64751	27.77714
73	10.327005	286.98478	27.78974	10.591594	292.97213	27.84484	10.621854	296.05706	27.87244
74	10.662633	297.31179	27.883 52	10.866 324	303.57921	27.93762	10.971295	306.80907	27.96470
75	11.009169	307.97442	$27.97+36$	11.222349	314.53383	28.027 45	11.332231	317.91430	28.05403
76	11.366967	318.98359	28.06233	11.590039	325.84736	28.11443	11.705012	399.38590	28.14051
77	11.736393	330.35056	28.14754	11.969776	337.53157	28.19865	12.090117	341.23437	28.224
78	12.117826	$3+2.08695$	28.23006	12.361954	349.59860	¢8.280 20	12.487861	353.47263	28.30529
79	12.511655	354.20477	$\stackrel{98.309}{99}$	12.766982	362.06099	28.35917	12.898689	366.11359	28.38377
80	12.918284	366.71643	28.38739	13.185280	374.93171	28.43563	13.3230 .33	379.17026	£8.459 75
81	13.338128	379.63471	28.46237	13.617284	388.22412	28.50966	13.761338	392.65655	28.53331
82	13.771617	392.97284	28.53498	14.063441	401.95204	28.58134	14.214062	406.58652	28.60452
83	14.219195	406.7 ± 446	28.60531	14.524217	416.12975	\$8.650 75	14.681679	$420.97 \quad \pm 75$	28.67347
84	14.681319	420.96365	28.67342	15.000089	430.77197	28.71796	15.164681	435.83634	28.74023
85	15.158 462	435.64497	28.73939	15.49155 .3	445.89394	28.78303	15.663572	451.18684	28.804 84
36	15.651112	4 ¢0. $80 \quad 343$	28.80329	15.999119	461.51136	28.84605	16.178876	467.04235	28.86741
87	16.159773	466.45455	28.86517	16.523315	477.64047	28.90706	16.711133	483.41948	28.927 98
88	16.684965	482.61432	28.92510	17.064686	494.29804	28.96613	17.260900	500.33538	28.94666
89	17.227227	499.29928	28.98315	17.623795	511.50138	29.02334	17.828753	517.80779	29.04340
90	17.787112	516.52651	29.03937	18.201222	529.26836	29.07873	18.415283	535.85501	29.09837
91	18.365193	534.31362	29.093 82	18.797568	547.61747	29.1 .3236	19.021118	554.49595	29.15159
92	18.962 061	552.67881	29.14656	19.413452	566.56777	29.18429	19.646880	573.75015	29.20311
93	19.578 328	571.64088	29.19763	20.049516	586.13896	29.23457	20.293225	593.63710	29.25299
94	20.214624	591.21980	29.24710	20.706420	606.35137	29.28326	20.960835	614.17960	29.30128
95	20.871599	611.43383	29.29502	21.384846	627.22603	29.33040	21.650412	635.39728	$29.3+804$
96	21.519 926	632.30513	29.34142	22.035501	648.78463	29.37604	22.362672	657.31299	29.39330
97	22.250299	653.85535	29.38636	22.809111	671.04958	29.420 2 4	23.098365	679.94968	29.43713
98	22.973434	676.10565	29.42989	23.5504430	694.04401	29.463 ot	23.858260	703.25416	29.77955
99	23.720070	699.07909	29.47205	24.398235	717.79184	29.50448	24.643155	727.48170	29.52063
100	24.490973	722.79916	29.51288	25.125327	742.31774	29.54460	25.453872	752.42683	29.56040
	Value of P	petual Ann.	. 30.76923	-	30.76923	-••••	- - -	30.76923

$$	RATIO of INTEREST: ANNUALLY, 0.0325.			RATIO of INTEREST: HALF-YEARLY, 0.01625.			RATIO of INTEREST: QUARTERLY, 0.008125 .		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.4353699	0.0250598	0.0575598	0.4324849	0.0247672	0.0572672	0.4310265	0.0246204	0.0571204
27	0.4216658	0.0236959	0.0561959	0.4187644	0.0234154	0.0559154	0.4172981	0.0232747	0.0557747
28	0.4083930	0.0224351	0.0549351	0.4054793	0.0221659	0.0546659	0.4040070	0.0220308	0.0545308
29	0.3955380	0.0212668	0.0537668	0.3926156	0.0210081	0.0535081	0.3911392	0.0208784	0.0533784
30	0.3830877	0.0201817	0.0526817	0.3801601	0.0199329	0.0524329	0.3786812	0.0198081	0.0523081
31	0.3710293	0.0191717	0.0516717	0.3680996	0.0189322	0.0514322	0.3666201	0.0188120	0.0513120
32	0.3593504	0.0182298	0.0507298	0.3564218	0.0179991	0.0504991	0.3549431	0.0178832	0.0503832
33	0.3480391	0.0173496	0.0498496	0.3451145	0.0171270	0.0496270	0.3436380	0.0170154	0.0495154
34	0.3370838	0.0165258	0.0490258	0.3341658	0.0163110	0.0488110	0.3326930	0.0168032	0.0487032
35	0.3264735	0.0157535	0.0482535	0.3235645	0.0155460	0.0480460	0.3220966	0.0154419	0.0479419
36	0.3161971	0.0150283	0.0475283	0.3132996	0.0148278	0.0473278	0.3118377	0.0147272	0.0472272
37	0.3062441	0.0143465	0.0468465	0.3033603	0.0141525	0.0466525	0.3019055	0.0140553	0.0465553
38	0.2966045	0.0137044	0.0462044	0.2937362	0.0135168	0.0460168	0.2922897	0.0134227	0.0459227
39	0.2872683	0.0130992	0.0455992	0.2844176	0.0129176	0.0454176	0.2829801	0.0128265	0.0453265
40	0.2782259	0.0125279	0.0450279	0.2753945	0.0123520	0.0448520	0.2739671	0.0122638	0.0447638
41	0.2694682	0.0119881	0.0444881	0.2666577	0.0118176	0.0443176	0.2652411	0.0117322	0.0442322
42	0.2609862	0.0114775	0.0439775	0.2581981	0.0113122	0.0438122	0.2567931	0.0112294	0.0437294
43	0.2527711	0.0109940	0.0434940	0.2500069	0.0108337	0.0433337	0.2486141	0.0107534	0.0432534
44	0.2448146	0.0105358	0.0430358	0.2420755	0.0103803	0.0428803	0.2406957	0.0103023	0.0428023
45	0.2371086	0.0101011	0.0426011	0.2343957	0.0099501	0.0424501	0.2330291	0.0098745	0.0423745
46	0.2296451	0.0096884	0.0421884	0.2269596	0.0095418	0.0420418	0.2256073	0.0094684	0.0419684
47	0.2224166	0.0092962	0.0417962	0.2197594	0.0091538	0.0416538	0.2184216	0.0090825	0.0415825
48	0.2154156	0.0089231	0.0414231	0.2127876	0.0087849	0.0412849	0.2114648	0.0087157	0.0412157
49	0.2086349	0.0085683	0.0410683	0.2060370	0.0084339	0.0409339	0.2047296	0.0083666	0.0408666
50	0.2020677	0.0082303	0.0407303	0.1995006	0.0080997	0.0405997	0.1982088	0.0080342	0.0405342
51	0.1957073	0.0079082	0.0404082	0.1931715	0.0077812	0.0402812	0.1918958	0.0077176	0.0402176
52	0.1895470	0.0076009	0.0401009	0.1870432	0.0074775	0.0399775	0.1857838	0.0074157	0.0399157
53	0.1835806	0.0073080	0.0398080	0.1811093	0.0071878	0.0396878	0.1798665	0.0071277	0.0396277
54	0.1778020	0.0070282	0.0395282	0.1753637	0.0069113	0.0394113	0.1741377	0.0068528	0.0393528
55	0.1722054	0.0067609	0.0392609	0.1698003	0.0066472	0.0391472	0.1685914	0.0065903	0.0390903
56	0.1667849	0.0065055	0.0390055	0.1644135	0.0063948	0.0388948	0.1632216	0.0063394	0.0388394
57	0.1615350	0.0062613	0.0387613	0.1591975	0.0061535	0.0386535	0.1580230	0.0060996	0.0385996
58	0.1564503	0.0060277	0.0385277	0.1541470	0.0059228	0.0384228	0.1529899	0.0058703	0.0383703
59	0.1515257	0.0058041	0.0383041	0.1492568	0.0057019	0.0382019	0.1481171	0.0056508	0.0381508
60	0.1467562	$0.0055^{*} 899$	0.0380899	0.1445217	0.0054904	0.0379904	0.1433995	0.0054407	0.0379407
61	0.1421367	0.0053849	0.0378849	0.1399368	0.0052879	0.0377879	0.1388322	0.0052395	0.0377395
62	0.1376627	0.0051883	0.0376883	0.1354973	0.0050939	0.0375939	0.1344103	0.0050467	0.0375467
63	0.1333295	0.0049998	0.0374998	0.1311987	0.0049079	0.0374079	0.1301293	0.0048619	0.0373619
64	0.1291327	0.0048191	0.0373191	0.1270365	0.0047295	0.0372295	0.1259846	0.0046847	0.0371847
65	0.1250680	0.0046457	0.0371457	0.1230063	0.0045584	0.0370584	0.1219719	0.0045148	0.0370148
66	0.1211312	0.0044794	0.0369794	0.1191040	0.0043943	0.0368943	0.1180871	0.0043517	0.0368517
67	0.1173184	0.0043196	0.0368196	0.1153255	0.0042367	0.0367367	0.1143259	0.0041952	0.0366952
68	0.1136255	0.0041662	0.0366662	0.1116668	0.0040854	0.0365854	0.1106846	0.0040450	0.0365450
69	0.1100489	0.0040189	0.0365189	0.1081242	0.0039401	0.0364401	0.1071593	0.0039007	0.0364007
70	0.1065849	0.0038773	0.0363773	0.1046940	0.0038004	0.0363004	0.1037462	0.0037621	0.0362621
71	0.1032300	0.0037412	0.0362412	0.1013726	0.0036663	0.0361663	0.1004418	0.0036289	0.0361289
72	0.0999806	0.0036103	0.0361103	0.0981566	0.0035373	0.0360373	0.0972427	0.0035008	0.0360008
73	0.0968335	0.0034845	0.0359845	0.0950426	0.0034133	0.0359133	0.0941455	0.0033777	0.0358777
74	0.0937855	0.0033635	0.0358635	0.0920274	0.0032940	0.0357940	0.0911469	0.0032594	0.0357594
75	0.0908334	0.0032470	0.0357470	0.0891079	0.0031793	0.0356793	0.0832439	0.0031455	0.0356455
76	0.0879742	0.0031350	0.0356350	0.0862810	0.0030689	0.0355689	0.0854333	0.0030360	0.0355360
77	0.0852051	0.0030271	0.0355271	0.0835437	0.0029627	0.0354627	0.0827122	0.0029305	0.0354305
78	0.0825231	0.0029232	0.0354232	0.0808934	0.0028604	0.0353604	0.0800778	0.0028291	0:0353 291
79	0.0799255	0.0028232	0.0353232	0.0783270	0.0027620	0.0352620	0.0775272	0.0027314	0.0352314
80	0.0774097	0.0027269	0.0352269	0.0758421	0.0026672	0.0351672	0.0750580	0.0026373	0.0351373
81	0.0749730	0.0026341	0.0351341	0.0734361	0.0025758	0.0350758	0.0726673	0.0025468	0.0350498
82	0.0726131	0.0025447	0.0350447	0.0711064	0.0024879	0.0349879	0.0703599	0.0024595	0.0349595
83	0.0703275	0.0024585	0.0349585	0.0688505	0.0024031	0.0349031	0.0681121	0.0023754	0.0348754
84	0.0681138	0.0023755	0.0318755	0.0666663	0.0023214	0.0348214	0.0659427	0.0022944	0.0347944
85	0.0659698	0.0022954	0.0347954	0.0645513	0.0022427	0.0347427	0.0638424	0.0022164	0.0317164
86	0.0638932	0.0022183	0.0347183	0.0625034	0.0021668	0.0346668	0.0618090	0.0021411	0.0346411
87	0.0618821	0.0021438	0.0346438	0.0605205	0.0020936	0.0345936	0.0598403	0.0020686	0.0345686
88	0.0599342	0.0020721	0.0345721	0.0586005	0.0020231	0.0345231	0.0579344	0.0019987	0.0344987
89	0.0580476	0.0020028	0.0345028	0.0567415	0.0019550	0.0344550	0.0560892	0.0019312	0.0344312
90	0.0562205	0.0019360	0.0344360	0.0549414	0.0018894	0.0343894	0.0543027	0.0018662	0.0343662
91	0.0544508	0.0018716	0.0343716	0.0531984	0.0018261	0.0313261	0.0525731	0.0018034	0.03430 .34
92	0.0527369	0.0018094	0.0343094	0.0515107	0.0017650	0.0342650	0.0508987	0.0017429	0.0342429
93	0.0510769	0.0017493	0.0342493	0.0498765	0.0017061	0.0342061	0.0492775	0.0016845	0.0341845
94	0.0494691	0.0016914	0.0341914	0.0482942	0.0016492	0.034149 g	0.0477080	0.0016282	0.0341 282
95	0.0479120	0.0016355	0.0341355	0.0467621	0.0015943	0.0340943	0.0461885	0.0015738	0.0340738
96	0.0464039	0.0015815	0.0340815	0.0452786	0.0015413	0.0340413	0.0447174	0.0015214	0.0340214
97	0.0449432	0.0015294	0.0340294	0.0438421	0.0014902	0.0339902	0.0432931	0.001470%	0.033.9 707
98	0.0435285	0.0014791	0.0339791	0.0424513	0.0014408	0.0339408	0.0419142	0.0014218	0.0339218
99	$0.04 \% 1584$	0.0014304	0.0339304	0.0411045	0.0013932	0.0338938	0.0405792	0.0013746	0.0338746
100	0.0408314	0.0013835	0.0338835	0.0398005	0.0013471	0.0338471	0.0392867	0.0013290	0.0338290
	Ratio of Per	petual Ann.	0.0325000	- - - -	-•••	0.0325000	-	- . -	0.0325000

䋯	RATIO of INTEREST: ANNUALLY, 0.035 .			RATIO of INTEREST: HALF-YEARLY, 0.0175 .			RATIO of INTEREST: QUARTERLY, 0.00875.		
	Improved Principal.	Cumulated Annuity.	Valne of Annuity.	Improved Principal.	Cumulated Aunuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Amuity.
	1.0350000	1.0000000	0.966184	$1.0170^{0} 000$ $1.033^{0} 063$	0.500000 $1.0087^{\circ} 500$		1.0087500 1.0175 1.0264864 1.0354 1.21		0.217831 0.493513 0.978502
			1.899694	1.0534241 1.0718590	$1.526+031$ 2.0531152	1.448992 $1.915{ }^{\circ} 471$			$\begin{array}{ll}1.217 & 846 \\ 1.455 & 114\end{array}$ 1.690323
	1.0712250	2.0350000	1.899694	1.0718590	2.0531152	1.915471	1.0721817	2.0623337	$1.9 \% 3493$
			$1.0906{ }^{\circ} 166$	$2.5890{ }^{417}$	2.373 928	1.0815633 1.0910 1.1005 1.109	2.3303 2.6007 1899 8735	
$3{ }^{4}$	1.1087179	3.100¢ 250	2.801636	1.10970	3.1343530	2.824497	1.1005 1.1102 1.34	2.8735 $3.1+86$ 2.00	2.610 2.836120 120
	…:		1.1291221	3.6892042	3.267381	1.1199 1.1297 171 171	3.4262 3.7062 309	3.059 3.0850 3.880 6.5
					3.692 042	3.207 32	1.13966021	3.9886	3.500020
4	1.1475230	4.2149429	3.673080	1.1488818	4.2537652	3.702526	1.1+95 737	4.2735301	3.717492
				1.1689878	4.8282061	$4.130 \quad 247$	$\begin{aligned} & 1.1596324 \\ & 1.1607 \\ & \hline 002 \end{aligned}$	$\begin{aligned} & 4.5609 \\ & 4.8508 \\ & 236 \\ & 317 \end{aligned}$	3.933077 $4.1+679$
				1.1089872	4.8282001	4.130248	1.1097 1.1800 $1+8$ 192	${ }^{4.81432} 765$	4.558655
5^{4}	$1.1876{ }^{1} 863$	$5.362{ }^{\circ} 659$	4.315052	1.1890445	5.41200997	4.500011	1.1903399	5.4382802	4.568679
		…0.	1.2102598	6.0074220	4.963746	1.2007554 1.2112 620		4.776 4.9831 887
	1.8292 5	6.5501522	5.328 553	1.2314393	6.6125519		1.12918605 1.2325	6.3388695 6.644346	5.1878883 5.300 185
	1.8292 5	0.5501522	5.328553	1.2314393	6.6195519	5.369775	1.2325518	6.6443346	5.390715
				1.2529895	7.2282715	5.768881	$\left\|\begin{array}{ll} 1.2433 & 366 \\ 1.25+2 & 158 \end{array}\right\|$	$\left.\begin{array}{\|cc\|} 6.9524 & 726 \\ 7.2633 & 067 \end{array} \right\rvert\,$	5.591786 5.791114
				1.2529895	7.202715	$5 . \% 68$	1.2651902	${ }_{7} .5768607$	5.988 713
7	1.2722793	7.7794075	6.11454	1.27+9 168	7.8547663	6.161002	1.2762 606	7.8931582	6.184598
							$1.287 \pm$ 1.2986 299	8.2122 8.5340 804	6.378783
				1.2972279	8.4922247	6.516440	1.2986929 1.3100 565	8.5310804 8.8587535	${ }^{6.571} 688$
8	1.3168090	9.0516858	6.873956	1.3199294	9.1408386	6.925249	1.3215195	9.1862677	$6.951{ }^{2} 92$
				1.3430281	9.8000803	7.997 511	$\begin{aligned} & 1.3330828 \\ & 1.3+47472 \end{aligned}$	9.5166476 $9.8+99183$	7.138898 7.324 7
				1.3430281	9.8008	7.297 5	1.3565138	10.186 105	7.509032
9^{4}	1.3628974	10.368496	7.607636	1.3665 311	$10.47 \% 317$	7.663431	1.3683833	10.525 ¢ 84	7.691729
			11.155	8.023008	$\begin{aligned} & 1.3803566 \\ & 1.39243+7 \end{aligned}$	10.867329	7.872842 8.052384
				1.390+ 454	11.155	8.023028	$\begin{aligned} & 1.392+3+7 \\ & 1.40+6186 \end{aligned}$	$\begin{aligned} & 11.912419 \\ & 11.560527 \end{aligned}$	
10	1.4105988	11.731393	8.316605	1.4147782	11.850806	8.376441	1.4169090	11.911682	8.406808
			$1.4395{ }^{368}$	12.558195	8.723775	1.4993 1.4418 134	12.265909 12.623 236	8.581719 8.755 111
				1.43950	12.558195	8.723775	1.44844 1.459	12.983689	${ }_{8.927} 000$
11	1.4599697	13.141992	9.001 552	1.464788	13.277963	9.065135	1.4671555	13.347296	9.097398
			1.4903615	14.010327	9.400 623	1.4799931 1.4929	$\begin{aligned} & 13.71+085 \\ & 14.084084 \end{aligned}$	$\begin{aligned} & 9.266317 \\ & 9.433 \end{aligned}$
				1.4903615	14.01032	9.400623	1.5060063	14.457319	9.599977t
12	1.5110687	14.601962	9.663 333	1.5164	14.75508	9.730342	1.5191838	14.833821	9.764336
	\ldots	…		1.5429 805	15.513730	10.05439	1.5324767 1.5458888	15.213617 15.596736	9.987471 10.08919
13		16.1130	10.30274	1.56998827	$16.285{ }^{20}$	10.37888	$\begin{aligned} & 1.5594123 \\ & 1.5730572 \end{aligned}$	15.983207 16.373061	$10.2+951$
							1.5868215	16.766325	10.56598
				1.5974574	17.070211	10.68585	$\begin{aligned} & 1.6007062 \\ & 1.61+7123 \end{aligned}$	$\begin{aligned} & 17.163030 \\ & 17.563 \\ & 207 \end{aligned}$	$\begin{array}{ll}10.72 & 216 \\ 10.87 & 699\end{array}$
14	1.6186945	17.676986	$10.90{ }^{\circ} 05$	$1.683{ }^{\circ} 129$	17.8689	10.9934	1.6888411	17.966885	11.03 0.37
	\ldots	1.6538576	18.681 646	$11.29{ }^{\circ} 580$	1.6430933 $1.657+705$	18.374095 18.784868	$\begin{array}{llll}11.18 \\ 11.33 & 262 \\ 316\end{array}$
		$10^{10.700}$		$1.6538{ }^{\text {a }}$	1.6		${ }_{1}^{1.6719} 734$	19.199 .236	11.488888
15	1.6753488	19.295681	11.51741	1.6898001	19.508575	11.59 292	1.6866031	19.617229	11.63121
	1.7122 491	20.349975	11.88494		20.038880 20.464 2000 2000	11.77813 11.92 18 1808
16	1.7339860	. 971	12.0		준		1.7312 650	20.893 21.306 282 099	12.06 822
			12.0941	1.742		12.1	1.7464130	21.306	12.21137
17	1.7946756	22.705016	19.65132	1.8037245	22.963 558	12.73119	1.8083450	${ }^{23.095} 568$	19.77166
18 19	1.8574892 1.9225013	24.499691 26.357181	13.18968 13.70 188	1.8674 1.9333 884	24.783065 26.666812	13.27 13.79 $31+$	${ }_{1}^{1.8724}{ }^{\text {a }}$	34.927 786 86.824 979	13.31 13.837 1834
20	1.9897889	28.279 688	14.21 240	$2.0015{ }^{2} 73$	28.617	14.29712	2.0076308	28.789449	14.34002
21	2.0594315	30.269471	14.69797	2.0722662	30.636178	$1+.78390$	2.0788258	30.823585	14.82740
22 28 28	2.1315116	32.388902	15.16712	2.1454 .302	33.786578	15.25409	2.1525 452	32.929 854	15.29810
24	2.2001 21883	$3+460$ 36.666 524 24	15.02 10.058 837	2.2211 2.2995 987	34.890 37.131 98 392	15.70824 16.14 9.0	2.2288 2.3079 195	35.110 8181	16.75208 160
25	2.3632450	38.949857	16.48151	2.3807839	39.451112	16.57060	2.3897631	39.707509	16.61567

	RATIO of INTEREST： ANNUALLY， 0.035 ．			RATIO of INTEREST： HALF－YEARLY， 0.0175 ．			RATIO of INTEREST： QUARTERLY， 0.00875 ．		
	Discounted Principal．	Annuity for Cumulation	Ratio of Annuity．	Discounted Yrincipai．	Annuity for Cumulation	Ratio of Annuity．	Discounted Principal．	Annuity for Cumulation	Ratio of Annuity．
$1 \begin{aligned} & 1 \\ & 1^{2} \\ & 1 \end{aligned}$							0.9913259	4.0000000	4.0350000
				0.9828010	2.0000000	2.0350000	0．9827 271	1.9012881	${ }_{2}^{2.0262} 881$
	0.96611836	1.0000000	1.0330000	0.9658989	$0.9913{ }^{1359}$	1.0263259	0.9657525	0.9869702	1.0219702
				0.949283	0.651	0.9901	${ }^{0} .9408387$	0.5	${ }_{0} 0.5916028$
2	0.9335107	0.4914005	0.5264005	0.9329585	$0.48706+8$	0.5290648	0.9326777	$0.48+8876$	0.5198876
			．．．．．	0.9169125	0.3862488	0.4212488	0．9245 876		$\begin{aligned} & 0.4641148 \\ & 0.4195015 \\ & 0 \end{aligned}$
							0.9086172	0.3480044	0.3830044
	0.9019427	0.3219342	0.3569342	0.9011425	0.3190451	0．3540 451	0.9007358	0.3175944	0.3525944
				0.8856438	0.2710612	0.3060612	$\left\|\begin{array}{l\|} 0.8992 \\ 0.8851 \\ 0.874 \end{array}\right\|$	$\left\|\begin{array}{l\|} 0.2918 \\ 0.2658 \\ 0.87 \\ \hline \end{array}\right\|$	$\begin{aligned} & 0.3268667 \\ & 0.3048 \\ & 181 \end{aligned}$
							0.8774993	0.2507127	0.2857127
	0.8714422	0.2372511	0.2729511	0.8704116	0.2350858	02700858	0.8698878	0.2339986	0.2689986
				0.85094412	0.2071168	0.2421162	0.8623423 0.8548622	0.2192539	0.2542539
				0.8504412	0.2071102	0.2421162	$\left.\begin{array}{\|l\|l\|} \hline 0.8548 & 622 \\ 0.8474 & 471 \end{array} \right\rvert\,$	$\begin{aligned} & 0.2061502 \\ & 0.1944286 \end{aligned}$	0.2411 0.2294 280
	0.8419731	0.1864814	0.2214814	0.8407286	0.1817507	0.2197507	$0.8 \div 00962$	0.1838817	0.2188817
交				0.826	0．1664\％ 6	0.2014607	0.8323092	0.1743416	$0.2093-416$
告			－．．．．	0．82			0.8255 0.8184 241	${ }_{0.1577} 568$	0.2006712 0.1927568
6^{2}	$0.8135^{\circ} 006$	0.1526682	0.1876682	0.8180579	0.1512276	0.1862276	0.8113250	0.1505042	0.1855042
						0.1733458	0.8042 0.7973 0.710	0.1438337 0.1376 0.183	0.1788337
				0.7980913	0.1383458	0.1733458	0.7973110 0.7903 0.751	0.1376783	0.1726783 0.116698 .8 0.163
7^{4}	0.7859910	0.1285445	0.1635445	$0.7843^{6} 64$	0.1273112	0.1623112	0.7835391	0.1266920	0.1616920
					0.117	0.1527548	0.7767425	0.1217697	0.1567697
等		．．．．．					0.7700 0.7633 0.700	0．1128 827	0.1478827
8	0.7594116	0.1104766	0.1454766	0.7576163	0.1093991	0.1443991	0.7567018	0.1688582	0.1438582
						0.1370	0.7501410	0.1050790	0.1400790
	…：	－．．．	．．．．	0.74	0.102	0.1370	0.7436 0.7371839 0	0.1015 0.0981 0.370	0.1305 0.1331 0.137
9	0.7337310	0.0964460	0.1314460	0.7317799	0.0954899	0.1304899	0.7307895	0.0950098	0.1300098
$\frac{1}{4}$							0.7244505	0．0990 189	0.1270189
$\frac{1}{8}$				0.7191940	0.0896412	0.1246412	0.7181666	${ }^{0.0891} 0688$	0.1241868
10	$0.7089{ }^{188}$	$0.08 \dddot{0}^{\circ} 414$	0.12029	0.70068246	$0.0843{ }^{\circ} 824$	0.119938	$\begin{aligned} & 0.7119371 \\ & 0.7057617 \end{aligned}$	${ }_{0}^{0.0839} 512$	0.1189512
4							0.6996399	0.0815268	0.1165268
高	．．．			0.6946	0.0796293	0.1146293	0.6935 0.6875 11 0.60	0.0792190 0.0770197	0.1142190 0.1120197
11	0.6849^{457}	0.07600920	0.1110	0．68\％7\％ 203	$0.070^{\circ} 3128$	0.11031128	0．6875 0.615	0.0749215	0.1099215
							0.6756789	0.0729177	0.1079177
				0.6709782	0.0713759	0.1063759	0.6698180	${ }^{0.0710} 021$	0.1060 0.101 0.1041 0.101
12	0.66177833	0.0688839	0.1034839	0.6594380	0.06777713	0.1027713	0.0040 0.6582 0.82	${ }_{0}^{0.0674} 135$	0.1024135
							0.6525386	0.0657306	0.1007306
				0.6480963	0.0644590	0.0994590	0.6168781	${ }^{0.0641} 160$	0.0991160
$1^{\frac{4}{4}}$	0.63904042	0.06120616	0.09700610	$0.63 \ddot{60} 9497$	0.061405	0.09090054	0.6412 0.6357 049	0．06210 759	${ }_{0}^{0.0960} 759$
							0.6301907	0.0596434	0.0916434
	…＂	．．．．．		0．620．9945	0.0585816	0.0935816	0.6247243	0.0582648	0.0932 0.098 0.0019 0.098
14	0.6177818	0.0565707	0.0915707	0．615\％ 283	0.0509630	0.090966	0.6193054 0.6139335	0.0569372 0.0556579	0.0919372 0.0906579
							0.6086082	0.0544245	0.0894245
产				0.6016469	0.0535885	0.0885285	0.6033291	0.0532343	0.0882343
15	0.59068005	$0.0518{ }^{\circ} 25$	$0.08088{ }^{\circ} 251$	0.5	0.05	0.086	0.5880957	${ }_{0}^{0.0520} 0.050975$	0.0870 0.0859 756
$\frac{1}{2}$				0.58890971	0.0491401	$0.0871{ }^{10} 401$	0.5877 0.5826 665	0．04998658	0.0849 0.0838 658
，							0.5776124	0.0478623	0.0828623
16	0.5767059	0.0476848	0.0826848	0.5739824	0.0471562	0.0821562	0．5726 0.1	0.0468 g 09	0.0818909
17	0.5572038	0.0440431	0.0790431	0.5544084	0.0435473	0.0785473	0.5529919	0.0432983	0.0782983
18	0.5383611	0.0408168	0.0758168	0.5355	0.0403501	0.0753501	0.5340533	0.0401159	0.0751159
19	0.5201557	0.0379403	0．0729 403	0.5172400	0.0374998	0.0724998	0.5157632	0.0372787	0.0722787
20	0.5025659	0.0353611	0.0703611	0.4996010	0.0349442	0.0699442	0.4980996	$0.03+7349$	0.0697349
21	0.4855709	0.0330366	0.0680366	0.4825635	0.0326411	0.0676411	0.4810409	0.0324427	0.0674427
22	0.4691506	0.0309321	0.0659321	0.4661070	0.0305562	0.0655562	0.4615664	0.0303676	0.0653676
$\stackrel{3}{ }$	0.4532856	0.0290188	0.0640188	0.4502117	0.0286609	0.0636609	0.4486561	0.0284812	0.0634812
2.4	0.4379572	0．0272 728	0.0622728	0.4348585	0．0269 314	0.0619314	0.4332907	0.0267601	0.0617601
25	0.4231470	0.0256740	0.0606740	0.4200288	0：0253－478	0.0603478	0.4184516	0.0251842	0.0601842

$\begin{aligned} & \text { K } \\ & \stackrel{8}{2} \\ & 0 \end{aligned}$	RATIO of INTEREST: ANNUALLY, 0.035 .			RATIO of INTEREST: HALF-YEARLY, 0.0175.			RATIO of INTEREST: QUARTERLY, 0.00875.		
	Improved Principal.	Cumulated Anouity.	Value of Annuity.	Improved Principal.	Cumulated Annuity'.	Value of Annuity.	Imprnved Principal.	Cumulated Annuity.	Value of Annuity.
26	2.4459586	41.313102	16.89035	2.4648457	41.852742	16.97986	2.4745085	42.128813	17.02512
27	2.5315671	43.759060	17.28537	2.5518700	44.339142	17.37516	2.5522598	44.635991	17.42056
28	2.6201720	46.290627	17.66702	2.6419670	46.913348	17.75698	2.6531227	47.232078	17.80245
29	2.7118780	48.910799	18.03 577	2.7352450	49.578427	18.12577	2.7472079	49.920225	18.17126
30	2.8067937	51.622677	18.39204	2.8318164	52.337617	18.48199	2.8446296	52.703704	18.52 744
31	2.9050315	54.429471	18.73628	2.9317972	55.194206	18.82606	2.9455060	55.585887	18.87142
32	3.0067076	57.334503	19.06887	3.0353079	58.151653	19.15841	3.0499598	58.570296	19.20363
33	3.1119424	60.341210	19.39021	3.1424732	61.213518	19.47941	3.1581177	61.650505	19.52445
34	3.2208603	63.453152	19.70068	3.2534221	64.383502	19.78947	3.2701110	64.860318	19.83429
35	3.3335905	66.674013	20.00066	3.3682882	67.665381	20.08895	3.3860758	68.173589	20.13351
36	3.4502661	70.007603	20.29050	3.4872098	71.063139	20.37822	3.5051530	71.604373	20.42249
37	3.5710254	73.457869	20.57053	3.6103302	74.580886	20.65763	3.6304886	75.156818	20.70157
38	3.6960113	77.028895	20.84109	3.7377974	78.222787	20.92751	3.7592331	78.835227	20.97110
39	3.8253717	80.724906	21.10250	3.8697652	81.993292	21.18818	3.8925431	82.644088	21.23139
40	3.9592597	84.550278	21.35507	4.0063921	85.896921	21.43997	4.0305803	86.588028	21.48276
41	4.0978338	88.509538	21.59910	4.1478488	89.938361	21.68317	4.1735136	90.671817	21.72554
42	4.2412580	92.607371	21.83488	4.2942874	94.122500	21.91807	4.3915148	94.900430	21.96000
43	4.3897020	96.848629	22.06269	4.4459026	98.454368	22.14497	4.4747649	99.279000	22.18642
44	4.5133416	101.23833	22.28279	4.6028708	102.93917	22.36412	4.6334491	103.81285	22.40509
45	4.7023586	105.78167	22.49545	4.7653808	107.58231	22.57580	4.7977610	108.50746	22.61627
46	4.8669411	110.48403	22.70092	4.9336291	112.38940	22.78027	4.9678994	113.36858	22.82022
47	5.0372840	115.35097	22.89912	5.1078165	117.36376	22.97776	5.1440712	118.40204	23.01718
48	5.2135890	120.38826	23.09125	5.2881543	122.51869	23.16852	5.3264905	123.61403	23.20740
49	5.3960646	125.60185	23.27657	5.4748594	127.85312	23.35277	5.5153790	129.01083	23.39111
50	5.5849269	130.99791	23.45561	5.6681561	133.37589	23.53074	5.7109654	134.59900	23.56852
51	5.7803993	136.58284	23.62862	5.8682775	139.09365	23.70264	5.9134881	140.38538	23.73986
52	5.9827133	142.36324	23.79577	6.0754639	145.01324	23.86867	6.1231928	146.37695	23.90533
53	6.1921083	148.34595	23.95726	6.2899664	151.14190	24.02905	6.3403333	159.58096	24.06513
54	6.4088320	154.53806	24.11330	6.5120411	157.48690	24.18395	6.5651747	159.00501	24.21916
55	6.6331412	160.94689	24.26405	6.7419571	164.05 592	24.33357	6.7979894	165.65683	24.36851
56	6.8653011	167.58003	24.40971	6.9799907	170.85688	84.47810	7.0390604	172.54457	24.51245
57	7.1055866	174.44533	24.55044	7.2264275	177.89793	24.61769	7.2886798	179.67653	24.65145
58	7.3542882	181.55092	24.68643	7.4815653	185.18757	24.75252	7.5471515	187.06147	24.78571
59	7.6116820	188.90520	24.81779	7.7457111	192.73461	24.88275	7.8147890	194.70825	24.91536
60	7.8780909	196.51688	24.94474	8.0191839	200.54192	25.00855	8.0919177	202.62622	25.04057
61	8.1538241	204.39497	25.06737	8.3023109	208.63745	25.13005	8.3788735	210.82496	25.16149
62	8.4392079	212.54380	25.18587	8.5954349	217.01245	25.24741	8.6760072	219.31451	25.27828
63	8.7345802	220.98801	$25.30 \quad 036$	8.8989071	225.63305	25.36076	8.9836750	228.10501	25.39106
64	9.0402905	229.72259	25.41097	9.2130938	234.65982	25.47025	9.3022544	237.20727	25.49998
65	9.3567007	238.76288	25.51785	9.5383738	243.95354	25.57601	9.6321311	246.63233	25.60517
66	9.6841852	248.11958	25.62111	9.8551382	25.3 .57545	25.67816	9.9737067	256.39162	25.70675
67	10.023132	257.80376	25.72088	10.223792	263.53694	25.77683	10.327395	266.49701	25.80486
68	10.373941	267.82689	25.81728	10.584756	273.85019	$25.87 \$ 13$	10.693625	276.96070	25.89961
69	10.737029	278.20084	25.91041	10.958463	284.52751	25.96418	11.072843	287.79552	25.99111
70	11.112825	288.93787	26.00040	11.345366	295.58190	26.05309	11.465509	299.01455	26.07948
71	11.501774	300.05069	26.08734	11.745929	307.02654	26.13898	11.872100	310.63141	26.16483
72	11.904336	311.55	26.17135	12.160633	318.87477	26.22193	12.293109	322.66026	26.24725
73	12.320988	323.45680	26.25250	12.589981	331.14229	26.30205	12.729048	335.11570	26.32684
74	12.752223	335.77779	26.33092	13.034 485	343.84239	26.37 944	13.180446	348.01273	26.40371
${ }^{7} 7$	13.198550	348.53001	26.40669	13.494684	356.99098	26.45420	13.647852	361.36743	26.47796
76	13.660500	361.72856	26.47989	13.971130	370.60374	26.52640	14.131833	375.19521	26.54965
77	14.138617	375.38906	26.55062	14.464399	384.69711	26.59614	14.632977	389.51359	26.61889
78	14.633 469	389.52768	26.61896	14.975083	399.28812	26.66350	15.151892	404.33976	26.68576
79	15.145640	404.16115	26.68498	15.503795	414.39410	26.72856	15.689209	419.69166	26.75034
80	15.675738	419.30679	26.74877	16.051177	430.03361	26.79141	16.245582	435.58802	26.81271
81	16.224388	434.98252	26.81041	16.517883	446.22521	26.85211	16.821683	452.04806	26.87294
82	16.792242	451.20691	26.86996	17.204599	452.98850	$26.91 \quad 074$	17.418214	469.09186	26.93111
83	17.379970	457.99916	26.92750	17.812029	480.34365	26.96738	18.035900	486.74000	26.98729
84	17.988269	485.37913	26.98309	18.440904	498.31159	27.02208	18.675490	505.01394	27.04154
85	18.617859	503.36740	27.03680	19.091984	516.91390	27.07492	19.337762	523.93605	27.09393
86	19.269484	521.98595	27.08870	19.766050	536.17289	27.12595	20.023520	543.52916	27.14454
87	19.943916	541.25474	27.13884	20.463917	556.11194	27.17524	20.733596	563.81698	27.19340
88	20.641953	561.19861	27.18728	21.186418	576.75481	27.22285	21.468851	584.824 .32	27.24060
89	21.364491	581.84061	27.23409	21.934434	599.12669	27.26885	22.230179	606.57659	27.28617
90	22.112175	603.20503	27.27932	22.708856	620.25306	27.31327	23.018508	629.10025	27.33019
91	22.886102	625.31720	27.32301	23.510621	64.316062	27.35617	23.831791	652.42258	27.37270
92	23.687116	648.20331	27.36522	24.340691	666.87692	27.39761	24.680022	676.57208	27.41375
93	24.516165	671.89042	27.40602	25.200071	691.43060	27.43704	25.555226	701.57789	$27.45 \quad 340$
94	25.374231	696.40659	27.44543	26.089790	716.85121	27.47631	26.461468	727.47052	27.49109
95	26.262329	721.78082	27.48351	27.010922	743.16917	27.51365	27.399845	754.28128	27.52867
96	27.181510 28.132 868	748.04315 775.22 666	27.52089 27.550884				28.371502 29.377613	782.04288 810.78900	
97	28.132863	775.22466	27.55584 27.50018	28.951900	798.62576	27.58457 27.61823	29.377613 30.419 303	810.78900 840.55437	27.59887 27.6318
98	29.117513	803.35752	27.59018	29.974035	827.83100	27.61823 27.65073	30.419403 31.403138	840.55437	27.63218
99	30.136626	832.47503	27.62337	31.032357	858.06733	27.65073	31.493138	871.37540	27.66434
100	31.191408	862.61166	27.65543	32.127993	889.37122	27.68213	32.615128	903.28940	27.69541
	Value of	petual An	98.57143		. . -	28.57143	$\cdots \cdots$	-••••	28.57143

PERPETUAL STOCK: 3 p.C. 85,7143 ; $3 \frac{1}{2}$ p.C. 100 ; 4 p.C. 114,2857 ; 5 p.C. $142,8571$.

$$	RATTO of INTEREST: ANNUALLY, 0.035 .			RATIO of INTEREST: HALFYEARLY, 0.0175 .			-RATIO of INTEREST: QUARTERLY, 0.00875.		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.4088377	0.0242054	0.0592054	0.	0.0238933	0.0588933	0.4041207	0.0237367	367
27	0.3950122	0.0228594	0.0578524	0.3918695	0.0225534	0.0575534	0.3902805	0.0224034	0.0574034
28	0.3816543	0.0216026	0.0566026	0.3785058	0.0213159	0.0563159	0.3769143	0.0211721	0.0561721
29	0.3687482	0.0204454	0.0554454	0.3655980	0.0201701	0.0551701	0.3640059	0.0200320	0.0550320
30	0.3562784	0.0193713	0.0543713	0.3531303	0.0191067	0.0541067	0.3515396	0.0189740	0.0539740
31	0.3442304	0.0183 .724	0.0533724	3410877	0.0181178	0.0531178	002	0.0179902	0.0529902
32	0.3325897	0.0174415	0.0524415	0.3294559	0.0171964	0.0521964	0.3278732	0.0170735	0.0520735
33	0.3213427	0.0165724	0.0515724	0.3182207	0.0163363	0.0513363	0.3166443	0.0162178	0.0512178
34	0.3104761	0.0157597	0.0507597	0.3073687	0.0155319	0.0505319	0.3058000	0.0154177	0.0504177
35	0.2999769	0.0149983	0.0499983	0.2968867	0.0147786	0.0497786	0.2953271	0.0146684	0.0496684
36	0.2898327	0.0142842	0.0492842	0.2867622	0.0140720	0.0490720	0.2852129	0.0139656	0.0489656
37	0.2800316	0.0136132	0.0486132	0.2769830	0.0134083	0.0484083	0.2754450	0.0133055	0.0483055
36	0.2705620	0.0129821	0.0479821	0.2675372	0.0127840	0.0477840	0.2660117	0.0126847	0.0476847
39	0.2614125	0.0123878	0.0473878	0.2584136	0.0121961	0.0471961	0.2569015	0.0121001	0.0471001
40	0.2525725	0.0118273	$0.0468 \quad 273$	0.2496011	0.0116419	0.0466419	0.2481032	0.0115489	0.0465489
41	0.2440	0.0112982	0.0462982	0.2410892	0.0111187	0.0461187	0.2396063	0.0110288	0.0460288
42	0.2357791	0.0107983	0.0457983	0.2328675	0.0106245	0.0456245	0.2314003	0.0105374	0.0455374
43	0.2278059	0.0103254	0.0453254	0.2249262	0.0101570	0.0451570	0.2234754	0.0100726	0.0450726
44	0.2201023	0.0098777	0.0448777	0.2172557	0.0097145	0.0447145	0.2158219	0.0096327	0.0446397
45	0.2126592	0.0094534	0.0444534	0.2098468	0.0092952	0.0442952	0.2084306	0.0092160	0.0442160
46	0.2054679	0.0090511	0.0440511	0.2026906	0.0088976	0.0438976	0.2012923	0.0088208	0.0438208
47	0.1985196	0.0086692	0.0436692	0.1957784	0.0085203	0.0435203	0.1943985	0.0084458	0.0434458
48	0.1918065	0.0083065	0.0433065	0.1891019	0.0081620	0.0431620	0.1877409	0.0080897	0.0430897
49	0.1853202	0.0079617	0.0429617	0.1826531	0.0078215	0.0428215	0.1813112	0.0077513	0.0427513
50	0.1790534	0.0076337	0.0426337	0.1764242	0.0074976	0.0424976	0.1751018	0.0074295	0.0424295
51	0.1729984	0.0073216	0.0423216	0.1704078	0.0071894	0.0421894	0.1691049	0.0071232	0.0421232
52	0.1671482	0.0070243	0.0420243	0.1645965	0.0068959	0.0418959	0.1633135	0.0068317	0.0418317
53	0.1614959	0.0067410	0.0417410	0.1589834	0.0066163	0.0416163	0.1577204	0.0065539	0.0415539
54	0.1560347	0.0064709	0.0414709	0.1535617	0.0063497	0.0413497	0.1523189	0.0062891	0.0412891
55	0.1507581	0.0062132	0.0412132	0.1483249	0.0060955	0.0410955	0.1471023	0.0060366	0.0410366
56	0.1456600	0.0059673	0.0409673	0.1432667	0.0058528	0.0408528	0.1420644	0.0057956	0.0407956
57	0.1407343	0.0057325	0.0407325	0.1383810	0.0056212	0.0406212	0.1371991	0.0055656	0.0405656
58	0.1359752	0.0055081	0.0405081	0.1336619	0.0053999	0.0403999	0.1325003	0.0053458	0.0403458
59	0.1313770	0.0052937	0.0402937	0.1291037	0.0051885	0.0401885	0.1279625	0.0051359	0.0401359
60	0.1269343	0.0050886	0.0400886	0.1247010	0.0049863	0.0399863	0.1235801	0.0049352	0.0399352
61	0.1226418	0.0048925	0.0398925	0.1204484	0.0047930	0.0597930	0.1193478	0.0047433	0.0397433
62	0.1184945	0.0047048	0.0397048	0.1163408	0.0046080	0.0396080	0.1152604	0.0045597	0.0395597
63	0.1144875	0.0045251	0.0395251	0.1123733	0.0044310	0.0394310	0.1113130	0.0043839	0.0393839
64	0.1106159	0.0043531	0.0593531	0.1085412	0.0042615	0.0392615	0.1075008	0.0042157	0.0392157
65	0.1068753	0.0041883	0.0391883	0.1048397	0.0040991	0.0390991	0.1038192	0.0040546	0.0390546
66	0.1032611	0.0040303	0.0390305	0.1012644	0.0039436	0.0389436	0.1002636	0.0039003	0.0389003
67	0.0997692	0.0038789	0.1388789	0.0978111	0.0037945	0.0387945	0.0968299	0.0037524	0.0387524
68	0.0963954	0.0037338	0.0387338	0.0944755	0.0036516	0.0386516	0.0935137	0.0036106	0.0386106
69	0.0931356	0.0035945	0.0385945	0.0912537	0.0035, 146	0.0385146	0.0903110	0.0034747	0.038 .4747
70	0.0899861	0.0034610	0.0384610	0.0881417	0.0033832	0.0383832	0.0872181	0.0033443	0.0383443
71	0.0869431	0.0033328	0.0383328	0.0851359	0.0032570	0.0382570	0.0842311	0.0032192	0.0382192
72	0.0840030	0.0032097	0.0382097	0.0822326	0.0031360	0.0381360	0.0813464	0.0030992.	0.0380992
73	0.0811623	0.0030916	0.0380916	0.0794282	0.0030198	0.0380198	0.0785605	0.0029840	0.0379840
74	0.0784177	0.0029782	0.0379782	0.0767196	0.0029083	0.0379083	0.0758700	0.0028735	0.0578735
75	0.0757659	0.0028	0.0378692	0.0741033	0.0028012	0.0378012	0.0732716	0.0027673	0.0377673
76	0.0732038	0.0027645	0.0377645	0.0715762	0.0026983	0.0376983	0.0707622	0,0026653	0.0376653
77	0.0707283	0.0026639	0.0376639	0.0691353	0.0025994	0.0375994	0.0683388	0.0025673	0.0375673
78	0.0683365	0.0025672	0.0375672	0.0667776	0.0025045	0.0375045	0.0659983	0.0024732	0.0374732
79	0.0660256	0.0024743	0.0374743	0.0645003	00024152	0.0374132	0.0637381	0.0023827	0.0373827
80	0.0637929	0.0023849	0.0373849	0.0623007	0.0023454	0.0373254	0.0615552	0.0022957	0.0372957
81	0.0516356	0.0022989	0.0372989	0.0601761	0.0022410	0.0372410	0.0594471	0.0022122	0.0372122
82	0.0595513	0.0022163	0.0372163	0.0581240	0.0021599	0.0371599	0.0574112	0.0021318	0.0371318
83	0.0575375	0.0021368	0.0371368	0.0561418	0.0020818	0.0370818	0.0554450	0.0020545	0.0370545
84	0.0555918	0.00:0 602	0.0370602	0.0542273	0.0020068	0.0370068	0.0535461	0.0019801	0.0369801
85	0.0537119	0.0019866	0.0369866	0.0523780	0.0019346	0.0369346	0.0517123	0,0019 086	0.0369086
86	0.0518955	0.0019158	0.0369158	0.0505918	0.0018651	0.0368651	0.0499413	0.0018398	0.0368398
87	0.0501406	0.0018476	0.0368476	0.0488665	0.0017982	0.0367982	0.0482309	0.0017736	0.0367736
88	0.0484450	0.0017819	0.0367819	0.0472000	0.0017338	0.0367338	00465791	0.0017099	00367099
89	0.0468068	0.0017187	0.0367187	0.0455904	0.0016719	0.0366719	0.0449839	0.0016486	0.0366480
90	0.0452240	0.0016578	0.0366578	0.0440357	0.0016122	0.0366122	0.0434433	00015896	0.0365896
91	0.0436946	0.0015992	0.0365992	0.0425340	0.0015548	0.0365548	0.0419555	0.0015387	0.0365327
92	$0.0+22170$	0.0015487	0.0365427	0.0410835	0.0014995	0.0364995	0.0405186	0.0014780	$0.036+780$
93	0.0407894	0.0014883	0.0364883	0.0396824	0.0014463	0.0364463	0.0391309	0.0014254	0.0364254
94	0.0394101	0.0014359	0.0364359	0.0383292	0.0013950	0.0363950	0.0377908	$0.001374{ }^{\circ}$	0.0363746
95	0.0380	0.0013855	0.0363855	0.0370221	0.0013 456	0.0363456	0.0364966	0.0013258	0.0363258
96	00367897	0.0013368	0.0363368	-0.0357 595	0.0012980	0.0362980	0.0352466	0.0012787	0.0362787
97	0.0355456	0.0012899	0.0362899	0.0345400	0.0012522	0.0362522	0.0340395	0.0012334	0.0362334
98	0.0343436	0.0012448	0.0369418	0.0333629	0.0012030	0.0362080	0.0328738	0,0011897	0.0361897
99	0.03 .31822	0.0012012	0.0362012	0.0322244	0.0011654	0.0361654	0.0317479	0.0011470°	0.0361476
100	0.	0011593	0.0361593	0.0311255	0.0011244	0.0361244	0.0306606	0.001107	. 0361071
	Ratio of P	petual Ann	0350000	-••••	- - - -	0.0350000	- - - -	- . -	0.0350000

厄	RATIO of INTEREST: ANNU.dLLY, 0.0375 .			RATIO of INTEREST: HALF:YEARLY, 0.01875.			RATIO of INTEREST: QUARTERLY, 0.009375.		
	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Princıpal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.
26	2.6042	42.7	16	2.0273	43.39	16.516	2.6391531	43.710748	16.55241
27	2.70195	45.38.5	16.7	2.7267893	46.047	16.83716	2.7395218	46.387247	16.93261
28	2.8032830	48.087518	17.154	2.8300025	48.800066	17.24382	$2.8+37075$	49.165534	17.28924
29 30	2.9084 $3.017+714$	50.890831 53.799238	17.49784 17.829 18	2.9371225	51.656 54.621 258	17.58749	2.9518556	52.049482	17.63280
				3.0782972	54.621	17.918	3.0041100	55.043108	17.96378
31	3.1306266	56.816709	18.148	3.16	57.6981 .33	18.237	3.1806469	58.150584	.282 63
32	3.2480 251	59.947335	18.456	3.2834	$60.8 y 1473$	18.54508	3.3016090	61.376239	18.58980
33	3.3698260	63.195360	18753	3.4077 132	64.205 685	18.84128	3.4271713	64.72 5667	18.88571
34	3.4961945	66.565186	19.03933	35367005	67.645346	19.12668	3.5575088	$68.200{ }^{2} 3$	19.17078
35	3.6273018	70.061381	19.31501	3.6705701	71.215203	19.40167	3.6928 032	71.80808	19.44541
36	3.	73.6	19.58		74.920184	19.66664	3.8332429	75.553143	19.70998
37	$3.901+503$ 4.0508 672	77.152008 81.356 458	19.636	3.9537 4.1033 465	78.765 82.756 174	$19.9219 \pm$ 20.167 0	3.9790236 4.1303484	79.440629 83.475 858	
39	$4.2027{ }^{4} 7$	85407326	20.32165	4.0586750	82.7568 86.898 000	20.40 ± 94	4.2874 283	${ }_{87.664} 753$	20.21039 20.416
40	4.3603788	-89.610 100	20.55	4.4198725	91.196600	20.63331	4.4504819	92.012851	
41	4.5238	93	20.772	4.58	95.657908	20.85	4.6197366	96.526310	33
42	4.6935389	98.49+372	20.985	4.7608032	100.28808	21.06	4.7954282	$101.211+2$	21.10582
43	4.8695467	103.18791	21.19046	49410070	105.09352	${ }^{21.26966} 6$	4.9778015	106.07 471	21.30955
44	5.0521547	108.05 746	21.38839	5.1280318	11008085	21.466 49	5.1671105	111.12295	${ }^{21.505} 82$
45	$5.2+16105$	113.10961	21.57917	5.3221359	115.25696	21.65615	5.3636 190	116.36317	21.69490
46	5.4381	118.35122	21.763	5.5235870	120.62899	21.838	5.5676009	121.80269	1.87705
47	${ }_{5}^{5.6421} 023$	123.78939	21.910	5.7326634	126.20436	22 014.96	5.7793404	127.44908	22.05251
48	5.8536811	129.43150	22.11113	5.9496537	131.99077	22.184 61	5.9991324	133.31020	29.22158
49	6.0731	135.28518	22.	6.1748574	137.9	22.34	6.2272833	139.39422	22.38444
50	6.3009389	141.35837	22.43449	6.4085854	144.22894	22.505	$6.46+1110$	145.70963	22.54133
51	6.	147.65	22.	6.651	15	22.65734		152.26521	
52	6.7823700	154.19653	22.734	6.9029172	157.41 112	22.	6.9651288	159.07010	2.83807
53	7.0367	160.97890	22.87702	7.16+2 034	164.37 876	22.94446	7.2300172	160.13379	2.978 3¢
5	7.3005855	168.01561	23.01399	7.4353797	171.61012	23.08021	$7.50+9794$	173.46612	23.11347
55	7.5743 574	175.31620	23.14602	7.7168204	179.11521	23.21101	7.7903987	181.07730	23.243 65
56	7.8583958	182.89056	23.273	8.0089141	186.90438	23337	8.0866726	188.97794	о6
57	8.1530857	190.74895	23.395	${ }^{8.3120} 6.40$	194.98837	23.45	8.3942140	197.17904	3.48988
58	8.4588264	198.90204	$23.51+14$	8.6266886	203.37836	23.575	8.7131513	205.69204	23.60627
59	8.7760324	207.36	23.698	8.9532223	212.08593	${ }^{23.688}$	9.0448295	214.52879	3.71839
60	9.1051336	216.13690	23.73792	9.2921157	221.12309	23.796	9.3888103	223.70161	3.82641
61	9.4465 761	225.24	23.8	9.6438368	230.5	23.9	9.74	233	3.93047
62	9.8008 207	${ }^{234.68861}$	23.945	10.008 871	240.23656		10.116515	${ }_{2}^{2+3.10} 706$	
63	10.163354	241.48943	24.04415	10.387723	250.33987	24.09953	10.501252	253.36673	24.12729
64	10.549 667	251.65778	24.13894	10.780914	260.82437	24.19316	10.900622	264.01658	24.22032
65.	10.945279	265.20745	24.23030	11.183988	271.70636	24.28337	11.315179	$275.071+5$	24.309 95
66	11.355	276	$2+3$	11.612509	283.00	4.3	11.745503	286.54675	
67	11.781567	287.50846	24.403 24	12.052061	294.72162	24.45 ± 04	12.192192	298.45815	24.479 47
68	12.223376	299.29002	24.48505	12.508250	306.88667	24.534 74	12.655 869	${ }_{310.82} 317$	${ }^{24.55961}$
69	${ }_{12}^{12.681} 758$	311.51340	${ }^{24.563} 91$	${ }_{12}^{12.981} 1707$	319.51219 3326150	${ }^{24.612} 49$	${ }_{13.137}^{180}$	${ }^{323.65} 813$	${ }^{2+.63680}$
70	13.157318	324.19515	2463991	13.473085	332.61560	24.68741	13.636795	336.98121	24.71117
71	13.650718	337.35247	24.713	13.983062	346.21499	24.75960	14.155 412	350.81097	24.78282
72	14.162 690	351.00319	24.78378	14.512343	360.32914	${ }^{24.829} 15$	14.693 751	365.16669	24.85184
73	14.693 718	365.16581	24.85183	15.061658	$374.97{ }^{\text {7 }}$	24.89617	15.252564	380.06837	24.91833
74	15.244732	${ }^{379.85} 952$	${ }^{2+.917} 4.3$	${ }^{15.631} 765$	390.18040	$24.960{ }^{74}$	15.832 629	395.53677	${ }_{2} 298238$
75	15.816410	395.10426	24.98065	16.223452	405.95871	25.02295	16.43+ 754	411.59 3 44	25.04409
76	16.409525	410.92067	25.041	16.837535	422.33426	25.08	17.059778	423.26075	2.510354
77	17.024838	427.33019	25.10033	17.47 ± 862	439.32965	2.140	17.708 573	,445.56 194	25.16080
78	17.663315	$4+4.35507$	25.15695	18.1366 313	456.96834	${ }_{25}^{25.196} 32$	18.382041	463.52109	25.21598
79	18.325690	462.01839	25.21151	18.822800	475.27468	25.24994	19.081122	482.16325	25.269 12
80	19.012903	480.34408	25.26411	19.535273	494.27 394	25.30162	19.806789	501.51438	25.320
	19.725	499.35	25.31	$20.27+713$	513.99236	25.351	20.560054	521.60145	25.36965
82	20.465608	519.08287	25.36367	21.042143	534.45715	25.39937	${ }_{21}^{21.341} 967$	$5+2.45$ 244	\% 5.4 .41717
83	21.233068	$539.5 \pm 8 \pm 8$	$25.410{ }^{76}$	21.838621	555.69656	25.41559	22.153615	564.09641	25.46295
85	22.029308	560.7815	25.45616	$20.665{ }^{277}$	577.73 992	25.49012	${ }_{22}^{22.996} 152$	586.56351	25.50705
85	22.855407	582.81085	25.49991	23.523162	600.61765	25.533	23.870690	609.88505	5.549 5-4
	${ }^{23.712} 485$	${ }_{605.66}^{626}$	25.542	${ }_{2}^{24.413} 550$	624.36134	25.57	24.778807 25.720 850	$63+.09353$ 65020	
${ }_{8}^{87}$		629.37 653.98 684 14	25.582 25.621 2	25.337 26.206 711	649.00 6747 6747 805	25.614 21	25.720 26.699 81	60922 ${ }^{685}$	
89	${ }_{26.481427}$	679.50471	${ }_{25.659}{ }^{257}$	${ }_{27.292} 082$	074.57 701.12 89	${ }^{25.6889} 58$	27.714412	71238432	25.704 47
90	$27.47+480$	705.98614	25.69607	28.325131	$728.67{ }^{1} 014$	25.72522	28.768409	740.49091	25.73973
	28.501773	733.46062	25.731	29.397281	757.26082	25.75	29.862490	769.66 640	
	29.573702	761.96539	${ }_{2} 5.76496$	30.510 .914	786.93370	25.79264	30.998180 30.177 061	799.95147 831.38880	${ }^{25.806} 40$
93	30.682 31.833 316	791.53909 820 820 181	25.79756	$31.66+865$ 3.860 130	${ }_{817.7297 \pm}^{81.69}$	${ }_{25.855}^{25.824}$	32.177 33.400 7	831.38889 864.02068 808	
94	31.838 33.027 067	854.05 513	${ }_{25.859}^{25.85} 9$		819.69147 882.86 299	25.855 25.884 82	34.671 028	897.69 809	${ }_{2}$
	26	887.08 220	25.88	35.398379			35.9	933.05574	
	35.550542	921.34778	25.91656	36.738 263	953.02035	25.940	${ }^{37.358} 297$	969.55460	
	36.883687	956.89 832	25.94367	38.128864	990.10303	$25.967{ }^{28}$	38.779 058	1007.4 415	.979 01
	38.266825	993.78 201	25.96981	39.572101	1038.589.	25.99	41.253850	1046.7693	26.00420
100	39.701	-	25.994 99	41.069967	1068.5324	26	41.784 730	1087.5 998	2602848
			66667			. 666		- -	. 660

$\begin{aligned} & \stackrel{4}{4} \\ & \frac{8}{0} \end{aligned}$	RATIO of INTEREST: ANNUALL,Y, 0.0375.			RATIO of INTEREST: HALF-YEALLLY, 0.01875 .			RATIO of INTEREST: QUARTERLY, 0.009375.		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal:	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.3839806	0.0233747	0.0608747	0.3806130	0.0230438	0.0605438	0.3789094	0.0228777	0.0603777
27	0.3701017	0.0220334	0.0595334	0.3667317	0.0217166	0.0592166	0.3650272	0.0215577	0.0590577
28	0.3567246	0.0207954	0.0582954	0.3533566	0.0204918	0.0579918	0.3516536	0.0203395	0.0578395
29	0.3438 .309	0.0196499	0.0571499	0.3404693	0.0193586	0.0568586	0.3387700	0.0192125	0.0567125
30	0.3314033	0.0135876	0.0560876	0.3286520	0.0183079	0.0558079	0.3263584	0.0181676	0.0556676
31	0.3194249	0.0176005	0.0551005	0.3160876	0.0173316	0.0548316	0.3144015	0.0171967	0.0546967
32	0.3078794	0.0166813	0.0541813	0.3045595	0.0164227	0.0539227	0.3028826	0.0162929	0.0537929
33	0.2967512	0.0158239	0.0533239	0.2934519	0.0155749	0.0530749	0.2917858	0.0154501	0.0529501
34	0.2860253	0.0150229	0.0525229	0.2827404	0.0147830	0.0522830	0.2810956	0.0146627	0.0521627
35	0.2756870	0.0142732	0.0517732	0.2724372	0.0140419	0.0515419	0.2707970	0.0139259	0.0514259
36	0.2657224	0.0135706	0.0510706	0.2625011	0.0133475	0.0508475	0.2608757	0.0132357	0.0507357
37	0.2561182	0.0129113	0.0504112	0.2529275	0.0126959	0.0501959	0.2513179	0.0125880	0.0500880
36	0.2468607	0.0122916	0.0497916	0.2437029	0.0120837	0.0495837	0.2421103	0.0119795	0.0494795
39	0.2379380	0.0117086	0.0492086	0.2348148	0.0115677	0.0490077	0.2332401	0.0114071	0.0489071
40	0.2293379	0.0111595	0.0486595	0.2262509	0.0109653	0.048465 .3	0.2246948	0.0108680	0.0483680
41	0.2210486	0.0106416	0.0481416	0.2179993	0.0104539	0.0479539	0.2164625	0.0103599	0.0478599
42	0.2130589	0.0101529	0.0476529	0.2100486	0.0099713	0.0174713	0.2085320	0.0098803	0.0473803
43	0.2053579	0.0096911	0.0471911	0.2023879	0.0095153	0.0470153	0.2008919	0.0094273	0.0469273
44	0.1979354	0.0092543	0.0467543	0.1950066	0.0090842	0.0465842	0.1935318	0.0089990	0.0464990
45	0.1907811	0.0088410	0.0463410	0.1878945	0.0086763	0.0461763	0.1864413	0.0085938	0.0460938
46	0.1838854	0.0084494	0.0459494	0.1810418	0.0082899	0.0457899	0.1796106	0.0082100	0.0457100
47	0.1772389	0.0080782	0.0455782	0.1744390	0.0079237	0.0454237	0.1730301	0.0078463	0.0453463
48	0.1708327	$0.0077 \leq 61$	0.0452261	0.1680770	0.0075763	0.0450763	0.1666908	0.0075013	0.0450013
49	0.1646580	0.0073918	0.0448918	0.1619471	0.0079466	0.0447466	0.1605837	0.0071739	0.0446739
50	0.1587065	0.0070742	0.0445742	0.1560407	0.0069334	0.0444334	0.1547003	0.0068630	0.0443630
51	0.1529701	0.0067723	0.0442723	0.1503497	0.0066358	0.0441358	0.1490325	0.0065675	0.0440675
52	0.1474411	0.0064852	0.0439852	0.1448663	0.0063528	0.0438528	0.1435724	0.0062865	0.0437865
53	0.1421119	0.0062120	0.0437120	0.1395829	0.0060835	0.0435835	0.1383123	0.0060192	0.0435192
54	0.1369753	0.0059518	0.0434518	0.1344921	0.0058272	0.0433272	0.1332449	0.0057648	0.0432648
55	0.1320244	0.0057040	0.0432040	0.1295871	0.0055830	0.0430830	0.1283631	0.0055225	0.0430225
56	0.1272524	0.0054678	0.0429678	0.1248609	0.0053503	0.0428503	0.1236603	0.0052916	0.0427916
57	0.1926529	0.0052425	0.0427425	0.1203071	0.0051285	0.0426285	0.1191297	0.0050715	0.0425715
58	0.1182197	0.0050276	0.0425276	0.1159193	0.0049169	0.0124169	0.1147651	0.0048616	0.0423616
59	0.1139467	0.0048225	0.0423225	0.1116916	0.0047151	0.0422151	0.1105604	0.0046614	0.0421614
60	0.1098282	0.0046267	0.0421267	0.1076181	0.0045224	0.0420224	0.1065098	0.0044702	0.0419702
61	0.1058584	0.0044397	0.0419397	0.1036932	0.0043384	0.0418384 0.0416626	0.1026 0.0988	0.0042877 0.0041 0.34	0.0417877
62	0.1020322	0.0042610	0.0417610	0.0999114	0.0041626	0.0416626	0.0988433	0.0041134	0.0416134
63	0.0983443	0.0040902	0.0415902	0.0962675	0.0039946	0.0414946	0.0952267	0.0039468	0.0414468
64	0.0947897	0.0039268	0.0414268	0.0927565	0.0038340	0.0413340	0.0917379	0.0037876	0.0412876
65	0.0913636	0.0037706	0.0412706	0.0893736	0.0036804	0.0411804	00883769	0.0036354	0.0411354
66	0.0880613	0.0036212	0.0411212	0.0861140	0.0035336	0.0410336	0.0851390	0.0034898	0.0409898
67.	0.0848784	0.0034782	0.0409782	0.0829734	0.0033930	0.0408930	0.0820197	0.0033506	0.0408506
68	0.0818105	0.0033412	0.0408412	0.0799472	0.0032585	0.0407585	0.0790147	0.0032173	0.0407173
69	0.0788535	0.0032101	0.0407101	0.0770315	0.0031298	0.0406298	0.0761198	0.0030897	0.0405897
70	0.0760033	0.0030846	0.0405846	0.0742220	0.0030065	0.0405005	0.0733310	0.6029675	0.0404675
71	0.0732562	0.0029643	0.0404643	0.0715151	0.0028884	0.0403884	0.0706444	0.0028505	0.0403505
72	0.0706084	0.0028490	0.0403490	0.0689069	0.0027752	0.0402752	0.0680561	0.0027385	0.0402385
73	0.0680563	0.0027385	0.0402385	0.0663938	0.0026668	0.0401668	0.0655628	0.0026311	0.0401311
74	0.0655964	0.0026326	0.0401326	0.0639723	0.0025629	0.0400629	0.0631607	0.0025282	0.0400282
75	0.0632255	0.0025310	0.0400310	0.0616392	0.0024633	0.0399633	0.0608467	0.0024296	0.0399296
76	0.0609402	0.0024336	0.0399336	0.0593911	0.0023678	0.0398678	0.0586174	0.0023350	0.0398350
77	0.0587376	0.0023401	0.0398401	0.0572251	0.0022762	0.0397762	0.0564698	0.0022444	0.0397444
78	0.0566145	0.0022505	0.0397505	0.0551380	0.0021883	0.0396883	0.0544009	0.0021574	0.0396574
79	c.0545 682	0.0021644	0.0396644	0.0531271	0.0021040	0.0396040	0.0594078	0.0020740	0.0395740
80	0.0525959	0.0020	0.0395818	0.0511895	0.0020232	0.0395232	0.0504877	0.0019940	0.0394940
81	0.0506948	0.0020026	0.0395026	0.0493225	0.0019456	0.0394456	0.0486380	0.0019172	0.0394172
82	0.0483625	0.0019265	0.0394265	0.0475237	0.0018711	0.0393711	0.0468560	0.0018435	0.0393435
83	0.0470964	0.0018534	0.0393534	0.0457904	0.0017995	0.0392995	0.0451394	0.0017727	0.0392727
84	0.0453941	0.0017832	0.0392832	0.0441204	0.0017309	0.0392309	0.0434856	0.0017048	0.0392048
85	0.0437533	0.0017158	0.0392158	0.0425113	0.0016650	0.0391650	0.0418924	0.0016397	0.0391397
86	0.0421719 0.0406476	0.0016511 0.0015 089	0.0391511 0.0390889	0.0409609	0.0016016	0.0391016 0.0390408	0.0103576 0.0388 0	0.0015 0.0015 071	0.0390 0.0300 761
88	0.0406 478	0.0015889	0.0390889 0.0390	0.0394670 0.0380276	0.0015408 0.0014824	0.0390408 0.0389824	0.0388790 0.0374545	0.0015 0.0014 092	0.0390 0.0389 092
89	0.0377623	0.0014717	0.0389717	0.0366 407	0.0014263	0.0389263	0.0360823	0.0014037.	0.0389037
90	0.0363974	0.0014165	0.0389165	0.0353043	0.0013724	0.0388724	0.0347603	0,0013.505	0.0388505
91	0.0350819	0.0013634	0.0388634	0.0340168	0.0013205	0.0388205	0.0334868	0.0012993	0.0387993
92	0.0338 .138	0.0013124	0.0388124	0.0327761	0.0012708	0.0387708	0.0322600	0.0012501	0.0387501
93	0.0325916	0.0012634	0.0387634	0.0315807	0.0012229	0.0387229	0.0310780	0.0012028	0.0387028
94	0.0314136	0.0012162	0.0387162	0.0304290	0.0011769	0.0380769	0.0299394	0.0011574	0.0386574
95	0.0302782	0.0011709	0.0386709	0.0293192	0.0011327	0.0336327	0.0288425	0.0011	0.0386137
96	0.0291838	0.0011273	0.0386273	0.0282499	00010902	0.0385902	0.0277858	0.0010717	0.0385717
97	0.0281290	0.0010854	0.0385854	0.0272196	0.0010493	0.0385493	0.0267678	0.0010314	0.0385314
98	0.0271123	0.0010450	0.0385450	0.0262268	0.0010100	0.0385100	0.0257871	0.0009926.	0.0384926
99	0.0261323	0.0010063	0.0385053	0.0252703	0.0009722	0.0384722	0.0248423	0.0009553	0.0384553
100	0251	0.0009689	0.0384689	0.0243487	0.0009359	0.0384, 359	0.0239322	0.0009195	0.0384195
	Ratio of P	rpetual Ann	0.0375000	- - - -	-••••	0.0375000	- - - -	- . .1-	0.0375000

	RATIO of INTEREST： ANNUALLY，0．04．			RATIO of INTEREST： HALF－YEARLY，0．02．			RATIO of INTEREST： QUARTERLY，0．01．		
	Improved Principal．	Cumulated Annuity．	Value of Annuity．	Improved Principal．	Cumulated Annuity．	Value of Aunuits：	Improved Principal．	Cumulated Anmity．	Value of Annaity．
	1.0400000	1.0000000	0.961538	1.0200000 1.0404000	0.5000000 1.0100000	0.490196 0.97078		0.2500000 0.5025000 0.7575250 1.0151 n03	$\begin{aligned} & 0.2475 \\ & 0.495 \\ & 0.795259 \\ & 0.752 \\ & 0.9754 \\ & \hline 61 \end{aligned}$
孝	…0	…0．	\ldots	1.0612080	1.5302000	1.441942		$\begin{aligned} & 1.2752 \\ & 1.5380 \\ & 1.8333 \\ & 1.838 \\ & 838 \end{aligned}$	$\begin{aligned} & 1.2133 \\ & 1.4488 \\ & 1.6820 \\ & 199 \end{aligned}$
	1.0816000	2.04000	1.886095	1.0824322		1.903864	1.0898567	2.0714176	1.912919
$\frac{1}{4}$			．．．．．	1.1040808	2.6020201	2.356730		$\begin{array}{ll} 2.3421 & 318 \\ 2.6155 & 531 \\ 0 & 0017 \end{array}$	2.141504 2.367826 2. ． 501907
$3^{\frac{3}{49}}$	$1.12 \dddot{48}{ }^{6} 640$	$3.1816{ }^{0} 000$	2.775091	$1.12061{ }^{\circ} 624$	3.1930605	2.800715	1．1268 250	2.8917 3.1706 288 18	${ }_{2} .813769$
$\frac{1}{1}$	…：	．．．．	…：	$1.1436{ }^{\circ} 85$	3.7171	3.235995	1.1380 1.1494 $1+14$ 1 1.179	3.4523320 3.7368535 50	3.0334 3.2509 26 3
$4^{\frac{3}{4}}$	1.1698586	4.2464640	3.629895	1.1716594	4.291	3.662741	1.1609 1.1725 786	$\begin{aligned} & 4.0242239 \\ & 4.31+4 \\ & 4.661 \end{aligned}$	$\begin{aligned} & 3.4662 \\ & 3.6794 \\ & 3.68 \end{aligned}$
$5^{\frac{4}{4}}$		5.4163026	4.4518	1.1950926	4.8773142 .478605	4.031118 4.4010 1	$\begin{aligned} & 1.1843044 \\ & 1.1961475 \\ & 1.2081090 \end{aligned}$	$4.6076 \quad 108$ 4.9036869 5.2027238	3.890563 4.099567 4.306502 4.511388
5	1.2166529	5.4163226	4.451822	1.2189944	5.4748605	4.491292	1.2201900	5.5047510	4.511388
$\frac{1}{3}$			．．．．		6.08	4.893424	1.2323 1.2447 1.29 1	$\begin{aligned} & 5.8097935 \\ & 6.1178964 \end{aligned}$	$\begin{aligned} & 4.714246 \\ & 4.9150 \\ & 95 \end{aligned}$
$\frac{3}{3}$						．	1.2571630	6.4290755	5.113955
6	1.2653190	6.6329755	5.242137	1.2682418	6.7060	5.287671	1.2697346	0．7433 662	5.310847
娄				1.2936066	7.3401658	5.674187	1.2824 .300 1.2952 563	7.0607 7.3814 898	$\begin{array}{ll} 5.5057 & 89 \\ 5.6988 & 01 \end{array}$
$\frac{3}{8}$				1.2930060	7.3401658	5．0741 87	1.3088089	7.7052219	5．8899 02
7^{*}	1.3159318	7.8982945	6.002055	1.3194788	7.9869691	6.053124	1.3212910	8.0322742	6.079111
$\frac{1}{1}$				1.3458683	8.6407085	6.42463	1.3315039 $1.3478+89$	8.3625969 8.6962229	$\left.\begin{aligned} & 6.2664 \\ & 6.2510 \\ & 67 \end{aligned} \right\rvert\,$
$\frac{3}{4}$				1.3458683	8.6407085	0.424032	1.3613274	${ }^{8.0331} 851$	6.635571
8^{4}	1.3685691	9.2142263	6.738745	1.3727857	9.3196	6.78885	1.3749407	9.3735170	6.817397
委			．．．．	1.4002	10．0060035	7.145936	1.3886 1.4025 770	9.7172 10.064 1825	$\begin{aligned} & 6.997+23 \\ & 7.1756 \\ & 66 \end{aligned}$
				1.4002	10.000	7.145930	1．4166 088	10.415	7.352145
$9{ }^{4}$	1.4233118	10.582795	7.435332	1．4282 ${ }^{\circ} 462$	10.706156	7.496016	1.4307688	10.769220	7.526876
				1.4568	11.42	7.8392	1.4450 1.4595 762	11.126 11.488181 181	7.699877 7.871166
令				1.4508	11.420	7．839	1.4741225	11.853063	8.040758
10	1.4800^{143}	$12.006{ }^{\circ} 107$	8．1108 96	$1.48 \dddot{59} 974$	12.148685	8.175717	1.4888837	12．221 593	8.208671
	…＂		．．．．	1．51506663	12．891659	8．505605	1．5037 524	$\begin{aligned} & 12.593809 \\ & 12060 \end{aligned}$	8.374922 8.539527
				1.515063	12.89165	8.50505	1.5187899	12.349445	8.702502
11	1.5394541	13.486351	8.760477	1．5459 797	13.64949	8.829024	1.5493176	13.732939	8.863863
$\frac{1}{3}$	．．．．	．．．．	．．．．	1．5768．	14.422	9.146102	1.5648107 1.5804 589	14.120 14.511 171	9.0236 9.1818 09
$\frac{3}{3}$				1．5708．9	14.422	9.140102	1.58042 1.596264	14．906 586	9.338425
12	1.6010322	15．025 805	9．3850 74	1.6084372	15.210931	9.456963	1.6122261	15.305652	9.493490
			．．．．	1.640606	16.015150	9.761728	$\begin{aligned} & 1.6283483 \\ & 1.64+6318 \end{aligned}$	15.708708 16.115 796	$9.6470 \quad 20$ 9.799029
亳				1.0400 N02	10.01515	9.761728	1.64610781	16.526	${ }_{9} 9.949534$
13	1.6650735	$16.626{ }^{\circ} 838$	9.9856	1.6731181	16.835453	10.06052	1.6776889	16.942293	10.09855
							1.6944 1.7114 1	17.361615 17.785 682	10.246 10.392 10
				1.706886	17.672162	10.35345	1.7114 1.7785 1.746	（18．813 114	${ }_{10.536}^{100}$
14	1.7316764	18.291911	10.56312	1.7410242	18.525605	10.64064	1.7458098	18.645245	10.68000
	．．．．	．．．．．	．．．．	1.7758	19.396	10．922 19	1.7632679 1.7809 006	19.081698 19.522 515	10.821 10.962 10 116
							1.7987096	19.967740	11.10115 11.238
15	1.8009435	20.023588	11.11839	1.811361	20.28	11.19823	1.8166907	20.417417	11.23876
	\ldots	．．．．		1.8475888	21.189720	11．468 85	1.8348 1.8532 123	20.871 21.330 208 208	11.37501 11.509 91
				1.8475888	21.189720	11.46885	1.8832144	21．793 611	11.64398
18	1.8729812	21.824	11．652	1.8845	113	11.73	1.8904619	22.261547	11.77572
17	1.9779005	23.697512	$12.165{ }_{6}$	1.9606760	24.016901	12.24930	1.9672222	24.180555	12.29172
18	2.0258165 2.1068492	25.645 27.671 229	12.655 13.133 90	2.03988873 2.1202088 2.088	25.997 28.057 870	12.74442 13.220 32	2.0770993 2.1302198	26.177 28.255 493 494	12.78760 13.64 ± 12
19 20	2.1008 2.1911 231	29.0718299 29.788 079	${ }_{13.590}^{13.133} 94$	2.1222988 2.2080 397	28.057 30.200 992	${ }_{13.677}^{13.202} 7$	${ }_{2.2167}^{2.152}$	${ }^{28.417} 8880$	13．722 05
21	2.2787681	31.969202	14.02916	2.2972445	32.431112	14.11739	2.3067227	32.668069	14．162 11
22	2.3699188	34.247970	14.45112	2.3300531	${ }^{34.751327}$	14.53998	2.4003849	35，009 623	17.5850
23	2.4647155	${ }^{36.617} 889$	14.85684	2．4866 113	37.165 39.676 760	14.94616 15	2.4978502 2.5992 729	37.446 39.981825 8	14.99139 15.381 1
24	2.5633042	39.082604	15.24096	2.5870704	39.076700		2.599272		15．381 93
25	2,6658363	41.645908	15．6£2 0	2.6915880	42.289701	15.71180	2.7018138	42.620346	15.757 £2

PERPETUAL STOCK ： 3 p．C．75； $3 \frac{1}{2}$ p．$C .87,5 ; 4$ p．C． $100 ; 5$ p．C． 125.

	RATIO of INTEREST： ANNUALLY，0．04．			RATIO of INTEREST： HALFYEARLY，0．02．			RATIO of INTEREST： QUARTTERLY，0．01．		
	Discounted Principal．	Annuity for Cumulation	Ratio of Annuity．	Discounted Principal．	Annuity for Cumulation	Ratio of Annuity．	Discounted Principal．	Annuity for Cumulation	Ratio of Annuity．
01		1.0000000	1.0400000	0.9003021 $0.9611{ }^{\text {a }} 688$	2.0000000 0.9000990	2.0400000 1.0300990	0.9900990 0.9802 0.9700 0.9600 0.9601 004	$\left\|\begin{array}{l} 4.0000000 \\ 1.9900 \\ 1.3900 \\ 1.397 \\ 0.9851 \\ \hline 244 \end{array}\right\|$	4.0400000 2.0300497 1.3600885 1.0251244
衰	…： $\cdots \cdots$	－	0.53	$0.9423{ }^{2} 23$	0.6535094	0.6935094	（	$\begin{aligned} & 0.7841592 \\ & 0.6501995 \\ & 0.5545131 \end{aligned}$	$\begin{array}{lll}0.8241 & 592 \\ 0.6901 & 935\end{array}$ 0.5945131
2	0.924	0.4901961	0.5301961	0.9238453	0.4852475	0.5252475	0.9234832	0.4827611	0.5227 .611
2				${ }^{0.9057} 308$	0.3843168	$0.424{ }^{\circ} 168$	（1）		$\begin{aligned} & 0.4669614 \\ & 0.4223 \\ & 0 \end{aligned}$
3^{4}	0.8889969	$0.3203{ }^{485}$	$0.3603{ }^{485}$	0.8879714	0.3170516	0.3570516	0.8963237 0.8874492	$\begin{aligned} & 0.3458163 \\ & 0.3153 \\ & 951 \end{aligned}$	$\begin{aligned} & 0.3858 \\ & 0.3553 \\ & 951 \end{aligned}$
婁				0.8705602	0.2690239	0.3090239		$\begin{aligned} & 0.2896593 \\ & 0.2676 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.3296593 \\ & 0.3076047 \end{aligned}$
$4^{\frac{1}{4}}$	0.8588042	0.2354900	0．2754 900	0.8534904	0.2330196	0.2730196	0.8613 0.8528 212	0.2484951 0.2317 84	$\begin{aligned} & 0.2881951 \\ & 0.2717784 \end{aligned}$
4				0.836755	0.20300309	0.2450309		$\begin{aligned} & 0.2170322 \\ & 0.2039 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2570392 \\ & 0.2439282 \end{aligned}$
5^{4}	$0.8219 \% 271$	$0.18466^{\circ} 271$	0.20206271	$0.820 .3{ }^{183}$	$0.18 \dddot{20}{ }^{\circ} 531$	$0.22 \ddot{20} 531$	0.8277399 0.819544	0.1922070 0.1816	0.2322070 0.2216 613
交				0.8072630	$0.1673^{\circ} 559$	$0.2043{ }^{\circ} 559$	$\begin{aligned} & 0.8114301 \\ & 0.8033962 \end{aligned}$	$\begin{aligned} & 0.1721230 \\ & 0.1634549 \end{aligned}$	$\begin{aligned} & 0.2121230 \\ & 0.2034549 . \end{aligned}$
6^{2}	790	0.15					0.7954418 0.7875662	${ }^{0.1555} 435$	0.1955
								0.1	
\％		．．．．．	．．．．	0.7730326	0.1362367	$0.17{ }^{6} \overbrace{2} 367$	0.7797684 0.7720480	$\begin{aligned} & 0.1416270 \\ & 0.1354755 \end{aligned}$	0.1816270
							0.7641039	0.1297821	0.1697821
7	0.759917	0.1266096	0.1666096	0.7578751	0.1252040	0.1652040	0.7568356	0.1244977	0.1644977
				0.7430147	$0.1156{ }^{\circ} 509$	0.1556	0.7493422 0.7419229	$\left.\begin{aligned} & 0.1195801 \\ & 0.1149 \\ & 0.145 \end{aligned} \right\rvert\,$	$\begin{aligned} & 0.1595801 \\ & 0.1549925 \end{aligned}$
${ }^{\frac{3}{4}}$							0．7345 771	0.1107029	0.1507029
	0.7306902	0.1085278	$0.1485{ }^{278}$	0．726 458	0.1073003	0.1473003	0.7273041	0.1066835	0.1466835
				0.7141626.	0.09999397	0.1399397	0.7201 0.7129 033	$\begin{aligned} & 0.1029098 \\ & 0.09935999 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1429098 \\ & 0 \end{aligned}$
				0.7141626.	0.0999397	0.1399397	－	－	$\begin{aligned} & 0.1393599 \\ & 0.1360147 \end{aligned}$
9	0.7025867	0.0944930	0.13449 .30	0.7001594	0.0934	0.1334042	0.6989249	0.0928572	0.1328572
	．．．．	．．．．		0.6864307	0.0875635	0.1275635	0.6920 0.6851 533	$\begin{aligned} & 0.0898722 \\ & 0.0870 \end{aligned}$	0.1298722 0.1270460 0.124
${ }^{\frac{3}{3}}$				0.6804	0.0875	－1275	${ }_{0}^{0.6783} 697$	0.0843664	0.1243664
10	0.6755642	0.0832909	0.1232909	0.6729713	0.0823134	0.1223134	0.6716531	0.0818224	0.1218224
				0.6597758	0.0775^{695}	$0.117{ }^{17695}$	$\begin{array}{ll} 0.6650 & 031 \\ 0.6584 & 189 \end{array}$	$\begin{aligned} & 0.0794 \\ & 0.0771 \\ & 0.025 \end{aligned}$	$\begin{array}{ll} 0.1194 & 041 \\ 0.1171 & 025 \end{array}$
				0.6597750	0.0775	0.1175095	0．6518999	0.0749095	0.1149095
	0.5495810	0.0741490	0.1141490	0.6468390	0.0732628	0.1132628	0.6454454	0.0728176	0.1128176
		．．．．		$0.6341{ }^{1} 559$	0.0693362	0.1093362	0.6390 0.6327 877	$\begin{aligned} & 0.0708202 \\ & 0.0689110 \end{aligned}$	$\begin{aligned} & 0.1108 \\ & 0.1089 \\ & 0.110 \end{aligned}$
12	0.6245971	665	0.10655					0.0670 0.0633 0.093	0．1070 799
	d	． 605	0.10655	0.6217215	0.0	0.1057422	0.6202604	0.0633353	0.1053353
				$0.6095{ }^{\circ} 309$	0.0632409		$\begin{aligned} & 0.6141192 \\ & 0.60801388 \end{aligned}$	$\begin{aligned} & 0.0636590 \\ & 0.0620 \\ & 509 \end{aligned}$	$\begin{aligned} & 0.1036 \\ & 0.1020 \\ & 0.500 \\ & \hline \end{aligned}$
				0.0095309	0.0624409	0.1024409	0.6080388	0.0020509	0.1020509 0.1005 0.1
13	0.6005741	0.0601437	0.1001437	0.5975793	0.0593985	0.0993985	0.5960581	0.0590241	0.0990241
							0.5901565	${ }_{0}^{0.0575} 982$	0.0975982
				0．5858 621	0.0565	0.0965862	0.5843134 0.5785 181	$0.0562 \quad 263$	0.0962 0.093 0.0949 0.55
14	0.5774751	0.0546690	$0.0946^{\circ} 690$	0.5743745	0.053939793	$0.0939^{\circ} 793$	0．5728 001	0.0336330	0.0936330
\％							0.5671 0.5615 0.586	$\begin{array}{ll}0.0524 & 062 \\ 0.0512 & 299 \\ 0.020\end{array}$	0.0924
				0.5631123	0.0515567	0.0915567	0.5615 0.56 0.5559 $5+1$	0.0512 0.0500 0808	0.0912 0.0900 0
15	0.5552645	0.0499411	0.0899411	0.5520709	0.0492998	0.0892998	0.5504496	0.0489778	0.0889778
			．．．．				0.5449996	0.0479120	0.0879120
				0.5412460	0.0471927	0.0871927	0.5396 0.366 0.5342 0.62	0.0468817 0.0458850	0.0368817 0.0858850
16	0.5339082	0.0458200	0.0858200	0.5306333	0.0452212	0.0852	0.5889713	0．0449 205	0.0819205
17	0.5133733	0.0421985	0.0821985	0.5100282	0.0416373	0.0816373	0.5083310	0.0413555	0.0813555
18	0．4936 281	0．0389 933	0.0789933	0.4902232	0.0384657	0.0784657	0.4884961	0.0382008	0.0782008
19	0.4746424 0.4503870	${ }^{0} .03613836$	0.0761386	0.4711872	0.0356411	0.0756411	0.4694351	0.0353913	0.0753913
q0	0.4503870	0.0335818	0.0735818	0.4528 90ヶ	0.0331115	0.0731115	0.4511179	0.0328754	0.0728754
${ }_{29}^{21}$	0．4388 336	0.0312801	0.0712801	0.4353041	0.0308346	0.0708346	0.4335155	0.0306109	0.0706109
23	（	0.0291988 0.0273 0.090	0.0691988 0.0673 0.000	0.4184 0.4021 0.47	0.0287 0.0269 0.69	0.0687759	0.4165998	0.02856	0.0685636
24	0.3901215	0.0255868	0.0655868	${ }_{0}^{0.3865} 376$	0．0252 037	O．0609 0.0652 037	0.4003 0.3847 242 2.3	0.0267 0.0250 0.114	0.0667 0.0650 0.14
25	0.3751168	0.0240120	0.0640180	0.3715279	0.0236464	－0．0636 464	0.3697112	0.0234630	0.0634630

RATIO of INTEREST： ANNUALLY， 0.04 ．

Cumulated Value of
Annuity.
Value of
Annuity.$2.772+698$
2.8833686
2.9987033

3.118651547.0842143.2433075 | 49.907 |
| :--- |
| 52.966 |
| 286 |
| 8 | 3.2433975$3.373133+$$3.5080 \quad 587$3.64838113.7943163

3.9460890
 64.728335 66.209469 69.857
73.659 73.652225

$$
\begin{array}{lll}
4.1039 & 386 \\
4.2680 & 899 \\
4 & 4.388 & 135
\end{array}
$$

$$
\begin{aligned}
& 4.2080899 \\
& 4.4388135 \\
& 4.6163660
\end{aligned}
$$

$$
\begin{aligned}
& 4.4388135 \\
& 4.6163660
\end{aligned}
$$

$$
4.8010206
$$ 4.9930615

5.1927839
5.4004
553
5.6165 5.4004953
5.6165151 5.8411757 77.598314 81.702246

85.970336	90.409	150
95.025	516	99．820 536 104.81960

110.01238 115.41288 121.02939 6.0748227

$6.3178 \quad 156$ | 6.5705 |
| :--- |
| 682 |
| 6.8333 | ム出 7.1066833

7.3909507 7.6865887
7.9940523
8.3138

143 \begin{tabular}{l|l}
\& 15

23 \& 1

43 \& 1

659 \& 1

 8.99 $\begin{array}{lll}8.9922 & 216 & 1 \\ 9.3519 & 105 & 20 \\ 9.7259 & 869 & 21 \\ 10.115 & 026 & 2 \\ 10.519 & 627 & 23 \\ 10.940 & & \\ 11.378 & 020 & 2\end{array}$ $\begin{array}{lll}11.378 & 029 & \\ 11.833 & 150 & 27 \\ 12.306 & 476 & 2\end{array}$ 12.798735 13.310685

13.843 \& 112

14.396 \& 836
\end{tabular} 14.972710

15.571618 $\infty_{\infty}^{\circ} \mathrm{O}$ 321.0772 321.07780
334.92091
3 349.31775 364.29046

\subsection*{16.842262} 17.515953 18.945255 379.86208 412.89882 | 19.703 | 065 | 4 |
| :--- | :--- | :--- | $\left|\begin{array}{ll}21.310 & 835 \\ 22.163 & 268\end{array}\right|$

23.971791

 24.93065325.427889
26.965 26.965005
28.043605 $\begin{array}{lll}29.165 & 349 \\ 30.31 & 963 \\ 31.545 & 242 \\ 32.807 & 051 \\ & 34.11 & 323\end{array}$ 32.807051
34.119333 35.484107
36.003
471 36.903471
38.379610 39.914794 41.511386 43.171841 44.898715
46.094664
48.562450 48.562450

$50.50+948$	$50.50+948$	1237.6237

15.98277 16.663 06 16.98371 17.292

 17.8735518.14765 18.14765
18.41120
18.66461

18.90828

19.14258
19.36786
19.30786
19.58448
19.79277
19.99305
20.185
20.3 20.18563
20.37079 20.54884
20.72004

\subsection*{20.88465} | 21.042 |
| :--- |
| 21.195 |
| 13 | 21.195147

21.372 21.48218 | 7 | 21.617 | 49 |
| :--- | :--- | :--- |
| 2 | 21.747 | 58 |

RATIO of INTEREST：
HALF－YEARLY， 0.02.

HALF－YEARLY， 0.02 ．

Im
Pri
2.8
2.91
3.031
3.1
3.2
3.4

| Improved | Cumulated | Value of |
| :--- | :--- | :--- | Principal．

．	Annu
	45.008
4	47.836
4	50.779
8	53.840
	57.025

（
3.
3.6
3.8
3.9

| 4.1611 | 404 | 79 |
| :--- | :--- | :--- | :--- |
| 4.3292 | 504 | 83 |
| 4.5041 | 522 | 87 |
| 4.6861 | 199 | 92 |

| 5.0724 | 069 | 10 |
| :--- | :--- | :--- | :--- |
| 5.2773 | 321 | 10 |
| 5.4905 | 364 | 11 |
| 5.7123 | 540 | 11 |
| 5.9431 | 331 | 12 |

6.1832	357	129.58	089	20.956	81
6.4330	384	135.82	596	21.113	81
6.6929	332	142.32	333	21.264	72
6					

\section*{| 7.2446 | 461 | 156.11615 | 21.549 | 18 |
| :--- | :--- | :--- | :--- | :--- |}

7.84188.4882578163.43325171045958.8311578
8349.1879632178.966
19.2069
\qquad

12.613105
13226920
21.68318
21.81197
21.935

$22.169 \quad 12$
$22.279 \quad 05$

9.9453469$\begin{array}{ll}10.347 & 139 \\ 10.765 & 163\end{array}$| 139 | 23 |
| :--- | :--- |

ed	Va An

－

RATIO of INTEREST： QUARTERLY，0．01．		
Improved Principal．	Cumulated Annuity．	Value of Aunuity．
2.8146401	45.366003	16.11787
2.9289258	48.223145	16.46445
3.0478519	51.196298	16.79750
3.1716069	54.290173	17.11756
3.3003869	57.509672	17.42513
3.4343958	60.859896	17.72070
3.5738461	64.346152	18.00474
3.7189586	67.973964	18．277 69
3.8699632	71.749080	18.53999
4.0270992	75.677480	18.79206
4.1906156	79.765390	19.03429
4.3607714	84.019285	19.26707
4.5378362	88.445905	19.49077
4.7220905	93.052264	19.70573
4.9138264	97.845659	19.91231
5.1133474	102.83369	20.11083
5.3209698	108.02485	20.30161
5．5370 225	113.42556	20.48494
5.7618478	119.04520	20.66112
5.9958020	124.89505	20.83040
6.2392556	130.98139	20.99311
6.4925944	137.31486	21.14946
6.7562197	143.90549	21.29970
7.0305493	150.76373	21.44409
7.3160178	157.90045	21.58284
7．6130 775	165.32694	21.71618
7.9221990	173.05497	21.84431
8.2438720	181.09680	21.96744
8.5786063	189.46516	22.08577
8.9269321	198.17330	22.19949
9.2894014	207.23503	22.30877
9.6665883	216.66471	22.41377
10.059091	$226.47{ }^{2} 26$	22.51469
10.467530	236.68825	22.61166
10.89255 .4	247.31384	22.70485
11.334835	258.37088	22.79441
11.795075	269.87687	22.88047
12.274002	281.85005	22.96317
12.772376	294.30939	23.04265
13.290985	307.27464	23.11903
13.830653	320.76632	23.19242
14.392233	334.80582	23.26295
14.976615	349.41538	23.33073
15.584726	364.61814	23.39587
16.217528	380.43820	23.45846
16.876025	396.90062	23.51861
17.561259	414.03148	23.57641
18．274 317	431.85791	23.63196
19.016327	450.40818	23.685 34
19.788466	469.71166	23.73664
20.591957	489.79893	23.78593
21.428073	510.70183	23.83331
22.298139	532.45318	23.87883
23.203533	555.08832	23.92258
24.145689	578.64224	23.96462
25.126101	603.15253	24.00502
26.146322	628.65804	24.04384
27.207967	655.19918	24.08115
28.312720	682.81799	24.11700
29.462330	711.55824	24.15146
30.658618	741.46546	24.18157
31.903481	772.58703	24．216 39
33.196891	804.97227	24．246 96
34.546899	838.67247	24.27635
35.949641	873.74103	24.30458
37.409341	910.23352	24.33172
38.928310	948.20775	24.35779
40.508956	987．7\％ 389	24.38285
42.153782	1028.8415	24.40693
43.865394	1071.6349	84． 43008
45.645505	1116.1626	24.45231
47.499936	1162.4984	24.47368
49.428624	1210.7156	24.49422
51.435625	1260.8906	24.51395
53.524117	1313.1029	24．532 92

RATIO of INTEREST： QUARTERLY， 0.01 ．
25.00000

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{$$
\frac{6}{6}
$$} \& \multicolumn{3}{|r|}{RATIO of INTEREST: ANNUALI,Y, 0.04.} \& \multicolumn{3}{|l|}{RATIO of INTEREST: HALF-YEARLY, 0.02.} \& \multicolumn{3}{|c|}{RATIO of INTEREST: QUARTERLY, 0.01.}

\hline \& Discounted Principal. \& Annuity for Cumulation \& Ratio of Annuity. \& Discounted Principal. \& Annuity for Cumulation \& Ratio of Annuity. \& Discounted Principal. \& Annuity for Cumulation \& Ratio of Annuity.

\hline 26 \& 0.3606892 \& 0.0225674 \& 0.0625674 \& 0.3571010 \& 0.0222182 \& 0.0622182 \& 0.3552852 \& 0.0220429 \& 0.0620429

\hline 27 \& 0.3468166 \& 0.0212385 \& 0.0612385 \& 0.3432313 \& 0.0209045 \& 0.0509045 \& 0.3414221 \& 0.0207369 \& 0.0607369

\hline 28 \& 0.3334775 \& 0.0200130 \& 0.0600130 \& 0.3299061 \& 0.0196931 \& 0.0596931 \& 0.3280999 \& 0.0195326 \& 0.0595326

\hline 29 \& 0.3206514 \& 0.0188799 \& 0.0588799 \& 0.3170955 \& 0.0185733 \& 0.0585733 \& 0.3152976 \& 0.0184195 \& 0.0584195

\hline 30 \& 0.3083187 \& 0.0178301 \& 0.0578301 \& 0.3017823 \& 0.0175359 \& 0.0575359 \& 0.3029918 \& 0.0173884 \& 0.0573884

\hline 31 \& 0.2964602 \& 0.0168554 \& 0.0568554 \& 0.2929472 \& 0.0165729 \& 0.0565729 \& 0.2911720 \& 0.0164312 \& 0.0564312

\hline 32 \& 0.2850579 \& 0.0159486 \& 0.0559486 \& 0.2815717 \& 0.0156771 \& 0.0556771 \& 0.2798106 \& 0.0155409 \& 0.0555409

\hline 33 \& 0.2740942 \& 0.0151036 \& 0.0551036 \& 0.2706379 \& 0.0148424 \& 0.0518424 \& 0.2688925 \& 0.0147115 \& 0.0517115

\hline 34 \& 0.2635521 \& 0.0143118 \& 0.0543148 \& 0.2601287 \& 0.0140635 \& 0.0540635 \& 0.2584004 \& 0.0139375 \& 0.0539375

\hline 35 \& 0.2534154 \& 0.0135773 \& 0.0535773 \& 0.2500276 \& 0.0133353 \& 0.0533353 \& 0.2483177 \& 0.0132140 \& 0.0532140

\hline 36 \& 0.2436687 \& 0.0128869 \& 0.0528869 \& 0.2403187 \& 0.0126537 \& 0.0526537 \& 0.2386 284 \& 0.0125368 \& 0.0525368

\hline 37 \& 0.2342968 \& 0.0122396 \& 0.0522396 \& 0.2309869 \& 0.0120147 \& 0.0520147 \& 0.2293172 \& 0.0119020 \& 0.0519020

\hline 38 \& 0.2252854 \& 0.0116319 \& 0.0516319 \& 0.2220174 \& 0.0114150 \& 0.0514150 \& 0.2203693 \& 0.0113063 \& 0.0513063

\hline 39 \& 0.2166206 \& 0.0110608 \& 0.0510608 \& 0.2133962 \& 0.0108515 \& 0.0508515 \& 0.2117706 \& 0.0107466 \& 0.0507466

\hline 40 \& 0.2082890 \& 0.0105235 \& 0.0505235 \& 0.2051097 \& 0.0103214 \& 0.0503214 \& 0.2035074 \& 0.0102202 \& 0.0502202

\hline 41 \& 0.2002779 \& 0.0100174 \& 0.0500174 \& 0.1971450 \& 0.0098222 \& 0.0498222 \& 0.1955666 \& 0.0097244 \& 0.0497244

\hline 42 \& 0.1925749 \& 0.0095402 \& 0.0495402 \& 0.1894897 \& 0.0093516 \& 0.0493516 \& 0.1879357 \& 0.0092572 \& 0.0492572

\hline 43 \& 0.1851682 \& 0.0090899 \& 0.0490899 \& 0.1821316 \& 0.0089076 \& 0.0489076 \& 0.1806025 \& 0.0088164 \& 0.0488164

\hline 44 \& 0.1780464 \& 0.0086645 \& 0.0486645 \& 0.1750592 \& 0.0084883 \& 0.0484883 \& 0.1735555 \& 0.0084001 \& 0.0184001

\hline 45 \& 0.1711984 \& 0.0082625 \& 0.0482625 \& 0.1682614 \& 0.0080920 \& 0.0480920 \& 0.1667834 \& 0.0080067 \& 0.0480067

\hline 46 \& 0.1646139 \& 0.0078820 \& 0.0178820 \& 0.1617276 \& 0.0077172 \& 0.0477172 \& 0.1602755 \& 0.0076347 \& 0.0476347

\hline 47 \& 0.1582826 \& 0.0075219 \& 0.0475219 \& 0.1554476 \& 0.0073624 \& 0.0473624 \& 0.1540216 \& 0.0072825 \& 0.0472825

\hline 48 \& 0.1521948 \& 0.0071806 \& 0.0471806 \& 0.1494113 \& 0.0070263 \& 0.0170263 \& 0.1480118 \& 0.0069490 \& 0.0469490

\hline 49 \& 0.1463411 \& 0.0068571 \& 0.0468571 \& 0.1436094 \& 0.0067077 \& 0.0467077 \& 0.1422364 \& 0.0066329 \& 0.0466329

\hline 50 \& 0.1407126 \& 0.0065502 \& 0.0465502 \& 0.1380330 \& 0.0064055 \& 0.0464055 \& 0.1366864 \& 0.0063331 \& 0.046333 i

\hline 51 \& 0.1353006 \& 0.0062588 \& 0.0462588 \& 0.1326730 \& 0.0061187 \& 0.0461187 \& 0.1313599 \& 0.0060486 \& 0.0460486

\hline 52 \& 0.1300967 \& 0.0059821 \& 0.0459821 \& 0.1275211 \& 0.0058464 \& 0.0458464 \& 0.1262276 \& 0.0057785 \& 0.0457785

\hline 53 \& 0.1250930 \& 0.0057191 \& 0.0457191 \& 0.1225693 \& 0.0055876 \& 0.0455876 \& 0.1213022 \& 0.0055219 \& 0.0155219

\hline 54 \& 0.1202817 \& 0.0051691 \& 0.0454691 \& 0.1178093 \& 0.0053417 \& 0.0453147 \& 0.1165690 \& 0.0052780 \& 0.0452780

\hline 55 \& 0.1156555 \& 0.0052312 \& 0.0452312 \& 0.1132351 \& 0.0051078 \& 0.0451078 \& 0.1120206 \& 0.0050461 \& 0.0450461

\hline 56 \& 0.1112072 \& 0.0050049 \& 0.0450049 \& 0.1088381 \& 0.0048859 \& 0.0448852 \& 0.1076496 \& 0.0048254 \& 0.0448554

\hline 57 \& 0.1069300 \& 0.0017893 \& 0.0447893 \& 0.1046117 \& 0.0046734 \& 0.0446734 \& 0.1034491 \& 0.0046154 \& 0.0446154

\hline 58 \& 0.1028173 \& 0.0045841 \& 0.0445841 \& 0.1005495 \& 0.0044716 \& 0.0444716 \& 0.0994 126 \& 0.0044155 \& 0.0444155

\hline 59 \& 0.0988628 \& 0.0043884 \& 0.0443884 \& 0.0966451 \& 0.0042794 \& 0.0442794 \& 0.0955335 \& 0.0042250 \& 0.0442250

\hline 60 \& 0.0950604 \& 0.0042018 \& 0.0442018 \& 0.0928922 \& 0.0040962 \& 0.0440962 \& 0.0918058 \& 0.0040434 \& 0.0440484

\hline 61 \& 0.0914042 \& 0.0040240 \& 0.0440240 \& 0.0892851 \& 0.0039215 \& 0.0439215 \& 0.0882236 \& 0.0038704 \& 0.0438704

\hline 62 \& 0.0878887 \& 0.0038543 \& 0.0438543 \& 0.0858181 \& 0.0037550 \& 0.0437550 \& 0.0817812 \& 0.0037054 \& 0.0457054

\hline 63 \& 0.0845084 \& 0.0036924 \& 0.0436924 \& 0.0824856 \& 0.0035960 \& 0.0435960 \& 0.0814730 \& 0.0035480 \& 0.0435480

\hline 64 \& 0.0812580 \& 0.0035378 \& 0.0435378 \& 0.0792826 \& 0.0034444 \& 0.0434444 \& 0.0782940 \& 0.0033978 \& 0.0433978

\hline 65 \& 0.0781327 \& 0.0033902 \& 0.0433902 \& 0.0762040 \& 0.0032996 \& 0.0432996 \& 0.0752390 \& 0.0032544 \& 0.0432544

\hline 66 \& 0.0751276 \& 0.0032492 \& 0.0432492 \& 0.0732449 \& 0.0031613 \& 0.0431613 \& 0.0723032 \& 0.0031175 \& 0.0431175

\hline 67 \& 0.0722381 \& 0.0031145 \& 0.0431145 \& 0.0704007 \& 0.0030293 \& 0.0430293 \& 0.0694819 \& 0.0029868 \& 0.0129868

\hline 68 \& 0.0694597 \& 0.0029858 \& 0.0429858 \& 0.0676670 \& 0.0029031 \& 0.0429031 \& 0.0607708 \& 0.0028619 \& 0.0428619

\hline 69 \& 0.0607882 \& 0.0028627 \& 0.0428627 \& 0.0650394 \& 0.0027825 \& 0.0427825 \& 0.0641654 \& 0.0027426 \& 0.0427426

\hline 70 \& 0.0642194 \& 0.0027451 \& 0.0427451 \& 0.0625138 \& 0.0026673 \& 0.0426673 \& 0.0616617 \& 0.0026285 \& 0.0426285

\hline 71 \& $$
0.0617494
$$ \& 0.0026325
0.0025
249 \& 0.0426
0.0425

0 \& $\begin{array}{lll}0.0600 & 863 \\ 0.0577 & 531\end{array}$ \& $0.00 ¢ 5571$
0.0024517 \& 0.0425571
0.0494517 \& 0.0592557
0.0569 \& $\begin{array}{lll}0.0025 & 195 \\ 0.0024 & 153\end{array}$ \& 0.0425195

\hline 72 \& 0.0593744
0.0570908 \& $0.0025 ~$
0.0024
219 \& 0.0425249

0.0424219 \& | 0.0577 |
| :--- |
| 0.0531 |
| 0.055 | \& 0.0024517 \& 0.0494517

0.0423
509 \& 0.0569
0.0547

216 \& | 0.0024 |
| :--- |
| 0.0023 |
| 156 | \& \[

$$
\begin{aligned}
& 0.0424153 \\
& 0.0423156
\end{aligned}
$$
\]

\hline 74 \& 0.0548950 \& 0.0023233 \& 0.0423233 \& 0.0533549 \& 0.0022545 \& 0.0422545 \& 0.0525864 \& 0.0022202 \& 0.0 ± 22202

\hline 75 \& 0.0527837 \& 0.0022290 \& 0.0422290 \& 0.0512831 \& 0.0021622 \& 0.0421622 \& 0.0505345 \& 0.0021290 \& 0.0121290

\hline 76 \& 0.0507535 \& 0.0021387 \& 0.0421387 \& 0.0492917 \& 0.0020739 \& 0.0420 739 \& 0.0485 696 \& 0.0020417 \& 0.0420417

\hline 77 \& 0.0488015 \& 0.0020522 \& 0.0420522 \& 0.0473777 \& 0.0019894 \& 0.0419894 \& 0.0466678 \& 0.0019581 \& 0.0419581

\hline 78 \& 0.0469245 \& 0.0019694 \& 0.0419694 \& 0.0455379 \& 0.0019084 \& 0.0419084 \& 0.0448468 \& 0.0018781 \& 0.0418781

\hline 79 \& 0.0451197 \& 0.0018901 \& 0.0418901 \& 0.0437696 \& 0.0018309 \& 0.0418309 \& 0.0430969 \& 0.0018015 \& 0.0418015

\hline 80 \& 0.0433843 \& 0.0018142 \& 0.0418142 \& 0.0420700 \& 0.0017567 \& 0.0417567 \& 0.0414153 \& 0.0017282 \& 0.0417282

\hline 81 \& 0.0417157 \& 0.0017413 \& 0.0417413 \& 0.0404364 \& 0.0016856 \& 0.0416856 \& 0.0397992 \& 0.0016580 \& 0.0416580

\hline 82 \& 0.0401112 \& 0.0016715 \& 0.0416715 \& 0.0388662 \& 0.0016175 \& 0.0416175 \& 0.0382453 \& 0.0015907 \& 0.0415907

\hline 83 \& 0.0385685 \& 0.0016046 \& 0.0416046 \& 0.0373570 \& 0.0015523 \& 0.0415523 \& 0.0367539 \& 0.0015263 \& 0,0415263

\hline 84 \& 0.0370851 \& 0.0015405 \& 0.0415405 \& 0.0359063 \& 0.0014897 \& 0.0414897 \& 0.0353198 \& 0.0014645 \& 0.0414645

\hline 85 \& 0.0356588 \& 00014791 \& 0.0414791 \& 0.0345121 \& 0.0014298 \& 0.0414298 \& 0.0339416 \& 0.0014054 \& 0.0414 054

\hline 86 \& 0.0342873 \& 0.0014202 \& 0.0414202 \& 0.0331719 \& 0.0013724 \& 0.0413724 \& 0.0326173 \& 0.0013487 \& 0.0413487

\hline 87 \& 0.0329685 \& 0.0013637 \& 0.0413637 \& 0.0318838 \& 0.0013174 \& 0.0413174 \& 0.0313445 \& 0.0012974 \& 0.0412944

\hline 88 \& 0.0317005 \& 0.0013095 \& 0.0413095 \& 0.0306457 \& 0.0012646 \& 0.0412646 \& 0.0301215 \& 0.0012423 \& 0.0412 423

\hline 89 \& 0.0304813 \& 0.0012576 \& 0.0412576 \& 0.0294557 \& 0.0012140 \& 0.0412140 \& 0.0889462 \& 0,0011 924 \& $0.0+11924$

\hline 90 \& 0.0293089 \& 0.0012078 \& 0.0412 \& 0.0283119 \& 0.0011 \& 0.0411655 \& 0.0278167 \& 0.0011445 \& 0.0 ± 11445

\hline 91 \& 0.0281816 \& 0.0011600 \& 0.0411600 \& 0.0272125 \& 0.0011190 \& 0.0411190 \& 0.0267313 \& 0.0010986 \& 0.0410986

\hline 92 \& 0.0270977 \& 0.0011141 \& 0.0411141 \& 0.0261558 \& 0.0010743 \& 0.0410743 \& 0.0250888 \& 0.0010546 \& 0.0110546

\hline 93 \& 0.0260555 \& 0.0010701 \& 0.0410701 \& 0.0251402 \& 0.0010315 \& 0.0410315 \& 0.0246859 \& 0.0010124 \& 0.0410124

\hline 94 \& 0.0250534 \& 0.0010279 \& 0.0410279 \& 0.0241639 \& 0.0009905 \& 0.0409 9.55 \& 0.0237297 \& 0.0009720 \& 0.0409720

\hline 95 \& 0.0240898 \& 0.0009874 \& 0.0409874 \& 0.0232256 \& 0.0009 511 \& 0.0409511 \& 0.0227970 \& 0.0009332 \& 0.0109332

\hline 96 \& 0.0231632 \& 0.0009485 \& 0.0409485 \& 0.0223237 \& 0.0009133 \& 0.0409133 \& 0.0219075 \& 0.0008959 \& 0.0408959

\hline 97 \& 0.0222723 \& 0.0009112 \& 0.0409112 \& 0.0214569 \& 0.0008771 \& 0.0408771 \& 0.0210527 \& 0.0008602 \& 0.0408602

\hline 98 \& 0.0214157 \& 0.0008754 \& 0.0408754 \& 0.0206237 \& 0.0008423 \& 0.0408423 \& 0.0202312 \& 0.0008260 \& 0.0408260

\hline 99 \& 0.0205920 \& 0.0008410 \& 0.0408410 \& 0.0198228 \& 0.0008089 \& 0.0408089 \& 0.019 ± 418 \& 0.0007931 \& 0.0407931

\hline 100 \& 0198000 \& 008080 \& 0.0408080 \& 0.0190 531 \& 0.0007769 \& 0.0407769 \& 0.0180838 \& 0.0007616 \& 0.0407616

\hline \& Ratio of \& petual Ant \& . 0400000 \& \& \& 0.0400000 \& -•••• \& - ••• \& 0.0400000

\hline
\end{tabular}

5	RATIO of INTEREST： ANNUALLY， 0.0425 ．			RATIO of INTEREST： HALF－YEARLY，0．09125．			RATIO of INTEREST： QUARTERLY， 0.010625.		
	Improved Principal．	Cumulated Annuity．	Value of Anuaity．	Improved Principal．	Cumulated Annuity．	Value of Annuity．	Improved Principal．	Cumulated Annuity．	Value of Ammity．
	$1.0425^{\circ} 000$	1.0000000	0.959233	1.0209500 $1.09 \% 9516$	10.000 0.500000 1.0106020	0.9899596 0.99690	1.0106250 1.0213629 1.0322149 1.0431822	0.2500000 0.5026563 0.7579970 1.0160507 1.0160507	0.247372 0.492143 0.7343 0.9739 102
$\frac{5}{8}$	……	…．	…：	1.0651143	1.5321008	$1.438+38$		$\left\|\begin{array}{l} 1.8768 \\ 1.762 \\ 1.5404 \\ 1.8067 \\ 796 \\ 796 \end{array}\right\|$	$\begin{aligned} & 1.211123 \\ & 1.4457 \\ & 1.677932 \\ & 1 . \end{aligned}$
2	1.0868063	2.0425000	1.879360	1.0877480	2.0646579	1.898103	1.0882 ¢90	2.0759766	1.907665
竞	．．．．．	．．．．	\ldots	1.1108626	2.6085	2.348204		$\begin{array}{\|l\|l\|} \hline 2.3480 & 339 \\ 2.6229818 \\ 2.9008 \\ 509 \end{array}$	2.134981 2.359907 $2.582+$
$3^{-\frac{3}{4}}$	1．1329 955	3.1293063	2.761976	$1.134468+$	3.16396639	2．7889 39	1.1232862 1.1352 1.11	2．9008 509 3.1816 725	$2.582 \pm$ 2.5026 80
．${ }^{1}$		…：	．．．．．	1.1585759	$3.7311{ }^{174}$	3．2205 03	1.1472828 1.1594727	$\begin{aligned} & 3.4651 \\ & 3.7522 \\ & 387 \\ & \hline \end{aligned}$	3.020596 3.235211
4	$1.1811{ }^{178}$	4.2623018	3.608610	1.1831956	4.3104854	3.643088	1.1717921 1.1842 484	4.0491666 4.3351 146	3.449560 3.600665
咅		．．．．		1.2033385	4.9020838	4.056879	1.1968 1.2095 129 122	$\begin{aligned} & 4.6311752 \\ & 4.9303815 \end{aligned}$	3.869551 4.076241
$5^{\frac{3}{2}}$	1.2313466	5．4434496	4.420729	1.2340157	5.50625	4.462060	$\begin{aligned} & 1.2243 \\ & 1.2353806 \end{aligned}$	$\begin{array}{ll} 5.2327 & 668 \\ 5.5383 & 649 \end{array}$	$\begin{aligned} & 4.280758 \\ & 4.483125 \end{aligned}$
委				$1.260 \% 386$	6.1232603	4．8588 10	1.2485 1.2617 184	$\begin{array}{ll} 5.8472 & 100 \\ 6.1593 & 366 \end{array}$	$\begin{aligned} & 4.68336-b \\ & 4.881498 \end{aligned}$
$6{ }^{4}$		（47962					${ }_{1}^{1.2751} 781$	${ }_{6}^{6.4747} 7796$	（5．075 49
6	1.8836788	\％ 962	5.199740	1.287	6.7	273 05	1.2887269	6.7935741	39
2				1.3143	7.996	5．627\％ 16	1.3024196 1.3162578	$\begin{array}{\|l\|} 7.1157 \\ 7.4413 \\ 608 \\ \hline \end{array}$	5．4634 90 5.653122
$\frac{3}{4}$				1．31	7.9		1.3302431	$7.7704<52$	$5.8+1358$
7	1.3382352	7.958475	5.946993	1.3422981	8.05	6.000212	1.3443769	8.1029860	6.027317
年			…＂	1．3708 219	8．7952 219	6.364956	1． 3586609 1.3730967	$\begin{aligned} & 8.4390802 \\ & 8.7787454 \\ & 8.730 \end{aligned}$	$\begin{aligned} & 6.211322 \\ & 6.393392 \end{aligned}$
$8^{\frac{3}{4}}$	1.3951102	9.2967102	6.663782	1.3999519	9.4106328	6.722112	1.3876858 1,1024300 1	$\begin{aligned} & 9.1220196 \\ & 9.4689 \\ & 411 \end{aligned}$	$\begin{aligned} & 6.573548 \\ & 6.751810 \end{aligned}$
－${ }^{1}$			．．．．		10.1106	7.07	1．4173 308 1.4343 000	9.8195486 10.17381	6.998198 7.109732
考				1.429	10.110	7.07	1.4323 1.4469091	10.173881 10.531 199	7.275430
$9{ }^{4}$	1.4544024	10.691820	7.351350	1.46008820	$10.32{ }^{\circ} 459$	7.414282	1.4629899	10.893881	7.446313
				1.4911088	11．505\％ 500		1．4785 342	$\begin{array}{\|l\|} 11.259 \\ 11.629 \\ 1206 \\ 262 \end{array}$	$\begin{aligned} & 7.7151000 \\ & 7.7890 \end{aligned}$
				1.4911088	11.555500	7.749603	$1.49+2430$	$\begin{array}{\|l\|} 11.629 \\ 12.002 \\ 823 \\ \hline \end{array}$	7.788708 7.9488 88
10	1.5162145	12.146223	8.010887	1.5297948	12.301055	8.077946	1.5261650	12.380353	8.112067
							1.5423805 15587 1.583	12.761894 13.14784 489	8.2741 8.4345 8.4
				1.555	13.00	8.399458	1.5587683 1.5753 102	13.147 13.537 181	8.4943 8.5932 8.4
$1{ }^{\text {a }}$	1.5806536	13.662	8.643537	1.5882012	13.840029	8.714279	1.5920681	13.931014	8.750263
				$1.6 \dddot{19} 905$	$14.63 \dot{1} 130$	9.022550	$\begin{aligned} & 1.6089838 \\ & 1.6260793 \end{aligned}$	$\left\|\begin{array}{l} 14.399031 \\ 14.731 \\ 277 \end{array}\right\|$	$\begin{aligned} & 8.905640 \\ & 9.059388 \end{aligned}$
				1.6219505	14．03＊ 130	9.022550	$\begin{aligned} & 1.6260793 \\ & 1.6433564 \end{aligned}$	$\begin{aligned} & 14.731277 \\ & 1.137797 \end{aligned}$	9．9．0593 9.21512 .212
18	1.6478314	15.243091	9.250395	1.656 ± 170	$15.445^{\circ} 105$	9.324406	1.6608170	15.548636	9.36 ± 040
			．．．	$1.6916{ }^{\circ} 158$	16.273313	9.619982	1.6784 1.6962 969	15.963840 16.383456	9.510986 9.658366
				1.0910158	10.273313	9.619982	1.0702909 1.7143	${ }_{16}^{16.807} 530$	9.804197
13	1.7178642	16．890 922	9.83895	1．76750	17.119121	9.909407	1.7325317	17.236110	9.94849 .4
				$1.7612{ }^{12} 7$	17.9829	10.19281	1.7509 1.7695 1.769 1.769	17.669 18.106 1880 18.510 186	10.091 10.278 10.238 50
14	1.7908734	18.608786	10.39090	1.8017642	18.865039	10.47032	1.7883 1.8073 193	18.549 18.996 4.53	$\begin{aligned} & 10.57235 \\ & 10.51067 \end{aligned}$
							1.8265593	19.448291	10.64754
				1.84100	19.765921	10.74205	${ }_{1.8459} 595$	19.904929	10.78297 10.916 188
15	1.8669885	20.399660	10．926 52	$1.8791{ }^{\circ} 528$	20.6885947	11.00812	1.8853	${ }_{20}$	11.049
			．．．．		21.630 .524	11．268 67	1.9054 1.9256 208	21.304160 21.780 517	11.180 11.310 781
				1.9190848	21.62554	11.20867	1.9461322	22．261 935	11.43907
16 a	1.9463	22.266645	11．440 31	1.9598653	22.585	11.52378	1.9668099	22.748468	11.56618
17	2.0290516	24.212978	11.93315	2.0440446	24.565755	12.01821	2.0517410	24.746847	12.06139
18	2.1152 2.2051 8.59	${ }_{28.357}^{26.442} 316$	12.40590 12.859	2.1318395 2.2234 2.253	26.631517 28.786008	12.49287 12.946 12	2.1403396 2.2327 641	26.831519 29.006 213	12.53610 12.991 17
20	${ }_{2.2989}^{2.263}$	30.562501	13.29437	2.3189041	${ }_{31}^{28.033} 037$	13.38263	2．3291 796	31．274 814	13.42740
21	2.3966098	32.861408	13.71162	2.4185046	33.376579	13.80050	2.4297586	33.641379	13．845 56
22	2.4984657	35.258018	14.11187	2．5223 838	35．820 780	14.20117	${ }_{0}^{2.5346} 808$	${ }_{38.110}^{36.657} 501$	14.94642 14.630 1
${ }_{24}^{23}$	2.6046505 2.7153 182	37.756183 40.361134	14.49580 14.864		38.369964^{+}	14.585 14.953 18	2．6411 2.7583 .838 138	38.685501	14.63069
24	2.7153482	40.301134	14.80408	$2.7+37172$	41.028639	14.95367	2.7583132	41.372075	13.99905
25	2.8307505	43.076482	15.21734	2.8615641	43.801508	15.30684	2.8774231	44.174661	15.35216

	RATIO of INTEREST: ANNUALLY, 0.0425.			RATIO of INTEREST: HALF-YEARLY, 0.02125.			RATIO of INTEREST: QUARTERLY, 0.010625 .		
	Improved Principal.	Cumulated Amuaity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Amnuity.
26	2.9510574	45.907233	15.55620	2.9844727	46.693476	15.6.15 47	3.0016764	47.098269	15.69065
27	3.0764773	48.858290	15.88125	3.1126605	49.709659	15.97016	3.1312953	50.148 124	16.01514
28	$3.2072{ }^{276}$	$51.93+767$	16.19304	3.2463541	52.855391	16.28146	3.2665 114	53.329679	16.32619
$\stackrel{\text { s }}{ }$	3.3435348	55.141995	16.49213	3.3857901	56.136238	16.57995	3.4075664	56.618620	16.62437
30	3.4856350	58.485530	16.77902	3.5312151	59.558002	16.86615	3.5547124	60.110880	16.91020
31	3.6337745	61.971105	17.05421	3.6828863	63.126737	17.14056	3.7082125	63.722648	17.184 19
32	3.7882099	65.60 ± 939	17.31819	3.2410720	66.848753	17.40367	3.8683412	67.490380	17.41685
33	3.9492088	69.393149	17.57141	4.0050521	70.730637	17.65594	4.0353845	71.420811	17.69864
34	4.1170502	73.342358	17.81430	4.1781183	74.779253	17.89782	4.2096411	75.590966	17.94000
35	4.2920248	77.459408	$18.047{ }^{2} 9$	4.3575750	ז9.001 764	18.12975	4.3914224	79.798175	18.17138
36	4.4744359	81.751433	18.27078	4.5447396	83.405638	18.35213	4.5810535	84.260082	18.39317
37	4.6645994	86.225869	18.48516	$4.7399+33$	87.998666	18.56535	4.7788733	88.914665	18.60578
38	4.8628449	90.890468	18.59080	4.9435313	92.788971	18.76978	4.9852353	93.770242	18.80959
39	5.0695158	95.753313	18.88806	5.15586 .37	97.785027	18.96579	5.2005 085	98.835494	19.00497
40	5.2849702	100.82283	19.07728	5.3773161	102.99567	19.15373	5.4250777	104.11947	19.19226
41	5.5095815	106.10780	19.25878	5.6082802	108.43012	19.33393	5.6593442	109.63163	19.37179
42	5.7437387	111.61738	19.43288	5.8491646	114.09799	19.50672	5.9037869	115.38181	19.54389
43	5.9878476	117.36112	19.59988	6.1003953	120.00930	19.67238	6.1586625	121.38029	19.70887
44	6.2423311	123.34897	19.76008	6.3624168	186.17451	19.83122	6.4246068	127.63781	19.86702
45	6.5076302	129.59130	19.91375	6.635069	132.60453	19.98353	6.7020352	134.16553	20.01863
46	6.7842045	136.09893	20.06115	6.9207060	139.31073	20.12956	6.9914435	140.97514	20.16395
47	7.0725331	142.88313	20.20254	7.2179611	146.30497	20.26957	7.2933491	148.07880	20.30327
48	7.3731158	149.95557	20.33817	7.5279838	153.59962	20.40382	7.6082916	155.48922	20.43681
49	7.5864732	157.32878	20.46827	$7.8513 \sim 25$	161.20759	20.53254	7.9368341	163.21963	20.56483
50	8.0131483	165.01525	20.59306	8.1885490	169.14233	20.65595	8.2795637	171.28385	20.68755
51	8.3537071	173.02840	20.71277	8.5402600	177.41788	20.77430	8.6370931	179.69631	20.80518
52	8.7087397	181.38 211	20.82760	8.9070775	186.04888	20.88776	9.0100613	188.47203	20.91795
53	9.0788611	190.09085	20.93774	9.2896504	195.05060	20.99655	9.3991352	197.62671	21.02605
54	9.4617127	199.16971	21.04340	9.6886554	204.43895	21.10086	9.8050101	207.17671	21.12968
55	9.8669630	208.63442	21.14474	10.104798	214.23055	21.20087	10.288412	217.13910	21.29901
56	10.286309	218.50139	21.24196	10.538815	$\underline{224.44} 9$	21.29677	10.670096	227.53168	
57	10.723477	228.78770	21.33522	10.991474	235.09350	21.38871	11.130854	238.37304	21.41552
58	11.179225	239.51117	21.42467	11.463575	24620176	21.47688	11.611508	249.68255	21.50302
59	11.654342	250.69040	21.51047	11.955953	257.78713	21.56140	12.112918	261.48043	21.58591
60	12.149651	262.34474	21.59278	12.469480	$\simeq 69.87{ }^{1} 12$	21.64245	12.635980	273.78777	21.66732
61	12.666012	274.49439	21.67173	15.005064	289.47209	21.720 16	13.181629	286.62657	21.74440
62	13.244317	287.16040	21.71746	13.563652	295.61533	21.79467	13.750840	300.01977	21.81829
63	13.765501	300.36472	21.82010	14.146 232	309.32310	21.86611	14.344 631	313.99132	21.88912
63	14.350534	314.13022	21.88979	14.753834	323.61963	21.93461	14.964063	328.56619	21.95702
65	14.960432	328.48075	21.95664	15.387535	338.53022	22.00029	15.610244	343.77044	22.02211
66	15.596250	343.44119	22.02075	16.048 .153	354.08125	22.06326	16.284398	359.63164	22.08450
67	16.259091	359.03 744	22.08225	16.737759	370.30028	22.12364	16.987520	376.17694	22.14431
68	16.950102	375.29653	22.14125	17.456679	387.21588	22.18154	17.721078	$393 .+3712$	22.20165
69	17.670482	392.24663	22.19785	18.206464	404.85797	22.23705	18.486312	411.44323	22.25661
70	18.421477	409.91711	22.25213	18.988450	423.25787	28.29027	19.284591	430.22567	22.30930
71	19.204390	426.33859	22.30420	19.804044	442.44809	22.34130	20.117341	449.81979	22.35980
72	20.020577	447.54298	22.35415	20.654658	462.40255	22.39023	20.986051	470.96003	22.40822
73	20.871451	467.56350	22.40206	21.541808	483.33666	22.43715	21.892274	491.58292	. 22.45463
74	21.758488	488.43 501	22.44802	22.467062	505.10735	22.48213	22.837630	513.82658	22.49912
75	22.683224	510.19350	22.49211	23.432058	527.81313	$22.5 \geq 526$	23.823808	537.03077	22.54177
76	23.647261	532.87672	29.53440	24.438501	551.49415	22.56661	24.852571	561.23697	92.58265
77	24.652269	556.52398	22.57496	25.488173	576.19231	22.60626	25.925759	586.48844	24.62184
78	25.699991	581.17625	22.61387	26.582930	601.95130	22.64428	27.045289	612.83032	22.65941
79	26.792240	606.87624	22.65119	27.724708	698.81667	22.68073	28.213163	640.30971	22.69533
80	27.930910	633.66848	22.68700	28.915528	656.83595	22.71568	29.431468	668.99570	22.72994
81	29.117974	661.59939	22.72134	30.157495	686.05871	22.74919	30.702382	698.87957	22.76304
82	30.355488	690.71736	22.75428	31.452807	716.53663.	22.78132	-32.028 177	730.07475	22.79477
83	31.645596	721.07285	22.78588	32.803754	718.32362	22.81213	$33.4112^{223}{ }^{\text {- }}$	762.61700	22.82518
84	32.990534	752.71845	22.81620	$34.212{ }^{\text {726 }}$	781.47591	22.84167	34.853991	796.56450	22.85433
85	34.392632	785.70898	22.84527	35.682216	816.05215	2986999	36.359062	831.97792	22.88227
86	35.85 ± 319	820.10161	92.87316	37.214 823	852.11349	22.89715	37.929124	868.92057	22.90906
87	37.378127	855.95593	22.89992	38.813 258	889.72 372	22.92319	39.566985	907.45848	22.93474
88	38.966698	893.33406	29.92558	$40.4803+8$	928.94 937	22.94815	41.275573	947.66054	24.95935
89	40.622782	932.30076	22.95020	42.219042	969.85988	22.97209	43.057941	989.59862	22.98295
90	42.319250	972.92351	22.97381	44.032416	1012.5274	22.99504	44.917276	1033.34π	23.00557
91	44.149094	1015.2728	22.99646	45.92367	1057.0277	23.01705	46.856901	1078.9859	23.02726
92	46.025430	1059.4219	23.01819	47.896171	1103.4393	23.03815	48.880283	1126.5919	23.04804
93	47.981511	1105.4473	23.03903	49.953386	1151.844	23.05838	50.991039	1176.2597	23.06797
94	50.020725	1153.4288	23.05902	52.098962	1202.3285	23.07778	53.192941	$1228.0 \quad 692$	23.08707
95	52.146606	1203.4496	23.07820	54.336694	1254.9810	23.09638	55.489987	1282.1159	23.10538
96	54.362837	1255.5962	23.09659	56.670540	1309.8951	23.11421	57.886102	1338.4965	23.12293
97	56.673257	1309.9590	23.11424	59.104628	1367.15677	23.13131	60.385748	1397.3117	23.13976
98	59.081871	13666.6323	23.13116	61.643264	1126.9003	23.14770	62.993335	1458.6667	23.15589
99	61.592850	1425.7141	23.14740	64.290939	1489.1986	23.16343	65.713593	1522.6711	23.17135
100	64.210 546	1487.3070	23.16297	67.0523 .35	1554.1 726	23.178 50	68.551174	1589.4394	23.18617
	Value of	petual Ann.	23.599 41			23.52941	-•••	-•••	23.55941

PERPETUAL STOCK : 8 p.C. 70,5882 ; $3 \frac{1}{2}$ p.C. 82,3529 ; 4 p.C. 94,1176 ; 5 p.C. $117,6471$.

RATIO of INTEREST:
ANNUALLY, 0.0425.
Discounted Annuity for Ratio of Principal. Cumulation Annuity.

0.3388	616
0.3250	471
0.3117	958
0.2990	847
0.2868	918

0.269
0.2532
0.2428
0.23
0.2329
903

0

$\begin{array}{lll}0.0789 & 515 \\ 0.0757 & 328 \\ 0 & 0726 & 454 \\ 0.0696 & 838 \\ 0.0668 & 430\end{array}$

0.0036	431	0.0461431				
0.0034			0.0034824	0.0033	293	0.0458
:---	:---	:---				
0.0293						
0.0031	834	0.0456	0.0030413			

0.002911
0.0641180 0.0615041 0.0589967 0.0555916 0.0542845 0.0520714
0.0199486 0.0479123 0.045959 0.0440855 0.0027852 0.0026646 0.0025494
0.0024395
0.0023346 0.0022344 0.0020474 0.0019600
0.0018766 0.0017969 0.0017206 0.0016478
0.0015781
0.0015115 0.0014478 0.0013868 0.0013285

0.0012194

 0.0011683 0.0011194 0.0010726 0.0010278 0.02361320.0226505 0.0217271 0.0208414 0.0191767 0.0183949
0.0176450
0.0169 0.0176450 0.0162357 $\begin{array}{lll}0.0155 & 738 & 0.0006 \\ 724\end{array}$

RATIO of INTEREST:

HALF-YEARLY, 0.02125 .

Discounted	Annnity for	Ratio of
Principal.	Cumulation	Annuity.

$$
\begin{array}{|ll|ll|ll}
\hline 0.3350 & 676 & 0.0214 & 163 & 0.0639 & 163 \\
0.3212 & 686 & 0.0201 & 168 & 0.0626 & 168
\end{array}
$$

$$
\begin{array}{ll}
0.3212 & 080 \\
0.3080 & 379
\end{array}
$$

$$
\left.\begin{aligned}
& 0.2953 \\
& 0.2820 \\
& 0.287
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
& 1000 \\
& 0.000 \\
& 0.00
\end{aligned}
$$

$$
\|
$$

$$
0.1273671
$$

$$
0.0989629
$$ 0.0909796

0.0872398 0.0836403 0.0677790

0.0649877

0.0623113
0.0597452 0.0572847 0.0549255 0.0484152 0.0464214 0.0445096 0.0426766 0.0 .392339 0.0376181 0.0360689 0.0345835
0.0331593 0.0317937 0.0304843 0.0247033
0.0236860 0.0227105
0.0217753
0.0208785 0.0184038
0.0176459
$\begin{array}{ll}0.0639 & 163 \\ 0.0626 & 168 \\ 0.0614 & 195 \\ 0.0603 & 1.38 \\ 0.0592 & 903\end{array}$
0
0
0
0
0
0

$$
\left|\begin{array}{ll}
0.2715 & 262 \\
0.2603 & 440 \\
0.2496 & 223 \\
0.2393 & 422
\end{array}\right|
$$

$$
\begin{aligned}
& 0.2393422 \\
& 0.2294854
\end{aligned}
$$

$$
\begin{aligned}
& 0.2200346 \\
& 0.2109730
\end{aligned}
$$

$$
\begin{aligned}
& 0.2109730 \\
& 0.2022846
\end{aligned}
$$

$$
\begin{aligned}
& 0.2122040 \\
& 0.1939539 \\
& 0.1850664
\end{aligned}
$$

$$
\begin{aligned}
& 0.1859664 \\
& 0.1783078
\end{aligned}
$$

$$
\begin{aligned}
& 0.1783078 \\
& 0.1709646 \\
& 016 ร 0
\end{aligned}
$$

$$
\begin{array}{ll}
0.1659 & 238 \\
0.1571 & 730
\end{array}
$$

$$
\begin{aligned}
& 0.1571730 \\
& 0.1507 \\
& 002
\end{aligned}
$$

$$
\begin{array}{ll}
0.1444 & 939 \\
0.1385 & 433
\end{array}
$$

$$
\begin{array}{ll}
0.1385 & 433 \\
0.1328 & 377
\end{array}
$$

$$
01221218
$$

$$
\begin{aligned}
& 0.1170925 \\
& 0.1122703
\end{aligned}
$$

$$
\begin{aligned}
& 0.1122703 \\
& 0.1076467
\end{aligned}
$$

$$
\begin{aligned}
& 0.1076467 \\
& 0.1039135
\end{aligned}
$$

0.0948873 0.0801958
0.0763931
0.0737264 0.0737264
0.0706902 0.0526636

0.0504947

0.0409190 0.0292289
0.0280252
0.0268710 0.0257644
0.0247033
0.0208785
0.0200187
0.0200187
0.0191942 $\begin{array}{ll}0.0169 & 192 \\ 0.0162 & 294\end{array}$ 0.0162224
$\begin{array}{ll}0.0149 & 137\end{array}$
$0.0149137 \quad 0.0006434$

Ratio of Perpetual Ann. 0.0425000

RATIO of INTEREST:
QUARTERLY, 0.010625.

$\begin{array}{c}\text { Discounted } \\ \text { Principal. }\end{array}$	$\begin{array}{c}\text { Annuity for } \\ \text { Cumulation }\end{array}$	$\begin{array}{c}\text { Ratio of } \\ \text { Annuity. }\end{array}$

0.3331472 $\begin{array}{ll}0.3193 & 567\end{array}$ $\begin{array}{ll}0.3193 & 507 \\ 0.2034 & 670\end{array}$

0.0212322 0.0199409 $\begin{array}{ll}0.0199 & 409 \\ 0.0187 & 513\end{array}$

0.0637322
0.06243

0 0.0624409	0.2934	646	0.0176	527	0.0
0.2813	167	0.0166	359	0.	

0.2585088

0.2375499

0.2277166
0.2182904
0.2005923
0.1922889
0.1843292
0.1766989
0.1693845
0.1623729
0.1556516 0.1492084
$0.1430 \quad 390$ 0.1371112 0.1314355 0.1259948 0.1207793
0.1157797 0.1109870 0.1063928 0.1019887 0.0977669
0.0937199 0.0898404 0.0861215 0.0825565 0.0791391

0.0758632 0.0727228 0.0697125 | 0.0668268 |
| :--- |
| 0.0640 |

0.0614087 0.0588667 $\begin{array}{ll}0.0588 & 667 \\ 0.0564 & 300\end{array}$ 0.0564300
0.0540941 0.0518549
0.0497084 0.0476507 0.0456782 0.04 .37874 0.0419748
0.0402373 0.0335717 0.0369750 0.0354444 0.0339772

00325708 0.0312225 0.0209301 0.0286
0.0275
0.035

0.0263650

 0.02527360.0242274 0.0242274 0.0232245

0.0213416

0.0204581
0.0196113
0.0187995
0.0180213
0.0172753 0.0165 60я 0,0158747 0.0152176 0.0145876
0.0612513
0.0601527 0.0591359
0.0581930 0.0573169 0.0565015 0.0557414 0.0550316
0.0543680 0.0537467 0.0531644 0.0596178 0.0521044
0.0516215
0.0511669 0.0507386 0.0503347 0.0499535
0.049 .5934 0.0492532 0.0480313 0.0486267 0.0483383
0.0480649 00478058 0.0475600 0.0473268 0.0471053
0.0468950 0.0466951 0.0465051 0.0463244 0.0461525
0.0459889 0.0458331 0.0456848 0.0455435
0.0454089 0.0452806 0.0451583 0.0450417 0.0449305 $0.0448 \quad 244$
0.0447231 0.0446265 0.0445342 0.0444462 0.0443621
0.0442818 $\begin{array}{ll}0.0442 & 0.51 \\ 0.04+1 & 318\end{array}$ $\begin{array}{ll}0.0441 & 318 \\ 0.0440 & 618\end{array}$ 0.0439948
0.0439309 0.0438697 0.0438113 0.0437554 0.0437020
0.0436509 0.0436020 0.0435552 0.0435105
0.0434677 0.0434268 0.04 .33876 0,0133502 0.0433143 0.0432800
0.0432471 0.048215% 00431855

RATE of INTEREST： $4 \frac{1}{2}$ per Cent．per Ann．－—CORRESPONDING VALUE of

$\begin{aligned} & \text { 2 } \\ & \frac{2}{30} \end{aligned}$	RATIO of INTEREST： ANNUALLY， 0.045 ．			RATIO of INTEREST： HALF－YEARLY， 0.0225 ．			RATIO of INTEREST： QUARTERLY， 0.01125 ．		
	Improved Principal．	Cumulated Amnuity．	Value of Antuity．	Improved Principal．	Cumulated Amnuity．	Value of Ambity．	Improved Principal．	Cumulated Annuity：	Value of Aunuity．
$\left\{\begin{array}{l} 0 \frac{1}{1} \\ \frac{1}{4} \\ 1^{2} \end{array}\right.$	1.0450000	1.0000000	0.956938	1.0225000 1.01350063	0.5000000 1.0112000	0.488998 0.967293	$\begin{aligned} & 1.0112500 \\ & 1.0226 \\ & 1.0266 \\ & 1.0311 \\ & 1.0457651 \end{aligned}$	$\begin{aligned} & 0.9500000 \\ & 0.5028 \\ & 0.7584691 \\ & 0.751961 \\ & 1.0170 \\ & 019 \end{aligned}$	$\begin{aligned} & 0.217219 \\ & 0.491687 \\ & 0.73336 \\ & 0.972496 \end{aligned}$
$2^{\frac{3}{4}}$	1.0920250	2.0450000	1.872668		$1.53 \dot{0} 031$ $2.060^{\circ}{ }^{\circ} 182$	1.4349 1.8823 10	1.0575299 1.0694272 1.0814582 1.0936246	$\begin{aligned} & 1.2784432 \\ & 1.5+28257 \\ & 1.8101825 \\ & 2.0805470 \end{aligned}$	1.208896 1.44666 1.673835 1.0024
产		3.137	2.7489	1.1176 1.1777 1.9854	2.6150599 3.173888	2.339726 $2.77{ }^{1} \times 28$	1．1059 279		
3	1.1411	3.137	2.7489	1．1428 254	3.173	2.777238	1.143674	3．1927 653	2.791673
．				1.168	3.7453	3.205123	1.1565 1.1695 1819	3.1786 3.7678 198 198	3.007835 3.221592
空				1.10	3．743	3.205123	1.1827093	4.0603 .071	3.432971
4^{4}	$1.1920{ }^{\circ} 186$	4.2781911	$3.587{ }^{3} 26$	$1.1918{ }^{\circ} 311$	4.3295809	3．623592	1.1960148	4.3558841	3.641999
$\frac{1}{2}$	．．．．．	\ldots	\ldots	1.221	4.9209	4.032853		$\begin{aligned} & 4.6548881 \\ & 4.9572556 \\ & 5 \end{aligned}$	$\begin{array}{ll} 3.8487 & 01 \\ 4.0531 & 03 \end{array}$
5^{4}	1.2461819	5.4707	4.3899	1.2	5.537	4.433108	$\left\|\begin{array}{l} 1.2368 \\ 1.2507 \\ 1.201 \\ 505 \end{array}\right\|$	5.2630248 5.5722 3，38	$\begin{array}{ll} 4.2552 & 32 \\ 4.4551 & 12 \end{array}$
$\frac{1}{4}$			．．．．	1.277	6.162	4.824556	$\begin{aligned} & 1.2618215 \\ & 1.6790507 \end{aligned}$	5.8849214 6．2011 268	4.652768 4.848226
6^{4}	1．3022601	6.7168917	5.157872	1.30600500	6．8011	5．2073 89	1.2931400 1.3079 12	6.5808895 6.8442495	5.0415 5.2326
1				1.335	7.454	5.58	1.32278061 1.3375 8666	7.1712 7.5019 783 738	5.421648 5.608552
				1.335	7.457	5.58	1.3526884	$\begin{aligned} & 7.5019238 \\ & 7.8363 \\ & 205 \end{aligned}$	${ }_{5}^{5.7933} 76$
$7{ }^{4}$	1.3608618	8.0191518	5.892701	1.365	8.1218	5.947970	1.3678516	8.1744791	5.976145
$\frac{1}{2}$				1.396	8.8045	6.306083	1.3832 1.3988 1.398 1.3	$\begin{aligned} & 8.5161420 \\ & 8.8622 \\ & 519 \end{aligned}$	6.156880 6.335604
				1.30			1．4145379	9．2119 523	6.5123 6.6871 11
$8{ }^{8}$	1.4221006	9.380013	6.595886	1.4276215	9.5026991	6.656316	1.4304514	9.5655867	6.687111
$\frac{1}{1}$	．．．．	．．．．	．．．．	1.4597	10.216	6.998	1.4465440 1.4628 176	$\begin{aligned} & 9.9231996 \\ & 10.28+83 i \end{aligned}$	$\begin{array}{ll} 6.8599 & 36 \\ 7.0308 & 39 \end{array}$
							1.4792 F 43	10.650540	7.199841
9	1.4860951	10.802114	7.268790	1.492	10.9	7.333	1.4959161	11.020359	7.366963
	\ldots		\ldots	1.5261	11.69	7.661		$\begin{aligned} & 11.39+338 \\ & 11.772 \\ & 524 \end{aligned}$	$\begin{aligned} & 7.5322 \quad 25 \\ & 7.6956 \\ & 49 \end{aligned}$
10	1.5329694	12.288209	7.912718	1.560	12.45	7.981	1.5469 1.5643 1.59	12.151 12.541 708	7.857255 8.0170 8
					13．23		1.5819 1.5997 763	12.932802 13.328 296	8.175093 8.331366
							1.6177708	13．728 240	8.485899
11	1.629853	13.841179	8.528917	1.6315	14.033825	8.601676	1.6359707	14.132682	$8.6387{ }^{14}$
							1．6543 754	14.541675	
				1.6682314 .. .0	14．849 586	8.9013	1.6729871 1.6918082	14.955 15.373 1516	8.999264 0.0870 32
12	1.6958814	15.460	9.118581	1．7057	15.683	9.194518	1.7108410	15．796 468	9.232159
							1.73	16.	
				1.744	16.5	9.48	1.7495 1.7692 15	16.656 $17.09+1088$ 1.58	9.5205 9.6518
${ }_{15}^{4}$	1.7721961	17.109913	9.60888	1.7833896	17.908658	9.760155	1.7801378	17.536396	9.801590
							1.8092 1.82960 199	17.983 18.435 981	9.939768 10.076 41
				$1.823 .$.			1.8502031	18.893402	1021153
$1{ }^{2}$	1.8519449	18.932109	10.28283	1.86 ± 5	19.212	10.30	1.8710179	19.355953	10.34515
					20.144	10.56	1.8920 1.9133 1868	19.823 20.296 704	10.47798 10.60794
				隹	$20.14{ }^{148}$	10.50	1.9348778	20.775062	10.73714
15	1.9352824	20.784054	10.73955	1．9493	21.097	10.82	1.9566452	21.258788	10.86491
							1.9786574	${ }^{21.7}$	10.99126
				1.9932	22.072	11.07351	2.0009173 2.0234 2077	${ }_{22.742}^{22.248}$	11.23976
16	2.0223702	22.719337	11．234 0	2.0381	23.06895	1.31	2.0461912	$23.2+8694$	11.3619
	2.1133768	24.741707	11.70719	2.1308495	25.199988	11.79341	2.1398353	25.329674	11.83721
18	${ }^{2.2084} 788$	26.855	12.15999	2．2278 164	27．284 809	12.2473 .3	2.2377 2.3401 661	${ }_{29.781}^{27.505} 801$	12.89168 12.726
19 20	2.3078603 2.4117140	29.063562 31.371423	12.593 13.007 9	2.3491960 2.4351 800	29.537689 31.893	13.081 13.096 7	2．4472 750	${ }_{32.161666}^{29} 6$	${ }_{13.14183}$
	2.5202	33.783	13404	2.5460053	34.355673	13.49395	2.5592747	34.650550	13.53921
22	2.7330	36．303 378	13.78442	2.661864	36.930321	13.87385	2．6764．002．	37.253337	13.91920
23	2.7521663	38.937030 41.680 106	14.147 14.495	${ }_{2}^{2.7829} 9359$	39.622 44.436 436	14.237 14.584 28	2.79888858 2.9269771		14.282 14.630 1
24	2.8760138	41.689196	14.49548	2.9096396	48.4364 .36		2.9209771	42.821713	
5	3.0051345	44.565210	14.82821	3．0420 464	45.378809	14.91720	3.0609305	45.798454	14.96227

PERPETUAL STOCK : 3 p.C. 66,6667 ; $3 \frac{1}{2}$ p.C.77,7778; 4 p.C. 88,8889 ; 5 p.C. $111,1111$.

$\begin{aligned} & \text { 4 } \\ & \frac{0}{6} \\ & 6 \end{aligned}$	RATIO of INTEREST: ANNUALLY, 0.045 .			RATIO of INTEREST: HALF-YEARLY, 0.0225.			RATIO of INTEREST: QUARTERLY, 0.01125.		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Aunnity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
$0 \frac{1}{3}$ $\frac{3}{3}$ 1^{3}	0.9569378	1.0000000	1.0450000	0.9779950 0.9564744	2.0000000 0.9888752	2.0450000 1.0338752	0.9888 0.9778 0.962 0.969 0.9562 183	4.0000 1.9888 1.3184 130 0.9832 1823	4.0450 2.0338 130 1.3634 452 1.0282 823
		:....	0.9394273	0.6518881	0.6968881	0.9455 0.9350 0.900	0.7822 0.6481 0.614	$\begin{array}{ll} 0.8272 & 013 \\ 0.6931 & 614 \end{array}$
$\frac{3}{4}$			\cdots				0.9246774	0.5524305	0.5974305
2	0.9157300	0.4889976	0.5339976	0.9148434	0.4834379	0.5284379	0.9143905	0.48064 .28	0.5256428
$\frac{1}{1}$			0.8947123	0.3823996	0.4273996	$\begin{array}{lll}0.9042 & 181 \\ 0.8941 & 588\end{array}$	0.4248173 0.3801653	$\begin{aligned} & 0.4698173 \\ & 0.4251653 \end{aligned}$
4				0.8947123	0.3823996	0.4273990	0.8941 0.8842 114	0.3436 394	0.3886 394
3	0.8762966	0.3187734	0.3637734	0.8750243	0.3150699	0.3600699	0.8743747	0.3132078	0.3582078
$\frac{1}{4}$						0.3120005	0.8646 0.8550	0.2874650	0.3324650 0.3104 055
$\frac{3}{4}$							0.8455163	0.2462 929	0.2912929
4	0.8385614	0.2337437	0.2787437	0.8369384	0.2309692	0.2759692	0.8361101	0.2295745	0.2745745
$\frac{1}{4}$				$0.818{ }^{\circ 10} 216$		0.24	0.82688 0.8176 0.804	0.2148 0.2017 0.5 185	$\begin{array}{ll} 0.2598 & 279 \\ 0.2467 & 245 \end{array}$
$\frac{3}{4}$							0.8085 145	0.1900 048	0.2350
5	0.8024510	0.1827919	0.2277919	0.8005101	0.1805754	0.2255754	0.7995200	0.1794612	0.2244612
							0.7906254	0.1699258	0.2149 0.2062 610
				0.7828	0.1622	0.2072730	0.7818298	0.1612610	0.2062610
6^{4}	0.7678957	0.1488784	$0.19388^{6} 78$	$0.70 \ddot{\square V}_{6}$	0.147030	0.1920348	0.7645311	0.1461081	0.1911081
							0.7560259	0.1394457	0.1844457
空	.			0.7488	0.1341537	0.1791537	0.7476152	0.1332991	0.1782991 0.1726109
7	0.7348284	0.1247015	$0.1697{ }^{\circ} 015$	$0.733_{23}{ }^{4} 413$	$0.1 \dddot{1231}^{246}$	0.1681246	0.7392980 0.7310	0.1276109 0.1223	0.1673 319
							0.7229404	0.1174199	0.1624199
$\frac{1}{3}$		0.7162263	0.1135771	0.1585771	0.7148978	0.1128382	0.1578382
8^{4}	0.7031851	060	0.1516		$0.10 \ddot{\square O}_{2} 333$	0.15023	0.7069 0.6990888	0.1085 0.1045 14	0.1535 0.1495414
							0.6913029	0.1007740	0.1457740
				0.6850	0.0978808	0.1428808	0.6836122	0.0972304	0.1422304
							0.6760072	0.0938920	0.1388920
9	0.6729044	0.0925745	0.1375745	0.6699	0.0913544	0.1363544	0.6684867	0.0907412	0.1357412
					0.1305	0.6610 0.65369 0.658	0.0877629	0.1327 0.1299 026
$\frac{3}{4}$			0.6552 348	0.0855236	0.1305	0.6536 0.6464 035 0.638	0.0849 0.0822 709	0.1299436 0.1272709
10	0.6439277	0.0813788	0.1263788	0.6408165	0.0802841	0.1252841	0.6392322	0.0797338	0.1247338
							0.6321208	0.0773228	0.1223228
				0.6267153	0.0755514	0.1205514	0.6250885	0.0750283	0.1200283
11	0.610101988	$0.07 \dddot{22} 482$	$0.117{ }^{1}{ }_{482}$	0.6129246	0.0712564	$0.11{ }^{10} 2{ }^{2} 564$	0.6181345 0.6112	0.0728 0.0707 880	0.1157580
							0.6044577	0.0687679	0.1137679 0.1118661
$\frac{3}{2}$			0.5994 .372	0.0673419	0.1123419	0.5977332	0.0668661	0.1118661 0.1100 169
12	0.5896639	0.0646662	0.10906662	$0.5960^{\circ} 467$	0.0637605	0.1087605	0.5845 078	0.0633 053	0.1083053
							0.5780053	0.0616364	0.1066364
$\frac{1}{3}$			0.573 .3464	0.0604720	0.1054720	0.5715751	0.0600355	0.1050355 0.1034
13	0.56072716	0.0582754	0.1032754	0.5607300	0.0574427	0.1024427	0.5652164 0.5589	$\begin{array}{\|l\|l\|} \hline 0.0584 \\ 0.0570 & 243 \\ \hline \end{array}$	0.1034 0.10208
							0.5527104	0.0556060	0.1006060
,				0.5483912	0.0546438	0.0996438	0.5465616	0.0542417	0.0992417
14	0.53099728	0.0528203	0.097820	0.5363239		0.0970505	0.5404 .812 0.5344	0.0529285 0.0516	0.0979285 0.0966637
	0.5399	0.0523203	0.097820	0.5303239	0.0520	0.0970505	0.5344684	0.0510637	
$\frac{1}{4}$						0.5285226	0.0504446	
				0.5245221	0.0496416	0.0946416	0.5226 0.5168285 0.5188	0.0492690 0.0481344	$\begin{aligned} & 0.0942690 \\ & 0.0931344 \end{aligned}$
15	0.5167204	0.0481138	0.0931138	0.5129801	0.0473987	0.0923987	0.5110789	0.0470394	0.0920394
	*...						0.5053932	0.0459814	0.0909814
告				0.5016920	0.0453056	0.0903056	0.4997708	0.0449588	0.0899588
10	$0.4914 \ddot{7}^{\circ} 693$	$0.04100^{\circ} 154$	0.0890154	$0.4906{ }^{\circ} 5$	0.0433483	0.0883483	0.4942109 0.4887 129	0.0439 0.0430 132	0.0889 0.0889
17	0.4731764	0.0404176	0.0854176	0.4692964	0.0397931	0.0847931	0.4673257	0.0394794	0.0844794
18	0.4528004	0.0372369	0.0822369	0.4488700	0.0366504	0.0816504	0.4468744	0.0363559	0.0813559
19	0.4333018	0.0344073	0.0794073	0.4293327	0.0338551	0.0788551	0.4273182	0.0335777	0.0785777
20	0.4146429	0.0318761	0.0768761	0.4106458	0.0313548	0.0763548	0.4086178	0.0310929	0.0760929
21	0.3967874	0.0296006	0.0746006	0.3927721	0.0291073	0.0741073	0.3907357	0.0288596	0.0738596
22	0.3797009	0.0275456	0.0725456	0.3756765	0.0270780	0.0720780	0.3736362	0.0268432	0.0718432
23	0.3633501	0.0256825	0.0706825	0.3593250	0.0252384	0.0702384	0.3572850	0.0250155	0.0700155
24	0.3477035	0.0239870	0.0689870	0.3436852	0.0235647	0.0685647	0.3416494	0.0233526	0.0683526
25	0.3327306	0.0224390	0.0674390	0.5287261	0.0220367	0.0670367	0.3266981	0.0218348	$0.0668 \cdot 348$

RATIO of INTEREST: ANNU.ALLY, 0.045 .
s.jez S

 5.0968605
5.3269 $\begin{array}{ll}5.3262 & 192 \\ 5 & 5658\end{array}$ 5.858991
5.8163645 6.0781009 6.3516155 6.6374382 $\begin{array}{lll}6.9361 & 229 \\ 7.2482 & 484\end{array}$
7.5744196 7.9152685 8.2714556 $8.036 \quad 711$
9.0326363 $\begin{array}{ll}9.4391 & 049 \\ 9.8638 & 646\end{array}$ 9.8638646
10.307
139 10.771587
11.256308

11.762842 19.202 170

 12.2921712.845318
13 13.423357
14.027
408 14.658641 15.318230
16.007603 16.727945
$17.480-02$ $\begin{array}{ll}18.267 & 3.54 \\ 19.089 & 364\end{array}$ 19.089364
19.948385
19.348 $20.846 \quad 063$

21.784136 \begin{tabular}{|ll}
29.764 \& 492

23.788 \& 821

24.859 \& 318

25.977 \& 087

24.859318

25.977 \& 987

\hline

 27.146996

28.368

29.645

\hline

29.645199

30.979233

32.3

 $\begin{array}{|ll|}32.373 & 298 \\ 33.830 & 096\end{array}$ $33.830 \quad 096$

35.352

4.51

36.94 .3

3811

38

40

\hline
\end{tabular} 40.343019 42.158455 44.055586 46.038087

48.109801 48.109801
50274
52 52.537105

$\begin{array}{lll}54.901 & 275 \\ 57 & 371 & 832\end{array}$ 57.371832 59.953565

 62.65147565.470
792
68.416977 71.49574 .1 74.713050 78.075137

81.588518 | 3.9138 | 575 | 64.752 | 388 | 16.544 | 39 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4.0899 | 810 | 68.666 | 245 | 16.788 | 89 |
| 4.2740 | 302 | 72.756 | 226 | 17.022 | 86 |
| | 4.68 | 15 | 77. | | |

\section*{
 } | 118.92 | 479 | 18.723 |
| :--- | :--- | :--- |
| 125.27 | 610 | 18.874 |
| 131 | | |
| 131.91 | 384 | 19.018 |
| 188 | | |
| 138.84 | 997 | 1.85 | 131.91384

138.84997 \begin{tabular}{|cc|}
146.09 \& 821

153.67 \& 26.3

161.58 \& 790

169.85 \& 936

1 \& 178.50

\hline

187.53 \& 566 \& 19.867 \& 95

196.97 \& 477 \& 19.969 \& 33

206.83 \& 863 \& 20.066 \& 34

217.14 \& 637 \& 20.159 \& 18
\end{tabular}

956.79079 10008464
1046.8845
109.884 1094.9943 1145.2690 1197.8061 11252.7074
1310.0792 1370.0328
1432.6843
1498.1551 1566.5720
1638.0678
1712.7808 1712.7808

\section*{| $\left.\begin{array}{l}\text { In } \\ \mathrm{Pr} \\ 3.1 \\ \hline\end{array}\right]$ |
| :--- |}

Improved Principal.	Cu An
3.1804785	

3.3252102 3.4765280 3.6347 318

$\begin{array}{lll}3.6001 & 348 \\ 3.80\end{array}$

3.9
4.
4.3
4.5
4.7

5.1
5.4
5.6
5.9
6.2

$19.2 R 8$
197 19.41471
19.53561
19.65130
19.762

 $\begin{array}{lll}6.4821 & 429 & 12 \\ 6.7771 & 209 & 12 \\ 7.0855 & 203\end{array}$ | 7.4079 | 578 | 142.39 | 906 | 19.222 |
| :--- | :--- | :--- | :--- | :--- |
| | | 44 | | |
| 7.7450 | 662 | 149.89 | 036 | 19.353 |
| 01 | | | | |
| 8.0975 | 151 | 157.72 | 256 | 19.477 |
| 90 | | | | | 19.762

19.867
19.85

8.0975	151	157.72	256	19.477	90
8.4660	027	165.91	117	19.597	34
8.8512	587	174	47	242	19.711
59					
9.2540	463	183.42	325	19.820	87

| 9.6751 | 632 | 192.78 | 141 | 19.925 | 39 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10.115 | $4+4$ | 202.56 | 541 | 20.025 | 36 |
| 10.575 | 760 | 212.79 | 466 | 20.120 | 98 |
| 11.057 | 023 | 223.48 | 939 | 20.212 | 44 |
| 11.560 | 186 | 234.67 | 081 | 20.290 | 02 |

RATIO of INTEREST: QUARTERLY, 0.01125.

Improved Principal.	Cumulated Annuity.	Value of Annuity.
3.2010142	48.911427	15.279

| Value of |
| :---: | :---: |
| Annuity |$|$| In |
| :--- |
| Pr |

12.086247	246.36105	20.38359				
12.636247	258.58326	20.46361				
13.211275	271.36167	2054016				
13.812471	284.72157	20.61337				
14.441024	298.68944	20.68340		27	20	333
:---	:---	:---				
1	03					
11	20.414	39				
28	20.492	24				
60	20.566	73				
95	20.638	02				
36	20.706	24				
00	20.771	59				
228	20833	99				
089	20.893	77				
			$\left	\begin{array}{ll	llll}15.098 & 181 & 313.29 & 292 & 20.750 & 37 \\ 15.785 & 243 & 328.56 & 095 & 20 & 814 \\ 44 \\ 16.503 & 570 & 344.52 & 378 & 20.875 & 71 \\ 17.254 & 586 & 361.21 & 301 & 20.934 & 32 \\ 18.039 & 777 & 378.66 & 171 & 20.990 & 38\end{array}\right	$

20.95098

18.039777

| 18.860 | 700 | 396.90 | 444 | 21.043 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19.718 | 979 | 45.97 | 732 | 21.095 | 27 |
| 20.616 | 316 | 435.91 | 814 | 21.14433 | |
| 21.554 | 488 | 456.76 | 639 | 21.191 | 24 | 21.554488

22.535351 456.76639
478.56337
 $\begin{array}{lll}501.35 & 224 \\ 525.17 & 815 \\ 550 & 08 & 829 \\ 576.13 & 199 \\ 603.36 & 085\end{array}$

3	21.005	72
7	21.0 .58	11
3	21.108	24
2	21.156	21
8	21.202	11

\section*{| 36.766924 |
| :--- |
| 38.440 |}

$\begin{array}{lll}38.440 & 049 \\ 40.189 & 312 \\ 4 & 12.018 & 177\end{array}$
$43.930 \quad 266$

794.82054
832.00

21.62070
21.64661
21.646
21.671
29

$21.695 \quad 11$ $\begin{array}{r}21.71781 \\ 21.73953 \\ 21.76032 \\ \hline\end{array}$ 21.78021 | 45.929 | 368 | 998.43 | 040 | 21.738 | 39 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 48.019 | 441 | 1044.8 | 765 | 21.759 | 45 |
| 50.204 | 626 | 1093.4 | 361 | 21.779 | 59 |
| 52.489 | 250 | 1144.2 | 056 | 21.798 | 85 |
| 54.877 | 839 | 1197.2 | 853 | $\mathbf{8 1 . 8 1 7}$ | 28 |

21.617
21.644
21.669
21
21.693
21.716
27
21.738
21.7
21.759
45
21.779
29
21.798
85
21.817

| 57.375 | 124 | 1259.7 | 805 | 21.834 | 91 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 59.986 | 051 | 1310.8 | 011 | 21.851 | 77 |
| 62.715 | 791 | 1371.4 | 620 | 21.867 | 89 |
| 65.569 | 751 | $1+34.8$ | 834 | 21.883 | 31 |
| 68.553 | 585 | 1501.1 | 908 | 21.898 | 06 |

71.673201 74.934780 78.344781 81.009 958

 81.90995885.637

	RATIO of INTEREST: ANNUALLY, 0.045 .			RATIO of INTEREST: HALF-YEARLY, 0.0225 .			RATIO of INTEREST: QUARTERLY, 0.01125 .		
	Discounted Principal.	Annuity for Cumulation	Ratio of Aunuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ilatio of Antuity.
26	0.3134025	0.0210214	0.0660214	0.3144181	0.0206377	0.0656377	0.3124010	0.0204451	0.0654451
	0.3046914	0.0197195	0.0647195	0.3007329	0.0193531	0.0643531	0.2987296	0.0191693	0.0641693
	0.2915707	0.0185208	0.0635208	${ }^{0.2876} 433$	0.0181706	0.0631706	0.2856565	0.0179949	0.0629949
	0.2790150	0.0174145	0.0624 145	0.2751235	0.0170795	${ }_{0}^{0.0650} 795$	0.2731555	0.0169114	0.0519114
	0.2670000	0.0163915	0.0613915	0.2631486	0.0160707	0.0610707	0.2612016	0.0159097	0.0609097
31	0.2555024	0.0154434	0.0604434	0.2516949	0.0151359	0.0601359	0.2497708	0.0149817	0.0599817
	0.2444999	0.0145632	0.0595632	0.2407397	0.0142682	0.0592682	0.2388403	0.0141203	0.0591203
	0.2339712	0.0137445	0.0587445	0.2302614	0.0134614	0.0584614	0.2283881	0.0133193	0.0583195
34	0.2238959	0.0129819	0.0579819	0.2202391	0.0127100	0.0577100	0.2183933	0.0125737	0.0575737
35	0.2142544	0.0122704	0.0572704	0.2106531	0.0180092	0.0570092	0.2088359	0.0118783	0.0568782
36	0.2050282	0.0116058	0.0566	0.2014843	0.0113546	0.0563546	0.1996968	0.0112287	0.0562287
37	0.1961992	0.0109840	0.0559840	0.1927146	0.0107424	0.0557424	0.1909576	0.0106213	0.0556213
	0.1877504	0.0104017	0.0554017	0.1843266	0.0101691	0.0551691	0.1826008	0.0100526	0.0550526
${ }^{5}$	0.1796655	0.0098557	0.0548557	0.1763037	0.0096318	0.0546318	0.1746098	0.0095197	0.0545197
0	0.1719287	0.0093431	0.0543431	0.1686299	0.0091275	0.0541275	0.1669685	0.0090196	0.0540196
41	0.1645251	0.0088616	0.0558616	0.1612902	0.0086538	0.0536538	0.1596616	0.0085499	0.0535499
2	0.1574403	0.0084087	0.0534087	0.1542700	0.0082084	0.05321884	0.1526744	0.0081083	0.0531083
3	0.1506605	0.0079823	0.0529823	0.1475553	0.0077893	0.0527893	0.1459930	0.0076928	0.0526988
	0.1441728	0.0075807	0.0525807	0.1411329	0.0073946	0.0523946	0.1396040	0.0073015	0.0523015
5	0.1379644	0.0072020	0.0522020	0.1349900	0.0070225	0.0520225	0.1334946	0.0069327	0.0519327
46	0.1320233	0.0068445	0.0518445	0.1291145	0.0066715	0.0516715	0.1276526	0.0065850	0.0515850
7	0.1263381	0.0065073	0.0515073	0.1234947	0.0063402	0.0513402	0.1220662	0.0062567	0.0512567
48	0.1208977	0.0061886	0.0511886	0.1181195	0.0060273	0.0510273	0.1167243	0.0059467	0.0509467
9	0.1156916	0.0058872	0.0508872	0.1129783	0.0057316	${ }^{0.0507} 316$	0.1116162 0.1067316	${ }_{0}^{0.0056} 5388$	0.0506538
50	0.1107096	0.0056021	0.0506021	0.1080608	0.0054519	0.0504519	0.1067316	0.0053768	0.0503768
51	0.1059422	0.0053323	0.0503323	0.1033574	0.0051872	0.0501872	0.1020608	0.0051148	0.0501148
5	0.1013801	0.0050768	0.0500768	0.0988587	0.0049367	0.0499367	0.0975 944	${ }^{0.0048} 6667$	0.0498667
3	0.0970145	0.0048347	0.0498347	0.0945559	0.0046994	0.0496994	0.0933234	0.0046318	0.0496318
54	0.0928368	0.0046	0.0496052	0.0904403	0.0044745	0.0494745	0.0892394	$0.0044{ }^{093}$	0.0494093
55	0.0888391	0.0043876	0.0493876	0.0865038	0.0012613	0.0492613	0.0853341	0.0041983	0.0491983
6	0.0850	0.0041811	0.0491811	0.0827387	0.0040591	0.0490591	0.0815997	0.0039982	
7	0.0813526	0.0039851	$0.0+89851$	0.0791374	0.0038672	0.0488672	0.0780287	0.0038085	0.0488085
	0.0778494	0.0037990	0.0487990	0.0756929	00036851	0.0486851	0.0746139	0.0036284	0.0486284
5	0.0744970	0.0036222	0.0486222	0.0723983	0.0035122	0.0485122	0.0713487	0.0034574	0.0484574
6	0.0712890	0.0034543	0.0184543	0.0692472	0.0033480	0.0483480	0.0682263	0.0032950	0.0482950
	0.0682192	0.0032946	0.0482946	0.0662 331	0.0031919	0.0481919	0.0652405	0.0031407	0.0481407
${ }^{2}$	0.0652815	0.0031428	0.0481428	0.0633503	0.0030436	0.0480436	0.0623855	0.0029941	0.0479941
3	0.0624703	0.0029985	0.0479985	0.0605929	0.00צ9 026	0.0479026	0.0596553	0.0028548	0.0478 548
4	0.0597802	0.0028611	0.0478611	0.0579555	0.0027684	0.0477634	0.0570447	0.0027223	$0.0477{ }^{223}$
65	0.0572059	0.0027	0.0477305	0.0554331	0.0026409	0.0476409	0.0545483	0.0025963	0.0475963
6	0.0547425	0.0026061	0.0476061	0.0530203	0.0025195	0.0475195	0.0521611	0.0024764	$0.0474{ }^{6} 64$
67	0.0523852	0.0024877	0.0174877	0.0507125	0.0024040	0.0474040	0.0498 784	0.0023 624	0.0473624 0.0472538 0.071
	0.0501294	0.0023749	0.0473749	0.0485053	0.0022940	0.0472940	0.0476956	0.0022538	0.0472538
99	0.0479707	0.0022675 0.0021651	0.0472675	0.0463941	0.0021893	$0.04 \div 1893$			
0	0.0459050	0.0021651	0.0471651	0.0443747	0.0020896	0.0470896	0.0436124	0.0020521	0.0470521
1	0.0439282	0.0020676	0.0170676	0.0424433	0.0019946	0.0469946	0.0417039	0.0019583	0.0469583
2	0.0420365	0.0019747	0.0469747	0.0405959	0.0019041	0.0469041	0.0398788	0.0018691	
73	0.0402264	0.0018861	0.0468861	0.0388290	0.0018179	0.0468179	0.0381336	0.0017840	0.0467840
74	0.0384941	0.0018016	0.0468016	0.0371389	0.0017357	0.0467357	0.0364648	0.0017030	$0.0467{ }^{030}$
75	0.0368365	0.0017210	0.0467210	0.0355224	0.0016574	0.0466574	0.0348690	0.0016258	0.0466258
6	0.0352502	0.0016442	0.0466442	0.0339763	0.0015827	0.0465827	0.0333431	0.0015522	0.0465522
7	0.0337323	0.0015709	0.0165709	0.0324974	0.0015115	0.0465115	0.0318839	0.0014820	0.0464820
8	0.0322797	0.0015010	0.0465010	0.0310830	0.0014436	0.0464436	0.0304886	0.0014151	0.0464151
9	0.0308897	0.0014348	0.0464343	0.0297301	0.0013788	0.0463788	0.0291543	0.0013513	0.0463513
	0.0295595	0.0013707	0.0463707	0.0284361	0.0013171	0.0463171	0.0278785	0.0012905	0.0462905
31	0.0282866	0.0013100	0.0463100	0.0271984	0.0012581	0.0462581	0.0266584	0.0012325	0.0462325
32	0.0270685	0.0012520	0.0462500	0.0260145	0.0012019	0.0462019	0.0254918	0.0011775	0.0461771
33	0.0259029	0.0011966	0.0461966	0.0248822	0.0011483	0.0461483	0.0243762	0.0011243	0.0461243
84	0.0247874	0.0011438	0.0461438	0.0237992	0.0010971	0.0460971	0.0233 095	0.0010740	0.0460
85	0.0237200	0.0010933	0.0460933	0.0227633	0.0010482	0.0460482	0.0222894	0,0010 459	0.0460259
	0.0226986	0.0010452	0.0460452	00217726	0.0010016	0.0450016	0.0213140	0.0009800	0.0459800
	0.0217211	0.0009992	0.0459992	0.0208 249	0.0009571	0.0459571	0.0203812	0.0009362	0.0459362
8	0.0207858	0.0009552	0.0459552	0.0199185	0.0009145	0.0459145	0.0194893	0.0008944	0.0458944
39	0.0198907	0.0009133	0.0459133	0.0190515	0.0008740	0.0458740	0.0186364	0.0008546	0.0458546
90	0.0190342	0.0008732	0.0458732	0.0182223	. 01008	0.0158352	0.0178208	0.0008165	0.0558165
91	0.0182145	0.0008349	0.0458349	0.0174292	0.0007982	0.0457982	0.0170409	0.0007801	0.0457801
2	0.0174302	0.0007983	0.0457983	0.0166705	0.0007629	0.0457629	0.0162952	0.0007454	0.0457454
93	0.0166796	0.0007633	0.0457633	0.0159449	0.0007291	0.0157291	0.0155821	0.0007123	0.0457123
	0.0159613	0.0007299	0.0457299	0.0152519	0.0006969	0.0456969	0.0149002	0.0006806	0.0456806
5	0.0152740	0.0006980	0.0456980	0.0145871	0.0006661	0.0456661	0.0142481	0.0006504	0.0456 5, 4
96	0.0146163	0.0006675	0.0456675	0.0139522	0.0006367	0.0456367	0.0136246	0.0006216	0.04506216
	0.0139868	0.0006383	0.0456383	0.0133449	0.0006086	0.0456086	0.0130283	0.0005940	0.¢455 940
	0.0133845	0.0006105	0.0456105	0.0127641	0.0005818	0.0455818	0.0124582	0.0005677	C.0455 677
100	0.012808	5 838	.0455 838	0.0122085	0.0005562	0.0455562	0.011913	0.0005425	0.0455425
100	0.0122566	0.0005584	. 0455584	0.0116771	0.0005317	0.0455317	0.0113916	0005	0.0455185
	Ratio of P								0.0450000

RATE of INTEREST： $4 \frac{3}{4}$ per Cent．per Ann．——CORRESPONDING VALUE of

合	RATIO of INTEREST： ANNUALLY， 0.0475.			RATIO of INTEREST： HALF－YEARLY，0．02375．			RATIO of INTEREST： QUARTERLY， 0.011875.		
	Improved Principal．	Cumulated Annuity．	Value of Anulity．	Improved Principal．	Cumulated Annuity．	Value of Annuity．	Improved Principal．	Cumulated Annuity．	Value of Aunuity．
$0 \frac{1}{4}$	0475000	1.0000000	0.954654	1.0237500 1.0480641	0.5000000 1.0118750	0.488400 0.9654 10	1.0118750 1.0238910 1.0360 1.0483 1828	0.2500 0.5029 0.7888 1.0179 1.083 159	$\begin{aligned} & 0.247066 \\ & 0.491233 \\ & 0.732534 \\ & 0.9710 \end{aligned}$
2	1.0972563	2.0475000	1.866018	1.0729556 1.0984383	1.5359070 2.07×33^{848}	1.431473 1.886665	1.0608 1.0733 1.0830 1.0861 1.0990	1.2800 1.5452 1.8121 1.8135 2.8851 2888	1.206674 1.439579 1.669751 1.897221
$\frac{1}{4}$ $\frac{8}{8}$ $3^{\frac{8}{4}}$	1.14937	3.1447563	2.736055	$1.120 \% 262$ 1.1512337		2.331296 2．760． 2．	1.1120918 1.1253009 1.1386638 1.1521	$\begin{array}{lll}2.3598 & 897 \\ 2.6379 & 134 \\ 2.9192 & 386 \\ 3.2039 & 046\end{array}$	$\begin{aligned} & 2.122022 \\ & 2.344185 \\ & 2.5637 \\ & 2.7807 \\ & \hline 10 \end{aligned}$
4^{4}	1.1493759 $\ldots .$. $\ldots \ldots$ 1.2039713	3.1447563 $\ldots \ldots$. $\ldots \ldots$ 4.2941322	2.736055 $\ldots \ldots$. $\cdots .6$ 3.50660	$1.178)^{755}$ 1.2065667		2.765613 130854 3.1898 3.6042	1.1521855 1.1658 1.1797 1.1977 1.1937 1.2078 1869	3.2039046 3.4919 3.7834 4.0783 4.379 4.367 663	2.780720 2.995152 3.207068 3.416497 3.623469
5	1.261150	5.4981035	4.350561			4．0090 38 $\cdots \cdots 3$	$\begin{array}{lll}1.2222 & 407 \\ 1.2367 & 548 \\ 1.2514 & 412 \\ 1.2663 & 021\end{array}$	4.6787 4.605 $4.98+3$ 5.4934 5.6064 5094	$\begin{array}{lll}3.8280 & 11 \\ 4.0 .301 & 53 \\ 4.2299 & 23 \\ 4.4273 & 48\end{array}$
5	1.261150	5.4981035	4.359561	1.26 .45591	5.5636	4.404433	1.2663021	5.6063597	4.427348
$\frac{1}{4}$			．．．．．		6.2019	4.790655	1.2815 1.2065 1.354	5.9229352 6.2432701	4622456 4.815275
$\frac{3}{4}$							1.3119519	$6.567+089$	5.005831
6	1.3210650	6.7592634	5.116526	1.3253390	6.8492421	5.167917	1.3275 314	6.8953969	$5.19+150$
$\frac{3}{4}$				1.35068158	7.5119	5.536427	1.3432958 1.3592 1.374	7.2272797 7.5631 7.507	5.380259 5.56 ± 185 5.748
$\frac{3}{4}$							1.3753885	7.9029155	5.745952
7	1.3838156	8.0803284	5.839165	1.3890402	8.1903195	5.896388	1.3917212	8.2467626	5.925585
$\frac{1}{4}$							1.4082479	8.5946929 8.9407549	6.103111
$\frac{2}{3}$				1.4220299	8.8848395	6.247998	1.4249709 1.4418 924	$\begin{aligned} & 8.94675497 \\ & 9.3029976 \end{aligned}$	6.278553 6.451936
$8{ }^{\text {a }}$	1.44095468	9.46411440	6.50936	1.4558031	$9.59{ }^{\circ} \mathrm{FB} 545$	6．591i 51	1.4590149	9.6634707	6.623285
$\frac{1}{4}$						6.926936	$\begin{aligned} & 1.4763407 \\ & 1.4938722 \end{aligned}$	$\begin{array}{ll} 10.028 & 224 \\ 10.397 & 310 \end{array}$	$\begin{aligned} & 6.792622 \\ & 6.959973 \end{aligned}$
$\frac{3}{3}$				1.4903784	10.323756	0.920936	1.4938722 -1.5116119 1	$\begin{aligned} & 10.397310 \\ & 10.770778 \end{aligned}$	$\begin{aligned} & 6.959973 \\ & 7.1253 \quad 50 \end{aligned}$
9^{4}	1.5184003	10.913691	7.187624	1.5257749	11.068845	7.254638	$1.5 \% 95623$	11．148 681	7.288804
$\frac{1}{4}$		．．．．	．．．．				1.5477259	11.531 11.918 0	7.450332
$\frac{1}{2}$	．．．．．	．．．．．			83	7.5747	1.5661 1.5847 1.651	11.918003 12.309529	7.609963 7.767722
10	1.5905243	12.432091	7.816348	1.5991098	12.612839	7.887412	1.6035210	12.705705	7.923629
$\frac{1}{4}$							1.6225628	13.106585	8.077706
$\frac{1}{2}$	．	．		1.6370887	13.412394	8.192832	1.6418307	13.512 13.922683 18.3	8.229975
11	$1.66600^{\circ} 742$	$14.0{ }^{\circ 2}{ }^{\circ} 615$	8．410\％5 61	1.6759696	14.230938	8.491167	1.6310557	14.338015	8.529173
$\frac{1}{4}$							1.7010183	14.758279	8.676144
$\frac{1}{3}$				1.7157738	15.068923	8.782581	1.7212178	15.183534	8.821390
12	1.7452128	15.6988690	8.989557	1.7565235	15.926810	9.0967234	（1．7623 395	16.013838 16.042	8.904931 9.106788
$\frac{1}{4}$							1.7832673	16.489837	9.246980
产				1.7982409	16.805071	9.345284	1.8044436	16.935654	9.385527
13	1.8281104	17.433902	9.536570	1.840949 L	17.704192	9.616883	1.8258 1.8475 1836	17.386 17.843 233	9.5224 9.6577 62
$\frac{1}{4}$							1.8694933	18.305121	9.791488
䓔				1.8846717	18.624666	9.882181	1.8916935	18.772495	9.923645
${ }^{\frac{3}{4}}$	1.9149456	$19.262^{\circ} 013$	10.05878	1.9294326	19.567002	10.14132	1.9141574 1.936888	19.245418 19.723957	10.054 10.183 12
	1.9149450	19.262	10．05 78			10.1413	－		
$\frac{1}{1}$			\ldots				1.9598885	20.208179	10.31088
$\frac{1}{3}$				1.9752566	20.531719	10.39446	1.9831622	20.698151	10.43694
－${ }^{\frac{3}{4}}$	2.00500055	$21.17{ }^{\circ} 958$	10.50 .931	2.0221690	21.519347	10.64172	2.0067 2.0305 419	21.193942 21.695620	10.56153 10.68465
$\frac{4}{4}$							2.0546546	22.203255	10.80632
$\frac{1}{3}$				2.0701955	22.530431	10.88324	2.0790537	22.716919	10.92657
16	$2.1011{ }^{1} 860$	23.182864	11.03323	2.1193626	23.565529	11.11916	2.1037424 2.1287244	23.236683 23.762618	11.045 11.162 84
			11.033	2.11930					
17	2.2009924	25.284050	11.48757	2.2212278	25.710059	11.57471	2.2316542	25.929561	11.61899
18	2.3055395	27.485042	11.92131	2.3279890	27.957664	12.00936	2.3395609	28.201283	12.05409
19	2.4150526	29.790588	12.33538	2.4398817	30.313298	12.42409	2.4526853	30.582848	12.46913
20	2.5297676	32.205635	12.73067	2.5571523	32.782153	12.81979	2.5712795	33.079568	12.86502
21	2.6499316	34.735402	13.10804	2.6800594	35.369672	13.19735	2.6956081	35.697013	13.24266
22	2.7758034	37.385334	13.46829	2.8088739	38.081557	13.55759	2.8259483	38.441017	13.60288
23	2.9076540	40.161137	13.81221	2.9438798	40.923786	13.90131	2.9625909	41.317703	13.94648
24	3.0457676	43.068791	14.14054	3.0853747	43.902624	14．2：9 27	3.1058405	44.333484	14.27423
25	3.1914415	46.114559	14.45397	3.2336703	47.024638	14．542 19	3.2560166	47.495086	14.58687

PERPETUAL STOCK : 3 p.C.63,1579; $3 \frac{1}{2}$ p.C.73,6842; 4 p.C. 84,$2105 ; 5$ p.C. 105,2632.

	RATIO of INTEREST: ANNUALLY, 0.0475 .			RATIO of INTEREST: HALF-YEA RLY, 0.02375.			RATIO of INTEREST: QUARTERLY, 0.011875 .		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Frincipal.	Annuity for Cumulation	Ratio of Anuuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Amnuity.
	$\bigcirc 946540$	1.0000000	a... 1.0470^{000}	0.976009 $0.95411^{4} 401$	2.0000000 $0.9888{ }^{1} 644$	2.0475000 1.0309644		4.0000000 1.9881951 1.3176247 0.9883627 0.9883627	$\begin{aligned} & \begin{array}{l} 4.0475000 \\ 2.0356 \\ 1.351 \\ 1.051 \\ 1.0298 \\ 1.247 \end{array} \end{aligned}$
		0	0.5350	0.9320050 0.0	0.65ı70 811	0.6985811	$0.94 E 6830$ 0.9316 000 0.9206 009	$\begin{aligned} & 0.7812 \\ & 0.6471 \\ & 0.646 \\ & 0.5513 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.8287243 \\ & 0.69946476 \\ & 0.5988918 \end{aligned}$
	$0.9113^{\circ} 641$	0.4884005	0.5359005	0.9103834	$0.4885 \quad 359$	0.5300359	0.9098820	0.4795857	$\begin{aligned} & . .578918 \\ & 0.5270867 \end{aligned}$
			0.8892634	0.3814459	0.4289459	0.8992 0.8889 0.888 0.878 0.812	$\begin{aligned} & 0.4237486 \\ & 0.3790875 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.4712486 \\ & 0.4265875 \\ & 0.8005 \end{aligned}$
3	0.8700374	0.3179897	0.3654897	0.8686334	0.3140835	0.36158	0.8782 c 23 0.8679 0.858	$\begin{aligned} & 0.3425 \\ & 0.3121 \\ & 551 \end{aligned}$	$\begin{aligned} & 0.3900 \\ & 0.35961 \\ & \hline 191 \end{aligned}$
				0.8484, 819	0.2659940	0.3134940	0.87973 0.8577 0.8476 043 0.8377	$\begin{array}{ll}0.2863 & 729 \\ 0.2643 \\ 0.313\end{array}$	0.3338729 0.3118113
4	0.8305846	0.832875	0.2803759	0.8287980	0.2699500	0.2774500	0.8377163 0.8278 853	0.2451 0.2284 187	0.2926974 0.275978
							0.8181694	0.2137323	0.2612323
				7	1919	0.249	0.8085677 0.7990787	0.2006 0.1889 0.110	
5	0.7929207	0.1818809	0.2293809	0.7907894	0.179 .9440	0.2270440	0.7897011	0.1783689	0.2258 0.889
				0.7724438	0.161	0.2087397	0.7804333 0.7712	$\begin{aligned} & 0.1688 \\ & 0.1601 \\ & 0.252 \end{aligned}$	0.2163352 0.2076725
				-.7...			0.7622231	0.1522671	0.1997671
6	0.7569650	0.1479451	0.1954451	0.7545239	0.1460016	0.1935016	0.7532779	0.1450243	0.1925243
			0.7370	0.1331219	0.1806\% 219	0.7444377 0.7357012	$\begin{aligned} & 0.1383 \\ & 0.1322 \\ & 046 \\ & \hline 209 \end{aligned}$	0.1858646 0.1797209
							${ }_{0}^{0.7270} 673$	0.1265356	0.1740356
	0.7226396	0.12375	0.1712574	0.7199216	0.1220954	0.1695954	0.7185347	0.1212597	0.1687597
				0.7032	0.1125513	0.16000513	0.7101023 0.7017 0807	0.1163509 0.1117 0.124	0.1638 0.1592 209
					0.120	0.160 ${ }^{\text {cos }}$	0.6935330	0.1074922	0.1549922
-	0.6898708	0.1056620	0.1531620	0.6869061	0.1042117	0.1517117	0.6853940	0.1034825	0.1509825
				0.6709705	0.0968	0.1443640	$\begin{array}{ll} 0.6773 & 505 \\ 0.6694 & 013 \end{array}$	$\begin{aligned} & 0.0997 \\ & 0.0961 \\ & 0.097 \end{aligned}$	$\begin{aligned} & 0.1472185 \\ & 0.1436787 \end{aligned}$
				0.60 .90	0.09		-	0.0928 0.084 0.0896	${ }^{0} 0.1403434$
	0.6585	0.0916280	0.1391280	0.6	0.09034	0.	0.6537818	0.0896967	0.1371967
				0.6401999	0.0815178	0.1320178	0.6461092 0.6385267	0.0867222	0.1342 222
				0.6401999	0.0845	0.1320178	0.6385267 0.6310 0.632	0.0839 0.0812 0.0879	0.1314 0.1887 0.1279 0.1289
10	0.628723	0.0304370	0.1279370	0.6253478	0.079	0.1267843	0.6236276	0.0787048	0.1262048
		0.61	0.0745579	0.1220579	0.6163090 0.6090 62	0.0762 0.0740 0.071	0.1237 0.1215 071
				0.n	0.0745579	-.1220 579	${ }_{0}^{0.6019} 283$	0.0718252	0.1193 252
11	0.6002133	0.0713134	0.1188134	0.5966696	0.0702694	0.1177694	0.5948642	0.0697447	0.1172447
			0.58888274	0.06636	$0.1138{ }^{6} 617$	0.5878832 0.5809840	$\left\|\begin{array}{ll} 0.0677 & 586 \\ 0.0658 & 608 \end{array}\right\|$	$\begin{array}{ll} 0.1152 & 586 \\ 0.1133 & 608 \end{array}$
				-. 5.38	0.0603	0.130	${ }_{0}^{0.5741} 658$	0.0640458	0.1115 458
2	0.5729960	0.063740	0.111240	0.5693064	0.0627872	0.1102872	0.5674276	0.0623032	0.1098082
							$\begin{aligned} & 0.5607684 \\ & 0 \end{aligned}$	0.0606 0.0594 0.0	0.1081434
				0.5560990	0.0595058	0.1070058	$\begin{aligned} & 0.5541885 \\ & 0.5476837 \end{aligned}$	0.0590 0.0575 0.050	0.1065470 0.1050 0.150
${ }_{3}^{4}$	0.5470128	0.0573595	0.104859	0.5431981	0.05094838	0.10398	0.5412563	0.0560438	0.1035438
				0.5305964		0.1011922	0.5349 0.5286 069	0.0546 0.0532 095	0.1021295 0.1007 0.94
				-.5.55 964	0.0536	0.101192	0.5224230	${ }_{0}^{0.0519} 604$	0.0994604
14	0.5222081	0.0519157	0.0994157	0.5182871	0.0511065	0.0986065	0.5162921	0.0506998	0.0981998
				$0.506 \chi^{6} 63$	0.0487051	0.0962051		0.0494849 0.0483135	0.00698 0.0958 0.098
				0.5002633	0.0487051	0.0902051	$\begin{array}{\|l\|l} 0.5042 & 452 \\ 0.4983 & 276 \end{array}$	0.0483135 0.0471 0	0.0958 0.0946 0.035
15	0.4985280	0.0472811	0.0947211	0.4945185	0.0464698	0.0939698	0.4924793	0.0460923	0.0935923
				0.4830461	0.0443844	0.091884	$\begin{aligned} & 0.4809881 \\ & 0.4753433 \end{aligned}$	0.0440 0.0430 0.01	$\begin{aligned} & 0.09152215 \\ & 0.0905 \\ & 354 \end{aligned}$
16	0.4759217	0.0431353	0.0906353	0.4718399	0.0424349	0.0899349	0.4697649	0.0420829	0.0895829
17	0.4543 0.4337 05 0.4	0.0395506 0.0363834	0.0870 0.0838 0.0838 0	0.4502015	0.0388953	0	0.4480981	0.0385660	${ }^{0.0860} 6600$
18	0.4337 380	${ }^{0.0363} 834$	0.0838834	0.4295553	0.0357684	0.0832684	0.4274306	0.0354594	. 0.08895994
19 80	0.4140 0.3952 932	0.0335 0.0310 0.05	0.0810 0.0785 005	0.4098560 0.3910	0.0329888 0.0305 044	0.0804 0.0780 088	0.4077164 0.3889 115	0.0326 0.0302 301	0.0801 0.0777 301
21	${ }^{0.3773} 682$	0.0287891	0.0762891	0.3731261	0.0282598	0.0757598	0.3709738	0.0280135	0.0755135
21	0.3602561	0.0267485	0.0742485	0.3560145	0.0262594	0.0737594	0.3538635	0.0260139	0.0735139
23	0.3439199	0.0248997	0.0723997	0.3396878	0.0244357	0.0719357	0.3375424	0.0242027	0.0717027
4	0.3283245	0.0238187	0.0707187	0.3241098	0.0227777	0.0702777	0.3219741	0.0285563	0.0700 563
25	0.3134362	0.0216851	0.0691851	0.3092461	0.0212654	0.0687654	0.3071237	0.0210548	0.0685548

$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	RATIO of INTEREST:$\text { ANNUALLY, } 0.0475 .$			RATIO of INTEREST: HALF-YEARLY, 0.02375.			RATIO of INTEREST: QUARTERLY, 0.011875.		
	Improved Principal.	Cumulated Annuits'.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Valne of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.
26	3.3419875	49.305000	14.75320	3.3890936	50.296708	14.84075	3.4134542	50.809561	14.88509
27	3.5007319	52.646988	15.03885	3.5519872	53.726047	15.12563	3.5785043	54.284300	15.16955
28	3.6670167	56.147720	15.31155	3.7227102	57.320214	15.39745	3.7515350	57.927053	15.44089
29	3.8412000	59.814736	15.57189	3.9016388	61.087132	15.65679	3.9329323	61.745943	15.69972
30	4.0236570	63.655936	15.82042	4.0891674	65.035102	15.90424	4.1231006	65.749486	15.94661
31	4.2147807	67.679593	16.05768	4.2857094	69.172829	16.14035	4.3224641	69.946613	16.18212
32	4.4149828	71.894374	16.28418	4.4916980	73.509431	16.36562	4.5314674	74.346682	16.40576
33	4.6246944	76.309357	16.50041	4.7075872	78.054468	16.58057	4.7505766	78.959507	16.62104
34	4.8443674	80.934051	$16.700{ }^{84}$	4.9338530	89.817996	16.78566	4.9802803	83.795375	16.82543
35	5.0744749	85.778419	16.90390	5.1709940	87.810400	16.98134	5.2210909	88.865071	17.02040
36	5.3155124	90.852894	17.09203	5.4195330	93.042800	17.16805	5.4735453	94.179901	17.20638
37	5.5679993	96.168406	17.27162	5.6800177	98.596 689	17.31519	5.7382060	99.751718	17.38378
38	5.8324792	101.73641	17.44308	5.9530225	104.27416	17.51617	6.0156650	105.59295	17.55300
39	6.1095220	107.56838	17.60676	6.2391489	110.29787	17.67835	6.3065394	111.71662	17.71441
40	6.3997243	115.67841	17.76302	6.5390278	116.61111	17.83310	6.6114783	118.13638	17.86838
41	6.7037112	120.07813	17.91219	6.8533200	123.22779	17.98074	6.9311618	124.86657	18.01524
42	7.0221575	126.78184	18.05459	7.1827184	130.16249	18.12162	7.2663030	131.92217	18.15533
43	7.3556890	133.80398	18.19054	7.5279490	137.43051	18.25603	7.5176492	139.31893	18.28896
44	7.7050843	141.15967	18.32033	7.8897728	145.04785	18.38429	7.9859840	147.07335	18.41643
45	8.0710758	148.86475	18.44423	8.2689874	153.03131	18.50666	8.3721287	155.20271	18.53802
46	8.4544519	156.93583	18.56251	8.6664285	161.39849	18.62	8.7769447	163.72515	18.65400
47	8.8560383	165.390088	18.67542	9.0829723	170.16784	18.73482	9.2013347	172.65968	18.76463
48	9.2767001	174.24632	18.78322	9.5195368	179.35867	18.84111	9.6462451	182.02621	18.87016
49	9.7173434	183.52302	18.88613	9.9770844	188.99125	18.94253	10.112668	191.84564	18.97082
50	10.178917	193.24036	18.98437	10.456624	199.08681	19.03930	10.601644	202.13988	19.06684
51	10.662416	203.41928	19.07816	10.959	209.66761	19.13163	11.114263	212.93186	19.15843
52	11.168881	214.08170	19.16769	11.485956	220.75696	19.21973	11.651669	224.24567	19.24580
53	11.699402	225.25058	19.25317	12.038017	232.37931	19.30379	12.215060	236.10653	19.32913
54	12.255124	236.94998	19.33477	12.616613	244.56028	19.38399	12.805693	248.54090	19.40862
55	12.837242	249.20510	19.41267	13.223019	257.32672	19.46051	13.424884	261.57651	19.48445
56	13.447011	262.04234	19.48704	13.858571	270.70676	19.53353	14.074015	275.24242	19.55678
57	14.085744	275.48936	19.55803	14.524670	284.72990	19.60319	14.754533	289.56912	19.62577
58	14.754817	289.57510	19.62580	15.222785	299.42705	19.66966	15.467956	304.58855	19.69158
59	15.455671	304.32992	19.69050	15.954454	314.83061	$19.733 \bigcirc 9$	16.215875	320.33422	19.75436
60	16.189815	$319.7855 y$	19.75227	16.721290	330.97452	19.79360	16.999959	336.84123	19.81424
61	16.958832	335.97540	$\begin{array}{ll}19.811 & 23 \\ 19\end{array}$	17.524983	347.89438	$19.851 ~$ 14 19	17.821954 18.683 606	354.14641 379.28834	
62	17.764376	35.93494	19.86753	18.367305	365.62747	19.90643	18.683696	379.28834	19.92584
63	18.608184	370.69861	19.92127	19.250112	384.21288	19:959 00	19.587105	391.30748	19.97781
64	19.492073	389.30680	19.97257	20.175951	403.69159	20.00915	20.534197	411.24625	20.02738
65	20.417946	408.79887	20.02155	21.145060	424.10652	20.05700	21.527083	432.14912	20.07467
66	21.387799	429.21681	20.06830	22.161377	445.50268	20.10266	22.567978	454.06269	20.11978
67	29.403719	450.60461	20.11294	23.226 54.3	467.92723	20.14523	23.659203	477.03986	20.16280
${ }_{68}$	23.467895	473.00883	20.15555	24.342905	491.42958	20.18780	24.803192	501.11984	20.20384
69	24.582621	496.47623	20.19623	25512924	516.06156	20.22746	26.002496	526.36884	20.24299
70	25.750295	521.05885	20.23506	26.739179	541.87745	20.26530	27.259790	552.83769	20.28033
71	26.973434	546.80914	20.97214	28.024373	568.93416	20.30141	28.577878	580.58689	20.31595
72	28.254673	573.78258	20.30753	29.371338	597.29132	20.33586	29.959698	6 ng .67786	20.34993
73	29.596769	602.03725	$20.3+132$	30.783045	627.01144	20.36872	31.408334	640.17545	20.38234
74	31.002616	631.63402	20.37357	32.262602	658.16003	20.40009	32.927015	$672.14{ }^{769}$	20.41326
75	32.475240	662.63664	20.40436	33.813273	690.80575	20.43002	34.519129	705.66587	20.44275
76	$34.017{ }^{\text {² }} 814$	695.11188	20.43376	35.438477	$7 \geqslant 5.02056$.	35.188226	740.80476	20.47087
77	35.633660	79.12969	20.46182	37.141794	760.87987	20.48581	37.938028	777.64270	20.49770
78	37.526259	764.76335	2048861	38.926979	798.46272	20.51181	39.772439	816.26187	20.523 .30
79	39.099257	802.08961	20.51118	40.797968	837.85196	20.53661	41.695548	856.74833	20.54771
80	40.956471	841.18887	20.53860	42.758884	879.13440	20.56028	43.711645	899.19253	20.57101
81	42.901904	882.14534	20.56191	44814050	922.40105	20.58285	45.825226	943.68897	20.59322
82	44.939744	925.04724	20.58416	46.967995	967.74727	20.60440	48.041005	990.33694	20.61440
83	47.074382	969.98699	20.60540	49.225468	1015.2730	20.62495	50.363922	1039.2405	20.63462
84	49.310415	1017.0614	20.02568	51.591444	1065.0830	20.64457	52.799159	1090.5086	20.65390
85	51.652660	1066.3718	20.64504	54.071138	1117.2871	$20.663{ }^{2} 8$	55.352147	1144.2557	20.67229
86	54.106161	1118.0244	20.66353	56.670017	1172.0004	20.68114	58.088579	1200.6017	20.68983
87	56.676204	1172.1306	20.68117	59.393808	1229.3433	20.69817	60.834424	1959.6721	20.70656
88	59.368323	1228.8068	20.69801	62248516	1289.4424	20.71443	63.775940	1321.5987	20.72252
89	62.188319	1288.1751	20.71410	$65.240) 4.32$	1352.4301	20.72994	66.859686	1386.5197	20.73775
90	65.142264	1350.3635	20.72944	68.376152	1418.4453	20.74473	70.092540	1454.5798	20.75226
91	68.236521	1415.505 y	20.74410	71.662588	1487.6534	20.75886	73.481711	1525.9308	20.76613
92	71.477756	1483.7422	20.758	75.106983	1560.1470	20.77233	77.03 ± 758	1600.7318	20.77934
93	74.872950	1555.2200	20.77145	78.716930	1636.1459	20.78519	80.759605	1679.1496	20.79195
94	78.429415	1630.0929	20.78420	82.500385	1715.7976	20.79745	84.664559	1761.3591	20.80397
95	82.154812	1708.5224	20.79637	86.465689	1799.2777	20.80915	88.758329	1847.5438	20.81544
96	86.057165	1790.6772	20.80799	90.621582	1886.7701	20.82032	93.050044	1937.8957	20.826 .38
97	90.144881	1876.7343	20.81908	94.977223	1978.4678	20.83097	97.519275	2032.6163	20.83681
98	94.426763	1966.8792	20.82968	99.542214	2074.5729	20.84114	102.26606	2131.9170	20.84676
99	98.912034	2061.3060	20.83978	104.32662	2175.2972	0.85084	107.21091	2236.0191	20.85626
100	103.61035	2160.2180	20.84943	109.34 Oy8	2280.8627	20.86009	112.39486	2345.1 £49	20.86532
	alue	tua	. 05			. 05	- - -	- - -	21.05263

PERPETUAL STOCK : 3 p.C. 63,1579; $3 \frac{1}{2}$ p.C. 73,6842 ; 4 p.C. 84,2105 ; 5 p.C. 105,2632.

	RATIO of INTEREST: ANNUALLY, 0.0475.			RATIO of INTEREST: HALF-YEARLY, 0.02375.			RATIO of INTEREST: QUARTERLY, 0.011875 .		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.2992	0.0202819	0.0677819	0.2950641	0.0198820	0.0673820	0.2929584	0.0196813	0.0671813
27	0.2856546	0.0189944	0.0664944	0.2815325	0.0186129	0.0661129	0.2794464	0.0184215	0.0659215
28	0.2727012	0.0178101	0.0653101	0.2686215	0.0174458	0.0649458	0.2665576	0.0172631	0.0647631
29	0.2603352	0.0167183	0.0642183	0.2563025	0.0163701	0.0638701	0.2542632	0.0161954	0.0636954
30	0.2485301	0.0157095	0.0638095	0.2445486	0.0153763	0.0628763	0.2425359	0.0152 b92	0.0627092
31	0.2372603	0.0147755	$0.06 ¢ 2755$	0.2333336	0.0144565	0.0619565	0.2313495	0.0142966	0.0617966
32	0.2265014	0.0139093	0.0614093	0.2226329	0.0136037	0.0611037	0.2206791	0.0134505	0.0609505
33	0.2162305	0.0131046	0.0606046	0.2124230	0.0128116	0.0603116	0.2105008	0.0126647	0.0601647
34	0.2064253	0.0123557	0.0598557	0.2026814	0.0120747	0.0595747	0.2007919	0.0119338	0.0594338
35	0.1970647	0.0116579	0.0591579	0.1933864	0.0113882	0.0588882	0.1915309	0.0112530	0.0587530
36	0.1881286	0.0110068	0.0585068	0.1845177	0.0107477	0.0582477	0.1826969	0.0106180	0.0581180
37	0.1795977	0.0103984	0.0578984	0.1760558	0.0101495	0.0576495	0.1742705	0.0100249	0.0575249
38	0.1714537	0.0098293	0.0573293	0.1679819	0.0095901	0.0570901	0.1662327	0.0094703	0.0569703
39	0.1636789	0.0092964	0.0567964	0.1602783	0.0090664	0.0565664	0.1585656	0.0089512	0.0564512
40	0.1562567	0.0087967	0.0562967	0.1529279	0.0085755	0.0560755	0.1512521	0.0084648	0.0559648
41	0.1491711	0.0083279	0.0558279	0.1459147	0.0081150	0.0556150	0.1442760	0.0080085	0.0555085
42	0.1424068	0.0078876	0.0553876	0.1392231	0.0076887	0.0551887	0.1376216	0.0075802	0.0550802
43	0.1359492	0.0074736	0.0549736	0.1328383	0.0072764	0.0547764	0.1312741	0.0071778	0.0546778
44	0.1297844	0.0070842	0.0545842	0.1267464	0.0068943	0.0543943	0.1252194	0.0067993	0.0542993
45	0.1238992	0.0067175	0.0512175	0.1209338	0.0065346	0.0540346	0.1194439	0.0064432	0.0539432
46	0.1182809	0.0063720	0.0538720	0.1153878	0.0061958	0.0536958	0.1139348	0.0061078	0.0536078
47	0.1129173	0.0060463	0.0535463	0.1100961	0.0058766	0.0533766	0.1085799	0.0057917	0.0532917
48	0.1077970	0.0057390	0.0532390	0.1050471	0.0055754	0.0530754	0.1036673	0.0051937	0.0529937
49	0.1029088	0.0054489	0.0529489	0.1002297	0.0052912	0.0527912	0.0988859	0.0052125	0.0527125
50	0.0982423	0.0051749	0.0526719	0.0956332	0.0050229	0.0525229	0.0943250	0.0049471	0.0524471
51	0.0937874	0.0049160	0.0524160	0.0912474	0.0047695	0.0522695	0.0899745	0.0046963	0.0521963
52	0.0895345	0.0046711	0.0521711	0.0870623	0.0045299	$0.05 \% 0299$	0.0858246	0.0044594	0.0519594
53	0.0851745	0.0044395	0.0519395	0.0830702	0.0043033	0.0518033	0.0818661	0.0042354	0.0517354
54	0.0815986	0.0042203	0.0517203	0.0792606	0.0040890	0.0515890	0.0780903	0.0040235	0.0515235
55	0.0778984	0.0040128	0.0515128	0.0756257	0.0038851	0.0513861	0.0744885	0.0038230	0.0513230
56	0.0743660	0.0038162	0.0513162	0.0721575	0.0036940	0.0511940	0.0710529	0.0036332	0.0511332
57	0.0709938	0.0036299	0.0511299	0.0688484	0.0035121	0.0510121	0.0677758.	0.0034534	0.0509534
58	0.0677745	0.0034533	0.0509533	0.0656910	0.0033397	0.0508397	0.0646498	0.0032831	0.0507831
59	0.0647012	0.0032859	0.0507859	0.0626784	0.0031763	0.0506763	0.0616680	0.0031217	0.0506217
60	0.0617672	0.0031871	0.0506271	0.0598040	0.0030214	$0.0505 \% 14$	0.0588237	0.0029688	0.0504688
61	0.0589663	0.0029764	0.0504764	0.0570614	0.0028744	0.0503744	0.0561106	0.0028237	0.0503237
62.	0.0562924	0.0028334	0.0503334	0.0544446	0.0027350	0.0502350	0.0535226	0.0026861	0.0501861
63	0.0537398	0.0026977	0.0501977	0.0519478	0.0026027	0.0501027	0.0510540	0.0025555	0.0500555
64	0.0513029	0.0025687	0.0500687	0.0495654	0.0024771	0.0499771	0.0486992	0.0024316	0.0499316
65	0.0489765	0.0024462	0.0499462	0.0472924	0.0023579	0.0498579	0.0464531	0.0023140	0.0498140
66	0.0467556	0.0023298	0.0498298	0.0451235	0.0022447	0.0497447	0.0443106	0.0022023	0.0497023
67	0.0446354	0.0022192	0.0497192	0.0130542	0.0021371	0.0496371	0.0422669	0.0020963	0.0495963
68	0.0426114	0.0021141	0.0496141	0.0410797	0.0020349	0.0495349	0.0403174	0.0019955	0.0494955
69	0.0406791	0.0020142	0.0495142	0.0391958	0.0019378	0.0494378	0.0384578	0.0018998	0.0493998
70	0.0388345	0.0019192	0.0494192	0.0373983	0.0018454	0.0493454	0.0366841	0.0018088	0.0493088
71	0.0370735	0.0018288	0.0493288	0.0356832	0.0017577	0.0492577	0.0349921	0.0017224	0.0492224
72	0.0353924	0.0017428	0.0492428	0.0340468	0.0016742	0.0491742	0.0333782	0.0016402	0.0491402
73	0.0537875	0.0016610	0.0491610	0.0324854	0.0015949	0.0490949	0.0318387	0.0015621	0.0490621
74	0.0322553	0.0015832	0.0490832	0.0309956	0.0015194	0.0490194	0.0303702	0.0014878	0.0489878
75	0.0307927	0.0015091	0.0490091	0.0295742	0.0014476	0.0489476	0.0289694	0.0014171	0.0489171
76	0.0293964	0.0014386	0.0489386	0.0282179	0.0013793	0.0488793	0.0276333	0.0013499	0.0488499
77	0.0280634	0.0013715	0.0488715	0.0269238	0.0013143	0.0488143	0.0263588	0.0012859	0.0487859
78	0.0267908	0.0013076	0.0488076	0.0256891	0.0012524	0.0487524	0.0251430	0.0012251	0.0487251
79	0.0255759	0.0012467	0.0487467	0.0245110	0.0011935	0.0486935	0.0239834	0.0011672	0.0486672
80.	0.0244162	0.0011888	0.0486888	0.0233870	0.0011375	0.0486375	0.0228772	0.0011121	0.0486121
81	0.0233090	0.0011336	0.0486336	0.0223144	0.0010841	0.0485841	0.0218220	0.0010597	0.0485597
82	0.0224520	0.0010810	0.0485810	0.0212911	0.0010333	0.0485333	0.0208155	0.0010098	0.0485098
83.	0.0212430	0.0010309	0.0485309.	0.0203147	0.0009850	0.0484850	0.0198555	0.0009622	0.0484622
84	0.0202797	0.0009832	0.0484832	0.0193831	0.0009389	0.0484389	0.0189397	0.0009170	0.0484170
85	0.0193601	0.0009378	0.0484378	0.0184942	0.0008950	0.0483950	0.0180661	0.0008739	0.0483739
86	0.0184822	0.0008944	. 0.0483944	0.0176460.	0.0008532	0.0483532.	0.0172329	0.0008329	0.0483329
87	0.0176441	0.0008 531	0.0483531	0.0168368	0.0008134	0.0433134	0.0164381	0.0007939	0.0482939
88	0.0168440	0.0008138	0.0483138	0.0160646	0.0007755	0.0482755	0.0156799	0.0007567	0.0182567
89	0.0160802	0.0007763	0.0482763	0.0153279	0.0007394	0.0482394	0.0149567.	0.0007212	0.0482212
90	0.	0.0007405	0.0482405	0.0146250	0.0007050	0.0482050	0.0142669	0.0006875	0.0181875
91	0.0146549	0.0007065	0.0482065	0.0139543	0.0006722	0.0481722	0.0136088	0.0006553	0.0 ± 81553
92	0.0139904	0.0006740	0.0481740	0.0133143	0.0006410	0.0481410	0.0129812	0.0006247	0.0481247
93	0.0133560	0.0006430	0.0481430	0.0127057	0.0006112	0.0481112	0.0123824	0.0005955	0.0480955
94	0.0197503	0.0006135	0.0481135	0.0121212	0.0005828	0.0480828	0.0118113	0.0005677	0.0480677
95	0.0121721	0.0005853	0.0480853	0.0115653	0.0005558	0.0180558	0.0112665	0.0005413	0.0480413
96	0.0116202	0.0005584	0.0480584	0.0110349	0.0005300	0.0480300	0.0107469	0.0005160	0.0480160
97	0.0110933	0.0005328	0.0480328	0.0105288	0.0005054	0.0480054	0.0102512	0.0004920	0.0479920
98	0.0105902	0.0005084	0.0480084	0.0100460	0.0004820	n. 0479820	0.0097784	0.0004691	0.0479691
99	0.0101100	0.0004351	0.0479851	0.0095853	0.0004597	0.0479597	0.0093274	0.0004472	0.0479472
100	096	0.0004629	0.0479629	0.0191457	0.0004384	0.0479384	0.0088972	0.0004264	0.0479 ¢64
	Ratio of	erpetual An	0475000			.0475 000			0.0475000

RATE of INTEREST: 5 per Cent.per Ann.——CORRESPONDING VALUE of

荷	RATIO of INTEREST: ANNUALLY, 0.05.			RATIO of INTEREST: HALF:YE.ARLY, 0.025 .			RATIO of INTEREST: QUARTERLY, 0.0125.		
	Improved Principal.	Cumulated Annuity	Value of Anuuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Priocipal.	Cumulated Annuity.	Value of Aunuity.
\%	1.0500000	1.0000000	0.952381	1.00200000 1.05060250	0.5000000 1.0125000	0.9781805 0.9663712	1.0125000 1.0251563 1.0379 1.0509 707 1.053	0.2500000 0.5031250 0.7594141 1.0189067	$\begin{aligned} & 0.2469 \\ & 0.24 \\ & 0.4097 \\ & 0.7316 \\ & 0.93 \\ & 0.9695 \end{aligned}$
退			1250410	1.07689906		1.428012 1.8009	1.0640822 1.0773832 1.0903505	$\begin{aligned} & 1.2816431 \\ & 1.5466636 \\ & 1.8170 \\ & 1.89090 \end{aligned}$	1.204459 1.4365 1.665681 1.850
2	1.1025000	2.0500000	1.859410	1.1038 129	2.0762578	1.880987	1.1044861	2.0897220	1.892031
$\frac{3}{4}$	…0.			1.1314082	$2.6201{ }^{613}$	2.322914	1.1182922 3.1322708	$\begin{aligned} & 2.3658435 \\ & 2.6454166 \end{aligned}$	$\begin{aligned} & 2.115586 \\ & 2.336381 \end{aligned}$
$3^{\frac{5}{4}}$		3.1005000	2.723248	1.1909693	3.19386884	2.754063	1.1464242 1.1607545	2.9284843 3.2150 904	-
$\frac{4}{4}$			1.188685	3.7737151	3.174695	1.1752 1.1899 189 189	$\begin{aligned} & 3.5052790 \\ & 3.7990950 \end{aligned}$	2.982546 3.192638
$4{ }^{\frac{2}{4}}$	1.21550	4.3101250	3.545951	12184029	4.3680580	3.585069	1.2048292 1.2198895	$\begin{aligned} & 4.0965837 \\ & 4.3977 \end{aligned}$	$\begin{aligned} & 3.400136 \\ & 3.605073 \end{aligned}$
$\frac{1}{4}$				1.24886		3.98	1.2351382	${ }_{5}^{4.7087} 633$	80
$\frac{2}{4}$				1.24886	4.97	3.98	1.2505 1.2662 174 096	5.0115 5.3241 589 189	4.0073 4.2048 4
5^{4}	1.2762816	5.5256313	4.329477	1.2800845	5.6016909	4.376032	1.2820372	5.6407446	4.399827
		$1.31200^{\circ} 867$	6.2417	4.757104	1.2980627 1.3142885	$\begin{aligned} & 5.9612539 \\ & 6.2857 \\ & 696 \end{aligned}$	$\begin{aligned} & 4.592422 \\ & 4.782639 \end{aligned}$
${ }^{4}$	1.34009	6.8019128	5.075692	1.3448888	6.8977765	5.12888	1.3307171 1.3473511	6.6143417 6.9470210	$\begin{aligned} & 4.970508 \\ & 5.1560 \\ & 57 \end{aligned}$
				1.3785	7.5702209	5.491592	1.3641929 1.3812 154	7.2838 7.6249 780 180	$\begin{aligned} & 5.3393 \\ & 5 \\ & 5 \end{aligned}$
$\frac{18}{4}$							1.3985 109	7.9702183	${ }_{5.6990} 73$
${ }^{4}$	1.4071004	8.1490085	5.786373	1.4129738	8.2594764	5.845456	1.4159923	8.3198 461	5.8756
				1.4888	8.96590	6.190	1.4336922 1.4516134	$\begin{aligned} & 8.6738441 \\ & 0.0322 \end{aligned}$	6.050003 6.222225
				1.4182	-.9659	6.190	1.4697 585	${ }_{9} 9.3951705$	${ }_{6}^{6.322323}$
8	1.4774 57	9.5491089	6.463213	1.4845056	9.690	6.527501	1.4881305	9.7626102	6.560317
		…	…	$1.5216^{\circ} 183$	10.432	6.856099	1.5067321 1.5555663	10.134643 10.511326	6.726239 6.890112
9	1.5513 28	11.026 564	7.107822	15596587	11.193	7.176682	1.5446359	10.892 11.278 876	7.0519 7.2118
				$1.5986{ }^{\circ} 502$	11.973004	7.489446	1.5834931 1.6032 .868	$\begin{aligned} & 11.669862 \\ & 12.065 \\ & 736 \end{aligned}$	7.369694 7.525624
				1.5986		7.4894 46	$\begin{aligned} & 1.0032 .808 \\ & 1.6233 \quad 279 \end{aligned}$	12.466557	7.679628
10	1.6888946	$12.577{ }^{\text {c }}$ ¢93	7.721735	$1.6386{ }^{\circ} 164$	12.772329	7.794581	1.6436 195	12.878389	7.831738
				16795819	13.5901637		1.6641647 1.6849668	$\begin{aligned} & 13.283 \quad 294 \\ & 13.690335 \end{aligned}$	7.981957 8.130328
				16795819	13.591637	8.092274	$\begin{aligned} & 1.6849668 \\ & 1.7060289 \end{aligned}$	$\begin{aligned} & 13.699335 \\ & 14.120 \\ & 577 \end{aligned}$	8.130328 8.276867
11	$1.7103{ }^{394}$	14.206787	8.3064 14	1.7215714	14.431 428	8.3827 o7	1.7273542	14.547084	8.421597
				1.7646	15.29	8.6660	1.7489 1.7708 181	14.978 15.416 159	8.5645 8.7057 8
				1.64			1.7929431	15.858861	${ }_{8.8451}{ }^{84}$
12	1.7958563	15.917127	8.863252	1.8087259	16.174519	8.942493	1.8153549	16.307 097	8.982868
							1.8380 1.8610 1.824		9.118882
				1.8	17.07	9.21	1.8610 1.8842 1852	17.220 17.685 187	9.253817 9.3858 93
13	1.8856491	17.712983	9.303573	1.9002927	18.005854	9.475306	1.9078387	18.156774	9.516932
						9.300 05	1.9316867	18.633734	9.646352
				1.945	18.956	9.732005	1.9802807	19.605614	9.771175 9.9004 20
14	1.9799316	19.598632	9.898641	1.9964950	19.929900	9.98244	2.0050342	20.100684	10.02511
	2.04640074		10.22677	2.0300971 2.0554733	20.601943 21.109467	10.14825 10.26988
				2.0464074	20.928148	10.22677	${ }_{2}^{2.0811} 6688$	${ }_{21.623} 3135$	10.29080 10
15	2.0789282	21.50	10.379 66	2.0975676	21.951	10.46515	2.1071813	22.143627	10.50865
			2.1500068	23.000135	10.69770	2.1335211 2.1601001	23.670 23.203802 122	10.625 10.741 85
			2.1500008	23.000135	10.69770	2.1871925 2.1815	${ }_{23.743}^{250}$	10.85585
16	2.1828746	23.657	10.83777	$2.2037^{\circ} 569$	24.075159	10.92459	2.2145324	24.290618	10.96874
17	2.2920183	25.840366	11.27407	2.3153221	26.306 443	11.36189	2.3273525	26.547050	11.40654
18 19	2.4066192 2.5260 208 2.508	28.132385 30.539 3804	11.689 59	2.4325353 2.556824	28.650 31.11366 648	11.77813 12.174 10	2.4459 2.5705 285	28.918 31.410 80	11.823 12.219 50
20	${ }_{2} 2.6532977$	33.065954	${ }_{12.468} 121$	2.6850638	${ }_{33.701}^{377}$	1255139	2.7014849	34.029699	12.59667
21	2.7859626	35.719252	12.82115	2.8209952	36.419904	12.91030	2.8391130	36.782260	12.95555
22	2.9252607	38.505214	13.16300	2.9638081	39.876162	13.25192	${ }_{2}^{2.9837} 528$	39.675 051	13.29703
23 24	3.0715 3.2250 999	41.430 44.501 999	13.48857 13.798 1	3.1138 3.2714896	42.277 4.429791	13.577 13.886 58	3.1357 3.2955 132	42.715 45.910 265	13.621 13.931 14
25	3.3863549	47.727099	14.09394	3.4371087	48.742174	14.18116	3.4634043	49.268885	14.22533

PERPETUAL STOCK : 3 p.Cent. 60; $3 \frac{1}{2}$ p.Cent. $70 ; 4$ p.Cent. 80 ; 5 p. Cent. 100.

$\begin{aligned} & \text { M } \\ & \stackrel{8}{0} \\ & \underset{6}{2} \end{aligned}$	ILATIO of INTEREST: ANNU.ALLY, 0.05.			RATIO of IN'IEREST: HALF.YEARLY, 0.025.			RATIO of INTEREST: QUARTERLY, 0.0125 .		
	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumnlated Annuity.	Value of Annuity.
26	3.5556727	51.113454	14.37518	3.6111123	52.222217	14.46154	3.6398486	52.796971	14.505 26
$\stackrel{9}{2}$	3.7334563	51.669126	14.64303	3.7939249	55.878498	14.72842	3.8252819	56.505638	14.77163
28	3.9201291	58.402583	14.89813	3.9859 924	59.719817	14.98243	4.0201622	60.403243	15.02508
29	4.1161356	62.322712	15.14107	4.1877832	63.755664	15.22420	4.2219707	64.499413	15.26624
30	4.3219424	66.438648	15.37245	4.3997897	67.995795	15.45433	4.4402132	68.804265	15.49571
31	4.5380395	70.760790	15.59281	4.6225291	72.450582	15.67337	4.6664214	73.328498	15.71406
32	4.7649415	75.298829	15.80268	4.8565416	77.130893	15.88185	4.9041538	78.083076	15.92182
33	5.0031885	80.063771	16.00255	5.102 ± 072	82.048144	16.08028	5.1539976	83.079951	16.11952
34	5.2533480	85.066959	16.19290	5.3607166	87.214332	16.26915	5.4165697	88.331394	16.30763
35	5.5160154	90.320307	16.37419	5.6321089	92.642057	16.44893	5.6925187	93.850374	16.48662
36	5.7918161	95.836383	16.51685	5.9172281	98.344 561	16.62004	5.9825260	99.650519	16.65693
37	6.0814069	101.62 814	16.71129 16.867	62167877	104.33575	16.78291	6.2873078	105.74616	16.81899
38	6.3854773	107.70955	16.86789	6.5315126	110.63025	16.93792	6.6076168	$112.15 \quad 234$	16.97319
39	6.7047512	114.09502	17.01704	6.8621704	117.24341	17.08547	$6.94+2440$	118.88488	17.11992
40	7.0399887	120.79977	17.15909	7.2095678	124.19136	17.22591	7.2980209	125.96042	17.25954
41	7.3919881	127.83976	$17.29+37$	7.5745522	1.31 .49104	17.35958	7.6698210	133.39642	17.39238
42	7.7615876	135.23175	17.42321	7.9580139	139.16028	17.48681	8.0605626	141.21125	17.51879
43	8.1496669	142.99334	17.545 gl	8.3608883	147.21777	17.60791	8.4712107	149.42421	17.63906
44	8.5571503	151.14301	17.66277	8.7841583	155.68317	17.72317	8.9027794	158.05559	17.75351
45	8.9850078	159.70016	17.77407	9.2288563	164.57713	17.83288	9.3563345	167.12669	17.86241
46	9.4342582	168.68516	17.88007	9.6960672	173.92134	17.93731	9.8329961	176.65992	17.95603
47	9.9059711	178.11942	17.98101	10.186931	183.73861	18.03670	10.333941	186567883	18.06463
48	10.401270	188.02539	18.07716	10.702644	19405288	18.13130	10.860408	197.20815	18.15845
49	10.921333	198.42666	18.16872	11.244465	204.88931	18.22135	11.413695	208.27389	18.24772
50	11.467400	$209.3+800$	18.25592	11.813716	216.27433	18.30705	11.995169	219.90338	18.33266
51	12.040770	220.81540	18.33898	12.411786	228.23 571	18.38863	12.606267	232.12534	18.41349
52	12.642808	232.85617	18.41807	13.040132	249.80265	18.46627	13.248498	244.96995	18.49040
53	$13.27+949$	215.49893	18.49.3 40	13.700289	254.00578	18.54017	13.923477	258.46894	18.56357
54	13.938696	258.77392	18.56514	14.393866	267.87732	18.61052	$1+.632781$	272.65563	18.63321
55	14.635631	272.71262	18.63347	15.122555	282.45111	18.67747	15.37825 .3	287.56507	18.69946
56	15.367413	287.34825	18.69854	15.888135	297.76270	18.74120	16.161704	303.23408	18.762 51
57	16.135783	302.71506	18.76052	16.692472	313.84944	18.80186	16.985067	$319.7013+$	18.82250
58	$16.9+2572$	318.85145	18.81954	17.537528	330.75057	18.85959	17.850377	337.00754	18.87958
59	17.789701	335.79402	18.87575	18.425366	$3+8.50731$	18.91454	18.759771	355.19541	18.933 89
60	18.679186	353.58372	18.92929	19.358150	357.16300	18.96685	19.715494	374.30967	18.98557
61	19.613145	372.26291	18.98027	20.338156	386.76312	19.01663	20.719906	394.39812	19.034 75
62	20.593803	391.87605	19.02883	21.367775	407.35551	19.06401	21.775489	415.50977	19.08154
63	21.623493	412.46986	19.07508	22.449519	428.99038	19.10911	22.884848	437.69696	19.12606
64	29.704667	434.09335	19.11912	23.586026	451.72052	19.15203	24.050724	461.01449	19.16842
65	23.839901	456.79802	19.16107	24.780068	475.60137	19.19290	25.275997	485.51993	19.20874
66	25.031896	480.63792	19.20102	26.034559	500.69119	19.231 79	26.563691	511.27382	19.24709
67	26.283491	505.66981	19.23907	27.352559	527.05118	19.26881	27.916987	538.33974	19.28359
68	27.597665	531.95330	19.27530	28.737282	551.74564	19.30404	29.339227	566.78455	19.31832
69	28.977548	559.55097	19.30981	30.192107	583.84214	19.33757	30.833924	596.67818	19.35136
70	30.426426	588.52852	19.34268	31.720583	614.41165	19.36949	32.404769	628.09538	19.38281
71	31.917747	618.95494	19.37398	33.326437	646.52874	19.39988	34.055641	661.11281	19.41273
72	3.3.545 134	650.90269	19.40379	35.013583	680.27176	19.42879	35.790617	695.81234	19.44119
73	35.222391	684.4478 \%	19.43218	36.786151	715.72302	19.45632	37.613982	732.27964	19.46828
74	36.983511	719.67021	19.45922	38.648450	752.96899	19.48251	39.530239	770.60478	19.49406
75	38.832686	756.65373	19. 18497	40.605027	792.10054	19.50745	41.544120	810.88240	19.51859
76	40.774321	795.48641	19.50949	42.660657	833.21314	19.53118	43.660599	853.21199	19.54192
77	42.813037	836.26073	19.53285	$44.820 \quad 353$	876.40706	19.55378	$45.88+903$	897.69807	19.56413
78	44.953688	879.07377	19.55510	47.089383	921.78766	19.57528	48.222525	$94+45050$	19.58526
79	47.201373	924.02746	19.57628	49.473283	969.46566	19.59574	50.679238	993.58476	19.60536
80	$49.5614+1$	971.22883	19.59646	51.977868	1019.5574	19.61522	53.261109	1045.2222	19.62449
81	52.039514	1020.7903	19.61568	54.609 248	1072.1850	19.63376.	55.974514	1099.4903	19.64269
82	54.641489	1072.8298	19.63398	57.373841	1127.4768	19.65141	58.826154	1156.5231	19.66002
83	57.373564	1127.4713	19.65141	60.278392	1185.5678	19.66820	61.823 u73	1216.4615	19.67650
84	60.242242	1184.8418	19.66801	63.329985	1246.5997	19.68 ± 19	64.972670	1279.4534	19.69218
85	63.254354	1245.0871	19.68382	66.536066	1310.7213	19.69941	68.282725	1345.6545	19.70710
86	66.417072	1308.3414	19.69887	69.904454	1378.0891	19.71389	71.761411	1415.2 282	19.72130
87	69.737925	1374.7585	19.71321	73.443367	1448.8673	19.72768	75.417320	1488.3464	19.73481
88	73.224822	1444.4964	19.72637	77.161437	1523.2887	19.74080	79.259481	1565.1896	19.74767
89	76.886063	1517.7213	19.73987	81.067735	1601.3547	19.75329	83.297382	1645.9476	19.75990
90	80.730366	1594.6073	19.75226	85.171789	1683.4358	19.76518	87.540995	1730.8199	19.7715
91	84.766884	1675.3377	$19.76+06$	89.483611	1769.6722	19.77650	92.000801	1820.0160	19.78261
92	89.005228	1760.1046	19.77529	94.013719	1860.2744	19.78726	96.687812	1913.7562	19.79315
93	93.455490	1849.1098	19.78599	98.773163	1955.4633	19.79752	101.61361	2012.2721	19.80318
94	98.128264	1942.5653	19.79618	103.77355	2055.4711	19.80727	106.79034	2115.8069	19.81272
95	103.03468	2040.6935	19.80589	109.02709	2160.5418	19.81556	112.23082	2224.6163	1982180
96	108.18641	2143.7282	19.81513	114.54659	2270.9317	19.82539	117.94845	2338.9690	19.83044
97	113.59573	2251.9147	19.82394	120.34 ह51	2386.9102	19.83381	123.95738	2459.1475	19.83865
98	119.27552	2365.5104	19.83232	126.43800	2508.7600	19.84182	130.27243	2585.4485	19.84647
99	125.23930	2484.7859	19.84030	132.83892	2636.7785	19.84944	136.90920	2718.1840	19.85392
100	131.50126	2610.0252	19.847 9t	139.56389	2771.2779	19.85670	143.88408	2857.8817	16.86102
	Value of Pe	petual Ann	20.00000		- - -	20.00000	- . -	- - -	20.00000

PERPETUAL STOCK: 3 p.Cent. 60; 3I p. Cent. 70; 4 p. Cent. $80 ; 5$ p. Cent. 100.

$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{\rightharpoonup}{6} \\ & \hline \end{aligned}$	RATIO of INTEREST: ANNUALLY, 0.05.			RATIO of INTEREST: HALF-YEARLY, 0.025 .			RATIO of INTEREST: QUARTERLY, 0.0125 .		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Anuvity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.2812407	0.0195643						0.01	
27	0.2678483	0.0182919	0.0682919	0.2635793	0.0178960	0.0678960	0.2614186	0.0176973	0.0676973
28	0.2550936	0.0171225	0.0671225	0.2508786	0.0157449	0.0667449	0.2487 462	0.0165554	0.0665554
29	0.2429463	0.0160455	0.0660455	0.2387898	0.0156849	0.0656849	0.2366880	0.0155040	0.0655040
31	0.2313775	0.0150514		0.2272836	0.0147068	0.0647068	0.2252144	0.0145340	0.0615350
31	0.2203595	0.0	0.0	0.2163318	0.01	0.0638085	0.2142970	0.01	3
32	0.2098	, 01		0.2	0.0129650	0.06	0.20	0.01	
33	0.1998	0.0124900	0.0624900	0.1959859	0.0121880	0.0621880	$0.19+0241$	0.0120366	0.0620365
34	0.1903 548	0.0117554	0.0617 0.0610 174	0.1865 422	0.0114660 0.0107 942	0.0614 0.0607 $9+2$	0.1846187 0.1756 02	0.0113210	${ }_{0}^{0.0613} 210$
35	0.1812	0.01	0.0610717	0.1775536	0.0107942	0.0607942	0.1756692	0.0106553	
36	0.1	0.0104345	0.0604345	0.1689980	0.0101683	0.0601683	0.1671535	0.0100351	51
37	0.16	0.0098398	0.0598398	0.1608548	0.0095844	0.0595844	0.15	0.0094566	
36	0.156	0.009	0.0592	0.1531039	0.0090 391	0.059039	0.1513405	0.0089164	
39	0.1491480	0.0087610	0.0587	0.1457265	$0.0085{ }^{293}$	${ }^{0.0585} 293$	0.1440042	0.0084115	0.0584115
40	0.1420457	0.0082	0.058	0.1387046	0.0080521	0.0580521	0.1370234	0.0079391	0.0579391
41	0.1352 816	0.0078223	0.0	1320210	0.0076051	0.0576051	0.1303811	0.0074965	0.0574965
42	0.1288	${ }^{0.0073}$	0.0573	0.1256595	0.0071800	0.057	0.1240608	0.0070816	
43	0.1227044	0.0069933	0.0569933	0.1196045	0.0067927	0.056	0.1180469	0.0066924	0.0566924
44	-	. 06	0.0566163	0.1138413	0.0064233	0.050	0.1123245		269
45	0.1112965	0.0062617	0.0562617	0.1083558	0.00607002	0.056076	0.1068795	0.005	0.0559835
46	0.	0.005	0.0	0.1031346	0.00		0.10	0.00	0.0556606
47	0.1009	0.005	0.055	0.0981650	0.00	0.05		0.00	0.0553568
48	0.0961421	0.005	0.0553184	0.0934349	0.0051532	0.0551532	0.0920176	0.0050708	
49	0.0915639	0.0050	0.0550396	0.0889326	0.0048807	0.0518807	0.0876140	0.0048014	0.0518014
50	0.0872037	0.00	0.0547	0.0846474	0.0046238	0.0546238	0.0833669	0.0045475	0.0545475
51	0.0830512	0.00	0.05	0.0805686	0.0043814	0.05	0.0	0.0043080	
52	0.07	0.0042	0.0542	0.0766864	0.004	0.054	0.07	$0.00+0821$	
53	0.0753	0.0040733	0.0510	0.0729912	0.0039369	0.0539369	0.0718213	0.0038689	0.0538689
54	0.0717	0.00386	0.0538644	0.0694740	0.0037	0.0537331	0.0683397	0.0036676	0.0536676
55	0.0683	0.0036	0.0536669	0.0661264	0.0035404	0.0535404	0.0650269	0.0034775	0.0534775
56	0.0650728	0.0034801	0.053	0.0629401	0.00	0.0533584	0.0618747	0.0032978	
57	0.0619	0.003:3	0.0533	0.059	0.003	0.0531862	0.0588752	0.0031279	0.0531279
58	0.059	0.0031363	0.0531363	0.057	0.0030234	0.053023	0.0560212	0.002	0.0529673
59	0.0562	0.0029780	0.0529780	0.0542730	0.0028694	0.0528 69	0.0533056	0.0028154	0.0528154
60	0.0535355	028	0.0528	0.0516578	0.0027236	0.0527236	0.0507215	0.0026715	$0.05 \geq 6716$
61	0.0509	0.002	0.05	0.0491687	0.002	0.0525856	0.0482628	0.0025355	
62	0.0485	0.0025518	0.0525518	0.0467994	0.0024549	0.0524549	0.0459232	0.0024067	
63	0.0462	0.0024244	0.0524244	0.0445444	0.00233	0.0523311	0.0436970	0.0022847	0.0522847
64	0.0440438	0.0023037	0.0523037	0.0423980	0.0022138	0.0522138	0.0415788	0.0021691	0.0521691
65	0.0419465	0.0021892	0.052	0.0403550	0.0021026	0.0521026	0.0395632	0.0020596	0.0520596
66	0.0399490	0.002	0.052	0.038	0.00	0.05	0.03	0.0019559	
67	0.0380467	0.001	0.0519776	0.0365597	0.0018973	0.0518973	0.0358205	0.0018576	0.0518576
68	0.0362349	0.0018799	0.0518799	0.0347980	0.0018025	0.0518	0.0340841	0.0017643	0.0517643
70	0.0345095	0.0017871	0.051	0.0331212	0.0017188	0.0517128	0.0324318	0.0016759	0.0516759
70	0.0328662	0.0016992	0.0	0.0315253	0.0	0.0516276	0.0308597	0.0015921	0.0515921
7	0.0313011	0.0016156	0.0516156	0.0300062	0.0015467	0.05	0.0293 637	0.0015126	
72	0.0298106	0.0015363	0.05151563	0.0285603	0.001	0.0514700	0.0279403	0.0014372	0.0514372
73	0.0283910	0.0014610	0.0514610	0.0271841	0.0013972	0.0513972	0.0265859	0.0013656	0.0513656
74	0.0270 391	${ }_{0}^{0.0013}$	0.0513	0.0258743	0.0013 .281	0.0513281	0.0.052 971	0.0012977	0.0512977
75	0.0257515	0.0013216	0.051	0.0246275	0.0012625	0.0512625	0.0240 708	0.0012332	0.0512332
76	0.0245252	0.0012571	0.0512571	0.0234408	0.0012002	0.0512002	0.0229039	0.0011 خ̇20	0.0511720
77	0.0233	0.0011958	0.0511958	0.0228113	0.0011410	0.0511410	0.0217937	0.0011140	$0.0511{ }^{140}$
78	0.0222451	0.0011376	0.0511376	0.0212362	0.0010818	0.0510 8+8	0.0207372	0.0010588	0.0510588
	0.0211858	0.0010822	0.0510822	0.0202129	0.0010315	0.0510315	0.0197319	0.0010065	0.0510065
80	0.0201	0.0010296	0.0510296	0.0192390	0.0009808	509808	-0.	00095	. 0509567
	0.019	0.000	0.0	0.0183119	0.000	0.050	0.01	0.00	0.0509095
82	0.0183	0.0009321	0.0509321	0.0174295	0.0008869	0.0508869	0.0169992	0.0003647	0.0508647
83	0.10155	0.0008889	0.0508869	0.0165897	0.0008435	0.0508435	0.0161752	0.0008221	0.0508221
84	0.0165996	0.0008410	0.0508440	0.0157903	0.0008022	0.0508022	0.0153911	0.0007816	0.0507816
85	0.0158	0.0008032	0.0508032	0.0150294	0.0007629	0.0507629	0.0146450	0.000743	0.0507431
86	0.015	0.0007643	0.0507643	0.0143052	0.0007256	0.050725	0.0139351	0.0007066	66
87	0.014	0.0007274	0.0507274	0.0136159	0.0006902	0.050690	0.0132596	0.0006719	0.0506719
88	0.013	0.0000923	0.0506 923	0.0129598	0.0006565	0.050	0.0126168	0.0006389	0.0506389
89	0.013	0.0006589	589	0.0123354	0.0006245	0.0506245	0.0120052	0.0006076	0.0506076
90	0.01	0.0006871	271	0.0117410	0.0005940	0.0505940	0.0114232	0.0005778	0.0505778
91	0.0117971	0.0005969	0.0505969	0.0111752	0.0005651	0.0505651	0.0108695	0.0005494	0.0505497
92	0.0112353	0.0005681	0.0505681	0.0106367	0.0005376	0.0505376	0.0103426	0.0005225	0.0505225
93	0.0107003	0.0005408	0.0505408	0.0101242	0.0005114	0.0505114	0.0098412	0.0004970	0.0504970
	0.0101907	0.0005148	0.0505148	0.0096364	0.0004865	0.0504865	0.0093641	0.0004726	0.0504726
95	0.0097055	0.00	0.0504900	0.0091720	0.0004628	0.0504628	0.0089101	0.000449	. 0504495
96	0.0092433	0.0004665	0.0504665	0.008	0.0004403	0.05	0.0084783	0.0004275	0.0504275
97	0.0083831	0.0004 441	0.0504441	0.0083094	0.0004190	0.0504190	0.0080673	0.0004066	0.0504066
98	083 840	227	0.0504227	0.0079090	0.0003986	0.0503986	0.0076762	0.0003868	0.0503868
	079817	0.0004024	0.0504024	0.0075279	0.0003793	0.0503793	0.0073041	0.0003679	0.0503679
100	0.007604	00383	503831	0.007165	003608	. 0503608	0.006950	0.0003499	0.0503 499
	Ratio of Perpetual Ann. 0.0500000					050000			05000

刨	RATIO of INTEREST: ANNUALLY, 0.0525.			RATIO of INTEREST: HALF-YEARLY, 0.02625.			RATIO of INTEREST: QUARTERLY, 0.013125.		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Frincipal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
	0.9501188	1.0000000	1.0525000	0.9744214 0.9494971	2.0000000 0.9870450	2.0525000 $1.0393{ }^{\text {a }} 450$	0.9870450 0.9616364 0.9491784	$\begin{aligned} & 4.0000000 \\ & 1.9869606 \\ & 1.3159855 \\ & 0.9805 .664 \end{aligned}$	$\left\lvert\, \begin{aligned} & 4.0525000 \\ & 2.0394606 \\ & 11.364855 \\ & 1.0330264 \end{aligned}\right.$
	0.9027257	0.4870107	0.5307107	0.9252104 0.0004	0.6494690 0.4807375	0.7019690 0.5339 375	0.9368819 0.9247446 0.9127646 0.9009 0	0.7792737 0.6451 0.545 0.549 0.4774 197	0.8317737 0.6018197
	0.9027257	0.4872107	0.5397107	0.9015448	0.4807375	0.5332375	0.9009397	0.4774804	0.5299804
				0.8784846	0.379	0.4320440	0.8892 0.8777 0877	0.4216181	0.4741181
							${ }_{0}^{0.8663} 765$	0.3+03 949	0.3928949
	0.8576966	0.3164300	0.3689300	0.8560142	0.3121193	0.3646193	0.8551526	0.3099504	0.3624504
				0.8341187	0.2639912	0.31004912	0.8440741 0.8331392	$\left\|\begin{array}{c} 0.2841984 \\ 0.2621 \end{array}\right\|$	$\begin{array}{\|l\|l\|l\|l\|} \hline 0.3366984 \\ 0.3146 & 334 \end{array}$
				0.8341187	0.2639912	-.3...	0.8331 0.823 0.859	0.2430181	0.2955 181
$4{ }^{3}$	0.8149137	0.2311514	$0.2836{ }^{1}$	0.8127830	0.20979286	$0.280+286$	0.8116924	0.2262992	0.2787992
				0.7919932	0.1998956	0.2523956	0.8011770 0.7907977	0.2115539 0.1984539	$\begin{array}{ll} 0.2640 & 539 \\ 0.2509 & 539 \end{array}$
				0.7919932		-2.253 950	0.7805 0.730	0.1984 0.1867 377	0.2342377
${ }^{\circ}$	0.7742644	0.1800733	0.2325733	0.7717352	0.1774960	0.2299960	0.7704409	0.1761993	0.2286993
				0.7519	0.1591	0.211689	0.7604598 0.7506 082	0.1666700	0.2191700
4				0.75	0.1591		0.7408841	0.1580 0.150121	0.2026120
	0.7'356 4	0.1460954	0.198595	0.7327603	0.1439529	0.1964529	0.7312860	0.1428750	01953750
							0.7218122 0.7124611	0.1362214	0.1887 0.1825 031
				0.7×40174	0.1310776	0.1835776	0.7124611 0.7032312	0.1300831 0.1244 0.124	0.1825831 0.1769 054
7	0.6989487	0.1218889	$0.17{ }^{13} 889$	$0.6957{ }^{\circ} 538$	0.1200577	0.1725577	${ }^{0.6941} 209$	0.1191364	0.1716364
				0.6779574	0.1105219	0.16300219	0.6851286 0.6762527	$\left\|\begin{array}{cc} 0.1142 & 347 \\ 0.1096 & 635 \end{array}\right\|$	$\begin{array}{ll} 0.1667 & 347 \\ 0.1621 & 635 \end{array}$
				0.671954	0.1105219	0.1030	0.6674919	0.1053909	0.1578 .909
8	0.6640842	0.1037	0.1562892	0.6606163	0.1021922	0.1546922	0.6588445	0.1013888	0.1538888
				0.64371	0.0948555	0.1473555	$\begin{array}{\|c\|c\|} 0.6503 & 093 \\ 0.6418 & 846 \end{array}$	0.0976327 0.0941008	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline 0.1501 & 327 \\ 0.1466 & 008 \end{array}$
				0.643718	0.0948555	0.147355	$\begin{aligned} & 0.0418846 \\ & 0.6335 \\ & 689 \end{aligned}$	$\begin{aligned} & 0.0941008 \\ & 0.0907 \\ & 739 \end{aligned}$	0.1432739
$9{ }^{4}$	0.6309589	0.0897606	0.1422606	$0.627{ }^{2} 533$	0.0883463	0.1408463	0.6253611	0.0876349	0.1401349
				0.6112090	0.0895340	0.1350	0.6172 0.6092 0.630	0.0846 0.0818 0.075	0.1371687 0.1343615
							0.6013700	0.0792011	0.1317011
10	0.5994859	0.0785815	0.1310815	0.5955752	0.0773140	0.1298140	0.5935792	0.0766765	0.1291765
				0.50030		0.1251016	0.5858895	0.0742777 0.0710959	0.1267777 0.1244959
				0.5803412	0.0726016	0.1251010		0.0719959 0.0698227	0.1223 227
$1{ }^{\text {1 }}$	0.5695828	0.0694747	0.1219747	0.5655970	0.0683277	0.1208277	0.5634126	0.0677508	0.1202508
			0.551	0.064	$0.116{ }^{\circ} 349$	0.5561136 0.5489 092	0.0657 0.0638 046 0.065	$\begin{aligned} & 0.1182735 \\ & 0.1163 \\ & 046 \end{aligned}$
							0.5417981	0.0620783	0.1145783
12	0.5411713	0.0619218	0.1144218	0.5369377	0.0608757	0.1133757	0.5347791	0.0603496	0.1128496
$\frac{1}{4}$				$0.523{ }^{10} 037$	$0.0576^{\circ} 099$	0.1101099	0.5278589 0.5210 128	0.0586937 0.0571063	$\begin{aligned} & 0.1111937 \\ & 0.1096 \\ & \hline 063 \end{aligned}$
							0.5142631	0.0555832	0.1080832
13	0.5141770	0.0555640	0.1080640	0.5098208	0.0546037	0.1071037	0.5076008	0.0541208	0.1066208
						$\begin{aligned} & 0.5010249 \\ & 0.4045 \\ & \hline \end{aligned}$	0.0597157 0.0513 046	0.1052157
				0.4967804	0.0518282	0.1043282	$\begin{aligned} & 0.4945341 \\ & 0.4881 \\ & 274 \end{aligned}$	0.0513 0.056 0.050 646	$\begin{aligned} & 0.1038646 \\ & 0.1025646 \end{aligned}$
14	0.4885292	0.0501452	0.1026452	0.4840	0.0492	0.1017587	0.4818038	0.0488130	0.1013130
亲			…	0.4716915	$0.0468{ }^{738}$	0.0993738	$\left.\begin{array}{\|l\|l\|l\|l\|} 0.4755 \\ 0.4694 & 011 \end{array} \right\rvert\,$	0.0476072 0.0464448	$\begin{aligned} & 0.1001072 \\ & 0.0989{ }_{418} \end{aligned}$
15	0.4641607	0.0454771					0.4633 0.4573 0.422	0.0453237	${ }_{0}^{0.0978} 237$
15	0.4641607	0.0454 771	0.0979771	0.4596263	0.0446550	0.0971550	0.4573122	0.0442417	0.0967417
				0.4478697	0.0425 863	0.0950863	0.4513932	0.0431970 0.042187	0.0956 0.0946 0.077
			…	0.4478697	0.0425803	0.0950863	0.4459 0.4397 0.434	0.0421877 0.0412 121	${ }_{0}^{0.0940} 8127$
10	0.4410079	0.0414190	0.0939190	0.4364139	0.0406	0.0931535	04340761	0.0402687	0.0927687
17	0.4190098	0.0378630	0.0903630	0.4143739	0.0371476	0.0896476	0.4120138	0.0367881	0.0892881
18	0.3981091	0.0347251	0.0872251	0.3934467	0.0340546	0.0865546	0.3910765	0.0337177	0.0862177
19	0.3782510 0.3593	0.0319392	${ }^{0.0844} 392$	0.3735765	0.0313091	0.0838091	0.3712013	0.0309925	0.0834925
20	0.3593833	0.0294524	0.0819524	0.3547 098	0.0288587	0.0813587	0.3523363	0.0285606	0.0810606
21	0.3414568	0.0272 214	0.0797214	0.3367959	0.0266612	0.0791612	0.3344301	0.0263798	0.0788798
22	0.3244245	0.0252115	0.0777115	0.3197868	0.0246817	0.0771817	0.3174338	0.0244156	0.0769156
23	0.3082418	0.0233936	0.0758936	0.3036366	0.0228917	0.0753917	0.3013013	0.0226397	0.0751397
24	0.2928664	0.0217434	0.0742434	0.2883021	0.0212673	0.0737673	0.2859887	0.0210282	0.0735282
25	0.2782578	0.0202407	0.0727407	0.2737420	0.0197884	0.0782884	0.2714544	0.0195614	0.0720614

PERPETUAL STOCK: 3 p.C. 57,1429 ; $3 \frac{1}{2}$ p.C. 66,6667 ; 4 p.C. 76,1905 ; 5 p.C. $95,2381$.

RATIO of INTEREST:
ANNUALLY, 0.0525.
RATIO of INTEREST:
ANNUALLY, 0.0525.

0.2046	986	0.0135	127	0.0660
127				

0.1668116 0.0126759
0.0119003 0.0119003

0.0111803 | 0.0111803 | |
| :--- | :--- |
| 0.0105 | 110 |

0.1584909 0.1505851 0.1430738 0.1359371
0.1291564

0.0098879 0.0093073 0.0087655 0.0087655 0.0082593

 0.00825930.0077
864

0.0073436 $0.0069290 \quad 0.0594290$

 $0.0065403 \quad 0.0590403$ $\begin{array}{ll}0.0061 & 757 \\ 0.0058 & 334\end{array}$ 0.10000120.0950130 0.0902737 0.0857707
0.081494 0.0814924
0.0774274 0.0698957
0.0664092 0.0630967
0.0599493

$\begin{array}{lll}0.0569 & 590 & 0.0 \\ 0.0541 & 178 & 0\end{array}$ 0.0514183 | 0.0488535 |
| :--- |
| 0.0464 |

0.0441	013	0
0.0419	015	0.00

0.0398114
0.0378256
0.03781
0.0378256
0.0359388
$\begin{array}{ll}0.0341 & 461 \\ 0.0324 & 420 \\ 0.0308 & \end{array}$
0.0308246
0.0292870
0.0278261
0.0264381
0.0251194
0.0238664
0.0238664
0.0226759
0.0215448

0.0194490

0.0184789
0.0175571
0.0158493
0.0150587
0.0145076
0.0135939 0.0129158
0.0122715 0.0116594
0.0110778
0.0105253
0.0100002

0.0095014 0.0909275
 0.0085772

0.0081493
0.0077428
0.0073566 0.0073506
0.0069897
0.0066410 0.0060410
0.0063097 0.0059950

Discounted	Annuity for	Ratio of

0.2599173	0.0184	380	0.0709380

Ratio of Perpetual Anv. 0.0525000

RATIO of INTEREST: HALF-YEARLY, 0.02625 .

RATIO of INTEREST:
QUARTERLY, 0.013125.

RATE of INTEREST: $5 \frac{1}{2}$ per Cent. per Ann.——CORRESPONDING VALUE of

PERPETUAL STOCK : 3 p. C. 54,5455; 3⿺𠃊 $\frac{1}{2}$ p.C.63,6364; 4 p. C. 72,7273 ; 5 p. C. $90,9091$.

$\frac{\vec{e}}{\frac{2}{4}}$	RATIO of INTEREST: ANNUALLY, 0.055 .			RATIO of INTEREST: HALF-YEARLY, 0.0275 .			RATIO of INTEREST: QUARTERLY, 0.01375 .		
	Improved Principal.	Cumulated Annuity.	Valne of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Amuity.	Improved Principal.	Cumulated Anuuity.	Value of Annuity.
26	4.0231289	54.965981	13.66250	4.098785	56.341554	13.74592	4.1381878	57.057959	13.78815
27	4.2444 010	58.989109	13.89810	4.3973184	60.496698	13.98018	4.3705255	61.282282	14.02172
28	4.4778431	63.233510	14.12142	4.5685	64.883 5		4.6159078	65.743779	14.24287
29 30	$\begin{aligned} & 4.7241244 \\ & 4.9839513 \end{aligned}$	67.711354 72.435 788	14.33310 14.533 14	4.8233211 5.0922 514	69.514 928	14.412 14.611 143 1	4.87510 5.1487 681	70.455 75.432 05	14.452 14.650 53
31	5.2	77		5.3761762	79.566840	14.79	578 539	80.688253	14.83825
32	5.5472624	82.677498	14.9	5.6759316	85.016939	14.97850	5.7431612	86.239294	15.01600
33	5.8523618	88.224760	15.07507	5.9924 003	90.770914	15.147 67	6.0656099	92.101997	15.18429
34	6.1742417	94.077122	15.23803	6.3265 141	${ }^{96.845} 710$	15.307 91	6.4001 624	98.293861	15.34364
35	6.5138250	100.25136	15.39055	6.6792568	103.25921	15.459 69	6.7658351	104.83 337	15.49* 52
36	6.8720854	106.76519	15.536	7.0516671	110.03031	15.60345	7.1457017	111.74003	15.63738
37	7.2500501	113.63787	15.67400	7.4448416	117.17894	15.739	7.5468957	119.03478	$15.772{ }^{63}$
38 39	${ }_{8}^{7.6488} 0288$	120.88 732	${ }_{15}^{15.804} 74$	7.8599380	124.72 615	15.86859	7.9706147	126.73845	15.90071
39 40	8.0694870 8.5133088	$\begin{aligned} & 128.53613 \\ & 136.60561 \end{aligned}$	15.928 16.046 12	(1) $\begin{aligned} & 8.2981787 \\ & 8.7608 \\ & 540\end{aligned}$	132.69416	15.99076 10.10647	$\begin{aligned} & 8.4181234 \\ & 8.8907 \\ & 573 \end{aligned}$	134.87497 143.46831	16.02198 16.13680
41	8.9815408	145.11	16	9.2493264		16.2	9.3899272	152.	
42	9.4755255	$154.10{ }^{016}$	16.26300	9.7650341	159.36 426	16.31989	9.9171228	162.12951	16.34843
43	9.9966794	163.57599	16.36303	10.309496	169.26356	16.41822	10.473918	179.25 305	16.44590
4	10.546	173.57267	16.45785	10.884315	179.71481	16.51136	$11.06197 \pm$	182.94498	16.53819
45	11.126554	184.11917	16.54775	11.491183	190.74 879	16.59958	11.683046	194.23721	16.62556
46	11.738	195.24572	16.632	12.131889	202.39797	16.68	12.338939	206.16343	16.70829
47	12.384133	206.98423	16.713	12.808317	214.69667	16.76229	13.031759	218.75925	16.78663
48	13.065260	219.36837	16.79023	13.522461	227.68111	16.83725	13.763425	238.06226	16.86079
49	13.783849	232.43 36.3	16.86375	14276423	241.38950	16.90826	14.536169	246.11217	16.93102
50	14.541 g 61	246.21748	16.93152	15.072422	255.86 222	$16.975{ }^{5}$	15.352300	260.95091	16.99751
51	15.341769	260.75944	16.996 70	15.912801	271.14189	17.03923	16.214252	276.62276	17.06047
52	16.185566	276.10121	17.05848	16.800042	287.27350	17.09957	17.124598	293.17451	$17.120{ }^{\text {u }}$
53	17.075773	292.28677	17.11705	17.736750	304.30 454	17.15672	18.086055	310.65555	17.17652
54	18.014	309.36 255	17.172 55	18.725 684	${ }_{341} 328.28517$	17.21086	19.101493	${ }_{3}^{329.11} 806$	17.22997
55	19.005762	327.37749	17.22517	19.769758	341.26833	17.26214	20.173943	348.61714	17.28056
56	20.051079	346.38385	17.27504	20.872046	361.30993	17.31071	21.306605	369.21100	17.328 48
57	21.153888	366.43433	17.32232	22.035793	382.46896	17.35671	22.502860	390.96110	17.37384
58	22.317352	387.58821	17.36712	23.264426	404.80775	17.40029	23.766 279	413.93235	17.41679
59	23.544806	409.90557	17.40960	24.561563	428.39206	17.44156	25.100632	438.19332	$17.457{ }^{46}$
60	24.839770	433.45037	17.44985	25.931024	453.29134	17.48	26.509903	463.81641	17.49597
61	26.205	458.29014	17.488	27.376841			27.998296	490.87811	17.53243
62	27.647285	484.49610	17.584 18	28.903271	507.33219	17.55276	29.570255	519.45918	17.56695
63	29.167886	512.14339	17.55847	30.514809	536.63288	17.58598	31.230471	${ }^{549.6 \downarrow} 493$	17.59964
64	30.772120	541.31127	17.590	32.216200	567.56727	17.61745	${ }^{32.983} 900$	582.52 5156	17.6.30 59
65	32.464587	572.08339	17.621	34.012454	600.22644	17.64725	34 835775	615.19591	17.65989
66	34.250 139	604.54798	17.65096	35.908861	634.70657	17.67549	36.791623	650.75678	17.68764
6	36.133896	638.79812	$17.678{ }^{\text {É4 }}$	37.911005	671.10918	17.70223	38.857282	688.31421	17.71391
68	38.121261	674.93201	1770487	40.024780	709.54 146	17.72756	41.038916	727.98030	17.73878
69	40.217930	713.05327	17.72974	42.256412	750.11658	17.75154	43.343038	769.87343	17.76233
70	42.429916	753.27 120	17.553	43.612471	792.95401	17.77427	45.776525	814.11864	17.784 63
71	44.763562	795.70112	17.77564	47.099895	838.17991	17.79579	48.346639	860.84799	17.80575
72	47.225558	840.46468	17.79682	49.726008	885.92743	17.81618	51.061052	910.20095	17.825 7.
73	49.822963	887.69024	17.81689	52.498544	936.33717	17.83549	53.927865	962.32482	17.8446
${ }^{7}$	52.563 226	937.51320	17.83591	55.425666	989.55757	17.85378	56.955635	1017.3752	17.86259
75	55.454204	990.07 643	17.85395	.58.515 993	1045.7453	17.87110	60.153398	1075.5163	17.87956
76	58.504185	1045.5306	17.871	61.7T8 626	1105.0659	17.88751	63.530699	1135.9218	17.89563
77	61.721915	1104.0348	17.88724	65.223170	1167.6940	17.90305	67.097618	1201.7749	17.910 84
78	65.116620	1165.7567	17.90260	68.859770	1233.8140	17.91778	70.864801	1270.2691	17.925 25
79	${ }^{68.698} 034$	1230.8734	17.91716	72.699132	1303.6206	17.931 72	74.843492	1342.6089	17.93889
80	72.476426	1299.5714	17.93095	76.752563	1377.3193	17.944 93	79.045565	1419.0103	17.95180
81	76.462630	1372.0478	17.94403	81.031998	1455.1272	17.95744	83.483564	1499.7012	17.96403
82	${ }^{80.668} 074$	1418.5104	17.956	85.550039	1537.2734	17.969 29	88.170732	1584.9294	17.975 61
83	85.104818	1529.1785	17.96318	90.319988	1623.9998	17.98052	93.121061	1674.9284	17.98657
84	89.785583	1614.283 .3	17.97932	95.355892	1715.5617	17.991 14	98.349325	1769.9877	17.99695
85	94.723791	1704.0689	17.98987	100.67 258	1812.228	. 0121	103.87113	$1870.38+2$	18.006 78
86	99.933	1798.7927	17.99988	106.28570	1914.2855	18.01	109.70295	1976.4174	18.01608
87	105.429 .5	1898.7263	18.00936	112.21180	2022.0327	18.01979	$115.86{ }^{221}$	2089.4037	18.02489
88	111.22859	2004.1563	18.01835	118.46831	2135.7874	18.08834	122.36727	2206.6776	18.03323
89	117.34617	2115.3848	18.02688	125.07365	2255.8846	18.03645	129.23755	2331.5919	18.0 ± 113
90	123.80021	2232.7310	18.03495	132.04729	2389.6780	18.04413	136.49357	2463.5195	18.04861
91	130.60922	2356.5312	18.04261	139.40975	2516.5410	18.05140	144.15698	2602.8541	18.05569
92	137.79272	2487.1404	18.04987	147.18 272	2657.8676	18.05829	152.25064	2750.0117	18.06240
93	145.37132	2624.9332	18.05675	155.38 908	2807.0741	18.06481	160.79873	2905.4314	18.06875
94	153.36675	${ }_{2770.3}^{27035}$	18.06327	$164.05 \stackrel{9}{ }$	2964.5998	18.07699	169.82674	3069.5771	18.07476
95	151.80192	2923.6712	18.06945	173.19997	3130.9085	18.07684	179.36163	3242.9387	18.08045
96	170.70102	3095.4732	18.07531	182.85695	3306.4900	18.08939	189.43186	3426.0337	18.08584
97	180.08958	3256.1742	18.08086	193.05236	3491.8612	18.08764	20.063747	3619.4085	18.090 93
	189.99451	3436.2638	18.08612	203.81624	3687.5 680	18.092 61	211.30022	3823.6404	18.09577
99	200.44420	3626.2 583	18.09111	215.18027	3894.186	18.09732	223.16363	4039.3387	18.10035
100	211.4686	26.7025	18.09584	227.17792	4112.3257	18.10178	235.69311	4267.1475	18.10468
	tual Ann. 18.18182					8.18182			18.

0.0498
0.0472
$\mathbf{7 2 6}$
0.048
0.082 0.0448082
0.0424722
0.0402580 0.0402580 $\begin{array}{lll}0.0381 & 593 \\ 0.0361 & 699 \\ 0.0342 & 843 & 0 \\ 0 & 0.032 & 969\end{array}$ 0.0324969
0.0308028 0.0291970 0.0276748
0.0262321 0.0248645
0.0235683
0.0223396 0.0211750

0.0200711 0.0190247 0.0170928 | 0.0162017 |
| :--- |
| 0.0153 |
| 0.0145 |
| 0.055 |
| 0.0137 | 0.0145

0.0137
076
0.0130783 0.0123965 0.0117502 0.0105570
0.0100066 0.0094850
0.0089905 0.0089905
0.0085 0.0085218
0.0080775 0.0076564 0.0072573 0.0068789 0.0061804 0.0058582 0.0055528 0.0052633
0.0049889 0.0047288

RATIO of INTEREST:
ANNU.ALLY, 0.055 .
RATIO of INTEREST:
HALF-YEARLY, 0.0275.

Discounted Annuity for Ratio of Principal. Cumulation
0.2485628 0.2356045
0.2233218 0.2116794

$$
0
$$

0.1901839 0.1802691
0.1708712 0.1535196 0.1455162
0.1379301 $\begin{array}{ll}0.1307 & 394 \\ 0.1239 & 236\end{array}$ 0.1174631 $\begin{array}{lll}0.1113 & 395 \\ 0.1055 & 350\end{array}$ 0.100038182
0.0 0.0898751 0.0807485 0.0765388
0.0725487 0.068 0.06
0.06
0.05 0.05
0.05

RATE of INTEREST: $5 \frac{3}{4}$ per Cent. per Ann.——CORRESPONDING VALUE of

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
\& 4 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\]} \& \multicolumn{3}{|r|}{RATIO of INTEREST： ANNUALLY， 0.0575 ．} \& \multicolumn{3}{|l|}{RATIO of INTEREST： HALF－YEARLY， 0.02875 ．} \& \multicolumn{3}{|l|}{RATIO of INTEREST： QUARTERLY， 0.014375 ．} \\
\hline \& Discounted Principal． \& Annuity for Cumulation \& Ratio of Annuity． \& Discounted Principal． \& Annuity for Cumulation \& Ratio of Annuity． \& Discounted Principal． \& Annuity for Cumulation \& Ratio of Annuity． \\
\hline \& 0.94060265 \& 1.0000000 \& 1.0575000 \& 0.9720535
0.9448879 \& 2.0000000
0.9888888 \& 2.0575000
1.0433087 \& 0.9858287 0.9718583 0.9580858 0.9445083 \& \[
\left\lvert\, \begin{array}{ll}
4.0000 \& 000 \\
1.9577 \& 276 \\
1.343 \\
1.979 \\
0.9786 \& 939
\end{array}\right.
\] \& \[
\left\lvert\, \begin{array}{ll}
4.0575 \& 000 \\
2.0332 \& 276 \\
1.3718 \\
1.70961 \& 939
\end{array}\right.
\] \\
\hline \& 0.8942094 \& 0.4860268 \& 0.5435268 \& 0.9184816
0.8988138 \& 0.6478621
0.4789467 \& 0.7053621
\(\cdots .5304467\) \& 0.9311235 0.9179282 0.9049201 0.8920963 \& 0.7773283 0.6431072 0.5472546 0.4753821 \& 0.8348283 0.7006072 0.6047546 0.5328821 \\
\hline \({ }^{\text {a }}\) \& 0. \& 0.314 \& 807 \& \& 0.3776517
\(0.310{ }^{\text {a }} 669\) \& \& （1） \& \[
\begin{aligned}
\& 0.4194966 \\
\& 0.3748 \\
\& 0.318 \\
\& 0.3382458 \\
\& 0.3077
\end{aligned}
\] \& 0.4769966 0.4393018 0.3957458 0.3652938 \\
\hline \({ }^{\frac{3}{3}}\) \& 0.7996106 \& 0.2294412 \& 0.2869412 \& 0.82003
0.7971
0.7154 \& 0.2620021
0.20290123 \& 0.3195021
0.2834123 \& 0.8306518 0.8188804 0.8072758 0.7958357 \& \[
\left\lvert\, \begin{aligned}
\& 0.2820372 \\
\& 0.2599698 \\
\& 0.2408 \\
\& 0.2388 \\
\& 0.2241 \\
\& 5359
\end{aligned}\right.
\] \& \begin{tabular}{l}
0.3395372 \\
0.3174698 \\
0.2983
0.2316
0.259 \\
0.2816359
\end{tabular} \\
\hline \(\frac{4}{4}\) \& \& 0.178 \& \& 0.7748388
0.75318 \& 0.1978726
0.1754678 \& 0.2053726
0.2329678 \& \[
\begin{aligned}
\& 0.7845577 \\
\& 0.734395 \\
\& 0.7624788
\end{aligned}
\] \& \begin{tabular}{l}
0.2093928 \\
0.1962953 \\
0.1845847
\end{tabular} \& \begin{tabular}{l}
0.2668928 \\
0.2537953 \\
0.2420847
\end{tabular} \\
\hline \& 0.75613 \& 0.178 \& 0.2357841 \& 0.7531848 \& 0.1754678 \& 78 \& 0.7516735 \& 0.1740500 \& 0.2315500 \\
\hline 交 \& \& \& \& 0.7321359 \& \(0.1571{ }^{1} 610\) \& \(0.2176^{\circ} 610\) \& \begin{tabular}{|l|l|}
0.7410 \\
0.7305 \\
001
\end{tabular} \& \begin{tabular}{l}
0.1645 \\
0.1558 \\
\hline 100
\end{tabular} \& \[
\begin{aligned}
\& 0.2220260 \\
\& 0.2133740
\end{aligned}
\] \\
\hline \(6^{\frac{3}{4}}\) \& 0.7150 \& 0.1442680 \& 0.2017680 \& 0.7116751 \& \(0.1119 \% 279\) \& 0．1994 279 \& \[
\begin{aligned}
\& 0.7201677 \\
\& 0.7099620
\end{aligned}
\] \& \[
\begin{array}{|l|l}
0.1479820 \\
0.1407 \& 499 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
0.2054880 \\
0.1982 \\
0.199
\end{array}
\end{aligned}
\] \\
\hline 产 \({ }^{\frac{1}{1}}\) \& \(0.6761{ }^{\text {a }}\) \& 0.1200465 \& 0.1775465 \& \& 10.0
0.1290589
0.1130475 \& 0.1865589
0.17754575 \& 0.6999009 0.6899824 0.680204 0.6705651 \& \[
\begin{array}{lll}
0.1341 \& 034 \\
0.1279 \\
0.1223 \& 734 \\
0.124 \\
0.1170 \& 0213
\end{array}
\] \& 0.1916034 0.1854734 \(\begin{array}{lll}0.1798 \& 024 \\ 0.1745 \& 413\end{array}\) 0.1745413 \\
\hline －\({ }^{\frac{1}{4}}\) \& 0.6393770 \& 0.101945 \& 0.1594463 \& 0.6536605
0.6353930 \& \begin{tabular}{l}
0.1085 \\
\hline 0.1021 \\
0.1002010
\end{tabular} \& \& 0.6610623 0.6516942 \begin{tabular}{l}
0.6424589 \\
0.6333 \\
\hline
\end{tabular} 0.6333544 \& \[
\left\lvert\, \begin{array}{lll}
0.1121 \& 477 \\
0.1075 \& 848 \\
0.1033 \& 207 \\
0.0993 \& 272
\end{array}\right.
\] \& \begin{tabular}{l}
0.1696477 \\
0.1650848 \\
0.1608207 \\
0.1568272
\end{tabular} \\
\hline \(\frac{3}{\frac{3}{3}}\) \& \& \& \& 0.6176360 \& \(0.09288^{\circ} 803\) \& 0.150 .3803 \& \[
\begin{aligned}
\& 0.6243790 \\
\& 0.6155307 \\
\& 0.6068079
\end{aligned}
\] \& \begin{tabular}{l}
0.0955798 \\
0.0920568 \\
0.0887389
\end{tabular} \& \begin{tabular}{l}
0.1530798 \\
0.1495568 \\
0.1462389
\end{tabular} \\
\hline 9 \& 0.6046118 \& \(0.0879 \sim 67\) \& 0.1454267 \& \({ }^{-0.6003} 752\) \& 0.0863850 \& 0.1438850 \& 0.5982086 \& 0.0856091 \& 0.1431091 \\
\hline \(\frac{1}{4}\) \& ．．．． \& \& \& 0.5835 \& 0.0805873 \& 0.1380873 \& \begin{tabular}{l}
0.5897 \\
0.5813 \\
\hline 140
\end{tabular} \& \[
\left\lvert\, \begin{aligned}
\& 0.0826520 \\
\& 0.0798 \\
\& 0.041
\end{aligned}\right.
\] \& \[
\begin{aligned}
\& 0.1401520 \\
\& 0.1373541
\end{aligned}
\] \\
\hline \({ }^{2}\) \& \& \& \& \& \& \& 0.5731352 \& 0.0772 031 \& 0.1347 031 \\
\hline 10 \& 0.5717369 \& 0.0767633 \& 0.1342633 \& 0.5072873 \& 0.0753826 \& \(0.13{ }^{3} 28826\) \& 0.5650131 \& 0.0747437 \& 0.1322437 \\
\hline \(\stackrel{\text { \％}}{ }\) \& ．．．． \& \& ．．．．． \& 0.5514335 \& 0.0706861 \& 0.1281861 \& \[
\begin{aligned}
\& 0.5570061 \\
\& 0.5491126
\end{aligned}
\] \& \[
\begin{array}{l|l}
0.0722 \& 987 \\
0.0700 \& 263
\end{array}
\] \& \begin{tabular}{l}
0.1297987 \\
0.1275263
\end{tabular} \\
\hline 11 \& \(0.5100^{\circ} 496\) \& 0.0676768 \& 0.1251768 \& 0.5360229 \& 0.0664285 \& 0.1239285 \& \[
\begin{aligned}
\& 0.5413310 \\
\& 0.5336596
\end{aligned}
\] \& \[
\left|\begin{array}{l|}
0.0678 \\
0.0658 \\
0.027
\end{array}\right|
\] \& \[
\begin{aligned}
\& 0.1253627 \\
\& 0.1233 \\
\& 005
\end{aligned}
\] \\
\hline \(\frac{1}{4} \frac{1}{4}\) \& \& \& \& 0.5210429 \& 0.06035525 \& 0.12000595 \& 0.5960970
0.5186
415 \& \[
\begin{aligned}
\& 0.0638328 \\
\& 0.0619 \\
\& 036
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.1213328 \\
\& 0.1194536
\end{aligned}
\] \\
\hline \({ }^{\frac{3}{4}}\) \& \& \& \& \& \& \& 0.5112917 \& 0.0601571 \& 0.1176571 \\
\hline 12 \& 0.5112526 \& 0.0601477 \& 0.1176477 \& 0.5064816 \& 0.0590103 \& 0.1165103 \& 0.5040461 \& 0.0584382 \& 0.1159382 \\
\hline \(\frac{1}{2}\) \& \& \& \& 0.4923272 \& 0.0557619 \& 0.1132619 \& 0.4969
0.4898
0.41
0.489 \& 0.0567921
0.0552144
0.051 \& \[
\begin{aligned}
\& 0.1142921 \\
\& 0.1127144
\end{aligned}
\] \\
\hline 13 \& 0.4834539 \& 0.0538163 \& 0.1113163 \& 0.4785683 \& \(0.0527{ }^{\circ} 733\) \& 0.1102733 \& \[
\begin{aligned}
\& 0.4829193 \\
\& 0.4760 \\
\& 757
\end{aligned}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
0.5537 \\
0.012 \\
0.0522
\end{array} 487
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.1112012 \\
\& 0.1007487
\end{aligned}
\] \\
\hline \(\frac{1}{4}\) \& \& \& \& \& \& \& \begin{tabular}{l}
0.4693 \\
0.4696 \\
\hline 18
\end{tabular} \& 0.0508534 \& 0.1083534 \\
\hline 告 \& \& \& \& 0.4651940
...

0. \& 0.0500156 \& ${ }^{0.1075156}$ \& 0.4626
0.4561

014 \& $$
\begin{aligned}
& 0.0495 \\
& 0.0482 \\
& 022
\end{aligned}
$$ \& 0.1070

0.105722
0.122

\hline 14 \& 0.4571669 \& 0.0484257 \& 0.1059257 \& 0.4581934 \& 0.0474641 \& 0.1049641 \& 0.4496576 \& 0.0469804 \& 0.1044804

\hline $\frac{1}{4}$ \& \& \& \& 0.4395562 \& 0.0450973 \& 0.1025973 \& 0.4432854
0.4370
034 \& 0.0457845
0.0446
0 \& 0.1032845
0.1021
0.102
0

\hline 15 \& 0.4323091 \& 0.0437875 \& \& \& \& \& 0.4308
0.4247
0.4 \& 0.0435209 \& 0.1010209

\hline 15 \& 0.4323091 \& 0.0437875 \& 0.1012875 \& 0.4272 \& 0.0298 \& 0.1003967 \& 0.4247054 \& 0.0424488 \& 0.0999488

\hline 者 \& ．．．．． \& \ldots \& ．．．．． \& $0.4153{ }^{1} 313$ \& 0.0408463 \& 0.0983463 \& 0.4186868
0.4127

534 \& $$
\left|\begin{array}{ll}
0.0414 & 140 \\
0.0404 & 146
\end{array}\right|
$$ \& 0.0989140

0.0979
0.0
146

\hline 10 \& 0.40880 \& 0.0397 \& $0.0972{ }^{603}$ \& 0．4037 243 \& \& \& 0.4069042 \& 0.0394489 \& 0.0969489

\hline \& \& \& \& \& \& \& 0.40113 \& 0.038 \& 0.0900154

\hline 17 \& 0.3865749 \& 0.0362360 \& 0.0937360 \& 0.3814742 \& 0．0354 630 \& 0.0929630 \& 0.3788781 \& 0.0350744 \& 0.0925744

\hline 18 \& 0．3055 554 \& ${ }_{0}^{0.0331} 305$ \& 0.0906305
0.0378
0.073 \& ${ }^{0.3604} 504$ \& 0.0334070 \& 0.0899070 \& 0.3578535 \& 0．0320 434 \& 0．0895 434

\hline 20 \& 0.3268831 \& 0．0279 235
0.031 \& ${ }_{0}^{0.0854} 235$ \& （ 0.3218149 \& 0.0296
0.0272

051 \& | 0.0871 |
| :--- |
| 0.0817 |
| 851 | \& 0.3379

0.3192

098 \& | 0.0293 |
| :--- |
| 0.0269 |
| 644 | \& 0.0868

0.0844
0.044

\hline 21 \& 0.3091093 \& 0.0257259 \& 0.0832259 \& 0.3040790 \& 0.0251243 \& 0.0826243 \& 0.3015247 \& 0.0248222 \& 0.0823222

\hline 22 \& 0.2923019
0.2764
085 \& 0.0237493
0.0219
0.47 \& 0．0812 493 \& 0.2873205
0.2714858
0.258 \& 0.0231814
0.0214
0.078 \& 0.0806814
0.0789
0.078 \& 0.2847
0.2689
090 \& 0.0228
0.0211
0.83
0.082 \& 0.0803
0.0786
0882
0.078

\hline 24 \& 0.2613792 \& 0.0203478 \& 0.0778478 \& 0.2565236 \& 0．0198 394 \& 0.0773394 \& 0．2540 684 \& 0.0195842 \& 0.0770842

\hline 25 \& 0.4471671 \& 0.0188782 \& 0.0763782 \& 0.2423860 \& 0.0183962 \& 0.0758962 \& 0．2399 641 \& 0.0181543 \& 0.0756543

\hline
\end{tabular}

$\begin{aligned} & \text { - } \\ & \stackrel{0}{6} \\ & 6 \end{aligned}$	RATIO of INTEREST: ANNUALLY, 0.0575.			RATIO of INTEREST: HALF-YEARLY, 0.02875.			RATIO of INTEREST: QUARTERLY, 0.014375.		
	Improved Principal.	Cunulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.
26	4.2784827	57.017090	13.32647	4.3662853	58.544092	13.40822	4.4121256	59.341315	13.44960
27	4.5244954	61.295573	13.54749	4.6209557	62.973142	13.62773	4.6713458	63.849492	13.66833
28	4.7846539	65.820068	13.75649	4.8904801	67.660524	13.83515	4.9457956	68.622532	13.87492
29	5.0597715	70.604722	13.95413	5.1757250	72.621305	14.03114	5.2363698	73.675997	14.07005
30	5.3507084	75.664493	14.14102	5.4776073	77.871431	14.21632	5.5440158	79.026362	14.25435
31	5.6583741	81.015202	14.31775	5.7970973	83.427779	14.39130	5.8697365	84.691070	14.42843
32	5.9837306	86.673576	14.48487	6.1352221	89.308210	14.55664	6.2145939	90688590	14.59284
33	6.3277951	92.657307	14.64291	6.4930685	95.531696	14.71286	6.5797123	97.038475	14.74813
34	6.6916433	98.985102	14.79235	6.8717868	102.11803	14.86048	6.9662821	103.76143	14.89481
35	7.0764128	105.67674	14.93366	7.2725945	109.08860	14.99996	7.3755635	110.87936	15.03334
36	7.4833066	112.75316	15.06729	7.6967800	116.46574	15.13175	7.8088909	118.41549	15.16419
37	7.9135967	121.23646	15.19366	8.1457067	124.27316	15.25628	8.2676770	126.39438	15.28778
38	8.3686285	128.15006	15.31315	8.6208178	132.53506	15.37394	8.7534176	134.84205	15.40450
39	8.8498247	136.51869	15.426 15	9.1236404	141.28070	15.48512	9.2676964	143.78602	15.51475
40	9.3586896	145.36851	15.53300	9.6557910	150.53550	15.59018	9.8121900	153.25548	15.61889
41	9.8968142	154.72 720	15.63404	10.218980	160.33009	15.68944	10.388673	163.28128	15.71724
49	10.465881	164.62402	15.72959	10.815018	170.69597	$15.783{ }^{\text {2 }} 3$	10.999026	173.89611	15.81014
43	11.067669	175.08990	15.81994	11.445821	181.66645	15.87186	11.645239	185.13459	15.89788
44	11.704060	186.15757	15.90538	12.113416	193.27631	15.95560	12.329417	197.03334	15.98075
45	12.377014	197.86163	15.98618	12.819950	205.56435	16.03472	13.053792	209.63117	16.05902
46	13.088784	210.23867	16.06258	13.567694	218.56859	16.10948	13.820725	222.96914	16.13295
47	13.841325	223.32740	16.13483	14.359051	2.32 .33132	16.18913	14.632717	237.09074	16.20278
48	14.637201	237.16872	16.20315	15.196 565	246.89678	16.24689	15.492416	252.04 201	16.26873
49	15.478841	251.80592	16.c67 75	16.082928	262.31180	16.30995	16.402622	267.87169	16.33102
50	16.368874	267.28476	16.32884	17.020990	278.62592	16.36955	17.366305	284.63140	16.388986
51	17.310084	283.65364	16.38661	18.013766	295.89158	16.42586	18.386607	302.37577	16.44544
52	18.305414	300.96372	10.44124	19.064447	314.16430	16.47907	19.466852	321.16265	16.49792
53	19.357975	319.26 913	16.49290	20.176411	333.50280	16.52934	20.610564	341.05329	$16.5+7{ }^{5}$
54	20.471059	338.62711	19.54175	21.353231	353.96924	16.57685	21.821471	362.11254	$16.59+32$
55	21.648145	359.09317	16.58794	22.598692	375.62913	16.62173	23.103521	$38+.40907$	16.63855
56	22.892913	380.74631	16.63162	23.916796	398.55298	16.66414	24.460894	408.01555	16.68032
57	54.209256	403.63923	16.67293	25.311781	422.81358	16.70422	25.898015	433.00895	16.71977
58	25.601288	427.84848	16.71199	26.788130	448.48921	16.74209	27.419569	459.47076	16.75704
59	27.073362	453.44977	16.71893	28.350589	475.66242	16.77787	29.030517	487.48725	16.79223
60	28.630080	480.52313	16.78386	30.004182	504.42055	16.81168	30.736111	517.14976	16.82548
61	30.276310	509.15321	16.81688	31.751222	534.85604	16.81362	32.541912	548.55500	16.85688
62	32.017197	539.42952	16.84812	33.606337	567.06673	16.87380	34.453807	581.80534	16.88653
63	33.858186	571.44672	16.87765	35.566479	601.15616	16.90232	36.478029	617.00920	16.91454
64	35.805032	605.30491	16.90558	37.640950	637.23391	15.92927	38.621178	654.28136	16.94100
65	37.863821	641.10994	16.93199	39.836417	675.41595	16.95474	40.890240	693.74331	16.96599
66	40.040991	678.97376	16.95697	42.159938	715.82501	16.97880	43.292614	735.52373	
67	42.343348	719.01475	16.98058	44.618982	758.59100	17.00153	45.836132	779.75882	17.01188
68	44.778091	761.35810	17.00292	47.22145	803.85138	17.02301	48.529086	886.59280	17.03294
69	47.352831	806.13619	17.02403	49.975719	851.75164	17.04331	51.380255	876.17836	17.05282
70	50.075619	853.48902	17.04400	52.890631	902.44576	17.06249	54.398936	928.67715	17.07160
71	52.954967	903.56464	17.06289	55.975560	9565.09670	17.08061	57.594970	984.26035	17.08934
72	55.999877	956.51961	17.08074	59240422	1012.8769	17.09773	60.978776	1043.1092	17.10610
73	59.219870	1012.5195	17.09763	62.695712	1072.9689	17.11391	64.561387	1105.4154	17.12193
74	62.625013	1071.7394	17.11360	66.352538	1136.5659	17.1\&9 20	68.354483	1171.3823	17.13688
75	66.225951	1134.3644	17.12870	70.222653	1203.8722	17.14364	72.370430	1241.2249	17.15100
76	70.033943	1200.5903	17.14298	74.318499	1275.1043	17.15729		1315.1708	
77	74.060895	1270.6243	17.15648	78.653242	1350.4912	17.17019	81124017	1.393 .4612	17.17692
78	78.319346	1344.6852	17.16925	83.240815	1430.2750	17.18238	85.890197	1476.3512	17.18882
79	82.822702	1423.0046	17.18132	88.095965	1514.7124	17.19389	90.9336308	1564.1113	17.20006
80	87.585070	$1505.8 \div 73$	17.19274	93.234300	1604.0748	17.20477	96.279072	1657.0273	17.21067
81	92.621212	1593.4124	17.20354	98.672336	1698.6493	17.21505	101.93564	1755.4024	17.22069
82	97.946932	1686.0336	17.21375	104.42 755	1798.7401	17.294 77	107.92454	1859.5572	17.23016
83	103.57888	1783.9805	17.22340	110.51845	1904.6688	17.23394	114.26529	1969.8312	17.23910
84	109.53467	1887.5594	17.23253	116.96462	2016.7759	17.24262	120.97858	2086.5840	17.24755
85	115.83291	1997.0941	17.24116	123.78676	2135.4219	17.25081	128.08629	2210.1963	17.25553
86	12249330	2112.9270	17.24933	131.00682	2260.9881	17.25855	135.61158	2341.0710	17.26306
87	129.53667	2235.4203	17.257	138.64799	2393.8 ¢82	17.26587	143.57900	2479.6318	17.27018
88	136.98502	2364.9570	17.26435	146.73485	2534.5192	17.27278	152.01452	2626.3395	17.27690
89	144.86166	2501.9420	17.27125	155.29339	2683.3634	17.27931	160.94565	2781.6634	17.28395
90	153.19191	2616.8036	17.27778	164.35112	2810.8891	17.28549	170.40149	2946.1128	17.28995
91	161.99970	2799.9948	17.28395	173.93716	3007.6028	17.29132	180.41288	3120.2239	17.29491
92	171.31469	2961.9 9+6	17.28979	184.08232	3184.0403	17.29683	191.01245	3304.5644	17.30026
93	181.16528	31.33 .3092	17.29531	194.81921	3370.7688	17.30204	202.23477	3499.7351	17.30531
94	191.58288	3314.4745	17.30053	206.18234	3568.3885	1730696	214.11648	3706.3725	17.31008
95	202.59827	3506.0568	17.30546	218.20825	3777.5347	17.31161	226.69614	3925.1503	17.314 59
96	214.24767	3708.6551	17.31013	230.93558	3998.8797	17.31600	240.01494	4156.7815	17.31884
97	226.56691	3922.9027	17.31454	244.40 5:6	4233.1350	17.32015	254.11694	4402.0216	17.32287
98	239.59450	+149.4 696	17.31878	258.66058	4131.0536	$17.39+07$	269.04602	4661.6699	17.32666
99	253.37119	4389.0611	17.32266	273.74737	4743.4324	17.327	284.85295	4936.5730	17.33025
100	267.94003	4642.4353	32640	289.71411	5021.1149	17.33127	301.58856	5227.6272	17.33364
	Value of P	rpetual An	17.39130			17.39130		- -	17.391 so

PERPETUAL STOCK: 3 p.C. 52,1739 ; $3 \frac{1}{2}$ p.C. 60,8696 ; 4 p.C. 69,5652 ; 5 p.C. $86,9565$.

RATIO of INTEREST: ANNUALLY, 0.0575 .

$\begin{aligned} & \text { K } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	RATIO of INTEREST: ANNUALLY, 0.0575.			RATIO of INTEREST: HALFYEARLY, 0.02875.			RATIO of INTEREST: QUARTERLY, 0.014375.		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discount ed Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.2337277	0.0175386	0.0750386	$0.2290 ¢ 76$	0.0170811	0.0745811	0.2266481	0.0168517	0.0743517
27	0.2210191	0.0163144	0.0738144	0.2164055	0.0158798	0.0733798	0.2140 711	0.0156618	0.0731618
28	0.2090015	0.0151929	0.0726929	0.2644789	0.0147797	0.0722797	0.2021919	0.0145725	0.0720725
29	0.1976374	0.0141634	0.0716634	0.1932096	0.0137701	0.0712701	0.1909720	0.0135729	0.0710729
30	0.1868911	0.0132162	0.0707162	0.1825615	0.0198417	0.0703417	0.1803746	0.0126540	0.0701540
31	0.1767292	0.0123434	0.0698434	0.1725001	0.0119864	00694864	0.1703654	0.0118076	0.0693076
32	0.1671198	0.0115375	0.0690375	0.1629933	0.0111972	0.0686972	0.1609116	0.0110267	0.0685267
33	0.1580329	0.0107925	0.0682925	0.1540104	0.0104677	0.0679677	0.1519823	0.0103052	0.0678052
34	0.1494401	00101025	0.0676095	0.1455226	0.0097926	0.0672996	0.1435486	0.0096375	0.0671375
35	0.1413145	0.0094628	0.0669628	0.1375025	0.0091669	0.0666669	0.1355828	0.0090188	0.0665188
36	0.1336308	0.0088689	0.0663689	0.1299245	0.0085852	0.0650862	0.1280592	0.0084448	0.0659448
37	0.1263648	0.0083169	0.0658169	0.1227641	0.0080468	0.0655468	0.1209530	0.0079117	0.0654117
38	0.1194939	0.0078034	0.0653034	0.1159983	0.0075451	0.0650451	0.1142411	0.0074161	0.0649161
39	0.1129966	0.0073250	0.0648250	0.1096054	0.0070781	0.0645781	0.1079017	0.0069548	0.0644548
40	0.1068526	0.0068791	0.0643791	0.1035648	0.0066430	0.0641430	0.1019140	0.0065251	0.0640251
41	0.1010426	0.0064630	0.0639630	0.0978571	0.0062371	0.0637371	0.0962587	0.0061244	0.0636244
42	0.0955486	0.0060744	0.0635744	0.0924640	0.0058584	0.0633584	0.0909171	0.0057506	0.0632506
43	0.0903533	0.0057114	0.0632114	0.0873681	0.0055046	0.0630046	0.0858720	0.0054015	0,06¢9 015
44	0.0854404	0.0053718	0.0628718	0.0825531	0.0051739	$0.06{ }^{0} 6739$	0.0811068	0.0050753	0.0625753
45	0.0807947	0.0050540	0.0625549	0.0780034	0.0048647	0.0623647	0.0766061	0.0047703	0.0622703
46	0.0764016	0.0047565	0.0629565	0.0737045	0.0045752	0.0620752	0.0723551	0.0044849	0.0619849
47	0.0722474	0.0044777	0.0619777	0.0696425	0.0043043	0.0618043	0.0683400	0.0042178	0.0617178
48	0.0683191	0.0042164	0.0617164	0.0658043	0.0040503	0.0615503	0.0645477	0.0039676	0.0614676
49	0.0646043	0.0039713	0.0614713	0.0621777	0.0038123	0.0613123	0.0609659	0.0037331	0.0612331
50	0.0610916	0.0037413	0.0612413	0.0587510	0.0035890	0.0610890	0.0575828	0.0035133	0.0610133
51	0.0577698	0.0035254	0.0610254	0.0555131	0.0033796	0.0608796	0.0543874	0.0033071	0.0608071
52	0.0546286	0.0033227	0.060 B 227	0.0524537	0.0031830	0.0606830	0.0513694	0.0031137	0.0606137
53	0.0516583	0.0031322	0.0606322	0.0495628	0.0029985	0.0604985	0.0485188	0.0029321	0.0604321
54	00488495	0.0029531	0.0604531	0.0468313	0.00\&8 251	0.0603251	0.0458264	0.0027616	0.0602616
55	0.0461933	0.0027848	0.0602 848	0.0442503	0.0026622	0.0601622	0.0432834	0.0026014	0.0601014
56	0.0436816	0.0026264	0.0601264	0.0418116	0.0025091	0.0600091	0.0408816	0.0024509	0.0599509
57	0.0413065	0.0024775	0.0509775	00395073	0.0023651	0.0598651	0.0386130	0.0023094	0.0598094
58	0.0390605	0.0023373	0.0598373	0.0373300	0.0022297	0.0597297	0.0364703	0.0021764	0.0596864
59	0.0369367	0.0022053	0.0597053	0.0352726	0.0021023	0.0596023	0.0344465	0.0020513	0.0595513
60	0.0349283	0.0020811	0.0595811	0.0333287	0.0019825	0.0594825	0.0325350	0.0019337	0.0594337
61	0.0330291	0.0019640	0.0594640	0.0314919	0.0018697	0.0593697	0.0307296	0.0018230	0.0593230
62	0.0312332	0.0018538	0.0593538	0.0297563	0.0017635	0.0592635	0.0290244	0.0017188	0.0592188
63	0.0295350	0.0017499	0.0592499	0.0281164	0.0016635	0.05916 .35	0.0274138	00016207	0.0591207
64	0.0279290	0.0016521	0.0591521	0.0265668	0.0015693	0.059069 .3	0.0258925	0.0015284	0.0590284
65	0.0264104	0.0015598	0.0590598	0.0251027	0.0014806	0.0589806	0.0244557	0.0014415	0.0589415
66	0.0249744	0.0014728	0.0589728	0.0237192	0.0013970	0.0588970	0.0230986	0.0013596	0.0588596
67	0.0236105	0.0013908	0.0588908	$0.02941 \leqslant 0$	0.0013182	0.0588182	0.0218169	0.0012824	0.0587824
68	0.0223323	0.0013134	0.0588134	0.0211768	0.0012440	0.0587440	0.0206062	0.0012098	0.0587098
69	0.0211181	0.0012405	0.0587405	0.0200097	0.0011741	0.0586741	0.0194627	0.0011413	0.058641 .3
70	0.0199698	0.0011717	0.0586717	0.0189069	0.0011081	0.0586081	0.0183827	0.0010768	0.0585768
71	0.0188840	0.0011067	0.0586067	0.0178649	0.0010459	0.0585459	0.0173626	0.0010160	0.0585160
72	0.0178572	0.0010455	0.0585455	0.0168804	0.0009873	0.0584873	0.0163991	0.0009587	0.0584587
73	0.0168862	0.0009876	0.0584876	0.0159501	0.0009320	0.0584320	0.0154891	0.0009016	0.0584046
74	0.0159681	0.0009331	0.0584331	0.0150710	0.0008798	0.0583798	0.0146296	0.0008537	0.0583537
75	0.0150998	0.0008816	0.0583816	0.0142404	0.0008307	0.0583307	. 0.0138178	0.0008057	0.0583057
76	0.0142788	0.0008329	0.0583329	0.0134556	0.0007842	0.0582842	0.0130510	0.0007604	0.0588604
77	0.0135024	0.0007870	0.0582870	0.0127140	0.0007405	0.0582405	0.0123268	0.0007176	0.0582176
78	0.0127682	0.0007437	0.0582437	0.0120133	0.0006992	0.0581992	0.0116428	0.0006 773	0.0581773
79	0.0120740	0.0007087	0.0582027	0.0113513	0.0006 502	0.0581602	0.0109967	0.0006393	0.0581393
80	0.0114175	0.0006641	0.0581641	0.0107257	0.0006234	0.0581234	0.0103865	0.0006035	0.0581035
81	0.0107967	0.0006276	0.0581276	0.0101346	0.0005887	0.0580887	0.0098101	0.0005697	0.0580697
82	0.0102096	0.0005931	0.0580931	0.0095760	0.0005559	0.0580559	0.0092657	0.0005378	0.0580378
83	0.0096545	0.0005605	0.0580505	0.0090483	0.0005250	0.0580250	0.0087515	0.0005077	0.0580077
84	0.0091295	0.0005298	0.0580298	0.0085496	0.0004958	0.0579958	0.0082659	0.0004793	0.0579793
85	0.0086331	0.0005007	0.0580007	0.0080784	0.0004683	0.0579683	0.0078072	0.000452	0.0579524
86	0.0081637	0.0004733	0.0579733	0.0076332	0.0004423	0.0579423	0.0073740	0.0004272	0.0579272
87	0.0077198	0.0004473	0.0579473	00072125	0.0004177	0.0579177	0.0069648	0.000403 .3	0.0579033
88	0.0073001	0.0004228	0.0579228	0.0068150	0.0003946	0.0578946	0.0065783	0.0003808	0.0578808
89	0.0069031	0.0003997	0.0578997	0.0064394	0.0003 7¢7	00578727	0.0062133	0.0003595	0.0578595
90	0.0065278	0.0003778	0.0578778	0.00608	0.0003520	0.0578520	0.0058685	0.0003394	0.0578394
91	0.0061729	0.0003571	0.0578571	0.0057492	0.0003325	0.0578325	0.0055498	0.0003205	0.0573205
92	0.0058372	0.0003376	0.0578376	0.0054324	0.0003141	0.0578141	0.0052353	0.0003006	0.0578026
93	0.0055198	0.0003192	0.0578192	00051330	0.0002967	0.0577967	0.0049447	0.0002857	0.0577857
94	0.0052197	0.0003017	0.0578017	0.0048501	0.0002802	0.0577802	$0.004670+$	0.0002698	0.057\% 698
95	0.0049359	0.0002852	0.0577852	0.0045828	0.0002647	0.0577647	0.0044112	0.0002548	0.0577548
96	0.0046675	0.0002696	0.0577696	0.0043302	$0.060 ¢ 501$	0.0577501	0.0041664	0.0002406	0.0577406
97	0.0044137	0.0002549	0.0577 ธ49	0.0040916	0.0002362	0.0577362	0.0039352	0.0002272	0.0577272
98	0.0041737	0.0002410	0.0577410	0.0038661	0.0002232	0.0577232	0.0037168	0.0002145	0.0577145
90	0.0039468	0.0002278	0.0577278	0.0036530	0.0002108	0.0577108	0.0035106	0.0002026	0.0577026
100	0.0037322	.0002 154	0.0577154	0.0034517	0.0001992	0.0576992	. 033	0.00019	0.0576913
	Ratio of Perpetual Ann. 0.0575000					0.0575000		- - -	0.0575000

RATE of INTEREST: 6 per Cent.per Ann.——CORRESPONDING VALUE of

PERPETUAL STOCK : 3 p. C. 50 ; $3 \frac{1}{2}$ p. C. 58,3333 ; 4 p. C. 66,6667 ; 5 p. C. $83,3333$.

$\begin{aligned} & \overrightarrow{8} \\ & \stackrel{\oplus}{y!} \\ & \frac{1}{2} \end{aligned}$	RATIO of INTEREST: ANNUALI. $Y, 0.06$.			RATIO of INTEREST: HALF-YEARLY, 0.03 .			RATIO of INTEREST: QUARTERLY, 0.015 .		
	Improved Principal.	Cumulated Annuity.	Value of Annuity.	Improved Principal.	Cumulated Annuity.	Value of Amuity.	Improved Principal.	Cumulated Annuity.	Value of Annuity.
26	4.5493830	59.156.383	13.00317	4.6508859	60.848098	13.08312	4.7040116	61.733527	13.12359
27	4.82234 .59	63.705766	13.2105 .3	$4.93+1248$	65.568746	13.28883	4.9926565	66.544441	13.32844 ,
28	5.1116867	68.528112	13.40616	5.2346130	70.576883	13.48273	5.2990342	71.650 5i0	13.52144
29	5.4183879	73.639798	13.59072	55534010	75.890016	13.66550	5.6942 018	77.070030	13.70328
30	5.7434912	79.058186	13.76483	5.8916031	81.526718	13.83778	5.9693228	82.862047	13.87461
31	6.0881006	84.801677	13.929 09-	6.2504017	87.506695	14.00017	6.3356216	88.927026	14.03604
32	6.4533867	90.889778	14.08405	6.6310512	93.850853	14.15324	6.7243978	95.4066 .30	14.18813
33	6.8405899	97.343165	14.23023	7.0348822	100.58137	14.29752	7.1370308	102.28385	14.33143
34	7.2510253	104.18375	14.36814	7.4633065	107.72177	14.4 .3352	7.5749843	109.58307	14.46644
35	7.6860868	111.43478	14.49825	7.9178219	115.29 703	14.56171	8.0398122	117.33020	14.59365
36	8.1472520	119.12087	14.62099	8.4000172	123.33 362	14.68254	8.5.331 637	125.55. 273	14.71350
37	8.6360871	127.26812	14.73678	8.9115783	131.85964	14.79644	9.0567889	134. 67981	14.88643
38	0.1542523	135.90421	14.84602	9.4542934	140.90489	14.90380	9.6125456	143.54243	14.332 82
39	9.7035075	145.05816	14.94908	10.030060	150.50100	15.00499	10.202406	153.57343	15.033 06
40	10.285718	154.76197	15.04630	10.640891	160.68151	15.10038	10.828461	163.80769	15.12751
41	10.902861	165.04768	15	11.488 921	171.48201	15.19029	11.492934	$174.68{ }^{2} 2.3$	15.21650
42	11.557033	175.95054	15.22455	11.976416	182.94027	15.27504	12.108181	186.63636	15.30034
43	12.250455	187.50758	15.30618	12.705780	195.09633	15.35493	12.446705	199.11175	15.37934
44	12.985482	199.75 f03	15.38319	13.479562	207.99270	15.43023	13.741 161	212.35468	15.45377
45	13.764611	212.74351	15.45584	14.300467	221.67445	15.50120	14.584367	226.40612	15.52389
46	14.590487	226.50812	15.52437	15.171365	236.18942	15.56811	15.479316	241.32193	15.58996
47	15.465917	¢41.09 861	15.58903	16.095302	251.58836	15.63117	16.429182	257.15303	15.65221
48	16.393872	256.56453	15.65003	17.075506	267.92509	15.69061	17.437335	273.95558	15.71086
49	17.377504	272.95840	15.70758	18.115404	285.25673	15.74664	18.507351	291.78919	15.76612
50	18.420154	290.33590	15.76186	19.218632	303.64387	15.79945	19.643029	310.71714	15.81819
51	19.525364	308.75606	15.81308	20.389047	323.15078	15.84923	20.848395	33080658	15.86724
52	20.696885	328.28142	15.86140	21.630740	343.84566	15.89616	22.127726	352.12877	15.91346
53	21.938698	348.97831	15.90698	22.948052	365.80086	15.94039	23.485562	374.75937	15.95701
54	23.255020	370.91701	15.94998	24.345588	389.09313	15.98208	24.926719	398.77866	15.99804
55	24.650322	394.17203	15.99055	25.828234	413.80391	16.02138	26.456311	424.27186	16.03670
56	26.129341	418.82235	16.02882	27.401174	440.01956	16.05842	28.079765	451.32941	1607312
57	¢7.697 101	444.95169	16.06492	29.069905	467.83175	1609334	29.802839	480.04731	16.10744
58	29.358947	$472.6+879$	16.09898	30.840262	497.33771	16.12625	31.631677	510.52745	16.13977
59	31.120463	502.00712	16.13112	32.718434	528.64057	16.15727	33.572677	542.87795	15.17023
60	32.987691	533.12818	16.16143	34.710987	561.84979	16.18651	35.632816	577.21359	16.19893
61	34.966952	566.11587	15.19003	36.824886	597.08144	16.21407	37.819372	613.65619	16.22598
62	37.064969	601.08282	$1{ }^{\text {f. } 217} 01$	39.067522	634.451370	16.24005	40.140 103	652.33504	16.25145
63	39.238868	638.14779	16.24246	41.446734	674.11223	16.26454	42.603242	693.38736	16.27546
64	41.616199	677.43666	16.26647	43.970840	716.18067	16.28763	45.217528	736.95880	16.29808
65	44.144972	719.08286	16.28913	46.648664	760.81107	16.30938	47.992236	783.20393	16.319.39
66	46.793670	763.22783	16.31050	49.489568	808.15946	16.32990	50.937210	832.28683	16.33947
67	49.601290	810.02150	16.33066	52.503 482	858.39137	16.34923	54.062898	883.38163	16.35838
68	52.577368	859.62279	16.34968	55.700945	911.68241	16.36745	57.380389	939.67316	16.37621
69	55.732010	912.20016	16.36762	59.0931 .32	968.21887	16.384 63	60.901454	998.35757	15.39300
70	59.075930	967.93217	16.38455	62.691904	1028.1984	16.40082	64.638583	1060.6431	16.40882
71	62.620486	1027.0081	16.40052	66.509841	1091.8307	16.41608	68.605036	1126.7506	16.42378
72	66.377715	1089.6286	16.41558	70.560290	1159.3382	16.43046	72.814885	1196.9147	16.43778
7	70.360378	1156.0053	16.44979	74.857412	1230.9569	16.444	77.283065	1971.3844	16.45101
74	74.582001	1226.3667	16.443 ¢0	79.416228	1306.9371	16.45680	82.025428	1350.4238	16.46348
75	79.056921	1300.9487	16.45585	84.252676	1387.5416	16.46885	87.058800	1434.3 133	16.47522
76	83.800 33.36	1380.0056	16.46778	89.383664	1473.0611	16.48020	92.401037	1523.3506 16178515	16.48629
77	88.828356	1463.8059	16.47904	$9+.827130$	1563.7855	16.49091	98.071092	1617.8515	16.49672
78	94.158058	1552.6343	16.48966	100.60210	1660.0350	16.50100	104.08908	1718.1514	16.50655
79	99.807541	1646.7924	16.49968	106.72877	1762.1462	16.51051	110.47636	1824.6060	16.51581
80	105.79599	1746.5999	16.50913	113.22855	1870.4759	16.51947	117.25558	1937.5930	16.52453
81	11214375	1852.3959	16.51805	120.12417	1985.4028	16.52798	124.45080	2057.5133	16.53274
82	118.87238	1964.5396	$16.5264^{4} \mathbf{j}$	127.43973	2107.3289	16.53589	132.03754	2184.7924	16.54049
83	126.00472	2083.4120	16.5.34 40	135.20081	2236.6802	16.51339	140.19290	2319.8817	16.54778
84	133.56500	2209.4167	16.54189	143.43454	2373.9090	16.55047	148.79564	2463.2606	16.55465
85	141.57890	2342.9817	16.54895	152.16971	2519.4951	16.557 14	157.92627	2615.4378	16.56113
86	150.07364	2484.5606	16.55561	161.43684	2673.9473	16.56343	167.61718	2756.9530	16.565723
87	159.07806	2634.6343	16.56190	171.26834	2837.8057	16.56935	177.90277	2948.3794	16.57298
88	168.62274	$\underline{2793.7123}$	16.56783	181.69859	3011.6431	16.57493	188.81951	3130.3252	16.57840
89	178.74010	2962.3351	16.57342	192.76403	3196.0672	16.58021	200.40615	33¢.3.4 358	16.58350
90	189.46451	3141.0752	16.57870	204.50336	3391.7227	16.58517	212.70 378	3528.3963	16.58831
91	200.83238	3330.5397	16.58368	216.95761	8599.2936	16.58984	225.75604	3745.9340	16.59284
92	$212.88 \quad 232$	35.31 .3721	16.58838	230.17033	3819.5055	16.59486	239.60923	3976.8205	16.59711
93	285.65526	3744.2544	10.59281	244.18771	4053.1284	16.59841	254.31251	4221.8751	16.60113
94	439.19458	3969.9097	16.59699	259.05874	4300.9790	16.50233	269.91802	4481.9671	16.60492
95	253.54625	4209.1042	16.60094	274.83541	4563.9236	16.60608	286.48115	4758.0192	16.60849
96	268.75903	4462.6505	16.60466	291.57289	4842.8815	16.60951	304.06065	5051.0109	16.61185
97	284.88457	4731.4095	16.60817	309.32968	5138.8280	16.61279	322.71889	5361.9816	16.61502
98	301.97765	5016.2941	16.61148	328.16786	$5+52.7976$	16.61588	342.52 3634 15	5692.0345	16.61801
99	330.69631	5318.2718	16.61460	348.15328	5785.8880	16.61879	363.54044	6042.3407	6.62088
100	9.30208	8.36	61755	369.35582	6139.2636	6.6215	$385.8 \div 857$	6414.1429	6.62347
	Value of	petual	6.66667	-••••	- - - -	16.56667	- . . .	-•••	16.66667

PERPETUAL STOCK : 3 p.C. 50 ; $3 \frac{\mathrm{I}}{2}$ p.C. 58,3333 ; 4 p. $C .66,6667$; 5 p.C. $83,3933$.

$\begin{aligned} & \text { 4 } \\ & \stackrel{0}{*} \\ & \stackrel{0}{0} \end{aligned}$	RATIO of INTEREST: ANNUALLY, 0.06.			RATIO of INTEREST: HALF-YEARLY, 0.03.			RATIO of INTEREST: QUARTERLY, 0.015 .		
	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cmmulation	Ratio of Annuity.	Discounted Principal.	Annuity for Cumulation	Ratio of Annuity.
26	0.2198100	0.0169043	0.0769	0.2150128	0.01	0.07	0.2125845	0.0161987	0.0761987
27	0.2073680	0.0156972	0.0756972	0.2026702	0.0152512	0.0759512	0.2002938	0.0150279	0.0750279
28	0.1956301	0.0145926	0.0745926	0.1910361	0.0141689	0.0741689	0.1887136	0.0139566	0.0739566
29	0.1845527	0.0135796	0.0735796	0.1800698	0.0131770	0.0731770	0.1778030	0.0129752	0.0729752
30	0.1741181	0.0126489	0.0726489	0.1697331	0.0122659	0.0722659	0.1675232	0.0120741	0.0720 741
31	0.1642548	0.0117	0.0717922	0.1599	0.0114277	0.0	0.1578377	0.0112452	0.0712452
32	0.1549574	0.0110093	0.0710023	0.1508057	0.0106552	0.0706552	0.1487122	0.9104814	0.0704814
33	0.1461862	0.0102729	0.0702729	0.1421488	0.0099422	0.0699492	0.1401143	1.0097 767	0.0697767
34	0.1379115	0.0095984	0.0695984	0.1339889	0.0092 832	0.0692832	0.1320135	0.0091255	0.0691255
35	0.1301052	0.0089739	0.0689739	0.1262973	0.0036733	0.0686733	0.1243810	0.0085230	0.0685230
36	0.1227408	0.0083948	0.0683	0.1190474	0.0081081	0.0681081	0.1171898	0.0079648	0.0679648
37	0.1157932	0.0078574	0.0678574	0.1122135	0.0075838	0.0675838	0.1104144	0.0074471	$0.067+471$
38	0.1092389	0.0073581	0.0673581	0.1057720	0.0070970	0.06-0 970	$0.10+0307$	0.0069666	0.0669666
39	0.1030555	0.0068938	0.0668936	0.0997003	0.0066445	0.0666445	0.0980161	0.0065200	0.0665200
40	0.0972222	0.0064617	0.0664617	0.0939771	0.0062235	$0.0662{ }^{235}$	0.0923492	0.0061047	0.0661047
41	0.0917190	0.0060589	0.0660589	0.0885824	0.0058315	0.0558315	. 0870100	0.0057181	0.0657181
4.2	0.0865274	0.0056834	0.0656834	0.0834974	0.0054663	0.0654663	0.0819794	0.0053580	0.0653580
43	0.0816296	0.0053331	0.0653331	$0.078{ }^{\circ} 043$	0.0051257	0.0651257	0.0772397	0.0050223	0.0650223
44	0.0770091	0.0050061	0.0650061	0.0741864	0.0048079	0.0618079	0.0727741	0.0047091	0.0647091
45	0.0726501	0.0047005	0.0647005	0.0699278	0.0045111	0.0645111	0.0685666	0.0044168	0.0644168
46	0.0685	0.0044 149	0.0644149	0.0659136	0.0042339	0.0642339	0.0616023	0.0041438	0.0641438
47	0.0646583	0.0041477	0.0641477	0.0621299	0.0039747	0.0639747	0.0608673	0.0038887	0.0638887
48	0.0609984	0.0038977	0.0638977	0.0585634	0.0037324	0.0637324	0.0573482	0.0036502	0.0636502
49	0.0575457	0.0036636	0.0636636	0.0552016	0.0035056	0.0635056	0.0540326	0.0034271	0.0634271
50	0.0542884	0.0034443	0.0634443	0.0520398	0.0032933	0.0632933	0.0509086	0.003218 .1	0.0632184
51	0.	0.0032388	0.0632388	0.0490459	0.0030945	0.0630945	0.0479653	0.0030229	0.0630229
52	0.0483164	0.0030462	0.0630462	0.0462305	0.0029083	0.0629083	0.0451922	0.0028399	0.0628399
53	0.0455816	0.0028655	0.0698655	0.0435767	0.0027337	0.0627337	0.0425793	0.0026684	0.0626 684
54	0.0430015	0.0026960	0.0626960	0.0410752	0.0025701	0.0625701	0.0401176	0.0025077	0.0625077
55	0.0405674	0.0025370	0.0625370	0.0387173	0.0024166	0.0624166	0.0377 982	0.0023570	0.0623570
56	0.0382712	0.0023	0.0623876	0.0364918	0.0022726	0.0622726	128	0.0022157	$0.06 ¢ 8157$
57	0.0361049	0.0022474	0.0622474	0.0343998	0.0021375	0.0621375	0335538	0.0020831	0.0620831
58	0.0340612	0.0021157	0.0621157	0.0324 .251	0.0020107	0.0620107	. 0316139	0.0019588	0.0619588
59	0.0321332	0.0019920	0.0619920	0.0305638	0.0018916	0.0618916	0.0297861	0.0018420	0.0618420
60	0.0303143	0.0018757	0.0618757	0.0288093	0.0017798	0.0617798	0.0280640	0.0017325	0.0617325
61	0.0985984	0.0017664	0.0617664	0.0271555	0.0016748	0.0616748	0.0264415	0.0016296	0.0616296
62	0.0269797	0.0016637	0.0616637	0.0255967	0.0015761	0.0615761	0.0249127	0.0015330	0.0615330
63	0.0254524	0.0015670	0.0615670	0.0241274	0.0014834	0.0614834	0.0234724	0.0014422	$0.061+422$
64	0.0240118	0.0014762	0.0614762	0.0227423	0.0013963	0.0613963	0.0221153	0.0013569	0.0613569
65	0.0226526	0.0013907	0.0613907	0.0214358	0.0013144	0.0613144	0.0208367	0.00127	0.0612768
66	0.0213704	0.0013102	0.0613102	0.0202063	0.0012374	0.0612374	0.0196320	0.0012015	0.0612015
67	0.0201608	0.0012345	0.0612345	0.0190464	0.0011650	0.0611650	0.0184970	0.0011307	0.0611307
68	0.0190196	0.00116 .33	0.0611633	0.0179530	0.0010969	0.0610969	0.0174276	0.0010642	00610642
69	0.0179430	0.0010963	0.0610963	0.0169224	0.0010328	0.0610358	0.0164200	0.0010016	0.0610016
70	0.0169274	0.0010331	0.0610331	0.0159510	0.0009726	0.0609726	0.0154706	0.0009428	0.0609428
71	0.0159692	0.0009737	0.0609737	0.0150354	0.0009159	0.0609159	0.0145762	0.0008875	0.0608875
72	0.015065	0.0009177	0.0609177	0.0141723	0.0008686	0.0608626	0.0137335	0.0008355	0.0608355
73	0.0142125	0.0008650	0.0608650	0.0133587	0.0008124	0.0608124	0.0129394	0.0007865	0.0607865
74	0.0134081	0.0008154	0.0608154	0.0125919	0.0007651	0.06076 .51	0.0121913	0.0007405	0.0607405
75	0.0126491	0.0007687	0.0607687	0.0118691	0.0007207	0.0607207	$0.011+865$	0.0006972	0.0606978
76	0.0119331	0.0007246	0.0607246	0.0111877	0.0006789	0.0606789	0.0108224	0.0006564	0.0506564
77	0.0112577	0.0006832	0.0606832	0.0105455	0.0006395	0.0606395	0.0101967	0.0006181	0.0606181
78	0.0106 2n4	0.0006441	0.0606441	0.0099401	0.0006024	0.0606024	0.0096072	0.0005820	0.0605820
79	0.0100193	0.0006072	0.0606072	0.0093695	0.0005675	0.0605675	0.0090517	0.0005481	0.0605481
80	0.0094 522	0.0005725	0.0605725	0.0088317	0.0005346	0.0605346	0.0085284	0.0005161	0.0605161
81	0.0089171	0.0005398	0.0605398	00083247	0.0005037	0.0605037	0.0080353	0.0004860	0.0604860
82	0.0084124	0.0005090	0.0605090	0.0078468	0.0004745	0.0604745	0.0075707	00004577	00604577
83	0.0079362	0.000 ± 800	0.0604800	0.0073964	0.0004471	0.0604171	0.0671330	0.0004311	0.0604311
84	0.0074870	0.0004526	0.0604526	0.0069718	0.0004212	0.0604212	0.0067206	0.0004060	0.0604060
85	0.007	0.0004268	0.0604268	0.0065716	0.0003969	0.0603969	0.0063321	0.0003823	0.0603823
86	0.0066634	0.0004025	$0.060+025$	0.0061944	0.0003740	0.0603740	0.0059650	0.0003601	0.0603601
87	0.0062862	0.0003796	0.0603796	0.0058388	00003524	0.0603524	0.0056210	0.0003392	0.0603392
88	0.0059304	0.0003579	0.0603579	0.0055036	0.0003320	$0.06033<0$	0.0052961	0.0003195	0.0603195
89	0.0055947	0.0003376	0.0603376	0.0051877	0.0003129	0.0603129	0.0049899	0.0003009	0.0603009
90	0.0052780	0.0003184	0.0603184	0.0048899	0.0002948	0.0602918	0.0047014	0.0002834	0.0602834
91	0.0049793	0.0003003	0.0603003	0.0046092	0.0002778	0.0602778	0.0044296	0.0002670	0.0602670
92	0.0046974	0.0002832	0.0602832	0.0043446	0.0002618	0.0602618	0.0041735	0.0002515	0.0602515
93	0.0044315	0.0002671	0.0602671	0.0040952	0.0002467	0.0602467	0.0039322	0.0002369	0.0602369
94	0.0041807	0.0002519	0.0602519	0.0038601	0.0002325	0.0602325	0.0037048	0.0002231	0.0602231
95	0.0039441	0.0002376	0.0602376	0.0036385	0.0002191	0.0602191	0.0034906	0.0002102	0.0602102
96	0.0037208	0.0002241	0.0602241	0.003 ± 297	0.0002055	0.0602065	0.0032888	00001980	0.0601980
97	0.0035102	0.0002114	0.0602114	0.0032328	0.0001946	0.0601946	0.0030987	0.0001865	0.0601865
98	0.0033115	0.0001994	0.0601994	0.0030472	0.0001834	0.0601834	0.0029195	0.0001757	0.0601757
99	0.0031241	0.0001880	0.0601880	0.0028723	0.0001728	0.0601788	0.0027 507	0.0001655	0.0601655
100	0.0029472	0.0001774	0.0601774	0.0027074	0.0001629	0.0601629	0.00:5 917	0.0001559	0.0601559
	Ratio of Pe	nal Ann.	0.0600000			. 0600000		- - - -	0600000

Of the following Work, by the same Author, a few Copies, saved from the destructive fire at Mr. Wilson's late printing-office in Greville-Street, are to be disposed of, Price one pound:
Apply at Mr. Wilson's present residence, 57, Shinner-Street.

A FURTHER INQUIRY

into the

:AND INTO THE

MEANS and the PROSPECT of its REDEMPTION;
 INCLUDING

Considerations on Sinking Funds,-on the Modes of discharging or reducing Debt,-on the Influence of a high or a low Rate of Interest,- on Foreign Loans, - on Usury Laws, - on various Measures of Finance,- and on the Expediency of retaining an elevated scale of Taxation;
with
 dpon the principle of terminable annuities;
and
AN APPENDIX ON STATE LOTTERIES,
Witii NEW ILLUSTRATIONS of the DOCTRINE of CHANCES, ALSO

Suggestions respecting a PERPETUAL LOTTERY, upon a System equitable, productive and unobjectionable, in aid of the Plan of Redemption.

\qquad

 $-2 \cdot \operatorname{lin}-2$

[^0]: * I find, on recurring to Mr Milne's work, whilst this is under press, that he made a similar remark respecting Deparcieux's tables.

[^1]: * It will hereafter be shewn, that such proportional yields a correct expression of that intensity, or of what has been usually denominated the Expectation of life, referred to the birth; whenever the quotients diverge, consequently to an increasing or to a decreasing population.
 ** The writer has availed himself of an opportunity, to ascertain that the fact stands as here represented.

[^2]: * Quotient of the living by the dying at a similar age : sec chapter XVL.

[^3]: * The more prubable average: See chapter XXUII.

[^4]: * Recherches sur les rentes, les emprunts, et les remboursemens. Paris, i7s\%.

[^5]: * Those returns are published in an Annunl issued by the Board of Longitude,

[^6]: (*) Inclusive of a last increase, during the year 1830 .

[^7]: * To obviate any apparent inconvenience of this kind, but indeed of little consequence, would require entering upon calculations the labour of which must be disproportionate to their object. But in case of need, the formulæ for obtaining either n_{x} or m_{x}, with perfect accuracy, are to be found in Duvillard's-work : - "Reeherches sur les rentes, les emprunts, et les remboursemens".

[^8]: (*) This disproportion is accounted for by the convenience Paris affords, of lying-in hospitals, and of a foundling hospital where all infants are admitted without an inquiry; which renders that metropolis a place of general resort.

[^9]: * The influence of fayourable and of unfavourable harvests, on the quantity of births during a next succeeding year, has been demonstrated by M. Nilne, Actuary of the Sun life-office; and Dr. Villermé, of Paris, has established their corresponding effects on the marriages.

[^10]: (*) Mr. Morgan has computed the probabilities of survivorship, according to the Sweden mortality-tables; as also Mr. Milne, according to his tables for Carlisle.

