




CHAOS
Making	a	New	Science

James	Gleick



To	Cynthia



human	was	the	music,
natural	was	the	static…

—JOHN	UPDIKE



Contents

Prologue

The	Butterfly	Effect
Edward	Lorenz	and	his	toy	weather.	The	computer	misbehaves.	Long-range	forecasting	is	doomed.	Order
masquerading	as	randomness.	A	world	of	nonlinearity.	“We	completely	missed	the	point.”

Revolution
A	revolution	in	seeing.	Pendulum	clocks,	space	balls,	and	playground	swings.	The	invention	of	the
horseshoe.	A	mystery	solved:	Jupiter’s	Great	Red	Spot.

Life’s	Ups	and	Downs
Modeling	wildlife	populations.	Nonlinear	science,	“the	study	of	non-elephant	animals.”	Pitchfork
bifurcations	and	a	ride	on	the	Spree.	A	movie	of	chaos	and	a	messianic	appeal.

A	Geometry	of	Nature
A	discovery	about	cotton	prices.	A	refugee	from	Bourbaki.	Transmission	errors	and	jagged	shores.	New
dimensions.	The	monsters	of	fractal	geometry.	Quakes	in	the	schizosphere.	From	clouds	to	blood	vessels.
The	trash	cans	of	science.	“To	see	the	world	in	a	grain	of	sand.”

Strange	Attractors
A	problem	for	God.	Transitions	in	the	laboratory.	Rotating	cylinders	and	a	turning	point.	David	Ruelle’s
idea	for	turbulence.	Loops	in	phase	space.	Mille-feuilles	and	sausage.	An	astronomer’s	mapping.
“Fireworks	or	galaxies.”

Universality
A	new	start	at	Los	Alamos.	The	renormalization	group.	Decoding	color.	The	rise	of	numerical
experimentation.	Mitchell	Feigenbaum’s	breakthrough.	A	universal	theory.	The	rejection	letters.	Meeting	in
Como.	Clouds	and	paintings.

The	Experimenter
Helium	in	a	Small	Box.	“Insolid	billowing	of	the	solid.”	Flow	and	form	in	nature.	Albert	Libchaber’s
delicate	triumph.	Experiment	joins	theory.	From	one	dimension	to	many.

Images	of	Chaos
The	complex	plane.	Surprise	in	Newton’s	method.	The	Mandelbrot	set:	sprouts	and	tendrils.	Art	and
commerce	meet	science.	Fractal	basin	boundaries.	The	chaos	game.



The	Dynamical	Systems	Collective
Santa	Cruz	and	the	sixties.	The	analog	computer.	Was	this	science?	“A	long-range	vision.”	Measuring
unpredictability.	Information	theory.	From	microscale	to	macroscale.	The	dripping	faucet.	Audiovisual	aids.
An	era	ends.

Inner	Rhythms
A	misunderstanding	about	models.	The	complex	body.	The	dynamical	heart.	Resetting	the	biological	clock.
Fatal	arrhythmia.	Chick	embryos	and	abnormal	beats.	Chaos	as	health.

Chaos	and	Beyond
New	beliefs,	new	definitions.	The	Second	Law,	the	snowflake	puzzle,	and	loaded	dice.	Opportunity	and
necessity.

Afterword

Notes	on	Sources	and	Further	Reading

Acknowledgments

Index



CHAOS

Prologue

THE	 POLICE	 IN	 THE	 SMALL	 TOWN	 of	 Los	 Alamos,	 New	 Mexico,	 worried
briefly	in	1974	about	a	man	seen	prowling	in	the	dark,	night	after	night,	the	red
glow	of	his	cigarette	 floating	along	 the	back	streets.	He	would	pace	 for	hours,
heading	nowhere	in	the	starlight	that	hammers	down	through	the	thin	air	of	the
mesas.	The	police	were	not	the	only	ones	to	wonder.	At	the	national	laboratory
some	physicists	had	learned	that	their	newest	colleague	was	experimenting	with
twenty-six–hour	days,	which	meant	that	his	waking	schedule	would	slowly	roll
in	 and	 out	 of	 phase	 with	 theirs.	 This	 bordered	 on	 strange,	 even	 for	 the
Theoretical	Division.

In	 the	 three	 decades	 since	 J.	 Robert	 Oppenheimer	 chose	 this	 unworldly
New	 Mexico	 landscape	 for	 the	 atomic	 bomb	 project,	 Los	 Alamos	 National
Laboratory	had	 spread	 across	 an	 expanse	of	desolate	plateau,	 bringing	particle
accelerators	 and	 gas	 lasers	 and	 chemical	 plants,	 thousands	 of	 scientists	 and
administrators	 and	 technicians,	 as	 well	 as	 one	 of	 the	 world’s	 greatest
concentrations	of	supercomputers.	Some	of	the	older	scientists	remembered	the
wooden	buildings	rising	hastily	out	of	the	rimrock	in	the	1940s,	but	to	most	of
the	 Los	 Alamos	 staff,	 young	 men	 and	 women	 in	 college-style	 corduroys	 and
work	 shirts,	 the	 first	 bombmakers	 were	 just	 ghosts.	 The	 laboratory’s	 locus	 of
purest	 thought	 was	 the	 Theoretical	 Division,	 known	 as	 T	 division,	 just	 as
computing	was	C	division	 and	weapons	was	X	division.	More	 than	 a	 hundred
physicists	 and	 mathematicians	 worked	 in	 T	 division,	 well	 paid	 and	 free	 of
academic	 pressures	 to	 teach	 and	 publish.	 These	 scientists	 had	 experience	with
brilliance	and	with	eccentricity.	They	were	hard	to	surprise.

But	 Mitchell	 Feigenbaum	 was	 an	 unusual	 case.	 He	 had	 exactly	 one
published	 article	 to	 his	 name,	 and	 he	was	working	 on	 nothing	 that	 seemed	 to
have	any	particular	promise.	His	hair	was	a	 ragged	mane,	sweeping	back	from
his	wide	brow	in	the	style	of	busts	of	German	composers.	His	eyes	were	sudden
and	passionate.	When	he	spoke,	always	 rapidly,	he	 tended	 to	drop	articles	and
pronouns	 in	 a	 vaguely	middle	European	way,	 even	 though	 he	was	 a	 native	 of



Brooklyn.	When	he	worked,	he	worked	obsessively.	When	he	could	not	work,	he
walked	and	 thought,	day	or	night,	 and	night	was	best	of	 all.	The	 twenty-four–
hour	 day	 seemed	 too	 constraining.	 Nevertheless,	 his	 experiment	 in	 personal
quasiperiodicity	 came	 to	 an	 end	 when	 he	 decided	 he	 could	 no	 longer	 bear
waking	to	the	setting	sun,	as	had	to	happen	every	few	days.

At	 the	 age	 of	 twenty-nine	 he	 had	 already	 become	 a	 savant	 among	 the
savants,	 an	 ad	 hoc	 consultant	 whom	 scientists	 would	 go	 to	 see	 about	 any
especially	 intractable	 problem,	 when	 they	 could	 find	 him.	 One	 evening	 he
arrived	 at	 work	 just	 as	 the	 director	 of	 the	 laboratory,	 Harold	 Agnew,	 was
leaving.	 Agnew	 was	 a	 powerful	 figure,	 one	 of	 the	 original	 Oppenheimer
apprentices.	 He	 had	 flown	 over	 Hiroshima	 on	 an	 instrument	 plane	 that
accompanied	the	Enola	Gay,	photographing	the	delivery	of	the	laboratory’s	first
product.

“I	understand	you’re	real	smart,”	Agnew	said	to	Feigenbaum.	“If	you’re	so
smart,	why	don’t	you	just	solve	laser	fusion?”

Even	Feigenbaum’s	friends	were	wondering	whether	he	was	ever	going	to
produce	any	work	of	his	own.	As	willing	as	he	was	to	do	impromptu	magic	with
their	questions,	he	did	not	seem	interested	 in	devoting	his	own	research	 to	any
problem	that	might	pay	off.	He	thought	about	turbulence	in	liquids	and	gases.	He
thought	 about	 time—did	 it	 glide	 smoothly	 forward	 or	 hop	 discretely	 like	 a
sequence	of	cosmic	motion-picture	frames?	He	thought	about	the	eye’s	ability	to
see	consistent	colors	and	forms	in	a	universe	that	physicists	knew	to	be	a	shifting
quantum	kaleidoscope.	He	 thought	 about	 clouds,	watching	 them	 from	airplane
windows	(until,	in	1975,	his	scientific	travel	privileges	were	officially	suspended
on	grounds	of	overuse)	or	from	the	hiking	trails	above	the	laboratory.

In	 the	 mountain	 towns	 of	 the	 West,	 clouds	 barely	 resemble	 the	 sooty
indeterminate	low-flying	hazes	that	fill	the	Eastern	air.	At	Los	Alamos,	in	the	lee
of	a	great	volcanic	caldera,	the	clouds	spill	across	the	sky,	in	random	formation,
yes,	 but	 also	 not-random,	 standing	 in	 uniform	 spikes	 or	 rolling	 in	 regularly
furrowed	 patterns	 like	 brain	 matter.	 On	 a	 stormy	 afternoon,	 when	 the	 sky
shimmers	and	 trembles	with	 the	electricity	 to	come,	 the	clouds	 stand	out	 from
thirty	miles	away,	filtering	the	light	and	reflecting	it,	until	the	whole	sky	starts	to
seem	 like	 a	 spectacle	 staged	 as	 a	 subtle	 reproach	 to	 physicists.	 Clouds
represented	a	side	of	nature	that	the	mainstream	of	physics	had	passed	by,	a	side
that	was	at	once,	fuzzy	and	detailed,	structured	and	unpredictable.	Feigenbaum
thought	about	such	things,	quietly	and	unproductively.

To	a	physicist,	creating	laser	fusion	was	a	legitimate	problem;	puzzling	out
the	spin	and	color	and	flavor	of	small	particles	was	a	legitimate	problem;	dating
the	origin	of	the	universe	was	a	legitimate	problem.	Understanding	clouds	was	a



problem	 for	 a	 meteorologist.	 Like	 other	 physicists,	 Feigenbaum	 used	 an
understated,	 tough-guy	 vocabulary	 to	 rate	 such	 problems.	 Such	 a	 thing	 is
obvious,	he	might	say,	meaning	that	a	result	could	be	understood	by	any	skilled
physicist	after	appropriate	contemplation	and	calculation.	Not	obvious	described
work	 that	 commanded	 respect	 and	Nobel	prizes.	For	 the	hardest	problems,	 the
problems	that	would	not	give	way	without	long	looks	into	the	universe’s	bowels,
physicists	reserved	words	like	deep.	In	1974,	though	few	of	his	colleagues	knew
it,	Feigenbaum	was	working	on	a	problem	that	was	deep:	chaos.

WHERE	CHAOS	BEGINS,	classical	science	stops.	For	as	long	as	the	world	has
had	 physicists	 inquiring	 into	 the	 laws	 of	 nature,	 it	 has	 suffered	 a	 special
ignorance	 about	 disorder	 in	 the	 atmosphere,	 in	 the	 turbulent	 sea,	 in	 the
fluctuations	of	wildlife	populations,	in	the	oscillations	of	the	heart	and	the	brain.
The	irregular	side	of	nature,	the	discontinuous	and	erratic	side—these	have	been
puzzles	to	science,	or	worse,	monstrosities.

But	in	the	1970s	a	few	scientists	in	the	United	States	and	Europe	began	to
find	a	way	 through	disorder.	They	were	mathematicians,	physicists,	biologists,
chemists,	 all	 seeking	 connections	 between	 different	 kinds	 of	 irregularity.
Physiologists	 found	a	surprising	order	 in	 the	chaos	 that	develops	 in	 the	human
heart,	the	prime	cause	of	sudden,	unexplained	death.	Ecologists	explored	the	rise
and	fall	of	gypsy	moth	populations.	Economists	dug	out	old	stock	price	data	and
tried	 a	 new	 kind	 of	 analysis.	 The	 insights	 that	 emerged	 led	 directly	 into	 the
natural	 world—the	 shapes	 of	 clouds,	 the	 paths	 of	 lightning,	 the	 microscopic
intertwining	of	blood	vessels,	the	galactic	clustering	of	stars.

When	Mitchell	Feigenbaum	began	thinking	about	chaos	at	Los	Alamos,	he
was	one	of	a	handful	of	scattered	scientists,	mostly	unknown	to	one	another.	A
mathematician	 in	Berkeley,	California,	 had	 formed	 a	 small	 group	 dedicated	 to
creating	 a	 new	 study	 of	 “dynamical	 systems.”	 A	 population	 biologist	 at
Princeton	University	was	about	to	publish	an	impassioned	plea	that	all	scientists
should	look	at	the	surprisingly	complex	behavior	lurking	in	some	simple	models.
A	geometer	working	for	IBM	was	looking	for	a	new	word	to	describe	a	family
of	shapes—jagged,	tangled,	splintered,	twisted,	fractured—that	he	considered	an
organizing	principle	 in	nature.	A	French	mathematical	physicist	had	 just	made
the	disputatious	claim	that	turbulence	in	fluids	might	have	something	to	do	with
a	bizarre,	infinitely	tangled	abstraction	that	he	called	a	strange	attractor.

A	 decade	 later,	 chaos	 has	 become	 a	 shorthand	 name	 for	 a	 fast-growing
movement	 that	 is	 reshaping	 the	 fabric	 of	 the	 scientific	 establishment.	 Chaos
conferences	 and	 chaos	 journals	 abound.	 Government	 program	 managers	 in
charge	of	research	money	for	the	military,	the	Central	Intelligence	Agency,	and



the	Department	of	Energy	have	put	ever	greater	sums	into	chaos	research	and	set
up	special	bureaucracies	to	handle	the	financing.	At	every	major	university	and
every	major	corporate	research	center,	some	theorists	ally	themselves	first	with
chaos	and	only	second	with	their	nominal	specialties.	At	Los	Alamos,	a	Center
for	Nonlinear	Studies	was	established	 to	coordinate	work	on	chaos	and	 related
problems;	similar	 institutions	have	appeared	on	university	campuses	across	 the
country.

Chaos	has	created	special	techniques	of	using	computers	and	special	kinds
of	 graphic	 images,	 pictures	 that	 capture	 a	 fantastic	 and	 delicate	 structure
underlying	 complexity.	 The	 new	 science	 has	 spawned	 its	 own	 language,	 an
elegant	 shop	 talk	of	 fractals	 and	bifurcations,	 intermittencies	 and	periodicities,
folded-towel	 diffeomorphisms	 and	 smooth	 noodle	 maps.	 These	 are	 the	 new
elements	of	motion,	just	as,	in	traditional	physics,	quarks	and	gluons	are	the	new
elements	of	matter.	To	some	physicists	chaos	is	a	science	of	process	rather	than
state,	of	becoming	rather	than	being.

Now	 that	 science	 is	 looking,	 chaos	 seems	 to	 be	 everywhere.	 A	 rising
column	of	cigarette	smoke	breaks	into	wild	swirls.	A	flag	snaps	back	and	forth
in	 the	 wind.	 A	 dripping	 faucet	 goes	 from	 a	 steady	 pattern	 to	 a	 random	 one.
Chaos	 appears	 in	 the	 behavior	 of	 the	 weather,	 the	 behavior	 of	 an	 airplane	 in
flight,	 the	 behavior	 of	 cars	 clustering	 on	 an	 expressway,	 the	 behavior	 of	 oil
flowing	in	underground	pipes.	No	matter	what	the	medium,	the	behavior	obeys
the	same	newly	discovered	laws.	That	realization	has	begun	to	change	the	way
business	executives	make	decisions	about	 insurance,	 the	way	astronomers	 look
at	the	solar	system,	the	way	political	theorists	talk	about	the	stresses	leading	to
armed	conflict.

Chaos	breaks	across	the	lines	that	separate	scientific	disciplines.	Because	it
is	a	science	of	the	global	nature	of	systems,	it	has	brought	together	thinkers	from
fields	 that	had	been	widely	 separated.	“Fifteen	years	ago,	 science	was	heading
for	a	crisis	of	 increasing	specialization,”	a	Navy	official	 in	charge	of	scientific
financing	remarked	to	an	audience	of	mathematicians,	biologists,	physicists,	and
medical	 doctors.	 “Dramatically,	 that	 specialization	 has	 reversed	 because	 of
chaos.”	Chaos	poses	problems	that	defy	accepted	ways	of	working	in	science.	It
makes	strong	claims	about	the	universal	behavior	of	complexity.	The	first	chaos
theorists,	 the	 scientists	 who	 set	 the	 discipline	 in	 motion,	 shared	 certain
sensibilities.	 They	 had	 an	 eye	 for	 pattern,	 especially	 pattern	 that	 appeared	 on
different	 scales	 at	 the	 same	 time.	 They	 had	 a	 taste	 for	 randomness	 and
complexity,	 for	 jagged	 edges	 and	 sudden	 leaps.	 Believers	 in	 chaos—and	 they
sometimes	 call	 themselves	 believers,	 or	 converts,	 or	 evangelists—speculate
about	determinism	and	free	will,	about	evolution,	about	the	nature	of	conscious



intelligence.	 They	 feel	 that	 they	 are	 turning	 back	 a	 trend	 in	 science	 toward
reductionism,	the	analysis	of	systems	in	terms	of	their	constituent	parts:	quarks,
chromosomes,	or	neurons.	They	believe	that	they	are	looking	for	the	whole.

The	most	passionate	advocates	of	 the	new	science	go	so	far	as	 to	say	that
twentieth-century	 science	 will	 be	 remembered	 for	 just	 three	 things:	 relativity,
quantum	mechanics,	and	chaos.	Chaos,	they	contend,	has	become	the	century’s
third	 great	 revolution	 in	 the	 physical	 sciences.	 Like	 the	 first	 two	 revolutions,
chaos	 cuts	 away	 at	 the	 tenets	 of	 Newton’s	 physics.	 As	 one	 physicist	 put	 it:
“Relativity	 eliminated	 the	 Newtonian	 illusion	 of	 absolute	 space	 and	 time;
quantum	theory	eliminated	the	Newtonian	dream	of	a	controllable	measurement
process;	 and	 chaos	 eliminates	 the	 Laplacian	 fantasy	 of	 deterministic
predictability.”	Of	 the	 three,	 the	revolution	 in	chaos	applies	 to	 the	universe	we
see	and	touch,	to	objects	at	human	scale.	Everyday	experience	and	real	pictures
of	the	world	have	become	legitimate	targets	for	inquiry.	There	has	long	been	a
feeling,	 not	 always	 expressed	 openly,	 that	 theoretical	 physics	 has	 strayed	 far
from	 human	 intuition	 about	 the	 world.	Whether	 this	 will	 prove	 to	 be	 fruitful
heresy	 or	 just	 plain	 heresy,	 no	 one	 knows.	 But	 some	 of	 those	 who	 thought
physics	might	be	working	its	way	into	a	corner	now	look	to	chaos	as	a	way	out.

Within	 physics	 itself,	 the	 study	 of	 chaos	 emerged	 from	 a	 backwater.	 The
mainstream	 for	 most	 of	 the	 twentieth	 century	 has	 been	 particle	 physics,
exploring	 the	 building	 blocks	 of	matter	 at	 higher	 and	 higher	 energies,	 smaller
and	smaller	scales,	shorter	and	shorter	times.	Out	of	particle	physics	have	come
theories	 about	 the	 fundamental	 forces	 of	 nature	 and	 about	 the	 origin	 of	 the
universe.	Yet	some	young	physicists	have	grown	dissatisfied	with	the	direction
of	the	most	prestigious	of	sciences.	Progress	has	begun	to	seem	slow,	the	naming
of	new	particles	futile,	the	body	of	theory	cluttered.	With	the	coming	of	chaos,
younger	scientists	believed	they	were	seeing	the	beginnings	of	a	course	change
for	all	of	physics.	The	field	had	been	dominated	 long	enough,	 they	felt,	by	 the
glittering	abstractions	of	high-energy	particles	and	quantum	mechanics.

The	 cosmologist	 Stephen	 Hawking,	 occupant	 of	 Newton’s	 chair	 at
Cambridge	 University,	 spoke	 for	 most	 of	 physics	 when	 he	 took	 stock	 of	 his
science	in	a	1980	lecture	titled	“Is	the	End	in	Sight	for	Theoretical	Physics?”

“We	already	know	the	physical	laws	that	govern	everything	we	experience
in	everyday	life….	It	is	a	tribute	to	how	far	we	have	come	in	theoretical	physics
that	 it	now	takes	enormous	machines	and	a	great	deal	of	money	 to	perform	an
experiment	whose	results	we	cannot	predict.”

Yet	Hawking	recognized	 that	understanding	nature’s	 laws	on	 the	 terms	of
particle	physics	left	unanswered	the	question	of	how	to	apply	those	laws	to	any
but	the	simplest	of	systems.	Predictability	is	one	thing	in	a	cloud	chamber	where



two	particles	collide	at	 the	end	of	a	race	around	an	accelerator.	It	 is	something
else	altogether	in	the	simplest	tub	of	roiling	fluid,	or	in	the	earth’s	weather,	or	in
the	human	brain.

Hawking’s	 physics,	 efficiently	 gathering	 up	Nobel	 Prizes	 and	 big	money
for	 experiments,	 has	often	been	 called	 a	 revolution.	At	 times	 it	 seemed	within
reach	 of	 that	 grail	 of	 science,	 the	 Grand	 Unified	 Theory	 or	 “theory	 of
everything.”	Physics	had	traced	the	development	of	energy	and	matter	in	all	but
the	 first	 eyeblink	of	 the	universe’s	history.	But	was	postwar	particle	physics	 a
revolution?	 Or	 was	 it	 just	 the	 fleshing	 out	 of	 the	 framework	 laid	 down	 by
Einstein,	 Bohr,	 and	 the	 other	 fathers	 of	 relativity	 and	 quantum	 mechanics?
Certainly,	the	achievements	of	physics,	from	the	atomic	bomb	to	the	transistor,
changed	 the	 twentieth-century	 landscape.	Yet	 if	anything,	 the	scope	of	particle
physics	 seemed	 to	 have	 narrowed.	Two	generations	 had	passed	 since	 the	 field
produced	a	new	theoretical	idea	that	changed	the	way	nonspecialists	understand
the	world.

The	 physics	 described	 by	 Hawking	 could	 complete	 its	 mission	 without
answering	some	of	the	most	fundamental	questions	about	nature.	How	does	life
begin?	What	 is	 turbulence?	Above	all,	 in	a	universe	ruled	by	entropy,	drawing
inexorably	 toward	 greater	 and	 greater	 disorder,	 how	 does	 order	 arise?	 At	 the
same	 time,	 objects	 of	 everyday	 experience	 like	 fluids	 and	mechanical	 systems
came	to	seem	so	basic	and	so	ordinary	that	physicists	had	a	natural	tendency	to
assume	they	were	well	understood.	It	was	not	so.

As	 the	 revolution	 in	 chaos	 runs	 its	 course,	 the	 best	 physicists	 find
themselves	 returning	without	 embarrassment	 to	 phenomena	 on	 a	 human	 scale.
They	 study	 not	 just	 galaxies	 but	 clouds.	 They	 carry	 out	 profitable	 computer
research	 not	 just	 on	 Crays	 but	 on	 Macintoshes.	 The	 premier	 journals	 print
articles	on	the	strange	dynamics	of	a	ball	bouncing	on	a	table	side	by	side	with
articles	 on	 quantum	 physics.	 The	 simplest	 systems	 are	 now	 seen	 to	 create
extraordinarily	 difficult	 problems	 of	 predictability.	 Yet	 order	 arises
spontaneously	in	those	systems—chaos	and	order	together.	Only	a	new	kind	of
science	could	begin	to	cross	the	great	gulf	between	knowledge	of	what	one	thing
does—one	 water	 molecule,	 one	 cell	 of	 heart	 tissue,	 one	 neuron—and	 what
millions	of	them	do.

Watch	 two	bits	of	 foam	flowing	side	by	side	at	 the	bottom	of	a	waterfall.
What	can	you	guess	about	how	close	 they	were	at	 the	 top?	Nothing.	As	 far	as
standard	 physics	 was	 concerned,	 God	might	 just	 as	 well	 have	 taken	 all	 those
water	 molecules	 under	 the	 table	 and	 shuffled	 them	 personally.	 Traditionally,
when	 physicists	 saw	 complex	 results,	 they	 looked	 for	 complex	 causes.	When
they	 saw	 a	 random	 relationship	 between	 what	 goes	 into	 a	 system	 and	 what



comes	 out,	 they	 assumed	 that	 they	 would	 have	 to	 build	 randomness	 into	 any
realistic	theory,	by	artificially	adding	noise	or	error.	The	modern	study	of	chaos
began	with	the	creeping	realization	in	the	1960s	that	quite	simple	mathematical
equations	 could	 model	 systems	 every	 bit	 as	 violent	 as	 a	 waterfall.	 Tiny
differences	in	input	could	quickly	become	overwhelming	differences	in	output—
a	phenomenon	given	 the	name	“sensitive	dependence	on	 initial	 conditions.”	 In
weather,	for	example,	this	translates	into	what	is	only	half-jokingly	known	as	the
Butterfly	Effect—the	notion	that	a	butterfly	stirring	the	air	today	in	Peking	can
transform	storm	systems	next	month	in	New	York.

When	the	explorers	of	chaos	began	to	think	back	on	the	genealogy	of	their
new	science,	they	found	many	intellectual	trails	from	the	past.	But	one	stood	out
clearly.	 For	 the	 young	physicists	 and	mathematicians	 leading	 the	 revolution,	 a
starting	point	was	the	Butterfly	Effect.



The	Butterfly
Effect

Physicists	 like	 to	 think	 that	all	you	have	 to	do	 is	say,	 these	are	 the	conditions,
now	what	happens	next?

—RICHARD	P.	FEYNMAN



THE	SUN	BEAT	DOWN	 through	a	sky	 that	had	never	seen	clouds.	The	winds
swept	across	an	earth	as	smooth	as	glass.	Night	never	came,	and	autumn	never
gave	way	to	winter.	It	never	rained.	The	simulated	weather	in	Edward	Lorenz’s
new	 electronic	 computer	 changed	 slowly	 but	 certainly,	 drifting	 through	 a
permanent	dry	midday	midseason,	 as	 if	 the	world	had	 turned	 into	Camelot,	 or
some	particularly	bland	version	of	southern	California.

Outside	 his	 window	 Lorenz	 could	 watch	 real	 weather,	 the	 early-morning
fog	creeping	along	the	Massachusetts	Institute	of	Technology	campus	or	the	low
clouds	slipping	over	the	rooftops	from	the	Atlantic.	Fog	and	clouds	never	arose
in	 the	 model	 running	 on	 his	 computer.	 The	 machine,	 a	 Royal	McBee,	 was	 a
thicket	 of	 wiring	 and	 vacuum	 tubes	 that	 occupied	 an	 ungainly	 portion	 of
Lorenz’s	 office,	made	 a	 surprising	 and	 irritating	 noise,	 and	 broke	 down	 every
week	 or	 so.	 It	 had	 neither	 the	 speed	 nor	 the	 memory	 to	 manage	 a	 realistic
simulation	 of	 the	 earth’s	 atmosphere	 and	 oceans.	 Yet	 Lorenz	 created	 a	 toy
weather	in	1960	that	succeeded	in	mesmerizing	his	colleagues.	Every	minute	the
machine	marked	 the	 passing	 of	 a	 day	 by	 printing	 a	 row	 of	 numbers	 across	 a
page.	If	you	knew	how	to	read	the	printouts,	you	would	see	a	prevailing	westerly
wind	swing	now	to	the	north,	now	to	the	south,	now	back	to	the	north.	Digitized
cyclones	 spun	 slowly	 around	 an	 idealized	 globe.	 As	 word	 spread	 through	 the
department,	 the	 other	 meteorologists	 would	 gather	 around	 with	 the	 graduate
students,	 making	 bets	 on	 what	 Lorenz’s	 weather	 would	 do	 next.	 Somehow,
nothing	ever	happened	the	same	way	twice.

Lorenz	 enjoyed	 weather—by	 no	 means	 a	 prerequisite	 for	 a	 research
meteorologist.	 He	 savored	 its	 changeability.	 He	 appreciated	 the	 patterns	 that
come	and	go	in	the	atmosphere,	families	of	eddies	and	cyclones,	always	obeying
mathematical	rules,	yet	never	repeating	themselves.	When	he	 looked	at	clouds,
he	thought	he	saw	a	kind	of	structure	in	them.	Once	he	had	feared	that	studying
the	 science	 of	 weather	 would	 be	 like	 prying	 a	 jack-in–the-box	 apart	 with	 a
screwdriver.	Now	he	wondered	whether	science	would	be	able	 to	penetrate	 the
magic	at	all.	Weather	had	a	flavor	that	could	not	be	expressed	by	talking	about
averages.	The	daily	high	temperature	in	Cambridge,	Massachusetts,	averages	75
degrees	 in	 June.	The	number	of	 rainy	days	 in	Riyadh,	Saudi	Arabia,	averages
ten	 a	 year.	 Those	 were	 statistics.	 The	 essence	 was	 the	 way	 patterns	 in	 the
atmosphere	changed	over	time,	and	that	was	what	Lorenz	captured	on	the	Royal
McBee.

He	was	the	god	of	this	machine	universe,	free	to	choose	the	laws	of	nature
as	 he	 pleased.	 After	 a	 certain	 amount	 of	 undivine	 trial	 and	 error,	 he	 chose
twelve.	They	were	 numerical	 rules—equations	 that	 expressed	 the	 relationships
between	 temperature	 and	 pressure,	 between	 pressure	 and	 wind	 speed.	 Lorenz



understood	 that	 he	 was	 putting	 into	 practice	 the	 laws	 of	 Newton,	 appropriate
tools	 for	 a	 clockmaker	 deity	 who	 could	 create	 a	 world	 and	 set	 it	 running	 for
eternity.	Thanks	to	the	determinism	of	physical	law,	further	intervention	would
then	be	unnecessary.	Those	who	made	such	models	took	for	granted	that,	from
present	to	future,	the	laws	of	motion	provide	a	bridge	of	mathematical	certainty.
Understand	the	laws	and	you	understand	the	universe.	That	was	the	philosophy
behind	modeling	weather	on	a	computer.

Indeed,	 if	 the	 eighteenth-century	 philosophers	 imagined	 their	 creator	 as	 a
benevolent	noninterventionist,	 content	 to	 remain	behind	 the	 scenes,	 they	might
have	 imagined	 someone	 like	Lorenz.	He	was	an	odd	sort	of	meteorologist.	He
had	the	worn	face	of	a	Yankee	farmer,	with	surprising	bright	eyes	that	made	him
seem	to	be	laughing	whether	he	was	or	not.	He	seldom	spoke	about	himself	or
his	 work,	 but	 he	 listened.	 He	 often	 lost	 himself	 in	 a	 realm	 of	 calculation	 or
dreaming	 that	 his	 colleagues	 found	 inaccessible.	 His	 closest	 friends	 felt	 that
Lorenz	spent	a	good	deal	of	his	time	off	in	a	remote	outer	space.

As	a	boy	he	had	been	a	weather	bug,	at	least	to	the	extent	of	keeping	close
tabs	on	the	max-min	thermometer	recording	the	days’	highs	and	lows	outside	his
parents’	 house	 in	West	 Hartford,	 Connecticut.	 But	 he	 spent	 more	 time	 inside
playing	 with	 mathematical	 puzzle	 books	 than	 watching	 the	 thermometer.
Sometimes	he	and	his	father	would	work	out	puzzles	together.	Once	they	came
upon	 a	 particularly	 difficult	 problem	 that	 turned	out	 to	 be	 insoluble.	That	was
acceptable,	his	father	told	him:	you	can	always	try	to	solve	a	problem	by	proving
that	 no	 solution	 exists.	 Lorenz	 liked	 that,	 as	 he	 always	 liked	 the	 purity	 of
mathematics,	 and	 when	 he	 graduated	 from	 Dartmouth	 College,	 in	 1938,	 he
thought	 that	mathematics	was	his	calling.	Circumstance	 interfered,	however,	 in
the	form	of	World	War	II,	which	put	him	to	work	as	a	weather	forecaster	for	the
Army	 Air	 Corps.	 After	 the	 war	 Lorenz	 decided	 to	 stay	 with	 meteorology,
investigating	 the	 theory	of	 it,	 pushing	 the	mathematics	 a	 little	 further	 forward.
He	made	a	name	for	himself	by	publishing	work	on	orthodox	problems,	such	as
the	general	circulation	of	the	atmosphere.	And	in	the	meantime	he	continued	to
think	about	forecasting.

To	most	serious	meteorologists,	forecasting	was	less	than	science.	It	was	a
seat-of–the-pants	business	performed	by	technicians	who	needed	some	intuitive
ability	 to	read	the	next	day’s	weather	 in	 the	 instruments	and	the	clouds.	 It	was
guesswork.	 At	 centers	 like	 M.I.T.,	 meteorology	 favored	 problems	 that	 had
solutions.	 Lorenz	 understood	 the	 messiness	 of	 weather	 prediction	 as	 well	 as
anyone,	having	tried	it	firsthand	for	the	benefit	of	military	pilots,	but	he	harbored
an	interest	in	the	problem—a	mathematical	interest.

Not	only	did	meteorologists	scorn	forecasting,	but	in	the	1960s	virtually	all



serious	 scientists	 mistrusted	 computers.	 These	 souped-up	 calculators	 hardly
seemed	 like	 tools	 for	 theoretical	 science.	 So	 numerical	weather	modeling	was
something	 of	 a	 bastard	 problem.	 Yet	 the	 time	 was	 right	 for	 it.	 Weather
forecasting	 had	 been	 waiting	 two	 centuries	 for	 a	 machine	 that	 could	 repeat
thousands	of	calculations	over	and	over	again	by	brute	force.	Only	a	computer
could	 cash	 in	 the	 Newtonian	 promise	 that	 the	 world	 unfolded	 along	 a
deterministic	 path,	 rule-bound	 like	 the	 planets,	 predictable	 like	 eclipses	 and
tides.	 In	 theory	 a	 computer	 could	 let	meteorologists	 do	what	 astronomers	 had
been	 able	 to	 do	with	 pencil	 and	 slide	 rule:	 reckon	 the	 future	 of	 their	 universe
from	 its	 initial	 conditions	 and	 the	 physical	 laws	 that	 guide	 its	 evolution.	 The
equations	describing	 the	motion	of	 air	 and	water	were	as	well	known	as	 those
describing	 the	motion	 of	 planets.	 Astronomers	 did	 not	 achieve	 perfection	 and
never	would,	not	in	a	solar	system	tugged	by	the	gravities	of	nine	planets,	scores
of	moons	and	thousands	of	asteroids,	but	calculations	of	planetary	motion	were
so	 accurate	 that	 people	 forgot	 they	 were	 forecasts.	When	 an	 astronomer	 said,
“Comet	Halley	will	be	back	this	way	in	seventy-six	years,”	it	seemed	like	fact,
not	 prophecy.	Deterministic	 numerical	 forecasting	 figured	 accurate	 courses	 for
spacecraft	and	missiles.	Why	not	winds	and	clouds?

Weather	 was	 vastly	 more	 complicated,	 but	 it	 was	 governed	 by	 the	 same
laws.	 Perhaps	 a	 powerful	 enough	 computer	 could	 be	 the	 supreme	 intelligence
imagined	 by	 Laplace,	 the	 eighteenth-century	 philosopher-mathematician	 who
caught	 the	Newtonian	 fever	 like	 no	 one	 else:	 “Such	 an	 intelligence,”	 Laplace
wrote,	 “would	 embrace	 in	 the	 same	 formula	 the	 movements	 of	 the	 greatest
bodies	of	 the	universe	 and	 those	of	 the	 lightest	 atom;	 for	 it,	 nothing	would	be
uncertain	and	the	future,	as	the	past,	would	be	present	to	its	eyes.”	In	these	days
of	 Einstein’s	 relativity	 and	 Heisenberg’s	 uncertainty,	 Laplace	 seems	 almost
buffoon-like	 in	 his	 optimism,	 but	 much	 of	 modern	 science	 has	 pursued	 his
dream.	Implicitly,	the	mission	of	many	twentieth-century	scientists—biologists,
neurologists,	 economists—has	 been	 to	 break	 their	 universes	 down	 into	 the
simplest	 atoms	 that	 will	 obey	 scientific	 rules.	 In	 all	 these	 sciences,	 a	 kind	 of
Newtonian	 determinism	 has	 been	 brought	 to	 bear.	 The	 fathers	 of	 modern
computing	 always	 had	Laplace	 in	mind,	 and	 the	 history	 of	 computing	 and	 the
history	of	forecasting	were	intermingled	ever	since	John	von	Neumann	designed
his	first	machines	at	the	Institute	for	Advanced	Study	in	Princeton,	New	Jersey,
in	the	1950s.	Von	Neumann	recognized	that	weather	modeling	could	be	an	ideal
task	for	a	computer.

There	was	always	one	small	compromise,	so	small	 that	working	scientists
usually	 forgot	 it	 was	 there,	 lurking	 in	 a	 corner	 of	 their	 philosophies	 like	 an
unpaid	 bill.	 Measurements	 could	 never	 be	 perfect.	 Scientists	 marching	 under



Newton’s	 banner	 actually	 waved	 another	 flag	 that	 said	 something	 like	 this:
Given	 an	 approximate	 knowledge	 of	 a	 system’s	 initial	 conditions	 and	 an
understanding	of	natural	law,	one	can	calculate	the	approximate	behavior	of	the
system.	 This	 assumption	 lay	 at	 the	 philosophical	 heart	 of	 science.	 As	 one
theoretician	liked	to	tell	his	students:	“The	basic	idea	of	Western	science	is	that
you	 don’t	 have	 to	 take	 into	 account	 the	 falling	 of	 a	 leaf	 on	 some	 planet	 in
another	galaxy	when	you’re	trying	to	account	for	the	motion	of	a	billiard	ball	on
a	 pool	 table	 on	 earth.	 Very	 small	 influences	 can	 be	 neglected.	 There’s	 a
convergence	in	the	way	things	work,	and	arbitrarily	small	influences	don’t	blow
up	to	have	arbitrarily	large	effects.”	Classically,	the	belief	in	approximation	and
convergence	was	well	justified.	It	worked.	A	tiny	error	in	fixing	the	position	of
Comet	Halley	in	1910	would	only	cause	a	 tiny	error	 in	predicting	its	arrival	 in
1986,	and	the	error	would	stay	small	for	millions	of	years	to	come.	Computers
rely	on	the	same	assumption	in	guiding	spacecraft:	approximately	accurate	input
gives	 approximately	 accurate	 output.	 Economic	 forecasters	 rely	 on	 this
assumption,	though	their	success	is	less	apparent.	So	did	the	pioneers	in	global
weather	forecasting.

With	his	primitive	computer,	Lorenz	had	boiled	weather	down	to	the	barest
skeleton.	 Yet,	 line	 by	 line,	 the	 winds	 and	 temperatures	 in	 Lorenz’s	 printouts
seemed	 to	 behave	 in	 a	 recognizable	 earthly	way.	 They	matched	 his	 cherished
intuition	about	 the	weather,	his	 sense	 that	 it	 repeated	 itself,	displaying	 familiar
patterns	over	time,	pressure	rising	and	falling,	the	airstream	swinging	north	and
south.	He	discovered	that	when	a	line	went	from	high	to	low	without	a	bump,	a
double	bump	would	come	next,	and	he	said,	“That’s	the	kind	of	rule	a	forecaster
could	use.”	But	 the	repetitions	were	never	quite	exact.	There	was	pattern,	with
disturbances.	An	orderly	disorder.

To	 make	 the	 patterns	 plain	 to	 see,	 Lorenz	 created	 a	 primitive	 kind	 of
graphics.	Instead	of	just	printing	out	the	usual	lines	of	digits,	he	would	have	the
machine	 print	 a	 certain	 number	 of	 blank	 spaces	 followed	 by	 the	 letter	 a.	 He
would	pick	one	variable—perhaps	 the	direction	of	 the	airstream.	Gradually	 the
a’s	marched	 down	 the	 roll	 of	 paper,	 swinging	 back	 and	 forth	 in	 a	 wavy	 line,
making	a	long	series	of	hills	and	valleys	that	represented	the	way	the	west	wind
would	 swing	 north	 and	 south	 across	 the	 continent.	 The	 orderliness	 of	 it,	 the
recognizable	 cycles	 coming	 around	 again	 and	 again	 but	 never	 twice	 the	 same
way,	had	a	hypnotic	 fascination.	The	system	seemed	slowly	 to	be	revealing	 its
secrets	to	the	forecaster’s	eye.

One	day	in	the	winter	of	1961,	wanting	to	examine	one	sequence	at	greater
length,	Lorenz	took	a	shortcut.	Instead	of	starting	the	whole	run	over,	he	started
midway	 through.	 To	 give	 the	 machine	 its	 initial	 conditions,	 he	 typed	 the



numbers	straight	from	the	earlier	printout.	Then	he	walked	down	the	hall	to	get
away	from	the	noise	and	drink	a	cup	of	coffee.	When	he	returned	an	hour	later,
he	saw	something	unexpected,	something	that	planted	a	seed	for	a	new	science.

THIS	NEW	RUN	should	have	exactly	duplicated	the	old.	Lorenz	had	copied	the
numbers	 into	 the	 machine	 himself.	 The	 program	 had	 not	 changed.	 Yet	 as	 he
stared	at	the	new	printout,	Lorenz	saw	his	weather	diverging	so	rapidly	from	the
pattern	 of	 the	 last	 run	 that,	 within	 just	 a	 few	 months,	 all	 resemblance	 had
disappeared.	He	looked	at	one	set	of	numbers,	then	back	at	the	other.	He	might
as	well	have	chosen	two	random	weathers	out	of	a	hat.	His	first	thought	was	that
another	vacuum	tube	had	gone	bad.

Suddenly	 he	 realized	 the	 truth.	 There	 had	 been	 no	 malfunction.	 The
problem	 lay	 in	 the	 numbers	 he	 had	 typed.	 In	 the	 computer’s	 memory,	 six
decimal	places	were	 stored:	 .506127.	On	 the	printout,	 to	 save	 space,	 just	 three
appeared:	.506.	Lorenz	had	entered	the	shorter,	rounded-off	numbers,	assuming
that	the	difference—one	part	in	a	thousand—was	inconsequential.

It	was	a	reasonable	assumption.	If	a	weather	satellite	can	read	ocean-surface
temperature	 to	within	one	part	 in	a	 thousand,	 its	operators	consider	 themselves
lucky.	Lorenz’s	Royal	McBee	was	implementing	the	classical	program.	It	used	a
purely	 deterministic	 system	of	 equations.	Given	 a	 particular	 starting	 point,	 the
weather	would	unfold	exactly	the	same	way	each	time.	Given	a	slightly	different
starting	 point,	 the	 weather	 should	 unfold	 in	 a	 slightly	 different	 way.	 A	 small
numerical	error	was	 like	a	small	puff	of	wind—surely	 the	small	puffs	faded	or
canceled	each	other	out	before	they	could	change	important,	large-scale	features
of	 the	 weather.	 Yet	 in	 Lorenz’s	 particular	 system	 of	 equations,	 small	 errors
proved	catastrophic.

HOW	TWO	WEATHER	PATTERNS	DIVERGE.	From	nearly	the	same	starting	point,	Edward	Lorenz	saw



his	computer	weather	produce	patterns	that	grew	farther	and	farther	apart	until	all	resemblance	disappeared.
(From	Lorenz’s	1961	printouts.)

He	 decided	 to	 look	more	 closely	 at	 the	way	 two	 nearly	 identical	 runs	 of
weather	 flowed	 apart.	 He	 copied	 one	 of	 the	 wavy	 lines	 of	 output	 onto	 a
transparency	and	laid	it	over	the	other,	to	inspect	the	way	it	diverged.	First,	two
humps	 matched	 detail	 for	 detail.	 Then	 one	 line	 began	 to	 lag	 a	 hairsbreadth
behind.	By	the	time	the	two	runs	reached	the	next	hump,	they	were	distinctly	out
of	phase.	By	the	third	or	fourth	hump,	all	similarity	had	vanished.

It	was	only	a	wobble	from	a	clumsy	computer.	Lorenz	could	have	assumed
something	 was	 wrong	 with	 his	 particular	 machine	 or	 his	 particular	 model—
probably	should	have	assumed.	It	was	not	as	though	he	had	mixed	sodium	and
chlorine	 and	 got	 gold.	 But	 for	 reasons	 of	 mathematical	 intuition	 that	 his
colleagues	would	 begin	 to	 understand	 only	 later,	 Lorenz	 felt	 a	 jolt:	 something
was	 philosophically	 out	 of	 joint.	 The	 practical	 import	 could	 be	 staggering.
Although	his	equations	were	gross	parodies	of	the	earth’s	weather,	he	had	a	faith
that	they	captured	the	essence	of	the	real	atmosphere.	That	first	day,	he	decided
that	long-range	weather	forecasting	must	be	doomed.

“We	certainly	hadn’t	been	successful	in	doing	that	anyway	and	now	we	had
an	 excuse,”	 he	 said.	 “I	 think	 one	 of	 the	 reasons	 people	 thought	 it	 would	 be
possible	 to	 forecast	 so	 far	 ahead	 is	 that	 there	 are	 real	 physical	 phenomena	 for
which	 one	 can	 do	 an	 excellent	 job	 of	 forecasting,	 such	 as	 eclipses,	where	 the
dynamics	of	the	sun,	moon,	and	earth	are	fairly	complicated,	and	such	as	oceanic
tides.	I	never	used	to	think	of	tide	forecasts	as	prediction	at	all—I	used	to	think
of	 them	 as	 statements	 of	 fact—but	 of	 course,	 you	 are	 predicting.	 Tides	 are
actually	just	as	complicated	as	the	atmosphere.	Both	have	periodic	components
—you	can	predict	 that	next	 summer	will	be	warmer	 than	 this	winter.	But	with
weather	 we	 take	 the	 attitude	 that	 we	 knew	 that	 already.	 With	 tides,	 it’s	 the
predictable	 part	 that	 we’re	 interested	 in,	 and	 the	 unpredictable	 part	 is	 small,
unless	there’s	a	storm.

“The	 average	 person,	 seeing	 that	 we	 can	 predict	 tides	 pretty	 well	 a	 few
months	ahead	would	say,	why	can’t	we	do	the	same	thing	with	the	atmosphere,
it’s	just	a	different	fluid	system,	the	laws	are	about	as	complicated.	But	I	realized
that	any	physical	system	that	behaved	nonperiodically	would	be	unpredictable.”

THE	 FIFTIES	 AND	 SIXTIES	 were	 years	 of	 unreal	 optimism	 about	 weather
forecasting.	 Newspapers	 and	 magazines	 were	 filled	 with	 hope	 for	 weather
science,	 not	 just	 for	 prediction	 but	 for	 modification	 and	 control.	 Two
technologies	were	maturing	together,	the	digital	computer	and	the	space	satellite.



An	 international	 program	 was	 being	 prepared	 to	 take	 advantage	 of	 them,	 the
Global	Atmosphere	Research	 Program.	 There	was	 an	 idea	 that	 human	 society
would	 free	 itself	 from	weather’s	 turmoil	 and	 become	 its	master	 instead	 of	 its
victim.	 Geodesic	 domes	 would	 cover	 cornfields.	 Airplanes	 would	 seed	 the
clouds.	Scientists	would	learn	how	to	make	rain	and	how	to	stop	it.

The	intellectual	father	of	this	popular	notion	was	Von	Neumann,	who	built
his	first	computer	with	the	precise	intention,	among	other	things,	of	controlling
the	weather.	He	surrounded	himself	with	meteorologists	and	gave	breathtaking
talks	 about	 his	 plans	 to	 the	 general	 physics	 community.	 He	 had	 a	 specific
mathematical	 reason	 for	 his	 optimism.	 He	 recognized	 that	 a	 complicated
dynamical	system	could	have	points	of	instability—critical	points	where	a	small
push	can	have	 large	consequences,	 as	with	a	ball	balanced	at	 the	 top	of	a	hill.
With	 the	 computer	 up	 and	 running,	 Von	 Neumann	 imagined	 that	 scientists
would	 calculate	 the	 equations	 of	 fluid	 motion	 for	 the	 next	 few	 days.	 Then	 a
central	committee	of	meteorologists	would	send	up	airplanes	to	lay	down	smoke
screens	 or	 seed	 clouds	 to	 push	 the	 weather	 into	 the	 desired	 mode.	 But	 Von
Neumann	had	overlooked	the	possibility	of	chaos,	with	instability	at	every	point.

By	 the	1980s	 a	vast	 and	expensive	bureaucracy	devoted	 itself	 to	 carrying
out	 Von	 Neumann’s	 mission,	 or	 at	 least	 the	 prediction	 part	 of	 it.	 America’s
premier	forecasters	operated	out	of	an	unadorned	cube	of	a	building	in	suburban
Maryland,	 near	 the	Washington	 beltway,	with	 a	 spy’s	 nest	 of	 radar	 and	 radio
antennas	on	the	roof.	Their	supercomputer	ran	a	model	that	resembled	Lorenz’s
only	 in	 its	 fundamental	 spirit.	Where	 the	 Royal	McBee	 could	 carry	 out	 sixty
multiplications	 each	 second,	 the	 speed	 of	 a	 Control	 Data	 Cyber	 205	 was
measured	in	megaflops,	millions	of	floating-point	operations	per	second.	Where
Lorenz	 had	 been	 happy	 with	 twelve	 equations,	 the	 modern	 global	 model
calculated	 systems	 of	 500,000	 equations.	 The	 model	 understood	 the	 way
moisture	moved	 heat	 in	 and	 out	 of	 the	 air	when	 it	 condensed	 and	 evaporated.
The	digital	winds	were	shaped	by	digital	mountain	ranges.	Data	poured	in	hourly
from	 every	 nation	 on	 the	 globe,	 from	 airplanes,	 satellites,	 and	 ships.	 The
National	Meteorological	Center	produced	the	world’s	second	best	forecasts.

The	 best	 came	 out	 of	 Reading,	 England,	 a	 small	 college	 town	 an	 hour’s
drive	from	London.	The	European	Centre	for	Medium	Range	Weather	Forecasts
occupied	 a	 modest	 tree-shaded	 building	 in	 a	 generic	 United	 Nations	 style,
modern	 brick-and–glass	 architecture,	 decorated	with	 gifts	 from	many	 lands.	 It
was	built	in	the	heyday	of	the	all-European	Common	Market	spirit,	when	most
of	the	nations	of	western	Europe	decided	to	pool	their	talent	and	resources	in	the
cause	 of	 weather	 prediction.	 The	 Europeans	 attributed	 their	 success	 to	 their
young,	 rotating	 staff—no	 civil	 service—and	 their	 Cray	 supercomputer,	 which



always	seemed	to	be	one	model	ahead	of	the	American	counterpart.
Weather	forecasting	was	the	beginning	but	hardly	the	end	of	the	business	of

using	computers	to	model	complex	systems.	The	same	techniques	served	many
kinds	 of	 physical	 scientists	 and	 social	 scientists	 hoping	 to	 make	 predictions
about	 everything	 from	 the	 small-scale	 fluid	 flows	 that	 concerned	 propeller
designers	 to	 the	vast	 financial	 flows	 that	concerned	economists.	 Indeed,	by	 the
seventies	 and	 eighties,	 economic	 forecasting	 by	 computer	 bore	 a	 real
resemblance	 to	 global	 weather	 forecasting.	 The	 models	 would	 churn	 through
complicated,	somewhat	arbitrary	webs	of	equations,	meant	to	turn	measurements
of	initial	conditions—atmospheric	pressure	or	money	supply—into	a	simulation
of	 future	 trends.	 The	 programmers	 hoped	 the	 results	 were	 not	 too	 grossly
distorted	 by	 the	 many	 unavoidable	 simplifying	 assumptions.	 If	 a	 model	 did
anything	too	obviously	bizarre—flooded	the	Sahara	or	tripled	interest	rates—the
programmers	would	 revise	 the	 equations	 to	 bring	 the	 output	 back	 in	 line	with
expectation.	In	practice,	econometric	models	proved	dismally	blind	to	what	the
future	would	 bring,	 but	many	 people	who	 should	 have	 known	 better	 acted	 as
though	 they	 believed	 in	 the	 results.	 Forecasts	 of	 economic	 growth	 or
unemployment	 were	 put	 forward	 with	 an	 implied	 precision	 of	 two	 or	 three
decimal	places.	Governments	and	financial	institutions	paid	for	such	predictions
and	 acted	 on	 them,	 perhaps	 out	 of	 necessity	 or	 for	 want	 of	 anything	 better.
Presumably	they	knew	that	such	variables	as	“consumer	optimism”	were	not	as
nicely	measurable	as	“humidity”	and	 that	 the	perfect	differential	equations	had
not	yet	been	written	for	the	movement	of	politics	and	fashion.	But	few	realized
how	fragile	was	 the	very	process	of	modeling	 flows	on	computers,	 even	when
the	 data	 was	 reasonably	 trustworthy	 and	 the	 laws	were	 purely	 physical,	 as	 in
weather	forecasting.

Computer	modeling	had	indeed	succeeded	in	changing	the	weather	business
from	an	art	to	a	science.	The	European	Centre’s	assessments	suggested	that	the
world	saved	billions	of	dollars	each	year	from	predictions	that	were	statistically
better	than	nothing.	But	beyond	two	or	three	days	the	world’s	best	forecasts	were
speculative,	and	beyond	six	or	seven	they	were	worthless.

The	Butterfly	Effect	was	the	reason.	For	small	pieces	of	weather—and	to	a
global	 forecaster,	 small	can	mean	 thunderstorms	and	blizzards—any	prediction
deteriorates	rapidly.	Errors	and	uncertainties	multiply,	cascading	upward	through
a	chain	of	 turbulent	 features,	 from	dust	devils	 and	 squalls	up	 to	 continent-size
eddies	that	only	satellites	can	see.

The	modern	weather	models	work	with	a	grid	of	points	on	the	order	of	sixty
miles	 apart,	 and	 even	 so,	 some	 starting	 data	 has	 to	 be	 guessed,	 since	 ground
stations	 and	 satellites	 cannot	 see	 everywhere.	 But	 suppose	 the	 earth	 could	 be



covered	with	 sensors	 spaced	one	 foot	 apart,	 rising	 at	 one-foot	 intervals	 all	 the
way	to	the	top	of	the	atmosphere.	Suppose	every	sensor	gives	perfectly	accurate
readings	 of	 temperature,	 pressure,	 humidity,	 and	 any	 other	 quantity	 a
meteorologist	 would	 want.	 Precisely	 at	 noon	 an	 infinitely	 powerful	 computer
takes	 all	 the	data	 and	 calculates	what	will	 happen	 at	 each	point	 at	 12:01,	 then
12:02,	then	12:03…

The	computer	will	still	be	unable	to	predict	whether	Princeton,	New	Jersey,
will	have	sun	or	rain	on	a	day	one	month	away.	At	noon	the	spaces	between	the
sensors	 will	 hide	 fluctuations	 that	 the	 computer	 will	 not	 know	 about,	 tiny
deviations	 from	 the	 average.	 By	 12:01,	 those	 fluctuations	 will	 already	 have
created	small	errors	one	foot	away.	Soon	 the	errors	will	have	multiplied	 to	 the
ten-foot	scale,	and	so	on	up	to	the	size	of	the	globe.

Even	for	experienced	meteorologists,	all	this	runs	against	intuition.	One	of
Lorenz’s	oldest	friends	was	Robert	White,	a	fellow	meteorologist	at	M.I.T.	who
later	 became	 head	 of	 the	 National	 Oceanic	 and	 Atmospheric	 Administration.
Lorenz	 told	him	about	 the	Butterfly	Effect	 and	what	he	 felt	 it	meant	 for	 long-
range	prediction.	White	gave	Von	Neumann’s	answer.	“Prediction,	nothing,”	he
said.	“This	 is	weather	control.”	His	 thought	was	 that	 small	modifications,	well
within	human	capability,	could	cause	desired	large-scale	changes.

Lorenz	 saw	 it	 differently.	Yes,	 you	 could	 change	 the	weather.	You	 could
make	it	do	something	different	from	what	it	would	otherwise	have	done.	But	if
you	 did,	 then	 you	 would	 never	 know	 what	 it	 would	 otherwise	 have	 done.	 It
would	be	like	giving	an	extra	shuffle	to	an	already	well-shuffled	pack	of	cards.
You	know	 it	will	 change	your	 luck,	 but	 you	don’t	 know	whether	 for	 better	 or
worse.

LORENZ’S	DISCOVERY	WAS	AN	ACCIDENT,	one	more	in	a	line	stretching	back	to
Archimedes	 and	 his	 bathtub.	 Lorenz	 never	 was	 the	 type	 to	 shout	 Eureka.
Serendipity	merely	 led	him	 to	 a	place	he	had	been	all	 along.	He	was	 ready	 to
explore	the	consequences	of	his	discovery	by	working	out	what	it	must	mean	for
the	way	science	understood	flows	in	all	kinds	of	fluids.

Had	he	stopped	with	the	Butterfly	Effect,	an	image	of	predictability	giving
way	to	pure	randomness,	then	Lorenz	would	have	produced	no	more	than	a	piece
of	 very	 bad	 news.	 But	 Lorenz	 saw	 more	 than	 randomness	 embedded	 in	 his
weather	 model.	 He	 saw	 a	 fine	 geometrical	 structure,	 order	 masquerading	 as
randomness.	He	was	a	mathematician	in	meteorologist’s	clothing,	after	all,	and
now	 he	 began	 to	 lead	 a	 double	 life.	 He	 would	 write	 papers	 that	 were	 pure
meteorology.	But	he	would	also	write	papers	that	were	pure	mathematics,	with	a
slightly	 misleading	 dose	 of	 weather	 talk	 as	 preface.	 Eventually	 the	 prefaces



would	disappear	altogether.
He	turned	his	attention	more	and	more	to	the	mathematics	of	systems	that

never	 found	 a	 steady	 state,	 systems	 that	 almost	 repeated	 themselves	 but	 never
quite	succeeded.	Everyone	knew	that	the	weather	was	such	a	system—aperiodic.
Nature	 is	 full	 of	 others:	 animal	 populations	 that	 rise	 and	 fall	 almost	 regularly,
epidemics	 that	 come	 and	 go	 on	 tantalizingly	 near-regular	 schedules.	 If	 the
weather	ever	did	reach	a	state	exactly	like	one	it	had	reached	before,	every	gust
and	cloud	the	same,	then	presumably	it	would	repeat	itself	forever	after	and	the
problem	of	forecasting	would	become	trivial.

Lorenz	 saw	 that	 there	 must	 be	 a	 link	 between	 the	 unwillingness	 of	 the
weather	 to	 repeat	 itself	 and	 the	 inability	 of	 forecasters	 to	 predict	 it—a	 link
between	 aperiodicity	 and	 unpredictability.	 It	 was	 not	 easy	 to	 find	 simple
equations	 that	 would	 produce	 the	 aperiodicity	 he	 was	 seeking.	 At	 first	 his
computer	tended	to	lock	into	repetitive	cycles.	But	Lorenz	tried	different	sorts	of
minor	complications,	and	he	finally	succeeded	when	he	put	 in	an	equation	that
varied	the	amount	of	heating	from	east	to	west,	corresponding	to	the	real-world
variation	between	 the	way	 the	sun	warms	 the	east	coast	of	North	America,	 for
example,	and	the	way	it	warms	the	Atlantic	Ocean.	The	repetition	disappeared.

The	 Butterfly	 Effect	 was	 no	 accident;	 it	 was	 necessary.	 Suppose	 small
perturbations	remained	small,	he	reasoned,	instead	of	cascading	upward	through
the	system.	Then	when	the	weather	came	arbitrarily	close	to	a	state	it	had	passed
through	before,	it	would	stay	arbitrarily	close	to	the	patterns	that	followed.	For
practical	 purposes,	 the	 cycles	 would	 be	 predictable—and	 eventually
uninteresting.	 To	 produce	 the	 rich	 repertoire	 of	 real	 earthly	 weather,	 the
beautiful	 multiplicity	 of	 it,	 you	 could	 hardly	 wish	 for	 anything	 better	 than	 a
Butterfly	Effect.

The	 Butterfly	 Effect	 acquired	 a	 technical	 name:	 sensitive	 dependence	 on
initial	 conditions.	 And	 sensitive	 dependence	 on	 initial	 conditions	 was	 not	 an
altogether	new	notion.	It	had	a	place	in	folklore:

“For	want	of	a	nail,	the	shoe	was	lost;
For	want	of	a	shoe,	the	horse	was	lost;
For	want	of	a	horse,	the	rider	was	lost;
For	want	of	a	rider,	the	battle	was	lost;
For	want	of	a	battle,	the	kingdom	was	lost!”

In	science	as	in	life,	it	is	well	known	that	a	chain	of	events	can	have	a	point
of	 crisis	 that	 could	magnify	 small	 changes.	 But	 chaos	meant	 that	 such	 points
were	 everywhere.	 They	were	 pervasive.	 In	 systems	 like	 the	weather,	 sensitive



dependence	 on	 initial	 conditions	 was	 an	 inescapable	 consequence	 of	 the	 way
small	scales	intertwined	with	large.

His	colleagues	were	astonished	that	Lorenz	had	mimicked	both	aperiodicity
and	sensitive	dependence	on	initial	conditions	in	his	toy	version	of	the	weather:
twelve	 equations,	 calculated	 over	 and	 over	 again	 with	 ruthless	 mechanical
efficiency.	How	could	 such	 richness,	 such	unpredictability—such	chaos—arise
from	a	simple	deterministic	system?

LORENZ	 PUT	 THE	 WEATHER	 ASIDE	 and	 looked	 for	 even	 simpler	 ways	 to
produce	this	complex	behavior.	He	found	one	in	a	system	of	just	three	equations.
They	were	 nonlinear,	meaning	 that	 they	 expressed	 relationships	 that	 were	 not
strictly	proportional.	Linear	relationships	can	be	captured	with	a	straight	line	on
a	 graph.	 Linear	 relationships	 are	 easy	 to	 think	 about:	 the	 more	 the	 merrier.
Linear	equations	are	solvable,	which	makes	them	suitable	for	textbooks.	Linear
systems	 have	 an	 important	 modular	 virtue:	 you	 can	 take	 them	 apart,	 and	 put
them	together	again—the	pieces	add	up.

Nonlinear	 systems	 generally	 cannot	 be	 solved	 and	 cannot	 be	 added
together.	In	fluid	systems	and	mechanical	systems,	the	nonlinear	terms	tend	to	be
the	 features	 that	people	want	 to	 leave	out	when	 they	 try	 to	get	 a	good,	 simple
understanding.	Friction,	 for	 example.	Without	 friction	 a	 simple	 linear	 equation
expresses	 the	 amount	 of	 energy	 you	 need	 to	 accelerate	 a	 hockey	 puck.	With
friction	the	relationship	gets	complicated,	because	the	amount	of	energy	changes
depending	on	how	fast	the	puck	is	already	moving.	Nonlinearity	means	that	the
act	of	playing	 the	game	has	a	way	of	changing	 the	 rules.	You	cannot	assign	a
constant	importance	to	friction,	because	its	importance	depends	on	speed.	Speed,
in	turn,	depends	on	friction.	That	twisted	changeability	makes	nonlinearity	hard
to	calculate,	but	it	also	creates	rich	kinds	of	behavior	that	never	occur	in	linear
systems.	In	fluid	dynamics,	everything	boils	down	to	one	canonical	equation,	the
Navier-Stokes	 equation.	 It	 is	 a	 miracle	 of	 brevity,	 relating	 a	 fluid’s	 velocity,
pressure,	density,	and	viscosity,	but	it	happens	to	be	nonlinear.	So	the	nature	of
those	 relationships	 often	 becomes	 impossible	 to	 pin	 down.	 Analyzing	 the
behavior	of	a	nonlinear	equation	like	the	Navier-Stokes	equation	is	like	walking
through	a	maze	whose	walls	 rearrange	 themselves	with	each	step	you	 take.	As
Von	 Neumann	 himself	 put	 it:	 “The	 character	 of	 the	 equation…changes
simultaneously	 in	 all	 relevant	 respects:	Both	 order	 and	 degree	 change.	Hence,
bad	mathematical	difficulties	must	be	expected.”	The	world	would	be	a	different
place—and	science	would	not	need	chaos—if	only	 the	Navier-Stokes	equation
did	not	contain	the	demon	of	nonlinearity.

A	 particular	 kind	 of	 fluid	 motion	 inspired	 Lorenz’s	 three	 equations:	 the



rising	of	hot	gas	or	liquid,	known	as	convection.	In	the	atmosphere,	convection
stirs	 air	 heated	by	 the	 sun-baked	 earth,	 and	 shimmering	 convective	waves	 rise
ghost-like	 above	hot	 tar	 and	 radiators.	Lorenz	was	 just	 as	 happy	 talking	 about
convection	 in	 a	 cup	 of	 hot	 coffee.	 As	 he	 put	 it,	 this	 was	 just	 one	 of	 the
innumerable	 hydrodynamical	 processes	 in	 our	 universe	whose	 future	 behavior
we	might	wish	to	predict.	How	can	we	calculate	how	quickly	a	cup	of	coffee	will
cool?	If	the	coffee	is	just	warm,	its	heat	will	dissipate	without	any	hydrodynamic
motion	 at	 all.	 The	 coffee	 remains	 in	 a	 steady	 state.	 But	 if	 it	 is	 hot	 enough,	 a
convective	overturning	will	bring	hot	coffee	from	the	bottom	of	the	cup	up	to	the
cooler	surface.	Convection	in	coffee	becomes	plainly	visible	when	a	little	cream
is	dribbled	into	the	cup.	The	swirls	can	be	complicated.	But	the	longterm	destiny
of	 such	 a	 system	 is	 obvious.	Because	 the	 heat	 dissipates,	 and	 because	 friction
slows	a	moving	fluid,	the	motion	must	come	to	an	inevitable	stop.	Lorenz	drily
told	 a	 gathering	 of	 scientists,	 “We	 might	 have	 trouble	 forecasting	 the
temperature	 of	 the	 coffee	 one	 minute	 in	 advance,	 but	 we	 should	 have	 little
difficulty	in	forecasting	it	an	hour	ahead.”	The	equations	of	motion	that	govern	a
cooling	 cup	 of	 coffee	 must	 reflect	 the	 system’s	 destiny.	 They	 must	 be
dissipative.	Temperature	must	head	for	the	temperature	of	the	room,	and	velocity
must	head	for	zero.

Lorenz	 took	a	 set	of	equations	 for	convection	and	stripped	 it	 to	 the	bone,
throwing	 out	 everything	 that	 could	 possibly	 be	 extraneous,	 making	 it
unrealistically	simple.	Almost	nothing	remained	of	the	original	model,	but	he	did
leave	the	nonlinearity.	To	the	eye	of	a	physicist,	the	equations	looked	easy.	You
would	glance	at	them—many	scientists	did,	in	years	to	come—and	say,	I	could
solve	that.

“Yes,”	Lorenz	said	quietly,	“there	is	a	tendency	to	think	that	when	you	see
them.	There	 are	 some	 nonlinear	 terms	 in	 them,	 but	 you	 think	 there	must	 be	 a
way	to	get	around	them.	But	you	just	can’t.”



A	ROLLING	FLUID.	When	 a	 liquid	 or	 gas	 is	 heated	 from	below,	 the	 fluid	 tends	 to	 organize	 itself	 into
cylindrical	rolls	(left).	Hot	fluid	rises	on	one	side,	loses	heat,	and	descends	on	the	other	side—the	process	of
convection.	When	the	heat	is	turned	up	further	(right),	an	instability	sets	in,	and	the	rolls	develop	a	wobble
that	moves	back	and	forth	along	the	length	of	the	cylinders.	At	even	higher	temperatures,	the	flow	becomes
wild	and	turbulent.

The	 simplest	 kind	of	 textbook	 convection	 takes	 place	 in	 a	 cell	 of	 fluid,	 a
box	 with	 a	 smooth	 bottom	 that	 can	 be	 heated	 and	 a	 smooth	 top	 that	 can	 be
cooled.	 The	 temperature	 difference	 between	 the	 hot	 bottom	 and	 the	 cool	 top
controls	the	flow.	If	the	difference	is	small,	the	system	remains	still.	Heat	moves
toward	the	top	by	conduction,	as	if	through	a	bar	of	metal,	without	overcoming
the	 natural	 tendency	 of	 the	 fluid	 to	 remain	 at	 rest.	 Furthermore,	 the	 system	 is
stable.	 Any	 random	 motions	 that	 might	 occur	 when,	 say,	 a	 graduate	 student
knocks	into	the	apparatus	will	tend	to	die	out,	returning	the	system	to	its	steady
state.

Turn	up	the	heat,	though,	and	a	new	kind	of	behavior	develops.	As	the	fluid
underneath	becomes	hot,	it	expands.	As	it	expands,	it	becomes	less	dense.	As	it
becomes	 less	 dense,	 it	 becomes	 lighter,	 enough	 to	 overcome	 friction,	 and	 it
pushes	 up	 toward	 the	 surface.	 In	 a	 carefully	 designed	 box,	 a	 cylindrical	 roll



develops,	with	the	hot	fluid	rising	around	one	side	and	cool	fluid	sinking	down
around	the	other.	Viewed	from	the	side,	 the	motion	makes	a	continuous	circle.
Out	of	 the	 laboratory,	 too,	nature	often	makes	 its	 own	convection	 cells.	When
the	 sun	 heats	 a	 desert	 floor,	 for	 example,	 the	 rolling	 air	 can	 shape	 shadowy
patterns	in	the	clouds	above	or	the	sand	below.

Turn	 up	 the	 heat	 even	more,	 and	 the	 behavior	 grows	more	 complex.	The
rolls	 begin	 to	 wobble.	 Lorenz’s	 pared-down	 equations	 were	 far	 too	 simple	 to
model	 that	 sort	 of	 complexity.	 They	 abstracted	 just	 one	 feature	 of	 real-world
convection:	 the	 circular	motion	 of	 hot	 fluid	 rising	 up	 and	 around	 like	 a	 Ferris
wheel.	 The	 equations	 took	 into	 account	 the	 velocity	 of	 that	 motion	 and	 the
transfer	 of	 heat.	 Those	 physical	 processes	 interacted.	 As	 any	 given	 bit	 of	 hot
fluid	rose	around	the	circle,	it	would	come	into	contact	with	cooler	fluid	and	so
begin	to	lose	heat.	If	the	circle	was	moving	fast	enough,	the	ball	of	fluid	would
not	 lose	 all	 its	 extra	 heat	 by	 the	 time	 it	 reached	 the	 top	 and	 started	 swinging
down	the	other	side	of	the	roll,	so	it	would	actually	begin	to	push	back	against
the	momentum	of	the	other	hot	fluid	coming	up	behind	it.

Although	the	Lorenz	system	did	not	fully	model	convection,	it	did	turn	out
to	 have	 exact	 analogues	 in	 real	 systems.	 For	 example,	 his	 equations	 precisely
describe	an	old-fashioned	electrical	dynamo,	the	ancestor	of	modern	generators,
where	current	flows	through	a	disc	that	rotates	through	a	magnetic	field.	Under
certain	 conditions	 the	 dynamo	 can	 reverse	 itself.	 And	 some	 scientists,	 after
Lorenz’s	equations	became	better	known,	suggested	that	the	behavior	of	such	a
dynamo	 might	 provide	 an	 explanation	 for	 another	 peculiar	 reversing
phenomenon:	 the	 earth’s	 magnetic	 field.	 The	 “geodynamo”	 is	 known	 to	 have
flipped	many	times	during	the	earth’s	history,	at	intervals	that	seem	erratic	and
inexplicable.	 Faced	 with	 such	 irregularity,	 theorists	 typically	 look	 for
explanations	outside	the	system,	proposing	such	causes	as	meteorite	strikes.	Yet
perhaps	the	geodynamo	contains	its	own	chaos.



THE	 LORENZIAN	 WATERWHEEL.	 The	 first,	 famous	 chaotic	 system	 discovered	 by	 Edward	 Lorenz
corresponds	 exactly	 to	 a	 mechanical	 device:	 a	 waterwheel.	 This	 simple	 device	 proves	 capable	 of
surprisingly	complicated	behavior.

The	rotation	of	the	waterwheel	shares	some	of	the	properties	of	the	rotating	cylinders	of	fluid	in	the
process	of	convection.	The	waterwheel	is	like	a	slice	through	the	cylinder.	Both	systems	are	driven	steadily
—by	water	 or	 by	 heat—and	 both	 dissipate	 energy.	 The	 fluid	 loses	 heat;	 the	 buckets	 lose	water.	 In	 both
systems,	the	longterm	behavior	depends	on	how	hard	the	driving	energy	is.

Water	pours	in	from	the	top	at	a	steady	rate.	If	the	flow	of	water	in	the	waterwheel	is	slow,	the	top
bucket	never	fills	up	enough	to	overcome	friction,	and	the	wheel	never	starts	turning.	(Similarly,	in	a	fluid,
if	the	heat	is	too	low	to	overcome	viscosity,	it	will	not	set	the	fluid	in	motion.)

If	the	flow	is	faster,	the	weight	of	the	top	bucket	sets	the	wheel	in	motion	(left).	The	waterwheel	can
settle	into	a	rotation	that	continues	at	a	steady	rate	(center).

But	if	the	flow	is	faster	still	(right),	the	spin	can	become	chaotic,	because	of	nonlinear	effects	built
into	the	system.	As	buckets	pass	under	the	flowing	water,	how	much	they	fill	depends	on	the	speed	of	spin.
If	 the	wheel	 is	 spinning	 rapidly,	 the	 buckets	 have	 little	 time	 to	 fill	 up.	 (Similarly,	 fluid	 in	 a	 fast-turning
convection	roll	has	little	time	to	absorb	heat.)	Also,	if	the	wheel	is	spinning	rapidly,	buckets	can	start	up	the
other	side	before	they	have	time	to	empty.	As	a	result,	heavy	buckets	on	the	side	moving	upward	can	cause
the	spin	to	slow	down	and	then	reverse.

In	fact,	Lorenz	discovered,	over	long	periods,	the	spin	can	reverse	itself	many	times,	never	settling
down	to	a	steady	rate	and	never	repeating	itself	in	any	predictable	pattern.



THE	 LORENZ	 ATTRACTOR	 (on	 facing	 page).	 This	 magical	 image,	 resembling	 an	 owl’s	 mask	 or
butterfly’s	wings,	became	an	emblem	for	the	early	explorers	of	chaos.	It	revealed	the	fine	structure	hidden
within	a	disorderly	stream	of	data.	Traditionally,	the	changing	values	of	any	one	variable	could	be	displayed
in	 a	 so-called	 time	 series	 (top).	 To	 show	 the	 changing	 relationships	 among	 three	 variables	 required	 a
different	 technique.	 At	 any	 instant	 in	 time,	 the	 three	 variables	 fix	 the	 location	 of	 a	 point	 in	 three-
dimensional	 space;	 as	 the	 system	 changes,	 the	motion	 of	 the	 point	 represents	 the	 continuously	 changing
variables.

Because	the	system	never	exactly	repeats	itself,	the	trajectory	never	intersects	itself.	Instead	it	loops
around	and	around	forever.	Motion	on	the	attractor	is	abstract,	but	it	conveys	the	flavor	of	the	motion	of	the
real	system.	For	example,	the	crossover	from	one	wing	of	the	attractor	to	the	other	corresponds	to	a	reversal
in	the	direction	of	spin	of	the	waterwheel	or	convecting	fluid.

Another	 system	 precisely	 described	 by	 the	 Lorenz	 equations	 is	 a	 certain
kind	of	water	wheel,	a	mechanical	analogue	of	the	rotating	circle	of	convection.
At	the	top,	water	drips	steadily	into	containers	hanging	on	the	wheel’s	rim.	Each
container	leaks	steadily	from	a	small	hole.	If	the	stream	of	water	is	slow,	the	top
containers	never	fill	fast	enough	to	overcome	friction,	but	if	the	stream	is	faster,
the	weight	starts	to	turn	the	wheel.	The	rotation	might	become	continuous.	Or	if
the	 stream	 is	 so	 fast	 that	 the	 heavy	 containers	 swing	 all	 the	 way	 around	 the
bottom	and	start	up	the	other	side,	the	wheel	might	then	slow,	stop,	and	reverse
its	rotation,	turning	first	one	way	and	then	the	other.



A	 physicist’s	 intuition	 about	 such	 a	 simple	 mechanical	 system—his	 pre-
chaos	 intuition—tells	him	that	over	 the	 long	term,	 if	 the	stream	of	water	never
varied,	a	steady	state	would	evolve.	Either	the	wheel	would	rotate	steadily	or	it
would	oscillate	steadily	back	and	forth,	turning	first	in	one	direction	and	then	the
other	at	constant	intervals.	Lorenz	found	otherwise.

Three	equations,	with	 three	variables,	 completely	described	 the	motion	of
this	 system.	 Lorenz’s	 computer	 printed	 out	 the	 changing	 values	 of	 the	 three
variables:	 0–10–0;	 4–12–0;	 9–20–0;	 16–36–2;	 30–66–7;	 54–115–24;	 93–192–
74.	The	three	numbers	rose	and	then	fell	as	imaginary	time	intervals	ticked	by,
five	time	steps,	a	hundred	time	steps,	a	thousand.

To	make	a	picture	from	the	data,	Lorenz	used	each	set	of	three	numbers	as
coordinates	 to	 specify	 the	 location	of	a	point	 in	 three-dimensional	 space.	Thus
the	 sequence	 of	 numbers	 produced	 a	 sequence	 of	 points	 tracing	 a	 continuous
path,	a	record	of	the	system’s	behavior.	Such	a	path	might	lead	to	one	place	and
stop,	 meaning	 that	 the	 system	 had	 settled	 down	 to	 a	 steady	 state,	 where	 the
variables	for	speed	and	temperature	were	no	longer	changing.	Or	the	path	might
form	a	loop,	going	around	and	around,	meaning	that	the	system	had	settled	into	a
pattern	of	behavior	that	would	repeat	itself	periodically.

Lorenz’s	 system	did	neither.	 Instead,	 the	map	displayed	a	kind	of	 infinite
complexity.	 It	always	stayed	within	certain	bounds,	never	running	off	 the	page
but	never	repeating	itself,	either.	It	traced	a	strange,	distinctive	shape,	a	kind	of
double	spiral	in	three	dimensions,	like	a	butterfly	with	its	two	wings.	The	shape
signaled	pure	disorder,	 since	no	point	or	pattern	of	points	ever	 recurred.	Yet	 it
also	signaled	a	new	kind	of	order.

YEARS	LATER,	PHYSICISTS	would	give	wistful	 looks	when	they	 talked	about
Lorenz’s	paper	on	those	equations—“that	beautiful	marvel	of	a	paper.”	By	then
it	was	talked	about	as	if	it	were	an	ancient	scroll,	preserving	secrets	of	eternity.
In	 the	 thousands	of	 articles	 that	made	up	 the	 technical	 literature	of	 chaos,	 few
were	 cited	 more	 often	 than	 “Deterministic	 Nonperiodic	 Flow.”	 For	 years,	 no
single	 object	 would	 inspire	 more	 illustrations,	 even	 motion	 pictures,	 than	 the
mysterious	curve	depicted	at	the	end,	the	double	spiral	that	became	known	as	the
Lorenz	attractor.	For	the	first	time,	Lorenz’s	pictures	had	shown	what	it	meant	to
say,	“This	is	complicated.”	All	the	richness	of	chaos	was	there.

At	 the	 time,	 though,	 few	 could	 see	 it.	 Lorenz	 described	 it	 to	 Willem
Malkus,	 a	 professor	 of	 applied	mathematics	 at	M.I.T.,	 a	 gentlemanly	 scientist
with	a	grand	capacity	for	appreciating	 the	work	of	colleagues.	Malkus	 laughed
and	said,	“Ed,	we	know—we	know	very	well—that	fluid	convection	doesn’t	do
that	at	all.”	The	complexity	would	surely	be	damped	out,	Malkus	told	him,	and



the	system	would	settle	down	to	steady,	regular	motion.
“Of	 course,	 we	 completely	 missed	 the	 point,”	 Malkus	 said	 a	 generation

later—years	 after	 he	 had	 built	 a	 real	 Lorenzian	 waterwheel	 in	 his	 basement
laboratory	to	show	nonbelievers.	“Ed	wasn’t	thinking	in	terms	of	our	physics	at
all.	He	was	 thinking	 in	 terms	 of	 some	 sort	 of	 generalized	 or	 abstracted	model
which	 exhibited	 behavior	 that	 he	 intuitively	 felt	 was	 characteristic	 of	 some
aspects	of	the	external	world.	He	couldn’t	quite	say	that	to	us,	though.	It’s	only
after	the	fact	that	we	perceived	that	he	must	have	held	those	views.”

Few	 laymen	 realized	 how	 tightly	 compartmentalized	 the	 scientific
community	 had	 become,	 a	 battleship	 with	 bulkheads	 sealed	 against	 leaks.
Biologists	 had	 enough	 to	 read	 without	 keeping	 up	 with	 the	 mathematics
literature—for	 that	 matter,	 molecular	 biologists	 had	 enough	 to	 read	 without
keeping	 up	with	 population	 biology.	 Physicists	 had	 better	ways	 to	 spend	 their
time	than	sifting	through	the	meteorology	journals.	Some	mathematicians	would
have	 been	 excited	 to	 see	 Lorenz’s	 discovery;	 within	 a	 decade,	 physicists,
astronomers,	and	biologists	were	seeking	something	just	 like	it,	and	sometimes
rediscovering	 it	 for	 themselves.	 But	 Lorenz	 was	 a	 meteorologist,	 and	 no	 one
thought	 to	 look	 for	 chaos	 on	 page	 130	 of	 volume	 20	 of	 the	 Journal	 of	 the
Atmospheric	Sciences.



Revolution

Of	course,	the	entire	effort	is	to	put	oneself
Outside	the	ordinary	range
Of	what	are	called	statistics.

—STEPHEN	SPENDER



THE	 HISTORIAN	 OF	 SCIENCE	 Thomas	 S.	 Kuhn	 describes	 a	 disturbing
experiment	 conducted	 by	 a	 pair	 of	 psychologists	 in	 the	 1940s.	 Subjects	 were
given	glimpses	of	playing	cards,	one	at	a	time,	and	asked	to	name	them.	There
was	a	trick,	of	course.	A	few	of	the	cards	were	freakish:	for	example,	a	red	six	of
spades	or	a	black	queen	of	diamonds.

At	high	speed	the	subjects	sailed	smoothly	along.	Nothing	could	have	been
simpler.	They	didn’t	 see	 the	 anomalies	 at	 all.	Shown	a	 red	 six	of	 spades,	 they
would	sing	out	either	“six	of	hearts”	or	“six	of	spades.”	But	when	the	cards	were
displayed	 for	 longer	 intervals,	 the	 subjects	 started	 to	 hesitate.	 They	 became
aware	of	a	problem	but	were	not	sure	quite	what	it	was.	A	subject	might	say	that
he	had	seen	something	odd,	like	a	red	border	around	a	black	heart.

Eventually,	as	the	pace	was	slowed	even	more,	most	subjects	would	catch
on.	They	would	see	the	wrong	cards	and	make	the	mental	shift	necessary	to	play
the	 game	 without	 error.	 Not	 everyone,	 though.	 A	 few	 suffered	 a	 sense	 of
disorientation	that	brought	real	pain.	“I	can’t	make	that	suit	out,	whatever	it	is,”
said	one.	“It	didn’t	even	look	like	a	card	that	time.	I	don’t	know	what	color	it	is
now	or	whether	it’s	a	spade	or	a	heart.	I’m	not	even	sure	what	a	spade	looks	like.
My	God!”

Professional	 scientists,	 given	 brief,	 uncertain	 glimpses	 of	 nature’s
workings,	are	no	less	vulnerable	to	anguish	and	confusion	when	they	come	face
to	 face	with	 incongruity.	And	 incongruity,	when	 it	changes	 the	way	a	 scientist
sees,	makes	possible	 the	most	 important	advances.	So	Kuhn	argues,	and	so	the
story	of	chaos	suggests.

Kuhn’s	notions	of	how	scientists	work	and	how	revolutions	occur	drew	as
much	 hostility	 as	 admiration	 when	 he	 first	 published	 them,	 in	 1962,	 and	 the
controversy	has	never	ended.	He	pushed	a	sharp	needle	into	the	traditional	view
that	science	progresses	by	the	accretion	of	knowledge,	each	discovery	adding	to
the	 last,	 and	 that	 new	 theories	 emerge	 when	 new	 experimental	 facts	 require
them.	He	deflated	the	view	of	science	as	an	orderly	process	of	asking	questions
and	 finding	 their	answers.	He	emphasized	a	contrast	between	 the	bulk	of	what
scientists	 do,	 working	 on	 legitimate,	 well-understood	 problems	 within	 their
disciplines,	 and	 the	exceptional,	unorthodox	work	 that	 creates	 revolutions.	Not
by	accident,	he	made	scientists	seem	less	than	perfect	rationalists.

In	 Kuhn’s	 scheme,	 normal	 science	 consists	 largely	 of	 mopping	 up
operations.	 Experimentalists	 carry	 out	 modified	 versions	 of	 experiments	 that
have	been	carried	out	many	times	before.	Theorists	add	a	brick	here,	reshape	a
cornice	 there,	 in	a	wall	of	 theory.	 It	could	hardly	be	otherwise.	 If	all	 scientists
had	 to	 begin	 from	 the	 beginning,	 questioning	 fundamental	 assumptions,	 they



would	be	hard	pressed	to	reach	the	level	of	technical	sophistication	necessary	to
do	useful	work.	In	Benjamin	Franklin’s	time,	the	handful	of	scientists	trying	to
understand	 electricity	 could	 choose	 their	 own	 first	 principles—indeed,	 had	 to.
One	 researcher	 might	 consider	 attraction	 to	 be	 the	 most	 important	 electrical
effect,	 thinking	 of	 electricity	 as	 a	 sort	 of	 “effluvium”	 emanating	 from
substances.	Another	might	think	of	electricity	as	a	fluid,	conveyed	by	conducting
material.	 These	 scientists	 could	 speak	 almost	 as	 easily	 to	 laymen	 as	 to	 each
other,	because	they	had	not	yet	reached	a	stage	where	they	could	take	for	granted
a	 common,	 specialized	 language	 for	 the	 phenomena	 they	 were	 studying.	 By
contrast,	 a	 twentieth-century	 fluid	 dynamicist	 could	 hardly	 expect	 to	 advance
knowledge	 in	 his	 field	 without	 first	 adopting	 a	 body	 of	 terminology	 and
mathematical	 technique.	 In	 return,	 unconsciously,	 he	 would	 give	 up	 much
freedom	to	question	the	foundations	of	his	science.

Central	to	Kuhn’s	ideas	is	the	vision	of	normal	science	as	solving	problems,
the	kinds	of	problems	that	students	learn	the	first	time	they	open	their	textbooks.
Such	 problems	 define	 an	 accepted	 style	 of	 achievement	 that	 carries	 most
scientists	 through	 graduate	 school,	 through	 their	 thesis	 work,	 and	 through	 the
writing	of	 journal	articles	 that	makes	up	 the	body	of	academic	careers.	“Under
normal	 conditions	 the	 research	 scientist	 is	 not	 an	 innovator	 but	 a	 solver	 of
puzzles,	 and	 the	 puzzles	 upon	 which	 he	 concentrates	 are	 just	 those	 which	 he
believes	 can	be	both	 stated	and	 solved	within	 the	 existing	 scientific	 tradition,”
Kuhn	wrote.

Then	there	are	revolutions.	A	new	science	arises	out	of	one	that	has	reached
a	 dead	 end.	 Often	 a	 revolution	 has	 an	 interdisciplinary	 character—its	 central
discoveries	often	come	from	people	straying	outside	the	normal	bounds	of	their
specialties.	 The	 problems	 that	 obsess	 these	 theorists	 are	 not	 recognized	 as
legitimate	 lines	 of	 inquiry.	 Thesis	 proposals	 are	 turned	 down	 or	 articles	 are
refused	 publication.	The	 theorists	 themselves	 are	 not	 sure	whether	 they	would
recognize	 an	 answer	 if	 they	 saw	one.	They	 accept	 risk	 to	 their	 careers.	A	 few
freethinkers	 working	 alone,	 unable	 to	 explain	 where	 they	 are	 heading,	 afraid
even	to	tell	their	colleagues	what	they	are	doing—that	romantic	image	lies	at	the
heart	of	Kuhn’s	scheme,	and	it	has	occurred	in	real	life,	time	and	time	again,	in
the	exploration	of	chaos.

Every	 scientist	 who	 turned	 to	 chaos	 early	 had	 a	 story	 to	 tell	 of
discouragement	 or	 open	 hostility.	 Graduate	 students	 were	 warned	 that	 their
careers	 could	 be	 jeopardized	 if	 they	wrote	 theses	 in	 an	 untested	 discipline,	 in
which	 their	 advisors	 had	 no	 expertise.	A	 particle	 physicist,	 hearing	 about	 this
new	 mathematics,	 might	 begin	 playing	 with	 it	 on	 his	 own,	 thinking	 it	 was	 a
beautiful	thing,	both	beautiful	and	hard—but	would	feel	that	he	could	never	tell



his	 colleagues	 about	 it.	 Older	 professors	 felt	 they	 were	 suffering	 a	 kind	 of
midlife	crisis,	gambling	on	a	line	of	research	that	many	colleagues	were	likely	to
misunderstand	or	resent.	But	they	also	felt	an	intellectual	excitement	that	comes
with	 the	 truly	 new.	 Even	 outsiders	 felt	 it,	 those	 who	 were	 attuned	 to	 it.	 To
Freeman	Dyson	 at	 the	 Institute	 for	 Advanced	 Study,	 the	 news	 of	 chaos	 came
“like	an	electric	 shock”	 in	 the	1970s.	Others	 felt	 that	 for	 the	 first	 time	 in	 their
professional	lives	they	were	witnessing	a	true	paradigm	shift,	a	transformation	in
a	way	of	thinking.

Those	who	recognized	chaos	in	the	early	days	agonized	over	how	to	shape
their	thoughts	and	findings	into	publishable	form.	Work	fell	between	disciplines
—for	 example,	 too	 abstract	 for	 physicists	 yet	 too	 experimental	 for
mathematicians.	To	some	the	difficulty	of	communicating	the	new	ideas	and	the
ferocious	resistance	from	traditional	quarters	showed	how	revolutionary	the	new
science	 was.	 Shallow	 ideas	 can	 be	 assimilated;	 ideas	 that	 require	 people	 to
reorganize	their	picture	of	the	world	provoke	hostility.	A	physicist	at	the	Georgia
Institute	of	Technology,	Joseph	Ford,	started	quoting	Tolstoy:	“I	know	that	most
men,	 including	 those	 at	 ease	 with	 problems	 of	 the	 greatest	 complexity,	 can
seldom	accept	even	 the	simplest	and	most	obvious	 truth	 if	 it	be	such	as	would
oblige	 them	 to	 admit	 the	 falsity	 of	 conclusions	 which	 they	 have	 delighted	 in
explaining	 to	colleagues,	which	 they	have	proudly	 taught	 to	others,	 and	which
they	have	woven,	thread	by	thread,	into	the	fabric	of	their	lives.”

Many	mainstream	 scientists	 remained	 only	 dimly	 aware	 of	 the	 emerging
science.	Some,	particularly	traditional	fluid	dynamicists,	actively	resented	it.	At
first,	 the	 claims	made	 on	 behalf	 of	 chaos	 sounded	wild	 and	 unscientific.	 And
chaos	relied	on	mathematics	that	seemed	unconventional	and	difficult.

As	 the	 chaos	 specialists	 spread,	 some	 departments	 frowned	 on	 these
somewhat	 deviant	 scholars;	 others	 advertised	 for	 more.	 Some	 journals
established	 unwritten	 rules	 against	 submissions	 on	 chaos;	 other	 journals	 came
forth	to	handle	chaos	exclusively.	The	chaoticists	or	chaologists	(such	coinages
could	be	heard)	turned	up	with	disproportionate	frequency	on	the	yearly	lists	of
important	 fellowships	 and	 prizes.	 By	 the	 middle	 of	 the	 eighties	 a	 process	 of
academic	diffusion	had	brought	chaos	specialists	into	influential	positions	within
university	 bureaucracies.	 Centers	 and	 institutes	 were	 founded	 to	 specialize	 in
“nonlinear	dynamics”	and	“complex	systems.”

Chaos	 has	 become	 not	 just	 theory	 but	 also	 method,	 not	 just	 a	 canon	 of
beliefs	but	also	a	way	of	doing	science.	Chaos	has	created	its	own	technique	of
using	computers,	a	 technique	that	does	not	require	 the	vast	speed	of	Crays	and
Cybers	 but	 instead	 favors	modest	 terminals	 that	 allow	 flexible	 interaction.	 To
chaos	 researchers,	mathematics	 has	 become	 an	 experimental	 science,	 with	 the



computer	 replacing	 laboratories	 full	 of	 test	 tubes	 and	 microscopes.	 Graphic
images	are	the	key.	“It’s	masochism	for	a	mathematician	to	do	without	pictures,”
one	chaos	specialist	would	say.	“How	can	they	see	the	relationship	between	that
motion	and	 this?	How	can	 they	develop	 intuition?”	Some	carry	out	 their	work
explicitly	denying	that	it	is	a	revolution;	others	deliberately	use	Kuhn’s	language
of	paradigm	shifts	to	describe	the	changes	they	witness.

Stylistically,	 early	 chaos	papers	 recalled	 the	Benjamin	Franklin	 era	 in	 the
way	they	went	back	to	first	principles.	As	Kuhn	notes,	established	sciences	take
for	 granted	 a	 body	 of	 knowledge	 that	 serves	 as	 a	 communal	 starting	 point	 for
investigation.	 To	 avoid	 boring	 their	 colleagues,	 scientists	 routinely	 begin	 and
end	their	papers	with	esoterica.	By	contrast,	articles	on	chaos	from	the	late	1970s
onward	 sounded	 evangelical,	 from	 their	 preambles	 to	 their	 perorations.	 They
declared	new	credos,	and	 they	often	ended	with	pleas	 for	action.	These	results
appear	to	us	to	be	both	exciting	and	highly	provocative.	A	theoretical	picture	of
the	 transition	 to	 turbulence	 is	 just	 beginning	 to	 emerge.	The	heart	 of	 chaos	 is
mathematically	accessible.	Chaos	now	presages	the	future	as	none	will	gainsay.
But	to	accept	the	future,	one	must	renounce	much	of	the	past.

New	 hopes,	 new	 styles,	 and,	 most	 important,	 a	 new	 way	 of	 seeing.
Revolutions	do	not	come	piecemeal.	One	account	of	nature	replaces	another.	Old
problems	are	seen	in	a	new	light	and	other	problems	are	recognized	for	the	first
time.	Something	 takes	place	 that	 resembles	a	whole	 industry	 retooling	 for	new
production.	In	Kuhn’s	words,	“It	is	rather	as	if	the	professional	community	had
been	suddenly	transported	to	another	planet	where	familiar	objects	are	seen	in	a
different	light	and	are	joined	by	unfamiliar	ones	as	well.”

THE	LABORATORY	MOUSE	of	the	new	science	was	the	pendulum:	emblem	of
classical	 mechanics,	 exemplar	 of	 constrained	 action,	 epitome	 of	 clockwork
regularity.	A	bob	swings	free	at	the	end	of	a	rod.	What	could	be	further	removed
from	the	wildness	of	turbulence?

Where	Archimedes	had	his	bathtub	and	Newton	his	apple,	so,	according	to
the	 usual	 suspect	 legend,	Galileo	 had	 a	 church	 lamp,	 swaying	 back	 and	 forth,
time	 and	 again,	 on	 and	 on,	 sending	 its	 message	 monotonously	 into	 his
consciousness.	Christian	Huygens	turned	the	predictability	of	the	pendulum	into
a	means	of	timekeeping,	sending	Western	civilization	down	a	road	from	which
there	was	no	return.	Foucault,	in	the	Panthéon	of	Paris,	used	a	twenty-story–high
pendulum	to	demonstrate	the	earth’s	rotation.	Every	clock	and	every	wristwatch
(until	 the	era	of	vibrating	quartz)	 relied	on	a	pendulum	of	 some	size	or	 shape.
(For	 that	matter,	 the	oscillation	of	 quartz	 is	 not	 so	different.)	 In	 space,	 free	of
friction,	periodic	motion	comes	from	the	orbits	of	heavenly	bodies,	but	on	earth



virtually	any	regular	oscillation	comes	from	some	cousin	of	the	pendulum.	Basic
electronic	 circuits	 are	 described	 by	 equations	 exactly	 the	 same	 as	 those
describing	 a	 swinging	 bob.	 The	 electronic	 oscillations	 are	 millions	 of	 times
faster,	 but	 the	 physics	 is	 the	 same.	By	 the	 twentieth	 century,	 though,	 classical
mechanics	 was	 strictly	 a	 business	 for	 classrooms	 and	 routine	 engineering
projects.	Pendulums	decorated	science	museums	and	enlivened	airport	gift	shops
in	the	form	of	rotating	plastic	“space	balls.”	No	research	physicist	bothered	with
pendulums.

Yet	the	pendulum	still	had	surprises	in	store.	It	became	a	touchstone,	as	it
had	 for	 Galileo’s	 revolution.	When	Aristotle	 looked	 at	 a	 pendulum,	 he	 saw	 a
weight	trying	to	head	earthward	but	swinging	violently	back	and	forth	because	it
was	constrained	by	its	rope.	To	the	modern	ear	this	sounds	foolish.	For	someone
bound	 by	 classical	 concepts	 of	 motion,	 inertia,	 and	 gravity,	 it	 is	 hard	 to
appreciate	 the	 self-consistent	 world	 view	 that	 went	 with	 Aristotle’s
understanding	of	a	pendulum.	Physical	motion,	for	Aristotle,	was	not	a	quantity
or	 a	 force	 but	 rather	 a	 kind	 of	 change,	 just	 as	 a	 person’s	 growth	 is	 a	 kind	 of
change.	A	falling	weight	is	simply	seeking	its	most	natural	state,	the	state	it	will
reach	 if	 left	 to	 itself.	 In	 context,	 Aristotle’s	 view	 made	 sense.	 When	 Galileo
looked	 at	 a	 pendulum,	 on	 the	 other	 hand,	 he	 saw	 a	 regularity	 that	 could	 be
measured.	To	explain	it	required	a	revolutionary	way	of	understanding	objects	in
motion.	Galileo’s	advantage	over	the	ancient	Greeks	was	not	that	he	had	better
data.	On	the	contrary,	his	idea	of	timing	a	pendulum	precisely	was	to	get	some
friends	 together	 to	 count	 the	 oscillations	 over	 a	 twenty-four–hour	 period—a
labor-intensive	experiment.	Galileo	saw	the	regularity	because	he	already	had	a
theory	that	predicted	it.	He	understood	what	Aristotle	could	not:	 that	a	moving
object	 tends	 to	keep	moving,	 that	a	change	in	speed	or	direction	could	only	be
explained	by	some	external	force,	like	friction.

In	 fact,	 so	 powerful	 was	 his	 theory	 that	 he	 saw	 a	 regularity	 that	 did	 not
exist.	He	 contended	 that	 a	 pendulum	of	 a	 given	 length	 not	 only	 keeps	 precise
time	 but	 keeps	 the	 same	 time	 no	matter	 how	wide	 or	 narrow	 the	 angle	 of	 its
swing.	A	wide-swinging	pendulum	has	farther	to	travel,	but	it	happens	to	travel
just	 that	 much	 faster.	 In	 other	 words,	 its	 period	 remains	 independent	 of	 its
amplitude.	 “If	 two	 friends	 shall	 set	 themselves	 to	 count	 the	 oscillations,	 one
counting	 the	wide	 ones	 and	 the	 other	 the	 narrow,	 they	will	 see	 that	 they	may
count	not	just	tens,	but	even	hundreds,	without	disagreeing	by	even	one,	or	part
of	 one.”	Galileo	phrased	his	 claim	 in	 terms	of	 experimentation,	 but	 the	 theory
made	 it	 convincing—so	much	 so	 that	 it	 is	 still	 taught	 as	 gospel	 in	most	 high
school	 physics	 courses.	But	 it	 is	wrong.	The	 regularity	Galileo	 saw	 is	 only	 an
approximation.	 The	 changing	 angle	 of	 the	 bob’s	 motion	 creates	 a	 slight



nonlinearity	in	the	equations.	At	low	amplitudes,	the	error	is	almost	nonexistent.
But	 it	 is	 there,	and	 it	 is	measurable	even	 in	an	experiment	as	crude	as	 the	one
Galileo	describes.

Small	 nonlinearities	 were	 easy	 to	 disregard.	 People	 who	 conduct
experiments	 learn	quickly	that	 they	live	 in	an	imperfect	world.	In	 the	centuries
since	 Galileo	 and	 Newton,	 the	 search	 for	 regularity	 in	 experiment	 has	 been
fundamental.	Any	experimentalist	 looks	 for	quantities	 that	 remain	 the	same,	or
quantities	 that	 are	 zero.	 But	 that	 means	 disregarding	 bits	 of	 messiness	 that
interfere	 with	 a	 neat	 picture.	 If	 a	 chemist	 finds	 two	 substances	 in	 a	 constant
proportion	of	2.001	one	day,	and	2.003	the	next	day,	and	1.998	the	day	after,	he
would	be	a	fool	not	to	look	for	a	theory	that	would	explain	a	perfect	two-to–one
ratio.

To	get	his	neat	results,	Galileo	also	had	to	disregard	nonlinearities	 that	he
knew	of:	 friction	 and	 air	 resistance.	Air	 resistance	 is	 a	 notorious	 experimental
nuisance,	a	complication	that	had	to	be	stripped	away	to	reach	the	essence	of	the
new	 science	 of	 mechanics.	 Does	 a	 feather	 fall	 as	 rapidly	 as	 a	 stone?	 All
experience	with	falling	objects	says	no.	The	story	of	Galileo	dropping	balls	off
the	 tower	 of	 Pisa,	 as	 a	 piece	 of	myth,	 is	 a	 story	 about	 changing	 intuitions	 by
inventing	an	ideal	scientific	world	where	regularities	can	be	separated	from	the
disorder	of	experience.

To	 separate	 the	 effects	of	gravity	on	 a	given	mass	 from	 the	 effects	of	 air
resistance	was	a	brilliant	intellectual	achievement.	It	allowed	Galileo	to	close	in
on	 the	 essence	 of	 inertia	 and	 momentum.	 Still,	 in	 the	 real	 world,	 pendulums
eventually	do	exactly	what	Aristotle’s	quaint	paradigm	predicted.	They	stop.

In	 laying	 the	groundwork	 for	 the	next	paradigm	shift,	 physicists	began	 to
face	up	to	what	many	believed	was	a	deficiency	in	their	education	about	simple
systems	 like	 the	 pendulum.	 By	 our	 century,	 dissipative	 processes	 like	 friction
were	 recognized,	 and	 students	 learned	 to	 include	 them	 in	 equations.	 Students
also	learned	that	nonlinear	systems	were	usually	unsolvable,	which	was	true,	and
that	 they	 tended	 to	 be	 exceptions—which	 was	 not	 true.	 Classical	 mechanics
described	 the	 behavior	 of	 whole	 classes	 of	 moving	 objects,	 pendulums	 and
double	 pendulums,	 coiled	 springs	 and	 bent	 rods,	 plucked	 strings	 and	 bowed
strings.	The	mathematics	applied	to	fluid	systems	and	to	electrical	systems.	But
almost	 no	 one	 in	 the	 classical	 era	 suspected	 the	 chaos	 that	 could	 lurk	 in
dynamical	systems	if	nonlinearity	was	given	its	due.

A	physicist	could	not	 truly	understand	 turbulence	or	complexity	unless	he
understood	pendulums—and	understood	 them	 in	 a	way	 that	was	 impossible	 in
the	 first	 half	 of	 the	 twentieth	 century.	 As	 chaos	 began	 to	 unite	 the	 study	 of
different	 systems,	 pendulum	 dynamics	 broadened	 to	 cover	 high	 technologies



from	 lasers	 to	 superconducting	 Josephson	 junctions.	 Some	 chemical	 reactions
displayed	 pendulum-like	 behavior,	 as	 did	 the	 beating	 heart.	 The	 unexpected
possibilities	 extended,	 one	 physicist	 wrote,	 to	 “physiological	 and	 psychiatric
medicine,	economic	forecasting,	and	perhaps	the	evolution	of	society.”

Consider	 a	 playground	 swing.	 The	 swing	 accelerates	 on	 its	 way	 down,
decelerates	on	its	way	up,	all	the	while	losing	a	bit	of	speed	to	friction.	It	gets	a
regular	push—say,	from	some	clockwork	machine.	All	our	intuition	tells	us	that,
no	matter	where	the	swing	might	start,	the	motion	will	eventually	settle	down	to
a	regular	back	and	forth	pattern,	with	the	swing	coming	to	the	same	height	each
time.	That	can	happen.	Yet,	odd	as	it	seems,	the	motion	can	also	turn	erratic,	first
high,	then	low,	never	settling	down	to	a	steady	state	and	never	exactly	repeating
a	pattern	of	swings	that	came	before.

The	surprising,	erratic	behavior	comes	from	a	nonlinear	twist	in	the	flow	of
energy	in	and	out	of	this	simple	oscillator.	The	swing	is	damped	and	it	is	driven:
damped	because	friction	is	trying	to	bring	it	to	a	halt,	driven	because	it	is	getting
a	periodic	push.	Even	when	a	damped,	driven	system	is	at	equilibrium,	it	is	not
at	equilibrium,	and	the	world	is	full	of	such	systems,	beginning	with	the	weather,
damped	by	the	friction	of	moving	air	and	water	and	by	the	dissipation	of	heat	to
outer	space,	and	driven	by	the	constant	push	of	the	sun’s	energy.

But	 unpredictability	 was	 not	 the	 reason	 physicists	 and	 mathematicians
began	 taking	 pendulums	 seriously	 again	 in	 the	 sixties	 and	 seventies.
Unpredictability	 was	 only	 the	 attention-grabber.	 Those	 studying	 chaotic
dynamics	discovered	 that	 the	disorderly	behavior	of	 simple	 systems	acted	as	 a
creative	process.	 It	generated	complexity:	 richly	organized	patterns,	 sometimes
stable	 and	 sometimes	 unstable,	 sometimes	 finite	 and	 sometimes	 infinite,	 but
always	with	the	fascination	of	living	things.	That	was	why	scientists	played	with
toys.

One	toy,	sold	under	the	name	“Space	Balls”	or	“Space	Trapeze,”	is	a	pair	of
balls	at	opposite	ends	of	a	rod,	sitting	like	the	crossbar	of	a	T	atop	a	pendulum
with	a	third,	heavier	ball	at	its	foot.	The	lower	ball	swings	back	and	forth	while
the	upper	rod	rotates	freely.	All	three	balls	have	little	magnets	inside,	and	once
set	 in	 motion	 the	 device	 keeps	 going	 because	 it	 has	 a	 battery-powered
electromagnet	 embedded	 in	 the	 base.	 The	 device	 senses	 the	 approach	 of	 the
lowest	ball	and	gives	it	a	small	magnetic	kick	each	time	it	passes.	Sometimes	the
apparatus	 settles	 into	 a	 steady,	 rhythmic	 swinging.	But	 other	 times,	 its	motion
seems	to	remain	chaotic,	always	changing	and	endlessly	surprising.

Another	 common	 pendulum	 toy	 is	 no	 more	 than	 a	 so-called	 spherical
pendulum—a	 pendulum	 free	 to	 swing	 not	 just	 back	 and	 forth	 but	 in	 any
direction.	A	few	small	magnets	are	placed	around	its	base.	The	magnets	attract



the	metal	bob,	and	when	the	pendulum	stops,	it	will	have	been	captured	by	one
of	them.	The	idea	is	to	set	the	pendulum	swinging	and	guess	which	magnet	will
win.	Even	with	 just	 three	magnets	placed	 in	a	 triangle,	 the	pendulum’s	motion
cannot	be	predicted.	It	will	swing	back	and	forth	between	A	and	B	for	a	while,
then	switch	to	B	and	C,	and	then,	just	as	it	seems	to	be	settling	on	C,	jump	back
to	 A.	 Suppose	 a	 scientist	 systematically	 explores	 the	 behavior	 of	 this	 toy	 by
making	a	map,	as	 follows:	Pick	a	starting	point;	hold	 the	bob	 there	and	 let	go;
color	the	point	red,	blue,	or	green,	depending	on	which	magnet	ends	up	with	the
bob.	What	 will	 the	 map	 look	 like?	 It	 will	 have	 regions	 of	 solid	 red,	 blue,	 or
green,	 as	 one	 might	 expect—regions	 where	 the	 bob	 will	 swing	 reliably	 to	 a
particular	 magnet.	 But	 it	 can	 also	 have	 regions	 where	 the	 colors	 are	 woven
together	with	infinite	complexity.	Adjacent	 to	a	red	point,	no	matter	how	close
one	chooses	to	look,	no	matter	how	much	one	magnifies	the	map,	there	will	be
green	points	and	blue	points.	For	all	practical	purposes,	 then,	 the	bob’s	destiny
will	be	impossible	to	guess.

Traditionally,	 a	 dynamicist	 would	 believe	 that	 to	 write	 down	 a	 system’s
equations	 is	 to	 understand	 the	 system.	 How	 better	 to	 capture	 the	 essential
features?	 For	 a	 playground	 swing	 or	 a	 toy,	 the	 equations	 tie	 together	 the
pendulum’s	angle,	its	velocity,	its	friction,	and	the	force	driving	it.	But	because
of	 the	 little	 bits	 of	 nonlinearity	 in	 these	 equations,	 a	 dynamicist	 would	 find
himself	helpless	to	answer	the	easiest	practical	questions	about	the	future	of	the
system.	A	computer	can	address	the	problem	by	simulating	it,	rapidly	calculating
each	 cycle.	 But	 simulation	 brings	 its	 own	 problem:	 the	 tiny	 imprecision	 built
into	each	calculation	rapidly	takes	over,	because	this	is	a	system	with	sensitive
dependence	on	initial	conditions.	Before	long,	the	signal	disappears	and	all	that
remains	is	noise.

Or	is	it?	Lorenz	had	found	unpredictability,	but	he	had	also	found	pattern.
Others,	 too,	 discovered	 suggestions	 of	 structure	 amid	 seemingly	 random
behavior.	 The	 example	 of	 the	 pendulum	was	 simple	 enough	 to	 disregard,	 but
those	who	chose	not	to	disregard	it	found	a	provocative	message.	In	some	sense,
they	 realized,	 physics	 understood	 perfectly	 the	 fundamental	 mechanisms	 of
pendulum	motion	but	could	not	extend	that	understanding	to	the	long	term.	The
microscopic	 pieces	were	 perfectly	 clear;	 the	macroscopic	 behavior	 remained	 a
mystery.	The	tradition	of	looking	at	systems	locally—isolating	the	mechanisms
and	then	adding	them	together—was	beginning	to	break	down.	For	pendulums,
for	 fluids,	 for	 electronic	 circuits,	 for	 lasers,	 knowledge	 of	 the	 fundamental
equations	no	longer	seemed	to	be	the	right	kind	of	knowledge	at	all.

As	the	1960s	went	on,	individual	scientists	made	discoveries	that	paralleled
Lorenz’s:	 a	 French	 astronomer	 studying	 galactic	 orbits,	 for	 example,	 and	 a



Japanese	electrical	engineer	modeling	electronic	circuits.	But	the	first	deliberate,
coordinated	attempt	 to	understand	how	global	behavior	might	differ	 from	local
behavior	 came	 from	mathematicians.	 Among	 them	was	 Stephen	 Smale	 of	 the
University	 of	 California	 at	 Berkeley,	 already	 famous	 for	 unraveling	 the	 most
esoteric	 problems	 of	 many-dimensional	 topology.	 A	 young	 physicist,	 making
small	 talk,	 asked	 what	 Smale	 was	 working	 on.	 The	 answer	 stunned	 him:
“Oscillators.”	 It	 was	 absurd.	 Oscillators—pendulums,	 springs,	 or	 electrical
circuits—were	 the	 sort	 of	 problem	 that	 a	 physicist	 finished	 off	 early	 in	 his
training.	 They	 were	 easy.	 Why	 would	 a	 great	 mathematician	 be	 studying
elementary	physics?	Not	until	years	later	did	the	young	man	realize	that	Smale
was	 looking	 at	 nonlinear	 oscillators,	 chaotic	 oscillators,	 and	 seeing	 things	 that
physicists	had	learned	not	to	see.

SMALE	MADE	A	BAD	CONJECTURE.	 In	 the	most	 rigorous	mathematical	 terms,
he	proposed	that	practically	all	dynamical	systems	tended	to	settle,	most	of	the
time,	into	behavior	that	was	not	too	strange.	As	he	soon	learned,	things	were	not
so	simple.

Smale	was	a	mathematician	who	did	not	just	solve	problems	but	also	built
programs	 of	 problems	 for	 others	 to	 solve.	 He	 parlayed	 his	 understanding	 of
history	and	his	intuition	about	nature	into	an	ability	to	announce,	quietly,	that	a
whole	untried	 area	of	 research	was	now	worth	 a	mathematician’s	 time.	Like	 a
successful	businessman,	he	evaluated	risks	and	coolly	planned	his	strategy,	and
he	 had	 a	 Pied	 Piper	 quality.	Where	 Smale	 led,	many	 followed.	His	 reputation
was	not	confined	to	mathematics,	though.	Early	in	the	Vietnam	war,	he	and	Jerry
Rubin	 organized	 “International	Days	 of	 Protest”	 and	 sponsored	 efforts	 to	 stop
the	 trains	 carrying	 troops	 through	 California.	 In	 1966,	 while	 the	 House	 Un-
American	Activities	Committee	was	trying	to	subpoena	him,	he	was	heading	for
Moscow	 to	 attend	 the	 International	 Congress	 of	 Mathematicians.	 There	 he
received	the	Fields	Medal,	the	highest	honor	of	his	profession.

The	scene	 in	Moscow	that	summer	became	an	 indelible	part	of	 the	Smale
legend.	 Five	 thousand	 agitated	 and	 agitating	 mathematicians	 had	 gathered.
Political	tensions	were	high.	Petitions	were	circulating.	As	the	conference	drew
toward	its	close,	Smale	responded	to	a	request	from	a	North	Vietnamese	reporter
by	giving	a	press	conference	on	the	broad	steps	of	Moscow	University.	He	began
by	condemning	the	American	intervention	in	Vietnam,	and	then,	just	as	his	hosts
began	to	smile,	added	a	condemnation	of	the	Soviet	invasion	of	Hungary	and	the
absence	 of	 political	 freedom	 in	 the	 Soviet	Union.	When	 he	was	 done,	 he	was
quickly	 hustled	 away	 in	 a	 car	 for	 questioning	 by	 Soviet	 officials.	 When	 he
returned	to	California,	the	National	Science	Foundation	canceled	his	grant.



Smale’s	 Fields	 Medal	 honored	 a	 famous	 piece	 of	 work	 in	 topology,	 a
branch	 of	 mathematics	 that	 flourished	 in	 the	 twentieth	 century	 and	 had	 a
particular	 heyday	 in	 the	 fifties.	 Topology	 studies	 the	 properties	 that	 remain
unchanged	 when	 shapes	 are	 deformed	 by	 twisting	 or	 stretching	 or	 squeezing.
Whether	 a	 shape	 is	 square	 or	 round,	 large	 or	 small,	 is	 irrelevant	 in	 topology,
because	stretching	can	change	those	properties.	Topologists	ask	whether	a	shape
is	connected,	whether	it	has	holes,	whether	it	is	knotted.	They	imagine	surfaces
not	 just	 in	 the	 one–,	 two–,	 and	 three-dimensional	 universes	 of	 Euclid,	 but	 in
spaces	 of	many	dimensions,	 impossible	 to	 visualize.	Topology	 is	 geometry	 on
rubber	sheets.	 It	concerns	 the	qualitative	rather	 than	 the	quantitative.	 It	asks,	 if
you	 don’t	 know	 the	measurements,	 what	 can	 you	 say	 about	 overall	 structure.
Smale	 had	 solved	 one	 of	 the	 historic,	 outstanding	 problems	 of	 topology,	 the
Poincaré	conjecture,	 for	spaces	of	 five	dimensions	and	higher,	and	 in	so	doing
established	a	secure	standing	as	one	of	the	great	men	of	the	field.	In	the	1960s,
though,	 he	 left	 topology	 for	 untried	 territory.	 He	 began	 studying	 dynamical
systems.

Both	 subjects,	 topology	 and	 dynamical	 systems,	 went	 back	 to	 Henri
Poincaré,	who	 saw	 them	as	 two	 sides	of	one	 coin.	Poincaré,	 at	 the	 turn	of	 the
century,	had	been	the	last	great	mathematician	to	bring	a	geometric	imagination
to	 bear	 on	 the	 laws	 of	 motion	 in	 the	 physical	 world.	 He	 was	 the	 first	 to
understand	 the	 possibility	 of	 chaos;	 his	 writings	 hinted	 at	 a	 sort	 of
unpredictability	 almost	 as	 severe	 as	 the	 sort	 Lorenz	 discovered.	 But	 after
Poincaré’s	death,	while	topology	flourished,	dynamical	systems	atrophied.	Even
the	 name	 fell	 into	 disuse;	 the	 subject	 to	 which	 Smale	 nominally	 turned	 was
differential	 equations.	 Differential	 equations	 describe	 the	 way	 systems	 change
continuously	over	time.	The	tradition	was	to	look	at	such	things	locally,	meaning
that	engineers	or	physicists	would	consider	one	set	of	possibilities	at	a	time.	Like
Poincaré,	Smale	wanted	to	understand	them	globally,	meaning	that	he	wanted	to
understand	the	entire	realm	of	possibilities	at	once.

Any	 set	 of	 equations	 describing	 a	 dynamical	 system—Lorenz’s,	 for
example—allows	certain	parameters	to	be	set	at	the	start.	In	the	case	of	thermal
convection,	one	parameter	concerns	the	viscosity	of	the	fluid.	Large	changes	in
parameters	can	make	large	differences	in	a	system—for	example,	the	difference
between	 arriving	 at	 a	 steady	 state	 and	 oscillating	 periodically.	 But	 physicists
assumed	that	very	small	changes	would	cause	only	very	small	differences	in	the
numbers,	not	qualitative	changes	in	behavior.

Linking	topology	and	dynamical	systems	is	the	possibility	of	using	a	shape
to	help	visualize	the	whole	range	of	behaviors	of	a	system.	For	a	simple	system,
the	 shape	might	 be	 some	 kind	 of	 curved	 surface;	 for	 a	 complicated	 system,	 a



manifold	of	many	dimensions.	A	 single	point	on	 such	a	 surface	 represents	 the
state	 of	 a	 system	at	 an	 instant	 frozen	 in	 time.	As	 a	 system	progresses	 through
time,	the	point	moves,	tracing	an	orbit	across	this	surface.	Bending	the	shape	a
little	 corresponds	 to	 changing	 the	 system’s	 parameters,	 making	 a	 fluid	 more
viscous	or	driving	a	pendulum	a	little	harder.	Shapes	that	look	roughly	the	same
give	roughly	the	same	kinds	of	behavior.	If	you	can	visualize	the	shape,	you	can
understand	the	system.

When	 Smale	 turned	 to	 dynamical	 systems,	 topology,	 like	 most	 pure
mathematics,	was	carried	out	with	an	explicit	disdain	for	real-world	applications.
Topology’s	 origins	 had	 been	 close	 to	 physics,	 but	 for	 mathematicians	 the
physical	 origins	 were	 forgotten	 and	 shapes	 were	 studied	 for	 their	 own	 sake.
Smale	fully	believed	in	that	ethos—he	was	the	purest	of	the	pure—yet	he	had	an
idea	 that	 the	 abstract,	 esoteric	 development	 of	 topology	 might	 now	 have
something	to	contribute	to	physics,	 just	as	Poincaré	had	intended	at	 the	turn	of
the	century.

One	 of	 Smale’s	 first	 contributions,	 as	 it	 happened,	 was	 his	 faulty
conjecture.	In	physical	 terms,	he	was	proposing	a	law	of	nature	something	like
this:	A	system	can	behave	erratically,	but	the	erratic	behavior	cannot	be	stable.
Stability—“stability	in	the	sense	of	Smale,”	as	mathematicians	would	sometimes
say—was	 a	 crucial	 property.	 Stable	 behavior	 in	 a	 system	 was	 behavior	 that
would	 not	 disappear	 just	 because	 some	 number	 was	 changed	 a	 tiny	 bit.	 Any
system	could	have	both	 stable	 and	unstable	behaviors	within	 it.	The	 equations
governing	a	pencil	standing	on	its	point	have	a	good	mathematical	solution	with
the	center	of	gravity	directly	above	the	point—but	you	cannot	stand	a	pencil	on
its	 point	 because	 the	 solution	 is	 unstable.	 The	 slightest	 perturbation	 draws	 the
system	away	from	that	solution.	On	the	other	hand,	a	marble	lying	at	the	bottom
of	 a	 bowl	 stays	 there,	 because	 if	 the	marble	 is	 perturbed	 slightly	 it	 rolls	 back.
Physicists	 assumed	 that	 any	 behavior	 they	 could	 actually	 observe	 regularly
would	have	to	be	stable,	since	in	real	systems	tiny	disturbances	and	uncertainties
are	unavoidable.	You	never	know	the	parameters	exactly.	 If	you	want	a	model
that	will	be	both	physically	realistic	and	robust	in	the	face	of	small	perturbations,
physicists	reasoned	that	you	must	surely	want	a	stable	model.

The	bad	news	arrived	 in	 the	mail	soon	after	Christmas	1959,	when	Smale
was	 living	 temporarily	 in	 an	 apartment	 in	 Rio	 de	 Janeiro	 with	 his	 wife,	 two
infant	 children,	 and	 a	 mass	 of	 diapers.	 His	 conjecture	 had	 defined	 a	 class	 of
differential	 equations,	 all	 structurally	 stable.	 Any	 chaotic	 system,	 he	 claimed,
could	be	approximated	as	closely	as	you	liked	by	a	system	in	his	class.	It	was	not
so.	A	letter	from	a	colleague	informed	him	that	many	systems	were	not	so	well-
behaved	as	he	had	imagined,	and	it	described	a	counterexample,	a	system	with



chaos	and	stability,	together.	This	system	was	robust.	If	you	perturbed	it	slightly,
as	any	natural	system	is	constantly	perturbed	by	noise,	the	strangeness	would	not
go	 away.	 Robust	 and	 strange—Smale	 studied	 the	 letter	 with	 a	 disbelief	 that
melted	away	slowly.

Chaos	 and	 instability,	 concepts	 only	 beginning	 to	 acquire	 formal
definitions,	 were	 not	 the	 same	 at	 all.	 A	 chaotic	 system	 could	 be	 stable	 if	 its
particular	 brand	 of	 irregularity	 persisted	 in	 the	 face	 of	 small	 disturbances.
Lorenz’s	system	was	an	example,	although	years	would	pass	before	Smale	heard
about	Lorenz.	The	chaos	Lorenz	discovered,	with	all	its	unpredictability,	was	as
stable	as	a	marble	in	a	bowl.	You	could	add	noise	to	this	system,	jiggle	it,	stir	it
up,	 interfere	 with	 its	 motion,	 and	 then	 when	 everything	 settled	 down,	 the
transients	dying	 away	 like	 echoes	 in	 a	 canyon,	 the	 system	would	 return	 to	 the
same	 peculiar	 pattern	 of	 irregularity	 as	 before.	 It	 was	 locally	 unpredictable,
globally	 stable.	 Real	 dynamical	 systems	 played	 by	 a	more	 complicated	 set	 of
rules	 than	 anyone	 had	 imagined.	 The	 example	 described	 in	 the	 letter	 from
Smale’s	 colleague	 was	 another	 simple	 system,	 discovered	 more	 than	 a
generation	 earlier	 and	 all	 but	 forgotten.	As	 it	 happened,	 it	was	 a	 pendulum	 in
disguise:	an	oscillating	electronic	circuit.	It	was	nonlinear	and	it	was	periodically
forced,	just	like	a	child	on	a	swing.

It	was	 just	 a	vacuum	 tube,	 really,	 investigated	 in	 the	 twenties	by	a	Dutch
electrical	 engineer	 named	 Balthasar	 van	 der	 Pol.	 A	 modern	 physics	 student
would	explore	the	behavior	of	such	an	oscillator	by	looking	at	the	line	traced	on
the	 screen	of	an	oscilloscope.	Van	der	Pol	did	not	have	an	oscilloscope,	 so	he
had	to	monitor	his	circuit	by	listening	to	changing	tones	in	a	telephone	handset.
He	was	pleased	to	discover	regularities	in	the	behavior	as	he	changed	the	current
that	 fed	 it.	The	 tone	would	 leap	 from	 frequency	 to	 frequency	 as	 if	 climbing	 a
staircase,	leaving	one	frequency	and	then	locking	solidly	onto	the	next.	Yet	once
in	a	while	van	der	Pol	noted	something	strange.	The	behavior	sounded	irregular,
in	a	way	that	he	could	not	explain.	Under	the	circumstances	he	was	not	worried.
“Often	an	irregular	noise	is	heard	in	the	telephone	receivers	before	the	frequency
jumps	to	the	next	lower	value,”	he	wrote	in	a	letter	to	Nature.	“However,	this	is	a
subsidiary	phenomenon.”	He	was	one	of	many	scientists	who	got	a	glimpse	of
chaos	but	had	no	 language	 to	understand	it.	For	people	 trying	 to	build	vacuum
tubes,	the	frequency-locking	was	important.	But	for	people	trying	to	understand
the	nature	of	complexity,	the	truly	interesting	behavior	would	turn	out	to	be	the
“irregular	 noise”	 created	 by	 the	 conflicting	 pulls	 of	 a	 higher	 and	 lower
frequency.

Wrong	though	it	was,	Smale’s	conjecture	put	him	directly	on	the	track	of	a
new	 way	 of	 conceiving	 the	 full	 complexity	 of	 dynamical	 systems.	 Several



mathematicians	 had	 taken	 another	 look	 at	 the	 possibilities	 of	 the	 van	 der	 Pol
oscillator,	 and	 Smale	 now	 took	 their	 work	 into	 a	 new	 realm.	 His	 only
oscilloscope	 screen	 was	 his	 mind,	 but	 it	 was	 a	 mind	 shaped	 by	 his	 years	 of
exploring	 the	 topological	 universe.	 Smale	 conceived	 of	 the	 entire	 range	 of
possibilities	in	the	oscillator,	the	entire	phase	space,	as	physicists	called	it.	Any
state	 of	 the	 system	 at	 a	moment	 frozen	 in	 time	was	 represented	 as	 a	 point	 in
phase	space;	all	 the	 information	about	 its	position	or	velocity	was	contained	in
the	 coordinates	 of	 that	 point.	 As	 the	 system	 changed	 in	 some	 way,	 the	 point
would	 move	 to	 a	 new	 position	 in	 phase	 space.	 As	 the	 system	 changed
continuously,	the	point	would	trace	a	trajectory.

For	 a	 simple	 system	 like	 a	 pendulum,	 the	 phase	 space	 might	 just	 be	 a
rectangle:	the	pendulum’s	angle	at	a	given	instant	would	determine	the	east-west
position	of	a	point	and	 the	pendulum’s	 speed	would	determine	 the	north-south
position.	 For	 a	 pendulum	 swinging	 regularly	 back	 and	 forth,	 the	 trajectory
through	 phase	 space	would	 be	 a	 loop,	 around	 and	 around	 as	 the	 system	 lived
through	the	same	sequence	of	positions	over	and	over	again.

Smale,	 instead	 of	 looking	 at	 any	 one	 trajectory,	 concentrated	 on	 the
behavior	of	the	entire	space	as	the	system	changed—as	more	driving	energy	was
added,	for	example.	His	intuition	leapt	from	the	physical	essence	of	the	system
to	a	new	kind	of	geometrical	essence.	His	tools	were	topological	transformations
of	 shapes	 in	 phase	 space—transformations	 like	 stretching	 and	 squeezing.
Sometimes	 these	 transformations	 had	 clear	 physical	meaning.	Dissipation	 in	 a
system,	 the	 loss	 of	 energy	 to	 friction,	meant	 that	 the	 system’s	 shape	 in	 phase
space	would	contract	like	a	balloon	losing	air—finally	shrinking	to	a	point	at	the
moment	the	system	comes	to	a	complete	halt.	To	represent	the	full	complexity	of
the	van	der	Pol	oscillator,	he	realized	that	the	phase	space	would	have	to	suffer	a
complex	new	kind	of	combination	of	transformations.	He	quickly	turned	his	idea
about	visualizing	global	behavior	into	a	new	kind	of	model.	His	innovation—an
enduring	image	of	chaos	in	the	years	that	followed—was	a	structure	that	became
known	as	the	horseshoe.



MAKING	PORTRAITS	IN	PHASE	SPACE.	Traditional	time	series	(above)	and	trajectories	in	phase	space
(below)	are	 two	ways	of	displaying	the	same	data	and	gaining	a	picture	of	a	system’s	longterm	behavior.
The	 first	 system	 (left)	 converges	 on	 a	 steady	 state—a	 point	 in	 phase	 space.	 The	 second	 repeats	 itself
periodically,	forming	a	cyclical	orbit.	The	third	repeats	itself	in	a	more	complex	waltz	rhythm,	a	cycle	with
“period	three.”	The	fourth	is	chaotic.

To	make	a	simple	version	of	Smale’s	horseshoe,	you	take	a	rectangle	and
squeeze	it	top	and	bottom	into	a	horizontal	bar.	Take	one	end	of	the	bar	and	fold
it	 and	 stretch	 it	 around	 the	 other,	 making	 a	 C-shape,	 like	 a	 horseshoe.	 Then
imagine	 the	 horseshoe	 embedded	 in	 a	 new	 rectangle	 and	 repeat	 the	 same
transformation,	shrinking	and	folding	and	stretching.

The	 process	mimics	 the	work	 of	 a	mechanical	 taffy-maker,	 with	 rotating
arms	 that	 stretch	 the	 taffy,	 double	 it	 up,	 stretch	 it	 again,	 and	 so	 on	 until	 the
taffy’s	surface	has	become	very	 long,	very	 thin,	and	 intricately	self-embedded.
Smale	 put	 his	 horseshoe	 through	 an	 assortment	 of	 topological	 paces,	 and,	 the
mathematics	 aside,	 the	 horseshoe	 provided	 a	 neat	 visual	 analogue	 of	 the
sensitive	 dependence	 on	 initial	 conditions	 that	 Lorenz	 would	 discover	 in	 the
atmosphere	a	few	years	later.	Pick	two	nearby	points	in	the	original	space,	and
you	 cannot	 guess	 where	 they	 will	 end	 up.	 They	 will	 be	 driven	 arbitrarily	 far
apart	by	all	the	folding	and	stretching.	Afterward,	two	points	that	happen	to	lie
nearby	will	have	begun	arbitrarily	far	apart.



SMALE’S	HORSESHOE.	This	 topological	 transformation	provided	a	basis	 for	understanding	 the	chaotic
properties	of	dynamical	systems.	The	basics	are	simple:	A	space	is	stretched	in	one	direction,	squeezed	in
another,	and	then	folded.	When	the	process	is	repeated,	it	produces	a	kind	of	structured	mixing	familiar	to
anyone	who	has	 rolled	many-layered	pastry	dough.	A	pair	of	points	 that	end	up	close	 together	may	have
begun	far	apart.

Originally,	Smale	had	hoped	 to	explain	all	dynamical	systems	 in	 terms	of
stretching	 and	 squeezing—with	 no	 folding,	 at	 least	 no	 folding	 that	 would
drastically	 undermine	 a	 system’s	 stability.	 But	 folding	 turned	 out	 to	 be
necessary,	 and	 folding	 allowed	 sharp	 changes	 in	 dynamical	 behavior.	 Smale’s
horseshoe	 stood	 as	 the	 first	 of	 many	 new	 geometrical	 shapes	 that	 gave
mathematicians	and	physicists	a	new	intuition	about	the	possibilities	of	motion.
In	 some	 ways	 it	 was	 too	 artificial	 to	 be	 useful,	 still	 too	 much	 a	 creature	 of
mathematical	topology	to	appeal	to	physicists.	But	it	served	as	a	starting	point.
As	 the	 sixties	 went	 on,	 Smale	 assembled	 around	 him	 at	 Berkeley	 a	 group	 of
young	 mathematicians	 who	 shared	 his	 excitement	 about	 this	 new	 work	 in
dynamical	systems.	Another	decade	would	pass	before	their	work	fully	engaged
the	attention	of	less	pure	sciences,	but	when	it	did,	physicists	would	realize	that
Smale	had	turned	a	whole	branch	of	mathematics	back	toward	the	real	world.	It
was	a	golden	age,	they	said.

“It’s	the	paradigm	shift	of	paradigm	shifts,”	said	Ralph	Abraham,	a	Smale
colleague	who	became	a	professor	of	mathematics	at	the	University	of	California
at	Santa	Cruz.

“When	I	started	my	professional	work	in	mathematics	in	1960,	which	is	not
so	long	ago,	modern	mathematics	in	its	entirety—in	its	entirety—was	rejected	by
physicists,	 including	 the	 most	 avant-garde	 mathematical	 physicists.	 So
differentiable	 dynamics,	 global	 analysis,	 manifolds	 of	 mappings,	 differential



geometry—everything	 just	a	year	or	 two	beyond	what	Einstein	had	used—was
all	 rejected.	The	romance	between	mathematicians	and	physicists	had	ended	 in
divorce	 in	 the	 1930s.	 These	 people	 were	 no	 longer	 speaking.	 They	 simply
despised	 each	 other.	 Mathematical	 physicists	 refused	 their	 graduate	 students
permission	 to	 take	math	courses	 from	mathematicians:	Take	mathematics	 from
us.	We	will	teach	you	what	you	need	to	know.	The	mathematicians	are	on	some
kind	 of	 terrible	 ego	 trip	 and	 they	 will	 destroy	 your	mind.	 That	was	 1960.	 By
1968	 this	 had	 completely	 turned	 around.”	 Eventually	 physicists,	 astronomers,
and	biologists	all	knew	they	had	to	have	the	news.

A	MODEST	COSMIC	MYSTERY:	 the	Great	Red	Spot	of	Jupiter,	a	vast,	swirling
oval,	like	a	giant	storm	that	never	moves	and	never	runs	down.	Anyone	who	saw
the	 pictures	 beamed	 across	 space	 from	 Voyager	 2	 in	 1978	 recognized	 the
familiar	look	of	turbulence	on	a	hugely	unfamiliar	scale.	It	was	one	of	the	solar
system’s	 most	 venerable	 landmarks—“the	 red	 spot	 roaring	 like	 an	 anguished
eye/	amid	a	 turbulence	of	boiling	eyebrows,”	as	John	Updike	described	 it.	But
what	was	it?	Twenty	years	after	Lorenz,	Smale,	and	other	scientists	set	in	motion
a	new	way	of	understanding	nature’s	flows,	the	other-worldly	weather	of	Jupiter
proved	 to	 be	 one	 of	 the	many	 problems	 awaiting	 the	 altered	 sense	 of	 nature’s
possibilities	that	came	with	the	science	of	chaos.

For	 three	centuries	 it	had	been	a	case	of	 the	more	you	know,	 the	 less	you
know.	Astronomers	noticed	a	blemish	on	the	great	planet	not	long	after	Galileo
first	pointed	his	telescopes	at	Jupiter.	Robert	Hooke	saw	it	in	the	1600s.	Donati
Creti	painted	it	in	the	Vatican’s	picture	gallery.	As	a	piece	of	coloration,	the	spot
called	 for	 little	 explaining.	 But	 telescopes	 got	 better,	 and	 knowledge	 bred
ignorance.	 The	 last	 century	 produced	 a	 steady	 march	 of	 theories,	 one	 on	 the
heels	of	another.	For	example:

The	Lava	Flow	Theory,	Scientists	in	the	late	nineteenth	century	imagined	a
huge	oval	lake	of	molten	lava	flowing	out	of	a	volcano.	Or	perhaps	the	lava	had
flowed	out	of	a	hole	created	by	a	planetoid	striking	a	thin	solid	crust.

The	New	Moon	Theory.	A	German	scientist	suggested,	by	contrast,	that	the
spot	was	a	new	moon	on	the	point	of	emerging	from	the	planet’s	surface.

The	Egg	Theory.	An	 awkward	 new	 fact:	 the	 spot	was	 seen	 to	 be	 drifting
slightly	against	the	planet’s	background.	So	a	notion	put	forward	in	1939	viewed
the	spot	as	a	more	or	less	solid	body	floating	in	the	atmosphere	the	way	an	egg
floats	 in	 water.	 Variations	 of	 this	 theory—including	 the	 notion	 of	 a	 drifting
bubble	of	hydrogen	or	helium—remained	current	for	decades.

The	Column-of-Gas	Theory.	Another	new	fact:	even	though	the	spot	drifted,
somehow	it	never	drifted	far.	So	scientists	proposed	 in	 the	sixties	 that	 the	spot



was	the	top	of	a	rising	column	of	gas,	possibly	coming	through	a	crater.
Then	 came	 Voyager.	 Most	 astronomers	 thought	 the	 mystery	 would	 give

way	as	soon	as	they	could	look	closely	enough,	and	indeed,	the	Voyager	fly-by
provided	a	splendid	album	of	new	data,	but	the	data,	in	the	end,	was	not	enough.
The	spacecraft	pictures	in	1978	revealed	powerful	winds	and	colorful	eddies.	In
spectacular	detail,	astronomers	saw	the	spot	itself	as	a	hurricane-like	system	of
swirling	 flow,	 shoving	 aside	 the	 clouds,	 embedded	 in	 zones	of	 east-west	wind
that	 made	 horizontal	 stripes	 around	 the	 planet.	 Hurricane	 was	 the	 best
description	 anyone	 could	 think	 of,	 but	 for	 several	 reasons	 it	 was	 inadequate.
Earthly	hurricanes	are	powered	by	the	heat	released	when	moisture	condenses	to
rain;	 no	 moist	 processes	 drive	 the	 Red	 Spot.	 Hurricanes	 rotate	 in	 a	 cyclonic
direction,	 counterclockwise	 above	 the	 Equator	 and	 clockwise	 below,	 like	 all
earthly	 storms;	 the	 Red	 Spot’s	 rotation	 is	 anticyclonic.	 And	 most	 important,
hurricanes	die	out	within	days.

Also,	 as	 astronomers	 studied	 the	Voyager	 pictures,	 they	 realized	 that	 the
planet	was	virtually	all	fluid	in	motion.	They	had	been	conditioned	to	look	for	a
solid	 planet	 surrounded	 by	 a	 paper-thin	 atmosphere	 like	 earth’s,	 but	 if	 Jupiter
had	 a	 solid	 core	 anywhere,	 it	 was	 far	 from	 the	 surface.	 The	 planet	 suddenly
looked	 like	 one	 big	 fluid	 dynamics	 experiment,	 and	 there	 sat	 the	 Red	 Spot,
turning	steadily	around	and	around,	thoroughly	unperturbed	by	the	chaos	around
it.

The	spot	became	a	gestalt	test.	Scientists	saw	what	their	intuitions	allowed
them	to	see.	A	fluid	dynamicist	who	thought	of	turbulence	as	random	and	noisy
had	no	context	for	understanding	an	island	of	stability	in	its	midst.	Voyager	had
made	 the	 mystery	 doubly	 maddening	 by	 showing	 small-scale	 features	 of	 the
flow,	 too	 small	 to	 be	 seen	 by	 the	 most	 powerful	 earthbound	 telescopes.	 The
small	scales	displayed	rapid	disorganization,	eddies	appearing	and	disappearing
within	a	day	or	less.	Yet	the	spot	was	immune.	What	kept	it	going?	What	kept	it
in	place?

The	National	Aeronautics	 and	 Space	Administration	 keeps	 its	 pictures	 in
archives,	 a	 half-dozen	 or	 so	 around	 the	 country.	 One	 archive	 is	 at	 Cornell
University.	Nearby,	in	the	early	1980s,	Philip	Marcus,	a	young	astronomer	and
applied	mathematician,	had	an	office.	After	Voyager,	Marcus	was	one	of	a	half-
dozen	scientists	in	the	United	States	and	Britain	who	looked	for	ways	to	model
the	 Red	 Spot.	 Freed	 from	 the	 ersatz	 hurricane	 theory,	 they	 found	 more
appropriate	 analogues	 elsewhere.	 The	 Gulf	 Stream,	 for	 example,	 winding
through	 the	western	Atlantic	Ocean,	 twists	 and	 branches	 in	 subtly	 reminiscent
ways.	It	develops	little	waves,	which	turn	into	kinks,	which	turn	into	rings	and
spin	 off	 from	 the	 main	 current—forming	 slow,	 long-lasting,	 anticyclonic



vortices.	 Another	 parallel	 came	 from	 a	 peculiar	 phenomenon	 in	 meteorology
known	as	blocking.	Sometimes	a	 system	of	high	pressure	 sits	offshore,	 slowly
turning,	for	weeks	or	months,	in	defiance	of	the	usual	east-west	flow.	Blocking
disrupted	 the	 global	 forecasting	models,	 but	 it	 also	 gave	 the	 forecasters	 some
hope,	since	it	produced	orderly	features	with	unusual	longevity.

Marcus	 studied	 those	 NASA	 pictures	 for	 hours,	 the	 gorgeous	 Hasselblad
pictures	 of	 men	 on	 the	 moon	 and	 the	 pictures	 of	 Jupiter’s	 turbulence.	 Since
Newton’s	 laws	 apply	 everywhere,	 Marcus	 programmed	 a	 computer	 with	 a
system	of	 fluid	equations.	To	capture	Jovian	weather	meant	writing	rules	 for	a
mass	of	dense	hydrogen	and	helium,	resembling	an	unlit	star.	The	planet	spins
fast,	each	day	flashing	by	in	ten	earth	hours.	The	spin	produces	a	strong	Coriolis
force,	 the	 sidelong	 force	 that	 shoves	 against	 a	 person	walking	 across	 a	merry-
go–round,	and	the	Coriolis	force	drives	the	spot.

Where	 Lorenz	 used	 his	 tiny	 model	 of	 the	 earth’s	 weather	 to	 print	 crude
lines	 on	 rolled	 paper,	 Marcus	 used	 far	 greater	 computer	 power	 to	 assemble
striking	color	images.	First	he	made	contour	plots.	He	could	barely	see	what	was
going	 on.	 Then	 he	 made	 slides,	 and	 then	 he	 assembled	 the	 images	 into	 an
animated	 movie.	 It	 was	 a	 revelation.	 In	 brilliant	 blues,	 reds,	 and	 yellows,	 a
checkerboard	pattern	of	rotating	vortices	coalesces	into	an	oval	with	an	uncanny
resemblance	to	 the	Great	Red	Spot	 in	NASA’s	animated	film	of	 the	real	 thing.
“You	 see	 this	 large-scale	 spot,	 happy	 as	 a	 clam	 amid	 the	 small-scale	 chaotic
flow,	and	the	chaotic	flow	is	soaking	up	energy	like	a	sponge,”	he	said.	“You	see
these	little	tiny	filamentary	structures	in	a	background	sea	of	chaos.”

The	 spot	 is	 a	 self-organizing	 system,	 created	 and	 regulated	 by	 the	 same
nonlinear	twists	that	create	the	unpredictable	turmoil	around	it.	It	is	stable	chaos.

As	a	graduate	student,	Marcus	had	learned	standard	physics,	solving	linear
equations,	 performing	 experiments	 designed	 to	match	 linear	 analysis.	 It	was	 a
sheltered	existence,	but	after	all,	nonlinear	equations	defy	solution,	so	why	waste
a	 graduate	 student’s	 time?	Gratification	was	 programmed	 into	 his	 training.	As
long	as	he	kept	the	experiments	within	certain	bounds,	the	linear	approximations
would	 suffice	 and	he	would	be	 rewarded	with	 the	 expected	answer.	Once	 in	 a
while,	 inevitably,	 the	real	world	would	intrude,	and	Marcus	would	see	what	he
realized	years	 later	had	been	the	signs	of	chaos.	He	would	stop	and	say,	“Gee,
what	about	 this	 little	 fluff	here.”	And	he	would	be	 told,	“Oh,	 it’s	experimental
error,	don’t	worry	about	it.”

But	unlike	most	physicists,	Marcus	eventually	learned	Lorenz’s	lesson,	that
a	deterministic	system	can	produce	much	more	 than	 just	periodic	behavior.	He
knew	 to	 look	 for	 wild	 disorder,	 and	 he	 knew	 that	 islands	 of	 structure	 could
appear	within	the	disorder.	So	he	brought	to	the	problem	of	the	Great	Red	Spot



an	 understanding	 that	 a	 complex	 system	 can	 give	 rise	 to	 turbulence	 and
coherence	at	 the	 same	 time.	He	could	work	within	an	emerging	discipline	 that
was	 creating	 its	 own	 tradition	 of	 using	 the	 computer	 as	 an	 experimental	 tool.
And	he	was	willing	to	think	of	himself	as	a	new	kind	of	scientist:	not	primarily
an	 astronomer,	 not	 a	 fluid	 dynamicist,	 not	 an	 applied	 mathematician,	 but	 a
specialist	in	chaos.



Life’s	Ups
and	Downs

The	 result	 of	 a	 mathematical	 development	 should	 be	 continuously	 checked
against	 one’s	 own	 intuition	 about	 what	 constitutes	 reasonable	 biological
behavior.	 When	 such	 a	 check	 reveals	 disagreement,	 then	 the	 following
possibilities	must	be	considered:
1.	 A	mistake	has	been	made	in	the	formal	mathematical	development;
2.	 The	 starting	 assumptions	 are	 incorrect	 and/or	 constitute	 a	 too	 drastic
oversimplification;

3.	 One’s	own	intuition	about	the	biological	field	is	inadequately	developed;
4.	 A	penetrating	new	principle	has	been	discovered.

—HARVEY	J.	GOLD,					
Mathematical	Modeling
of	Biological	Systems



RAVENOUS	 FISH	 AND	 TASTY	 plankton.	 Rain	 forests	 dripping	with	 nameless
reptiles,	birds	gliding	under	canopies	of	leaves,	insects	buzzing	like	electrons	in
an	accelerator.	Frost	belts	where	voles	and	lemmings	flourish	and	diminish	with
tidy	 four-year	 periodicity	 in	 the	 face	 of	 nature’s	 bloody	 combat.	 The	 world
makes	a	messy	 laboratory	 for	ecologists,	 a	 cauldron	of	 five	million	 interacting
species.	Or	is	it	fifty	million?	Ecologists	do	not	actually	know.

Mathematically	 inclined	 biologists	 of	 the	 twentieth	 century	 built	 a
discipline,	ecology,	that	stripped	away	the	noise	and	color	of	real	life	and	treated
populations	 as	 dynamical	 systems.	 Ecologists	 used	 the	 elementary	 tools	 of
mathematical	 physics	 to	 describe	 life’s	 ebbs	 and	 flows.	 Single	 species
multiplying	 in	 a	 place	 where	 food	 is	 limited,	 several	 species	 competing	 for
existence,	epidemics	spreading	through	host	populations—all	could	be	isolated,
if	not	in	laboratories	then	certainly	in	the	minds	of	biological	theorists.

In	 the	emergence	of	chaos	as	a	new	science	 in	 the	1970s,	ecologists	were
destined	to	play	a	special	role.	They	used	mathematical	models,	but	they	always
knew	that	the	models	were	thin	approximations	of	the	seething	real	world.	In	a
perverse	 way,	 their	 awareness	 of	 the	 limitations	 allowed	 them	 to	 see	 the
importance	 of	 some	 ideas	 that	 mathematicians	 had	 considered	 interesting
oddities.	If	regular	equations	could	produce	irregular	behavior—to	an	ecologist,
that	 rang	 certain	 bells.	 The	 equations	 applied	 to	 population	 biology	 were
elementary	counterparts	of	the	models	used	by	physicists	for	their	pieces	of	the
universe.	Yet	the	complexity	of	the	real	phenomena	studied	in	the	life	sciences
outstripped	 anything	 to	 be	 found	 in	 a	 physicist’s	 laboratory.	 Biologists’
mathematical	models	 tended	 to	 be	 caricatures	 of	 reality,	 as	 did	 the	models	 of
economists,	 demographers,	 psychologists,	 and	urban	planners,	when	 those	 soft
sciences	 tried	 to	bring	 rigor	 to	 their	 study	of	 systems	changing	over	 time.	The
standards	were	different.	To	a	physicist,	a	system	of	equations	like	Lorenz’s	was
so	 simple	 it	 seemed	 virtually	 transparent.	 To	 a	 biologist,	 even	 Lorenz’s
equations	 seemed	 forbiddingly	 complex—three-dimensional,	 continuously
variable,	and	analytically	intractable.

Necessity	created	a	different	style	of	working	for	biologists.	The	matching
of	 mathematical	 descriptions	 to	 real	 systems	 had	 to	 proceed	 in	 a	 different
direction.	 A	 physicist,	 looking	 at	 a	 particular	 system	 (say,	 two	 pendulums
coupled	by	a	spring),	begins	by	choosing	the	appropriate	equations.	Preferably,
he	looks	them	up	in	a	handbook;	failing	that,	he	finds	the	right	equations	from
first	 principles.	He	knows	how	pendulums	work,	 and	he	 knows	 about	 springs.
Then	 he	 solves	 the	 equations,	 if	 he	 can.	A	 biologist,	 by	 contrast,	 could	 never
simply	 deduce	 the	 proper	 equations	 by	 just	 thinking	 about	 a	 particular	 animal



population.	He	would	have	to	gather	data	and	try	to	find	equations	that	produced
similar	 output.	 What	 happens	 if	 you	 put	 one	 thousand	 fish	 in	 a	 pond	 with	 a
limited	 food	supply?	What	happens	 if	you	add	 fifty	 sharks	 that	 like	 to	eat	 two
fish	per	day?	What	happens	to	a	virus	that	kills	at	a	certain	rate	and	spreads	at	a
certain	 rate	 depending	 on	 population	 density?	 Scientists	 idealized	 these
questions	so	that	they	could	apply	crisp	formulas.

Often	it	worked.	Population	biology	learned	quite	a	bit	about	the	history	of
life,	 how	 predators	 interact	 with	 their	 prey,	 how	 a	 change	 in	 a	 country’s
population	density	affects	the	spread	of	disease.	If	a	certain	mathematical	model
surged	 ahead,	 or	 reached	 equilibrium,	 or	 died	 out,	 ecologists	 could	 guess
something	about	the	circumstances	in	which	a	real	population	or	epidemic	would
do	the	same.

One	helpful	simplification	was	to	model	the	world	in	terms	of	discrete	time
intervals,	 like	 a	 watch	 hand	 that	 jerks	 forward	 second	 by	 second	 instead	 of
gliding	 continuously.	 Differential	 equations	 describe	 processes	 that	 change
smoothly	 over	 time,	 but	 differential	 equations	 are	 hard	 to	 compute.	 Simpler
equations—“difference	 equations”—can	 be	 used	 for	 processes	 that	 jump	 from
state	to	state.	Fortunately,	many	animal	populations	do	what	they	do	in	neat	one-
year	intervals.	Changes	year	to	year	are	often	more	important	than	changes	on	a
continuum.	Unlike	people,	many	insects,	for	example,	stick	to	a	single	breeding
season,	so	their	generations	do	not	overlap.	To	guess	next	spring’s	gypsy	moth
population	or	next	winter’s	measles	epidemic,	 an	ecologist	might	only	need	 to
know	the	corresponding	figure	for	this	year.	A	year-by–year	facsimile	produces
no	more	 than	a	shadow	of	a	system’s	 intricacies,	but	 in	many	real	applications
the	shadow	gives	all	the	information	a	scientist	needs.

The	mathematics	of	ecology	is	to	the	mathematics	of	Steve	Smale	what	the
Ten	Commandments	are	to	the	Talmud:	a	good	set	of	working	rules,	but	nothing
too	complicated.	To	describe	a	population	changing	each	year,	a	biologist	uses	a
formalism	 that	 a	 high	 school	 student	 can	 follow	 easily.	 Suppose	 next	 year’s
population	of	gypsy	moths	will	depend	entirely	on	 this	year’s	population.	You
could	 imagine	a	 table	 listing	all	 the	specific	possibilities—31,000	gypsy	moths
this	 year	 means	 35,000	 next	 year,	 and	 so	 forth.	 Or	 you	 could	 capture	 the
relationship	between	all	 the	numbers	for	 this	year	and	all	 the	numbers	for	next
year	as	a	rule—a	function.	The	population	(x)	next	year	is	a	function	(F)	of	the
population	 this	 year:	 xnext	 =	 F(x).	 Any	 particular	 function	 can	 be	 drawn	 on	 a
graph,	instantly	giving	a	sense	of	its	overall	shape.

In	 a	 simple	model	 like	 this	one,	 following	a	population	 through	 time	 is	 a
matter	 of	 taking	 a	 starting	 figure	 and	 applying	 the	 same	 function	 again	 and



again.	To	get	 the	population	for	a	third	year,	you	just	apply	the	function	to	the
result	 for	 the	 second	 year,	 and	 so	 on.	 The	 whole	 history	 of	 the	 population
becomes	available	through	this	process	of	functional	iteration—a	feedback	loop,
each	 year’s	 output	 serving	 as	 the	 next	 year’s	 input.	 Feedback	 can	 get	 out	 of
hand,	 as	 it	 does	 when	 sound	 from	 a	 loudspeaker	 feeds	 back	 through	 a
microphone	 and	 is	 rapidly	 amplified	 to	 an	unbearable	 shriek.	Or	 feedback	 can
produce	stability,	as	a	thermostat	does	in	regulating	the	temperature	of	a	house:
any	temperature	above	a	fixed	point	leads	to	cooling,	and	any	temperature	below
it	leads	to	heating.

Many	 different	 types	 of	 functions	 are	 possible.	 A	 naive	 approach	 to
population	biology	might	 suggest	a	 function	 that	 increases	 the	population	by	a
certain	percentage	each	year.	That	would	be	a	linear	function—xnext	=	rx—and	it
would	 be	 the	 classic	 Malthusian	 scheme	 for	 population	 growth,	 unlimited	 by
food	supply	or	moral	restraint.	The	parameter	r	represents	the	rate	of	population
growth.	Say	it	is	1.1;	then	if	this	year’s	population	is	10,	next	year’s	is	11.	If	the
input	is	20,000,	the	output	is	22,000.	The	population	rises	higher	and	higher,	like
money	left	forever	in	a	compound-interest	savings	account.

Ecologists	 realized	generations	ago	 that	 they	would	have	 to	do	better.	An
ecologist	imagining	real	fish	in	a	real	pond	had	to	find	a	function	that	matched
the	 crude	 realities	 of	 life—for	 example,	 the	 reality	 of	 hunger,	 or	 competition.
When	the	fish	proliferate,	they	start	to	run	out	of	food.	A	small	fish	population
will	 grow	 rapidly.	 An	 overly	 large	 fish	 population	 will	 dwindle.	 Or	 take
Japanese	 beetles.	 Every	 August	 1	 you	 go	 out	 to	 your	 garden	 and	 count	 the
beetles.	 For	 simplicity’s	 sake,	 you	 ignore	 birds,	 ignore	 beetle	 diseases,	 and
consider	only	the	fixed	food	supply.	A	few	beetles	will	multiply;	many	will	eat
the	whole	garden	and	starve	themselves.

In	 the	 Malthusian	 scenario	 of	 unrestrained	 growth,	 the	 linear	 growth
function	rises	forever	upward.	For	a	more	realistic	scenario,	an	ecologist	needs
an	 equation	 with	 some	 extra	 term	 that	 restrains	 growth	 when	 the	 population
becomes	large.	The	most	natural	function	to	choose	would	rise	steeply	when	the
population	is	small,	reduce	growth	to	near	zero	at	intermediate	values,	and	crash
downward	 when	 the	 population	 is	 very	 large.	 By	 repeating	 the	 process,	 an
ecologist	can	watch	a	population	settle	into	its	longterm	behavior—presumably
reaching	some	steady	state.	A	successful	foray	into	mathematics	for	an	ecologist
would	 let	 him	 say	 something	 like	 this:	 Here’s	 an	 equation;	 here’s	 a	 variable
representing	 reproductive	 rate;	 here’s	 a	 variable	 representing	 the	 natural	 death
rate;	 here’s	 a	variable	 representing	 the	 additional	 death	 rate	 from	starvation	or
predation;	 and	 look—the	population	will	 rise	 at	 this	 speed	until	 it	 reaches	 that



level	of	equilibrium.
How	do	you	 find	 such	 a	 function?	Many	different	 equations	might	work,

and	 possibly	 the	 simplest	 is	 a	 modification	 of	 the	 linear,	Malthusian	 version:
xnext	=	rx(1	–	x).	Again,	the	parameter	r	represents	a	rate	of	growth	that	can	be
set	higher	or	lower.	The	new	term,	1	–x,	keeps	the	growth	within	bounds,	since
as	x	rises,	1	–	x	falls.*	Anyone	with	a	calculator	could	pick	some	starting	value,
pick	 some	 growth	 rate,	 and	 carry	 out	 the	 arithmetic	 to	 derive	 next	 year’s
population.

By	the	1950s	several	ecologists	were	looking	at	variations	of	that	particular
equation,	 known	 as	 the	 logistic	 difference	 equation.	 In	Australia,	 for	 example,
W.	E.	Ricker	applied	it	to	real	fisheries.	Ecologists	understood	that	the	growth-
rate	parameter	 r	 represented	an	 important	 feature	of	 the	model.	 In	 the	physical
systems	 from	 which	 these	 equations	 were	 borrowed,	 that	 parameter
corresponded	to	the	amount	of	heating,	or	the	amount	of	friction,	or	the	amount
of	some	other	messy	quantity.	In	short,	the	amount	of	nonlinearity.	In	a	pond,	it
might	 correspond	 to	 the	 fecundity	of	 the	 fish,	 the	propensity	of	 the	population
not	just	to	boom	but	also	to	bust	(“biotic	potential”	was	the	dignified	term).	The
question	was,	how	did	these	different	parameters	affect	the	ultimate	destiny	of	a
changing	population?	The	obvious	answer	 is	 that	a	 lower	parameter	will	cause
this	idealized	population	to	end	up	at	a	lower	level.	A	higher	parameter	will	lead
to	a	higher	steady	state.	This	 turns	out	 to	be	correct	 for	many	parameters—but
not	 all.	Occasionally,	 researchers	 like	Ricker	 surely	 tried	parameters	 that	were
even	higher,	and	when	they	did,	they	must	have	seen	chaos.



A	population	reaches	equilibrium	after	rising,	overshooting,	and	falling	back.

Oddly,	 the	 flow	 of	 numbers	 begins	 to	 misbehave,	 quite	 a	 nuisance	 for
anyone	 calculating	with	 a	 hand	 crank.	 The	 numbers	 still	 do	 not	 grow	without
limit,	of	course,	but	 they	do	not	converge	 to	a	steady	level,	either.	Apparently,
though,	none	of	these	early	ecologists	had	the	inclination	or	the	strength	to	keep
churning	 out	 numbers	 that	 refused	 to	 settle	 down.	 Anyway,	 if	 the	 population
kept	bouncing	back	and	forth,	ecologists	assumed	that	it	was	oscillating	around
some	underlying	equilibrium.	The	equilibrium	was	the	important	thing.	It	did	not
occur	to	the	ecologists	that	there	might	be	no	equilibrium.

Reference	books	and	textbooks	that	dealt	with	the	logistic	equation	and	its
more	 complicated	 cousins	 generally	 did	 not	 even	 acknowledge	 that	 chaotic
behavior	could	be	expected.	J.	Maynard	Smith,	in	the	classic	1968	Mathematical
Ideas	 in	 Biology,	 gave	 a	 standard	 sense	 of	 the	 possibilities:	 populations	 often
remain	 approximately	 constant	 or	 else	 fluctuate	 “with	 a	 rather	 regular
periodicity”	around	a	presumed	equilibrium	point.	It	wasn’t	that	he	was	so	naive
as	 to	 imagine	 that	 real	 populations	 could	 never	 behave	 erratically.	 He	 simply
assumed	 that	 erratic	 behavior	 had	nothing	 to	 do	with	 the	 sort	 of	mathematical
models	he	was	describing.	 In	 any	case,	biologists	had	 to	keep	 these	models	 at



arm’s	length.	If	the	models	started	to	betray	their	makers’	knowledge	of	the	real
population’s	 behavior,	 some	 missing	 feature	 could	 always	 explain	 the
discrepancy:	 the	 distribution	 of	 ages	 in	 the	 population,	 some	 consideration	 of
territory	or	geography,	or	the	complication	of	having	to	count	two	sexes.

Most	 important,	 in	 the	 back	 of	 ecologists’	 minds	 was	 always	 the
assumption	that	an	erratic	string	of	numbers	probably	meant	 that	 the	calculator
was	acting	up,	or	just	lacked	accuracy.	The	stable	solutions	were	the	interesting
ones.	Order	was	its	own	reward.	This	business	of	finding	appropriate	equations
and	working	 out	 the	 computation	was	 hard,	 after	 all.	No	 one	wanted	 to	waste
time	on	a	line	of	work	that	was	going	awry,	producing	no	stability.	And	no	good
ecologist	 ever	 forgot	 that	 his	 equations	were	 vastly	 oversimplified	 versions	 of
the	 real	 phenomena.	 The	 whole	 point	 of	 oversimplifying	 was	 to	 model
regularity.	Why	go	to	all	that	trouble	just	to	see	chaos?

LATER,	 PEOPLE	 WOULD	 SAY	 that	 James	 Yorke	 had	 discovered	 Lorenz	 and
given	the	science	of	chaos	its	name.	The	second	part	was	actually	true.

Yorke	was	a	mathematician	who	liked	to	think	of	himself	as	a	philosopher,
though	 this	 was	 professionally	 dangerous	 to	 admit.	 He	was	 brilliant	 and	 soft-
spoken,	a	mildly	disheveled	admirer	of	the	mildly	disheveled	Steve	Smale.	Like
everyone	 else,	 he	 found	 Smale	 hard	 to	 fathom.	 But	 unlike	 most	 people,	 he
understood	why	Smale	was	hard	to	fathom.	When	he	was	just	twenty-two	years
old,	 Yorke	 joined	 an	 interdisciplinary	 institute	 at	 the	 University	 of	 Maryland
called	the	Institute	for	Physical	Science	and	Technology,	which	he	later	headed.
He	was	the	kind	of	mathematician	who	felt	compelled	to	put	his	ideas	of	reality
to	some	use.	He	produced	a	report	on	how	gonorrhea	spreads	that	persuaded	the
federal	government	to	alter	its	national	strategies	for	controlling	the	disease.	He
gave	official	testimony	to	the	State	of	Maryland	during	the	1970s	gasoline	crisis,
arguing	 correctly	 (but	 unpersuasively)	 that	 the	 even-odd	 system	 of	 limiting
gasoline	 sales	 would	 only	 make	 lines	 longer.	 In	 the	 era	 of	 antiwar
demonstrations,	 when	 the	 government	 released	 a	 spy-plane	 photograph
purporting	 to	 show	 sparse	 crowds	 around	 the	 Washington	 Monument	 at	 the
height	 of	 a	 rally,	 he	 analyzed	 the	 monument’s	 shadow	 to	 prove	 that	 the
photograph	 had	 actually	 been	 taken	 a	 half-hour	 later,	 when	 the	 rally	 was
breaking	up.

At	 the	 institute,	Yorke	 enjoyed	 an	 unusual	 freedom	 to	work	 on	 problems
outside	 traditional	 domains,	 and	 he	 enjoyed	 frequent	 contact	with	 experts	 in	 a
wide	 range	 of	 disciplines.	One	 of	 these	 experts,	 a	 fluid	 dynamicist,	 had	 come
across	Lorenz’s	1963	paper	“Deterministic	Nonperiodic	Flow”	in	1972	and	had
fallen	 in	 love	with	 it,	 handing	 out	 copies	 to	 anyone	who	would	 take	 one.	 He



handed	one	to	Yorke.
Lorenz’s	 paper	 was	 a	 piece	 of	 magic	 that	 Yorke	 had	 been	 looking	 for

without	even	knowing	it.	It	was	a	mathematical	shock,	to	begin	with—a	chaotic
system	that	violated	Smale’s	original	optimistic	classification	scheme.	But	it	was
not	 just	 mathematics;	 it	 was	 a	 vivid	 physical	 model,	 a	 picture	 of	 a	 fluid	 in
motion,	and	Yorke	knew	instantly	that	it	was	a	thing	he	wanted	physicists	to	see.
Smale	had	steered	mathematics	in	the	direction	of	such	physical	problems,	but,
as	 Yorke	 well	 understood,	 the	 language	 of	 mathematics	 remained	 a	 serious
barrier	 to	 communication.	 If	 only	 the	 academic	 world	 had	 room	 for	 hybrid
mathematician/physicists—but	 it	 did	 not.	 Even	 though	 Smale’s	 work	 on
dynamical	 systems	 had	 begun	 to	 close	 the	 gap,	 mathematicians	 continued	 to
speak	one	language,	physicists	another.	As	the	physicist	Murray	Gell-Mann	once
remarked:	 “Faculty	 members	 are	 familiar	 with	 a	 certain	 kind	 of	 person	 who
looks	to	the	mathematicians	like	a	good	physicist	and	looks	to	the	physicists	like
a	 good	 mathematician.	 Very	 properly,	 they	 do	 not	 want	 that	 kind	 of	 person
around.”	 The	 standards	 of	 the	 two	 professions	were	 different.	Mathematicians
proved	 theorems	 by	 ratiocination;	 physicists’	 proofs	 used	 heavier	 equipment.
The	 objects	 that	 made	 up	 their	 worlds	 were	 different.	 Their	 examples	 were
different.

Smale	could	be	happy	with	an	example	like	this:	take	a	number,	a	fraction
between	zero	and	one,	and	double	it.	Then	drop	the	integer	part,	the	part	to	the
left	 of	 the	 decimal	 point.	 Then	 repeat	 the	 process.	 Since	 most	 numbers	 are
irrational	and	unpredictable	in	their	fine	detail,	the	process	will	just	produce	an
unpredictable	 sequence	of	numbers.	A	physicist	would	 see	nothing	 there	but	 a
trite	mathematical	oddity,	utterly	meaningless,	too	simple	and	too	abstract	to	be
of	 use.	 Smale,	 though,	 knew	 intuitively	 that	 this	 mathematical	 trick	 would
appear	in	the	essence	of	many	physical	systems.

To	a	physicist,	a	 legitimate	example	was	a	differential	equation	that	could
be	written	down	in	simple	form.	When	Yorke	saw	Lorenz’s	paper,	even	though
it	 was	 buried	 in	 a	 meteorology	 journal,	 he	 knew	 it	 was	 an	 example	 that
physicists	would	 understand.	He	 gave	 a	 copy	 to	Smale,	with	 his	 address	 label
pasted	 on	 so	 that	 Smale	 would	 return	 it.	 Smale	 was	 amazed	 to	 see	 that	 this
meteorologist—ten	 years	 earlier—had	 discovered	 a	 kind	 of	 chaos	 that	 Smale
himself	 had	 once	 considered	 mathematically	 impossible.	 He	 made	 many
photocopies	of	“Deterministic	Nonperiodic	Flow,”	and	thus	arose	the	legend	that
Yorke	 had	 discovered	 Lorenz.	 Every	 copy	 of	 the	 paper	 that	 ever	 appeared	 in
Berkeley	had	Yorke’s	address	label	on	it.

Yorke	 felt	 that	 physicists	 had	 learned	 not	 to	 see	 chaos.	 In	 daily	 life,	 the
Lorenzian	 quality	 of	 sensitive	 dependence	 on	 initial	 conditions	 lurks



everywhere.	 A	 man	 leaves	 the	 house	 in	 the	 morning	 thirty	 seconds	 late,	 a
flowerpot	misses	 his	 head	 by	 a	 few	millimeters,	 and	 then	 he	 is	 run	 over	 by	 a
truck.	Or,	 less	 dramatically,	 he	misses	 a	 bus	 that	 runs	 every	 ten	minutes—his
connection	 to	 a	 train	 that	 runs	 every	 hour.	 Small	 perturbations	 in	 one’s	 daily
trajectory	can	have	large	consequences.	A	batter	facing	a	pitched	ball	knows	that
approximately	 the	 same	 swing	 will	 not	 give	 approximately	 the	 same	 result,
baseball	being	a	game	of	inches.	Science,	though—science	was	different.

Pedagogically	 speaking,	 a	 good	 share	 of	 physics	 and	mathematics	was—
and	is—writing	differential	equations	on	a	blackboard	and	showing	students	how
to	solve	them.	Differential	equations	represent	reality	as	a	continuum,	changing
smoothly	from	place	to	place	and	from	time	to	time,	not	broken	in	discrete	grid
points	 or	 time	 steps.	 As	 every	 science	 student	 knows,	 solving	 differential
equations	 is	 hard.	 But	 in	 two	 and	 a	 half	 centuries,	 scientists	 have	 built	 up	 a
tremendous	 body	 of	 knowledge	 about	 them:	 handbooks	 and	 catalogues	 of
differential	equations,	along	with	various	methods	for	solving	them,	or	“finding
a	closed-form	integral,”	as	a	scientist	will	say.	It	 is	no	exaggeration	to	say	that
the	 vast	 business	 of	 calculus	made	 possible	most	 of	 the	 practical	 triumphs	 of
post-medieval	 science;	 nor	 to	 say	 that	 it	 stands	 as	 one	 of	 the	 most	 ingenious
creations	of	humans	 trying	 to	model	 the	changeable	world	around	them.	So	by
the	 time	 a	 scientist	 masters	 this	 way	 of	 thinking	 about	 nature,	 becoming
comfortable	with	the	theory	and	the	hard,	hard	practice,	he	is	likely	to	have	lost
sight	of	one	fact.	Most	differential	equations	cannot	be	solved	at	all.

“If	 you	 could	 write	 down	 the	 solution	 to	 a	 differential	 equation,”	 Yorke
said,	“then	necessarily	it’s	not	chaotic,	because	to	write	it	down,	you	must	find
regular	invariants,	 things	that	are	conserved,	like	angular	momentum.	You	find
enough	 of	 these	 things,	 and	 that	 lets	 you	 write	 down	 a	 solution.	 But	 this	 is
exactly	the	way	to	eliminate	the	possibility	of	chaos.”

The	 solvable	 systems	 are	 the	 ones	 shown	 in	 textbooks.	 They	 behave.
Confronted	with	 a	 nonlinear	 system,	 scientists	would	 have	 to	 substitute	 linear
approximations	 or	 find	 some	 other	 uncertain	 backdoor	 approach.	 Textbooks
showed	 students	 only	 the	 rare	 nonlinear	 systems	 that	would	 give	way	 to	 such
techniques.	 They	 did	 not	 display	 sensitive	 dependence	 on	 initial	 conditions.
Nonlinear	systems	with	real	chaos	were	rarely	taught	and	rarely	learned.	When
people	 stumbled	 across	 such	 things—and	people	did—all	 their	 training	 argued
for	dismissing	them	as	aberrations.	Only	a	few	were	able	 to	remember	that	 the
solvable,	 orderly,	 linear	 systems	 were	 the	 aberrations.	 Only	 a	 few,	 that	 is,
understood	how	nonlinear	nature	is	in	its	soul.	Enrico	Fermi	once	exclaimed,	“It
does	not	 say	 in	 the	Bible	 that	 all	 laws	of	nature	 are	 expressible	 linearly!”	The
mathematician	 Stanislaw	 Ulam	 remarked	 that	 to	 call	 the	 study	 of	 chaos



“nonlinear	 science”	 was	 like	 calling	 zoology	 “the	 study	 of	 non	 elephant
animals.”

Yorke	 understood.	 “The	 first	message	 is	 that	 there	 is	 disorder.	 Physicists
and	 mathematicians	 want	 to	 discover	 regularities.	 People	 say,	 what	 use	 is
disorder.	But	people	have	to	know	about	disorder	if	they	are	going	to	deal	with
it.	The	auto	mechanic	who	doesn’t	know	about	 sludge	 in	valves	 is	not	 a	good
mechanic.”	Scientists	and	nonscientists	alike,	Yorke	believed,	can	easily	mislead
themselves	 about	 complexity	 if	 they	 are	 not	 properly	 attuned	 to	 it.	 Why	 do
investors	 insist	 on	 the	 existence	 of	 cycles	 in	 gold	 and	 silver	 prices?	 Because
periodicity	 is	 the	most	 complicated	 orderly	 behavior	 they	 can	 imagine.	When
they	see	a	complicated	pattern	of	prices,	they	look	for	some	periodicity	wrapped
in	a	little	random	noise.	And	scientific	experimenters,	in	physics	or	chemistry	or
biology,	 are	 no	 different.	 “In	 the	 past,	 people	 have	 seen	 chaotic	 behavior	 in
innumerable	 circumstances,”	 Yorke	 said.	 “They’re	 running	 a	 physical
experiment,	and	the	experiment	behaves	in	an	erratic	manner.	They	try	to	fix	it
or	they	give	up.	They	explain	the	erratic	behavior	by	saying	there’s	noise,	or	just
that	the	experiment	is	bad.”

Yorke	decided	there	was	a	message	in	the	work	of	Lorenz	and	Smale	that
physicists	were	not	hearing.	So	he	wrote	a	paper	for	the	most	broadly	distributed
journal	 he	 thought	 he	 could	 publish	 in,	 the	 American	Mathematical	Monthly.
(As	 a	mathematician,	 he	 found	himself	 helpless	 to	 phrase	 ideas	 in	 a	 form	 that
physics	journals	would	find	acceptable;	 it	was	only	years	later	 that	he	hit	upon
the	 trick	 of	 collaborating	with	 physicists.)	Yorke’s	 paper	was	 important	 on	 its
merits,	 but	 in	 the	 end	 its	 most	 influential	 feature	 was	 its	 mysterious	 and
mischievous	title:	“Period	Three	Implies	Chaos.”	His	colleagues	advised	him	to
choose	something	more	sober,	but	Yorke	stuck	with	a	word	that	came	to	stand
for	 the	whole	growing	business	of	deterministic	disorder.	He	also	 talked	 to	his
friend	Robert	May,	a	biologist.

MAY	CAME	TO	BIOLOGY	through	the	back	door,	as	it	happened.	He	started	as
a	 theoretical	 physicist	 in	 his	 native	 Sydney,	 Australia,	 the	 son	 of	 a	 brilliant
barrister,	 and	 he	 did	 postdoctoral	work	 in	 applied	mathematics	 at	Harvard.	 In
1971,	 he	 went	 for	 a	 year	 to	 the	 Institute	 for	 Advanced	 Study	 in	 Princeton;
instead	of	doing	the	work	he	was	supposed	to	be	doing,	he	found	himself	drifting
over	to	Princeton	University	to	talk	to	the	biologists	there.

Even	now,	biologists	tend	not	to	have	much	mathematics	beyond	calculus.
People	 who	 like	 mathematics	 and	 have	 an	 aptitude	 for	 it	 tend	 more	 toward
mathematics	 or	 physics	 than	 the	 life	 sciences.	 May	 was	 an	 exception.	 His
interests	at	first	tended	toward	the	abstract	problems	of	stability	and	complexity,



mathematical	explanations	of	what	enables	competitors	 to	coexist.	But	he	soon
began	 to	 focus	on	 the	 simplest	 ecological	 questions	of	 how	 single	 populations
behave	over	 time.	The	 inevitably	simple	models	seemed	less	of	a	compromise.
By	 the	 time	 he	 joined	 the	 Princeton	 faculty	 for	 good—eventually	 he	 would
become	 the	 university’s	 dean	 for	 research—he	 had	 already	 spent	 many	 hours
studying	 a	 version	 of	 the	 logistic	 difference	 equation,	 using	 mathematical
analysis	and	also	a	primitive	hand	calculator.

Once,	 in	 fact,	 on	 a	 corridor	 blackboard	 back	 in	 Sydney,	 he	 wrote	 the
equation	out	as	a	problem	for	the	graduate	students.	It	was	starting	to	annoy	him.
“What	 the	 Christ	 happens	 when	 lambda	 gets	 bigger	 than	 the	 point	 of
accumulation?”	What	happened,	that	is,	when	a	population’s	rate	of	growth,	its
tendency	 toward	 boom	 and	 bust,	 passed	 a	 critical	 point.	 By	 trying	 different
values	of	this	nonlinear	parameter,	May	found	that	he	could	dramatically	change
the	 system’s	 character.	 Raising	 the	 parameter	 meant	 raising	 the	 degree	 of
nonlinearity,	and	that	changed	not	just	the	quantity	of	the	outcome,	but	also	its
quality.	It	affected	not	just	the	final	population	at	equilibrium,	but	also	whether
the	population	would	reach	equilibrium	at	all.

When	the	parameter	was	low,	May’s	simple	model	settled	on	a	steady	state.
When	 the	 parameter	 was	 high,	 the	 steady	 state	 would	 break	 apart,	 and	 the
population	would	oscillate	between	two	alternating	values.	When	the	parameter
was	 very	 high,	 the	 system—the	 very	 same	 system—seemed	 to	 behave
unpredictably.	 Why?	 What	 exactly	 happened	 at	 the	 boundaries	 between	 the
different	kinds	of	behavior?	May	couldn’t	figure	it	out.	(Nor	could	the	graduate
students.)

May	 carried	 out	 a	 program	 of	 intense	 numerical	 exploration	 into	 the
behavior	of	 this	simplest	of	equations.	His	program	was	analogous	 to	Smale’s:
he	was	trying	to	understand	this	one	simple	equation	all	at	once,	not	locally	but
globally.	 The	 equation	 was	 far	 simpler	 than	 anything	 Smale	 had	 studied.	 It
seemed	 incredible	 that	 its	 possibilities	 for	 creating	 order	 and	 disorder	 had	 not
been	exhausted	long	since.	But	they	had	not.	Indeed,	May’s	program	was	just	a
beginning.	He	investigated	hundreds	of	different	values	of	the	parameter,	setting
the	 feedback	 loop	 in	 motion	 and	 watching	 to	 see	 where—and	 whether—the
string	of	numbers	would	settle	down	to	a	fixed	point.	He	focused	more	and	more
closely	on	the	critical	boundary	between	steadiness	and	oscillation.	It	was	as	if
he	had	his	own	fish	pond,	where	he	could	wield	fine	mastery	over	 the	“boom-
and–bustiness”	of	the	fish.	Still	using	the	logistic	equation,	xnext	=	rx(1–x),	May
increased	the	parameter	as	slowly	as	he	could.	If	the	parameter	was	2.7,	then	the
population	 would	 be	 .6292.	 As	 the	 parameter	 rose,	 the	 final	 population	 rose



slightly,	too,	making	a	line	that	rose	slightly	as	it	moved	from	left	to	right	on	the
graph.

Suddenly,	though,	as	the	parameter	passed	3,	the	line	broke	in	two.	May’s
imaginary	fish	population	refused	to	settle	down	to	a	single	value,	but	oscillated
between	two	points	in	alternating	years.	Starting	at	a	low	number,	the	population
would	 rise	 and	 then	 fluctuate	 until	 it	 was	 steadily	 flipping	 back	 and	 forth.
Turning	up	the	knob	a	bit	more—raising	the	parameter	a	bit	more—would	split
the	 oscillation	 again,	 producing	 a	 string	 of	 numbers	 that	 settled	 down	 to	 four
different	values,	each	returning	every	fourth	year.*	Now	the	population	rose	and
fell	 on	 a	 regular	 four-year	 schedule.	 The	 cycle	 had	 doubled	 again—first	 from
yearly	 to	 every	 two	years,	 and	 now	 to	 four.	Once	 again,	 the	 resulting	 cyclical
behavior	was	stable;	different	starting	values	for	the	population	would	converge
on	the	same	four-year	cycle.



PERIOD-DOUBLINGS	 AND	 CHAOS.	 Instead	 of	 using	 individual	 diagrams	 to	 show	 the	 behavior	 of
populations	with	different	degrees	of	fertility,	Robert	May	and	other	scientists	used	a	“bifurcation	diagram”
to	assemble	all	the	information	into	a	single	picture.
	 	 	 	 	The	diagram	shows	how	changes	 in	one	parameter—in	 this	case,	a	wildlife	population’s	“boom-and-
bustiness”—would	 change	 the	 ultimate	 behavior	 of	 this	 simple	 system.	 Values	 of	 the	 parameter	 are
represented	from	left	to	right;	the	final	population	is	plotted	on	the	vertical	axis.	In	a	sense,	turning	up	the
parameter	value	means	driving	a	system	harder,	increasing	its	nonlinearity.
	 	 	 	 	Where	the	parameter	is	low	(left),	 the	population	becomes	extinct.	As	the	parameter	rises	(center),	so
does	the	equilibrium	level	of	the	population.	Then,	as	the	parameter	rises	further,	the	equilibrium	splits	in
two,	just	as	turning	up	the	heat	in	a	convecting	fluid	causes	an	instability	to	set	in;	the	population	begins	to
alternate	 between	 two	 different	 levels.	 The	 splittings,	 or	 bifurcations,	 come	 faster	 and	 faster.	 Then	 the
system	turns	chaotic	(right),	and	the	population	visits	infinitely	many	different	values.

As	Lorenz	had	discovered	a	decade	before,	the	only	way	to	make	sense	of
such	 numbers	 and	 preserve	 one’s	 eyesight	 is	 to	 create	 a	 graph.	 May	 drew	 a
sketchy	outline	meant	to	sum	up	all	the	knowledge	about	the	behavior	of	such	a
system	 at	 different	 parameters.	 The	 level	 of	 the	 parameter	 was	 plotted
horizontally,	 increasing	 from	 left	 to	 right.	 The	 population	 was	 represented
vertically.	 For	 each	 parameter,	 May	 plotted	 a	 point	 representing	 the	 final
outcome,	after	the	system	reached	equilibrium.	At	the	left,	where	the	parameter
was	low,	this	outcome	would	just	be	a	point,	so	different	parameters	produced	a
line	rising	slightly	from	left	to	right.	When	the	parameter	passed	the	first	critical
point,	 May	 would	 have	 to	 plot	 two	 populations:	 the	 line	 would	 split	 in	 two,
making	 a	 sideways	 Y	 or	 a	 pitchfork.	 This	 split	 corresponded	 to	 a	 population
going	from	a	one-year	cycle	to	a	two-year	cycle.

As	 the	 parameter	 rose	 further,	 the	 number	 of	 points	 doubled	 again,	 then
again,	 then	 again.	 It	 was	 dumbfounding—such	 complex	 behavior,	 and	 yet	 so
tantalizingly	regular.	“The	snake	in	the	mathematical	grass”	was	how	May	put	it.
The	doublings	themselves	were	bifurcations,	and	each	bifurcation	meant	that	the
pattern	 of	 repetition	was	 breaking	 down	 a	 step	 further.	 A	 population	 that	 had
been	 stable	 would	 alternate	 between	 different	 levels	 every	 other	 year.	 A
population	that	had	been	alternating	on	a	two-year	cycle	would	now	vary	on	the
third	and	fourth	years,	thus	switching	to	period	four.

These	 bifurcations	 would	 come	 faster	 and	 faster—4,	 8,	 16,	 32…—and
suddenly	 break	 off.	 Beyond	 a	 certain	 point,	 the	 “point	 of	 accumulation,”
periodicity	gives	way	to	chaos,	fluctuations	that	never	settle	down	at	all.	Whole



regions	of	the	graph	are	completely	blacked	in.	If	you	were	following	an	animal
population	governed	by	this	simplest	of	nonlinear	equations,	you	would	think	the
changes	 from	year	 to	year	were	 absolutely	 random,	 as	 though	blown	about	by
environmental	 noise.	 Yet	 in	 the	 middle	 of	 this	 complexity,	 stable	 cycles
suddenly	 return.	 Even	 though	 the	 parameter	 is	 rising,	 meaning	 that	 the
nonlinearity	 is	 driving	 the	 system	 harder	 and	 harder,	 a	 window	will	 suddenly
appear	with	a	regular	period:	an	odd	period,	like	3	or	7.	The	pattern	of	changing
population	 repeats	 itself	 on	 a	 three-year	 or	 seven-year	 cycle.	Then	 the	 period-
doubling	 bifurcations	 begin	 all	 over	 at	 a	 faster	 rate,	 rapidly	 passing	 through
cycles	of	3,	6,	12…or	7,	14,	28…,	and	then	breaking	off	once	again	to	renewed
chaos.

At	first,	May	could	not	see	this	whole	picture.	But	the	fragments	he	could
calculate	were	unsettling	enough.	In	a	real-world	system,	an	observer	would	see
just	 the	 vertical	 slice	 corresponding	 to	 one	 parameter	 at	 a	 time.	He	would	 see
only	one	kind	of	behavior—possibly	a	steady	state,	possibly	a	seven-year	cycle,
possibly	apparent	randomness.	He	would	have	no	way	of	knowing	that	the	same
system,	with	some	slight	change	in	some	parameter,	could	display	patterns	of	a
completely	different	kind.

James	Yorke	analyzed	this	behavior	with	mathematical	rigor	in	his	“Period
Three	Implies	Chaos”	paper.	He	proved	that	in	any	one-dimensional	system,	if	a
regular	cycle	of	period	three	ever	appears,	then	the	same	system	will	also	display
regular	cycles	of	every	other	 length,	as	well	as	completely	chaotic	cycles.	This
was	 the	 discovery	 that	 came	 as	 an	 “electric	 shock”	 to	 physicists	 like	Freeman
Dyson.	It	was	so	contrary	to	intuition.	You	would	think	it	would	be	trivial	to	set
up	 a	 system	 that	would	 repeat	 itself	 in	 a	 period-three	 oscillation	without	 ever
producing	chaos.	Yorke	showed	that	it	was	impossible.

Startling	though	it	was,	Yorke	believed	that	the	public	relations	value	of	his
paper	outweighed	the	mathematical	substance.	That	was	partly	true.	A	few	years
later,	attending	an	international	conference	in	East	Berlin,	he	took	some	time	out
for	 sightseeing	 and	 went	 for	 a	 boat	 ride	 on	 the	 Spree.	 Suddenly	 he	 was
approached	by	 a	Russian	 trying	urgently	 to	 communicate	 something.	With	 the
help	of	a	Polish	friend,	Yorke	finally	understood	that	the	Russian	was	claiming
to	have	proved	the	same	result.	The	Russian	refused	to	give	details,	saying	only
that	he	would	send	his	paper.	Four	months	later	it	arrived.	A.	N.	Sarkovskii	had
indeed	been	there	first,	in	a	paper	titled	“Coexistence	of	Cycles	of	a	Continuous
Map	 of	 a	 Line	 into	 Itself.”	 But	 Yorke	 had	 offered	more	 than	 a	mathematical
result.	He	had	sent	a	message	to	physicists:	Chaos	is	ubiquitous;	it	is	stable;	it	is
structured.	He	also	gave	reason	to	believe	that	complicated	systems,	traditionally
modeled	by	hard	continuous	differential	equations,	could	be	understood	in	terms



of	easy	discrete	maps.

WINDOWS	 OF	 ORDER	 INSIDE	 CHAOS.	 Even	 with	 the	 simplest	 equation,	 the	 region	 of	 chaos	 in	 a
bifurcation	diagram	proves	to	have	an	intricate	structure—far	more	orderly	than	Robert	May	could	guess	at
first.	First,	 the	bifurcations	produce	periods	of	2,	4,	8,	16….	Then	chaos	begins,	with	no	regular	periods.
But	then,	as	the	system	is	driven	harder,	windows	appear	with	odd	periods.	A	stable	period	3	appears,	and
then	 the	 period-doubling	 begins	 again	 6,	 12,	 24….	 The	 structure	 is	 infinitely	 deep.	When	 portions	 are
magnified,	they	turn	out	to	resemble	the	whole	diagram.

The	 sightseeing	 encounter	 between	 these	 frustrated,	 gesticulating
mathematicians	was	 a	 symptom	 of	 a	 continuing	 communications	 gap	 between
Soviet	 and	 Western	 science.	 Partly	 because	 of	 language,	 partly	 because	 of
restricted	 travel	 on	 the	Soviet	 side,	 sophisticated	Western	 scientists	 have	often
repeated	work	 that	 already	 existed	 in	 the	 Soviet	 literature.	 The	 blossoming	 of
chaos	in	the	United	States	and	Europe	has	inspired	a	huge	body	of	parallel	work
in	 the	 Soviet	 Union;	 on	 the	 other	 hand,	 it	 also	 inspired	 considerable
bewilderment,	 because	much	 of	 the	 new	 science	was	 not	 so	 new	 in	Moscow.
Soviet	mathematicians	 and	 physicists	 had	 a	 strong	 tradition	 in	 chaos	 research,
dating	back	 to	 the	work	of	A.	N.	Kolmogorov	 in	 the	 fifties.	Furthermore,	 they
had	 a	 tradition	 of	 working	 together	 that	 had	 survived	 the	 divergence	 of
mathematics	and	physics	elsewhere.



Thus	 Soviet	 scientists	 were	 receptive	 to	 Smale—his	 horseshoe	 created	 a
considerable	stir	 in	 the	sixties.	A	brilliant	mathematical	physicist,	Yasha	Sinai,
quickly	 translated	 similar	 systems	 into	 thermodynamic	 terms.	 Similarly,	 when
Lorenz’s	 work	 finally	 reached	 Western	 physics	 in	 the	 seventies,	 it
simultaneously	 spread	 in	 the	 Soviet	 Union.	 And	 in	 1975,	 as	 Yorke	 and	May
struggled	 to	 capture	 the	 attention	 of	 their	 colleagues,	 Sinai	 and	 others	 rapidly
assembled	a	powerful	working	group	of	physicists	centered	 in	Gorki.	 In	recent
years,	some	Western	chaos	experts	have	made	a	point	of	 traveling	regularly	 to
the	Soviet	Union	to	stay	current;	most,	however,	have	had	to	content	themselves
with	the	Western	version	of	their	science.

In	the	West,	Yorke	and	May	were	the	first	to	feel	the	full	shock	of	period-
doubling	 and	 to	 pass	 the	 shock	 along	 to	 the	 community	of	 scientists.	The	 few
mathematicians	who	had	noted	the	phenomenon	treated	it	as	a	technical	matter,	a
numerical	 oddity:	 almost	 a	 kind	 of	 game	 playing.	 Not	 that	 they	 considered	 it
trivial.	But	they	considered	it	a	thing	of	their	special	universe.

Biologists	 had	 overlooked	 bifurcations	 on	 the	way	 to	 chaos	 because	 they
lacked	mathematical	 sophistication	 and	 because	 they	 lacked	 the	motivation	 to
explore	 disorderly	 behavior.	 Mathematicians	 had	 seen	 bifurcations	 but	 had
moved	 on.	May,	 a	 man	 with	 one	 foot	 in	 each	 world,	 understood	 that	 he	 was
entering	a	domain	that	was	astonishing	and	profound.

TO	 SEE	 DEEPER	 INTO	 this	 simplest	 of	 systems,	 scientists	 needed	 greater
computing	 power.	 Frank	 Hoppensteadt,	 at	 New	 York	 University’s	 Courant
Institute	of	Mathematical	Sciences,	had	so	powerful	a	computer	that	he	decided
to	make	a	movie.

Hoppensteadt,	 a	 mathematician	 who	 later	 developed	 a	 strong	 interest	 in
biological	problems,	fed	the	logistic	nonlinear	equation	through	his	Control	Data
6600	 hundreds	 of	 millions	 of	 times.	 He	 took	 pictures	 from	 the	 computer’s
display	screen	at	each	of	a	thousand	different	values	of	the	parameter,	a	thousand
different	 tunings.	 The	 bifurcations	 appeared,	 then	 chaos—and	 then,	within	 the
chaos,	 the	 little	 spikes	 of	 order,	 ephemeral	 in	 their	 instability.	 Fleeting	 bits	 of
periodic	behavior.	Staring	at	his	own	film,	Hoppensteadt	felt	as	if	he	were	flying
through	an	alien	landscape.	One	instant	it	wouldn’t	look	chaotic	at	all.	The	next
instant	it	would	be	filled	with	unpredictable	tumult.	The	feeling	of	astonishment
was	something	Hoppensteadt	never	got	over.

May	saw	Hoppensteadt’s	movie.	He	also	began	collecting	analogues	from
other	fields,	such	as	genetics,	economics,	and	fluid	dynamics.	As	a	town	crier	for
chaos,	he	had	 two	advantages	over	 the	pure	mathematicians.	One	was	 that,	 for
him,	 the	 simple	 equations	 could	 not	 represent	 reality	 perfectly.	He	 knew	 they



were	 just	metaphors—so	he	began	 to	wonder	how	widely	 the	metaphors	could
apply.	The	other	was	that	 the	revelations	of	chaos	fed	directly	 into	a	vehement
controversy	in	his	chosen	field.

The	outline	of	the	bifurcation	diagram	as	May	first	saw	it,	before	more	powerful	computation	revealed	its
rich	structure.

Population	biology	had	long	been	a	magnet	for	controversy	anyway.	There
was	tension	in	biology	departments,	for	example,	between	molecular	biologists
and	ecologists.	The	molecular	biologists	thought	that	they	did	real	science,	crisp,
hard	problems,	whereas	 the	work	of	ecologists	was	vague.	Ecologists	believed
that	 the	 technical	 masterpieces	 of	 molecular	 biology	 were	 just	 clever
elaborations	of	well-defined	problems.

Within	 ecology	 itself,	 as	 May	 saw	 it,	 a	 central	 controversy	 in	 the	 early
1970s	 dealt	 with	 the	 nature	 of	 population	 change.	 Ecologists	 were	 divided
almost	 along	 lines	 of	 personality.	 Some	 read	 the	 message	 of	 the	 world	 to	 be
orderly:	populations	are	regulated	and	steady—with	exceptions.	Others	read	the
opposite	 message:	 populations	 fluctuate	 erratically—with	 exceptions.	 By	 no
coincidence,	 these	 opposing	 camps	 also	 divided	 over	 the	 application	 of	 hard



mathematics	to	messy	biological	questions.	Those	who	believed	that	populations
were	 steady	 argued	 that	 they	 must	 be	 regulated	 by	 some	 deterministic
mechanisms.	Those	who	believed	that	populations	were	erratic	argued	that	they
must	 be	 bounced	 around	 by	 unpredictable	 environmental	 factors,	 wiping	 out
whatever	 deterministic	 signal	 might	 exist.	 Either	 deterministic	 mathematics
produced	steady	behavior,	or	random	external	noise	produced	random	behavior.
That	was	the	choice.

In	the	context	of	that	debate,	chaos	brought	an	astonishing	message:	simple
deterministic	 models	 could	 produce	 what	 looked	 like	 random	 behavior.	 The
behavior	 actually	 had	 an	 exquisite	 fine	 structure,	 yet	 any	 piece	 of	 it	 seemed
indistinguishable	 from	 noise.	 The	 discovery	 cut	 through	 the	 heart	 of	 the
controversy.

As	May	looked	at	more	and	more	biological	systems	through	the	prism	of
simple	 chaotic	 models,	 he	 continued	 to	 see	 results	 that	 violated	 the	 standard
intuition	of	practitioners.	In	epidemiology,	for	example,	it	was	well	known	that
epidemics	tend	to	come	in	cycles,	regular	or	irregular.	Measles,	polio,	rubella—
all	 rise	 and	 fall	 in	 frequency.	 May	 realized	 that	 the	 oscillations	 could	 be
reproduced	by	a	nonlinear	model	and	he	wondered	what	would	happen	if	such	a
system	received	a	sudden	kick—a	perturbation	of	the	kind	that	might	correspond
to	a	program	of	inoculation.	Naïve	intuition	suggests	that	the	system	will	change
smoothly	in	the	desired	direction.	But	actually,	May	found,	huge	oscillations	are
likely	 to	 begin.	 Even	 if	 the	 longterm	 trend	was	 turned	 solidly	 downward,	 the
path	 to	a	new	equilibrium	would	be	 interrupted	by	surprising	peaks.	 In	fact,	 in
data	 from	 real	 programs,	 such	 as	 a	 campaign	 to	 wipe	 out	 rubella	 in	 Britain,
doctors	had	seen	oscillations	just	like	those	predicted	by	May’s	model.	Yet	any
health	 official,	 seeing	 a	 sharp	 short-term	 rise	 in	 rubella	 or	 gonorrhea,	 would
assume	that	the	inoculation	program	had	failed.

Within	a	few	years,	the	study	of	chaos	gave	a	strong	impetus	to	theoretical
biology,	bringing	biologists	and	physicists	into	scholarly	partnerships	that	were
inconceivable	 a	 few	 years	 before.	 Ecologists	 and	 epidemiologists	 dug	 out	 old
data	that	earlier	scientists	had	discarded	as	too	unwieldy	to	handle.	Deterministic
chaos	was	 found	 in	 records	 of	New	York	City	measles	 epidemics	 and	 in	 two
hundred	years	of	 fluctuations	of	 the	Canadian	 lynx	population,	 as	 recorded	by
the	 trappers	of	 the	Hudson’s	Bay	Company.	Molecular	biologists	began	 to	 see
proteins	 as	 systems	 in	 motion.	 Physiologists	 looked	 at	 organs	 not	 as	 static
structures	but	as	complexes	of	oscillations,	some	regular	and	some	irregular.

All	 through	science,	May	knew,	specialists	had	seen	and	argued	about	 the
complex	behavior	of	systems.	Each	discipline	considered	its	particular	brand	of
chaos	to	be	special	unto	itself.	The	thought	inspired	despair.	Yet	what	if	apparent



randomness	 could	 come	 from	 simple	 models?	 And	 what	 if	 the	 same	 simple
models	 applied	 to	 complexity	 in	 different	 fields?	 May	 realized	 that	 the
astonishing	structures	he	had	barely	begun	to	explore	had	no	intrinsic	connection
to	 biology.	 He	 wondered	 how	 many	 other	 sorts	 of	 scientists	 would	 be	 as
astonished	 as	 he.	 He	 set	 to	 work	 on	 what	 he	 eventually	 thought	 of	 as	 his
“messianic”	paper,	a	review	article	in	1976	for	Nature.

The	 world	 would	 be	 a	 better	 place,	May	 argued,	 if	 every	 young	 student
were	 given	 a	 pocket	 calculator	 and	 encouraged	 to	 play	 with	 the	 logistic
difference	equation.	That	simple	calculation,	which	he	 laid	out	 in	fine	detail	 in
the	Nature	article,	could	counter	 the	distorted	sense	of	 the	world’s	possibilities
that	comes	from	a	standard	scientific	education.	It	would	change	the	way	people
thought	about	everything	from	the	theory	of	business	cycles	to	the	propagation
of	rumors.

Chaos	 should	 be	 taught,	 he	 argued.	 It	 was	 time	 to	 recognize	 that	 the
standard	 education	 of	 a	 scientist	 gave	 the	 wrong	 impression.	 No	 matter	 how
elaborate	 linear	 mathematics	 could	 get,	 with	 its	 Fourier	 transforms,	 its
orthogonal	 functions,	 its	 regression	 techniques,	 May	 argued	 that	 it	 inevitably
misled	 scientists	 about	 their	 overwhelmingly	 nonlinear	 world.	 “The
mathematical	intuition	so	developed	ill	equips	the	student	to	confront	the	bizarre
behaviour	exhibited	by	the	simplest	of	discrete	nonlinear	systems,”	he	wrote.

“Not	 only	 in	 research,	 but	 also	 in	 the	 everyday	 world	 of	 politics	 and
economics,	 we	 would	 all	 be	 better	 off	 if	 more	 people	 realized	 that	 simple
nonlinear	systems	do	not	necessarily	possess	simple	dynamical	properties.”

______________
*	For	convenience,	in	this	highly	abstract	model,	“population”	is	expressed	as	a	fraction	between	zero	and
one,	zero	representing	extinction,	one	representing	the	greatest	conceivable	population	of	the	pond.

So	begin:	Choose	an	arbitrary	value	for	r,	say,	2.7,	and	a	starting	population	of	.02.	One	minus	.02	is	.98.
Multiply	by	0.02	and	you	get	.0196.	Multiply	that	by	2.7	and	you	get	.0529.	The	very	small	starting
population	has	more	than	doubled.	Repeat	the	process,	using	the	new	population	as	the	seed,	and	you	get
.1353.	With	a	cheap	programmable	calculator,	this	iteration	is	just	a	matter	of	pushing	one	button	over	and
over	again.	The	population	rises	to	.3159,	then	.5835,	then	.6562—the	rate	of	increase	is	slowing.	Then,	as
starvation	overtakes	reproduction,	.6092.	Then	.6428,	then	.6199,	then	.6362,	then	.6249.	The	numbers
seem	to	be	bouncing	back	and	forth,	but	closing	in	on	a	fixed	number:	.6328,	.6273,	.6312,	.6285,	.6304,
.6291,	.6300,	.6294,	.6299,	.6295,	.6297,	.6296,	.6297,	.6296,	.6296,	.6296,	.6296,	.6296,	.6296,	.6296.
Success!

In	the	days	of	pencil-and–paper	arithmetic,	and	in	the	days	of	mechanical	adding	machines	with	hand
cranks,	numerical	exploration	never	went	much	further.

*	With	a	parameter	of	3.5,	say,	and	a	starting	value	of	.4,	he	would	see	a	string	of	numbers	like	this:
		.4000,	.8400,	.4704,	.8719,
		.3908,	.8332,	.4862,	.8743,



		.3846,	.8284,	.4976,	.8750,
		.3829,	.8270,	.4976,	.8750,
		.3829,	.8270,	.5008,	.8750,
		.3828,	.8269,	.5009,	.8750,
		.3828,	.8269,	.5009,	.8750,	etc.



A	Geometry
of	Nature

And	yet	relation	appears,
A	small	relation	expanding	like	the	shade
Of	a	cloud	on	sand,	a	shape	on	the	side	of	a	hill.

—WALLACE	STEVENS				
“Connoisseur	of	Chaos”



A	PICTURE	OF	REALITY	built	up	over	the	years	in	Benoit	Mandelbrot’s	mind.
In	 1960,	 it	was	 a	 ghost	 of	 an	 idea,	 a	 faint,	 unfocused	 image.	 But	Mandelbrot
recognized	 it	 when	 he	 saw	 it,	 and	 there	 it	 was	 on	 the	 blackboard	 in	 Hendrik
Houthakker’s	office.

Mandelbrot	was	 a	mathematical	 jack-of–all-trades	who	 had	 been	 adopted
and	sheltered	by	the	pure	research	wing	of	the	International	Business	Machines
Corporation.	He	 had	 been	 dabbling	 in	 economics,	 studying	 the	 distribution	 of
large	 and	 small	 incomes	 in	 an	 economy.	 Houthakker,	 a	 Harvard	 economics
professor,	 had	 invited	 Mandelbrot	 to	 give	 a	 talk,	 and	 when	 the	 young
mathematician	 arrived	 at	 Littauer	 Center,	 the	 stately	 economics	 building	 just
north	of	Harvard	Yard,	he	was	startled	to	see	his	findings	already	charted	on	the
older	 man’s	 blackboard.	 Mandelbrot	 made	 a	 querulous	 joke—how	 should	 my
diagram	have	materialized	ahead	of	my	lecture?—but	Houthakker	didn’t	know
what	Mandelbrot	was	talking	about.	The	diagram	had	nothing	to	do	with	income
distribution;	it	represented	eight	years	of	cotton	prices.

From	Houthakker’s	point	of	view,	 too,	 there	was	something	strange	about
this	 chart.	 Economists	 generally	 assumed	 that	 the	 price	 of	 a	 commodity	 like
cotton	danced	to	two	different	beats,	one	orderly	and	one	random.	Over	the	long
term,	 prices	would	 be	 driven	 steadily	 by	 real	 forces	 in	 the	 economy—the	 rise
and	fall	of	the	New	England	textile	industry,	or	the	opening	of	international	trade
routes.	Over	the	short	term,	prices	would	bounce	around	more	or	less	randomly.
Unfortunately,	Houthakker’s	 data	 failed	 to	match	his	 expectations.	There	were
too	many	large	jumps.	Most	price	changes	were	small,	of	course,	but	the	ratio	of
small	changes	to	large	was	not	as	high	as	he	had	expected.	The	distribution	did
not	fall	off	quickly	enough.	It	had	a	long	tail.

The	standard	model	for	plotting	variation	was	and	is	the	bell-shaped	curve.
In	 the	middle,	where	 the	 hump	 of	 the	 bell	 rises,	most	 data	 cluster	 around	 the
average.	On	the	sides,	the	low	and	high	extremes	fall	off	rapidly.	A	statistician
uses	 a	 bell-shaped	 curve	 the	 way	 an	 internist	 uses	 a	 stethoscope,	 as	 the
instrument	 of	 first	 resort.	 It	 represents	 the	 standard,	 so-called	 Gaussian
distribution	of	things—or,	simply,	the	normal	distribution.	It	makes	a	statement
about	the	nature	of	randomness.	The	point	is	that	when	things	vary,	they	try	to
stay	near	an	average	point	 and	 they	manage	 to	 scatter	 around	 the	average	 in	a
reasonably	smooth	way.	But	as	a	means	of	finding	paths	through	the	economic
wilderness,	 the	 standard	 notions	 left	 something	 to	 be	 desired.	 As	 the	 Nobel
laureate	Wassily	Leontief	put	it,	“In	no	field	of	empirical	inquiry	has	so	massive
and	sophisticated	a	statistical	machinery	been	used	with	such	indifferent	results.”

No	matter	how	he	plotted	them,	Houthakker	could	not	make	the	changes	in



cotton	prices	fit	the	bell-shaped	model.	But	they	made	a	picture	whose	silhouette
Mandelbrot	was	beginning	 to	 see	 in	 surprisingly	disparate	places.	Unlike	most
mathematicians,	 he	 confronted	 problems	 by	 depending	 on	 his	 intuition	 about
patterns	and	shapes.	He	mistrusted	analysis,	but	he	 trusted	his	mental	pictures.
And	 he	 already	 had	 the	 idea	 that	 other	 laws,	 with	 different	 behavior,	 could
govern	 random,	 stochastic	 phenomena.	When	 he	 went	 back	 to	 the	 giant	 IBM
research	 center	 in	 Yorktown	 Heights,	 New	 York,	 in	 the	 hills	 of	 northern
Westchester	County,	he	carried	Houthakker’s	cotton	data	 in	a	box	of	computer
cards.	Then	he	sent	 to	 the	Department	of	Agriculture	 in	Washington	 for	more,
dating	back	to	1900.

THE	BELL-SHAPED	CURVE.

Like	scientists	 in	other	fields,	economists	were	crossing	the	 threshold	into
the	computer	era,	slowly	realizing	that	they	would	have	the	power	to	collect	and
organize	 and	 manipulate	 information	 on	 a	 scale	 that	 had	 been	 unimaginable
before.	Not	all	kinds	of	information	were	available,	though,	and	information	that
could	be	rounded	up	still	had	to	be	turned	into	some	usable	form.	The	keypunch
era	was	just	beginning,	too.	In	the	hard	sciences,	investigators	found	it	easier	to
amass	 their	 thousands	 or	 millions	 of	 data	 points.	 Economists,	 like	 biologists,
dealt	with	a	world	of	willful	living	beings.	Economists	studied	the	most	elusive
creatures	of	all.

But	 at	 least	 the	 economists’	 environment	 produced	 a	 constant	 supply	 of
numbers.	 From	Mandelbrot’s	 point	 of	 view,	 cotton	 prices	 made	 an	 ideal	 data
source.	The	records	were	complete	and	they	were	old,	dating	back	continuously
a	century	or	more.	Cotton	was	a	piece	of	the	buying-and–selling	universe	with	a
centralized	 market—and	 therefore	 centralized	 record-keeping—because	 at	 the
turn	 of	 the	 century	 all	 the	 South’s	 cotton	 flowed	 through	 the	 New	 York



exchange	on	route	to	New	England,	and	Liverpool’s	prices	were	linked	to	New
York’s	as	well.

Although	 economists	 had	 little	 to	 go	 on	 when	 it	 came	 to	 analyzing
commodity	prices	or	stock	prices,	that	did	not	mean	they	lacked	a	fundamental
viewpoint	about	how	price	changes	worked.	On	the	contrary,	they	shared	certain
articles	of	faith.	One	was	a	conviction	that	small,	transient	changes	had	nothing
in	common	with	large,	longterm	changes.	Fast	fluctuations	come	randomly.	The
small-scale	 ups	 and	 downs	 during	 a	 day’s	 transactions	 are	 just	 noise,
unpredictable	 and	 uninteresting.	 Longterm	 changes,	 however,	 are	 a	 different
species	entirely.	The	broad	swings	of	prices	over	months	or	years	or	decades	are
determined	by	deep	macroeconomic	forces,	the	trends	of	war	or	recession,	forces
that	should	 in	 theory	give	way	 to	understanding.	On	 the	one	hand,	 the	buzz	of
short-term	fluctuation;	on	the	other,	the	signal	of	longterm	change.

As	 it	 happened,	 that	dichotomy	had	no	place	 in	 the	picture	of	 reality	 that
Mandelbrot	was	developing.	Instead	of	separating	tiny	changes	from	grand	ones,
his	picture	bound	them	together.	He	was	looking	for	patterns	not	at	one	scale	or
another,	but	across	every	scale.	It	was	far	from	obvious	how	to	draw	the	picture
he	had	in	mind,	but	he	knew	there	would	have	to	be	a	kind	of	symmetry,	not	a
symmetry	 of	 right	 and	 left	 or	 top	 and	 bottom	 but	 rather	 a	 symmetry	 of	 large
scales	and	small.

Indeed,	 when	 Mandelbrot	 sifted	 the	 cotton-price	 data	 through	 IBM’s
computers,	 he	 found	 the	 astonishing	 results	 he	was	 seeking.	The	numbers	 that
produced	 aberrations	 from	 the	 point	 of	 view	 of	 normal	 distribution	 produced
symmetry	 from	 the	point	of	view	of	 scaling.	Each	particular	price	change	was
random	 and	 unpredictable.	 But	 the	 sequence	 of	 changes	 was	 independent	 of
scale:	 curves	 for	 daily	 price	 changes	 and	 monthly	 price	 changes	 matched
perfectly.	 Incredibly,	 analyzed	Mandelbrot’s	 way,	 the	 degree	 of	 variation	 had
remained	constant	over	a	tumultuous	sixty-year	period	that	saw	two	World	Wars
and	a	depression.

Within	the	most	disorderly	reams	of	data	lived	an	unexpected	kind	of	order.
Given	 the	 arbitrariness	 of	 the	 numbers	 he	 was	 examining,	 why,	 Mandelbrot
asked	himself,	should	any	law	hold	at	all?	And	why	should	it	apply	equally	well
to	personal	incomes	and	cotton	prices?

In	 truth,	 Mandelbrot’s	 background	 in	 economics	 was	 as	 meager	 as	 his
ability	 to	 communicate	with	 economists.	When	 he	 published	 an	 article	 on	 his
findings,	 it	was	preceded	by	an	explanatory	article	by	one	of	his	students,	who
repeated	Mandelbrot’s	material	in	economists’	English.	Mandelbrot	moved	on	to
other	 interests.	 But	 he	 took	 with	 him	 a	 growing	 determination	 to	 explore	 the
phenomenon	 of	 scaling.	 It	 seemed	 to	 be	 a	 quality	 with	 a	 life	 of	 its	 own—a



signature.

INTRODUCED	 FOR	 A	 LECTURE	 years	 later	 (“…taught	 economics	 at	 Harvard,
engineering	 at	 Yale,	 physiology	 at	 the	 Einstein	 School	 of	 Medicine…”),	 he
remarked	 proudly:	 “Very	 often	when	 I	 listen	 to	 the	 list	 of	my	 previous	 jobs	 I
wonder	if	I	exist.	The	intersection	of	such	sets	is	surely	empty.”	Indeed,	since	his
early	days	at	IBM,	Mandelbrot	has	failed	to	exist	in	a	long	list	of	different	fields.
He	was	always	an	outsider,	taking	an	unorthodox	approach	to	an	unfashionable
corner	of	mathematics,	exploring	disciplines	in	which	he	was	rarely	welcomed,
hiding	his	grandest	ideas	in	efforts	to	get	his	papers	published,	surviving	mainly
on	the	confidence	of	his	employers	 in	Yorktown	Heights.	He	made	forays	 into
fields	 like	 economics	 and	 then	withdrew,	 leaving	 behind	 tantalizing	 ideas	 but
rarely	well-founded	bodies	of	work.

In	the	history	of	chaos,	Mandelbrot	made	his	own	way.	Yet	 the	picture	of
reality	that	was	forming	in	his	mind	in	1960	evolved	from	an	oddity	into	a	full-
fledged	 geometry.	 To	 the	 physicists	 expanding	 on	 the	 work	 of	 people	 like
Lorenz,	 Smale,	 Yorke,	 and	 May,	 this	 prickly	 mathematician	 remained	 a
sideshow—but	 his	 techniques	 and	 his	 language	 became	 an	 inseparable	 part	 of
their	new	science.

The	description	would	not	have	seemed	apt	to	anyone	who	knew	him	in	his
later	 years,	with	 his	 high	 imposing	 brow	 and	 his	 list	 of	 titles	 and	 honors,	 but
Benoit	Mandelbrot	 is	best	understood	as	a	 refugee.	He	was	born	 in	Warsaw	in
1924	to	a	Lithuanian	Jewish	family,	his	father	a	clothing	wholesaler,	his	mother
a	dentist.	Alert	to	geopolitical	reality,	the	family	moved	to	Paris	in	1936,	drawn
in	 part	 by	 the	 presence	 of	 Mandelbrot’s	 uncle,	 Szolem	 Mandelbrojt,	 a
mathematician.	When	 the	war	 came,	 the	 family	 stayed	 just	 ahead	of	 the	Nazis
once	again,	abandoning	everything	but	a	few	suitcases	and	joining	the	stream	of
refugees	who	clogged	the	roads	south	from	Paris.	They	finally	reached	the	town
of	Tulle.

For	 a	while	Benoit	went	 around	 as	 an	 apprentice	 toolmaker,	 dangerously
conspicuous	 by	 his	 height	 and	 his	 educated	 background.	 It	 was	 a	 time	 of
unforgettable	 sights	 and	 fears,	 yet	 later	 he	 recalled	 little	 personal	 hardship,
remembering	 instead	 the	 times	 he	 was	 befriended	 in	 Tulle	 and	 elsewhere	 by
schoolteachers,	some	of	them	distinguished	scholars,	themselves	stranded	by	the
war.	In	all,	his	schooling	was	irregular	and	discontinuous.	He	claimed	never	to
have	 learned	 the	 alphabet	 or,	more	 significantly,	multiplication	 tables	 past	 the
fives.	Still,	he	had	a	gift.

When	 Paris	 was	 liberated,	 he	 took	 and	 passed	 the	 month-long	 oral	 and
written	 admissions	 examination	 for	 École	 Normale	 and	 École	 Polytechnique,



despite	his	 lack	of	preparation.	Among	other	 elements,	 the	 test	 had	 a	vestigial
examination	in	drawing,	and	Mandelbrot	discovered	a	latent	facility	for	copying
the	 Venus	 de	 Milo.	 On	 the	 mathematical	 sections	 of	 the	 test—exercises	 in
formal	algebra	and	integrated	analysis—he	managed	to	hide	his	lack	of	training
with	the	help	of	his	geometrical	intuition.	He	had	realized	that,	given	an	analytic
problem,	he	could	almost	always	think	of	it	in	terms	of	some	shape	in	his	mind.
Given	 a	 shape,	 he	 could	 find	ways	 of	 transforming	 it,	 altering	 its	 symmetries,
making	it	more	harmonious.	Often	his	transformations	led	directly	to	a	solution
of	 the	analogous	problem.	 In	physics	and	chemistry,	where	he	could	not	apply
geometry,	 he	 got	 poor	 grades.	 But	 in	 mathematics,	 questions	 he	 could	 never
have	 answered	 using	 proper	 techniques	 melted	 away	 in	 the	 face	 of	 his
manipulations	of	shapes.

The	 École	 Normale	 and	 École	 Polytechnique	 were	 elite	 schools	 with	 no
parallel	in	American	education.	Together	they	prepared	fewer	than	300	students
in	each	class	for	careers	in	the	French	universities	and	civil	service.	Mandelbrot
began	 in	Normale,	 the	smaller	and	more	prestigious	of	 the	 two,	but	 left	within
days	for	Polytechnique.	He	was	already	a	refugee	from	Bourbaki.

Perhaps	nowhere	but	in	France,	with	its	love	of	authoritarian	academies	and
received	 rules	 for	 learning,	 could	 Bourbaki	 have	 arisen.	 It	 began	 as	 a	 club,
founded	 in	 the	 unsettled	 wake	 of	World	War	 I	 by	 Szolem	Mandelbrot	 and	 a
handful	of	other	 insouciant	young	mathematicians	looking	for	a	way	to	rebuild
French	 mathematics.	 The	 vicious	 demographics	 of	 war	 had	 left	 an	 age	 gap
between	university	professors	and	students,	disrupting	the	tradition	of	academic
continuity,	and	these	brilliant	young	men	set	out	to	establish	new	foundations	for
the	practice	of	mathematics.	The	name	of	 their	group	was	itself	an	inside	joke,
borrowed	for	 its	strange	and	attractive	sound—so	it	was	 later	guessed—from	a
nineteenth-century	 French	 general	 of	 Greek	 origin.	 Bourbaki	was	 born	with	 a
playfulness	that	soon	disappeared.

Its	members	met	 in	 secrecy.	 Indeed,	not	all	 their	names	are	known.	Their
number	was	 fixed.	When	one	member	 left,	 as	was	 required	 at	 age	50,	 another
would	be	elected	by	the	remaining	group.	They	were	the	best	and	the	brightest	of
mathematicians,	and	their	influence	soon	spread	across	the	continent.

In	part,	Bourbaki	began	 in	 reaction	 to	Poincaré,	 the	great	man	of	 the	 late
nineteenth	 century,	 a	 phenomenally	 prolific	 thinker	 and	writer	who	 cared	 less
than	some	for	rigor.	Poincaré	would	say,	I	know	it	must	be	right,	so	why	should
I	 prove	 it?	 Bourbaki	 believed	 that	 Poincaré	 had	 left	 a	 shaky	 basis	 for
mathematics,	and	the	group	began	to	write	an	enormous	treatise,	more	and	more
fanatical	 in	 style,	 meant	 to	 set	 the	 discipline	 straight.	 Logical	 analysis	 was
central.	A	mathematician	had	to	begin	with	solid	first	principles	and	deduce	all



the	 rest	 from	 them.	 The	 group	 stressed	 the	 primacy	 of	 mathematics	 among
sciences,	and	also	insisted	upon	a	detachment	from	other	sciences.	Mathematics
was	 mathematics—it	 could	 not	 be	 valued	 in	 terms	 of	 its	 application	 to	 real
physical	 phenomena.	 And	 above	 all,	 Bourbaki	 rejected	 the	 use	 of	 pictures.	 A
mathematician	 could	 always	 be	 fooled	 by	 his	 visual	 apparatus.	Geometry	was
untrustworthy.	Mathematics	should	be	pure,	formal,	and	austere.

Nor	 was	 this	 strictly	 a	 French	 development.	 In	 the	 United	 States,	 too,
mathematicians	were	pulling	away	from	the	demands	of	the	physical	sciences	as
firmly	 as	 artists	 and	 writers	 were	 pulling	 away	 from	 the	 demands	 of	 popular
taste.	 A	 hermetic	 sensibility	 prevailed.	Mathematicians’	 subjects	 became	 self-
contained;	their	method	became	formally	axiomatic.	A	mathematician	could	take
pride	in	saying	that	his	work	explained	nothing	in	the	world	or	in	science.	Much
good	came	of	 this	attitude,	and	mathematicians	 treasured	 it.	Steve	Smale,	even
while	he	was	working	 to	 reunite	mathematics	and	natural	 science,	believed,	as
deeply	 as	 he	 believed	 anything,	 that	mathematics	 should	 be	 something	 all	 by
itself.	With	 self-containment	 came	clarity.	And	clarity,	 too,	went	hand	 in	hand
with	 the	 rigor	 of	 the	 axiomatic	 method.	 Every	 serious	 mathematician
understands	that	rigor	is	the	defining	strength	of	the	discipline,	the	steel	skeleton
without	which	all	would	collapse.	Rigor	is	what	allows	mathematicians	to	pick
up	 a	 line	 of	 thought	 that	 extends	 over	 centuries	 and	 continue	 it,	 with	 a	 firm
guarantee.

Even	 so,	 the	 demands	 of	 rigor	 had	 unintended	 consequences	 for
mathematics	in	the	twentieth	century.	The	field	develops	through	a	special	kind
of	evolution.	A	researcher	picks	up	a	problem	and	begins	by	making	a	decision
about	 which	way	 to	 continue.	 It	 happened	 that	 often	 that	 decision	 involved	 a
choice	 between	 a	 path	 that	 was	 mathematically	 feasible	 and	 a	 path	 that	 was
interesting	from	the	point	of	view	of	understanding	nature.	For	a	mathematician,
the	choice	was	clear:	he	would	abandon	any	obvious	connection	with	nature	for
a	while.	Eventually	his	students	would	face	a	similar	choice	and	make	a	similar
decision.

Nowhere	 were	 these	 values	 as	 severely	 codified	 as	 in	 France,	 and	 there
Bourbaki	succeeded	as	its	founders	could	not	have	imagined.	Its	precepts,	style,
and	 notation	 became	 mandatory.	 It	 achieved	 the	 unassailable	 Tightness	 that
comes	 from	 controlling	 all	 the	 best	 students	 and	 producing	 a	 steady	 flow	 of
successful	 mathematics.	 Its	 dominance	 over	 École	 Normale	 was	 total	 and,	 to
Mandelbrot,	 unbearable.	 He	 fled	 Normale	 because	 of	 Bourbaki,	 and	 a	 decade
later	he	fled	France	for	the	same	reason,	taking	up	residence	in	the	United	States.
Within	a	few	decades,	the	relentless	abstraction	of	Bourbaki	would	begin	to	die
of	 a	 shock	 brought	 on	 by	 the	 computer,	 with	 its	 power	 to	 feed	 a	 new



mathematics	of	the	eye.	But	that	was	too	late	for	Mandelbrot,	unable	to	live	by
Bourbaki’s	formalisms	and	unwilling	to	abandon	his	geometrical	intuition.

ALWAYS	A	BELIEVER	 in	creating	his	own	mythology,	Mandelbrot	appended
this	 statement	 to	 his	 entry	 in	Who’s	Who:	 “Science	 would	 be	 ruined	 if	 (like
sports)	it	were	to	put	competition	above	everything	else,	and	if	it	were	to	clarify
the	 rules	 of	 competition	 by	 withdrawing	 entirely	 into	 narrowly	 defined
specialties.	 The	 rare	 scholars	 who	 are	 nomads-by–choice	 are	 essential	 to	 the
intellectual	welfare	of	the	settled	disciplines.”	This	nomad-by–choice,	who	also
called	 himself	 a	 pioneer-by–necessity,	 withdrew	 from	 academe	 when	 he
withdrew	 from	 France,	 accepting	 the	 shelter	 of	 IBM’s	 Thomas	 J.	 Watson
Research	Center.	In	a	thirty-year	journey	from	obscurity	to	eminence,	he	never
saw	 his	 work	 embraced	 by	 the	many	 disciplines	 toward	which	 he	 directed	 it.
Even	 mathematicians	 would	 say,	 without	 apparent	 malice,	 that	 whatever
Mandelbrot	was,	he	was	not	one	of	them.

He	found	his	way	slowly,	always	abetted	by	an	extravagant	knowledge	of
the	 forgotten	 byways	 of	 scientific	 history.	 He	 ventured	 into	 mathematical
linguistics,	 explaining	 a	 law	of	 the	distribution	of	words.	 (Apologizing	 for	 the
symbolism,	 he	 insisted	 that	 the	 problem	 came	 to	 his	 attention	 from	 a	 book
review	that	he	 retrieved	from	a	pure	mathematician’s	wastebasket	so	he	would
have	something	to	read	on	the	Paris	subway.)	He	investigated	game	theory.	He
worked	his	way	in	and	out	of	economics.	He	wrote	about	scaling	regularities	in
the	 distribution	 of	 large	 and	 small	 cities.	 The	 general	 framework	 that	 tied	 his
work	together	remained	in	the	background,	incompletely	formed.

Early	in	his	time	at	IBM,	soon	after	his	study	of	commodity	prices,	he	came
upon	a	practical	problem	of	 intense	concern	 to	his	corporate	patron.	Engineers
were	 perplexed	 by	 the	 problem	 of	 noise	 in	 telephone	 lines	 used	 to	 transmit
information	from	computer	to	computer.	Electric	current	carries	the	information
in	discrete	packets,	and	engineers	knew	that	the	stronger	they	made	the	current
the	 better	 it	 would	 be	 at	 drowning	 out	 noise.	 But	 they	 found	 that	 some
spontaneous	noise	could	never	be	eliminated.	Once	in	a	while	it	would	wipe	out
a	piece	of	signal,	creating	an	error.

Although	 by	 its	 nature	 the	 transmission	 noise	 was	 random,	 it	 was	 well
known	 to	 come	 in	 clusters.	 Periods	 of	 errorless	 communication	 would	 be
followed	 by	 periods	 of	 errors.	 By	 talking	 to	 the	 engineers,	 Mandelbrot	 soon
learned	 that	 there	was	a	piece	of	 folklore	 about	 the	 errors	 that	had	never	been
written	 down,	 because	 it	 matched	 none	 of	 the	 standard	 ways	 of	 thinking:	 the
more	 closely	 they	 looked	 at	 the	 clusters,	 the	more	 complicated	 the	 patterns	 of
errors	 seemed.	 Mandelbrot	 provided	 a	 way	 of	 describing	 the	 distribution	 of



errors	 that	 predicted	 exactly	 the	 observed	 patterns.	 Yet	 it	 was	 exceedingly
peculiar.	 For	 one	 thing,	 it	 made	 it	 impossible	 to	 calculate	 an	 average	 rate	 of
errors—an	average	number	of	errors	per	hour,	or	per	minute,	or	per	second.	On
average,	in	Mandelbrot’s	scheme,	errors	approached	infinite	sparseness.

His	description	worked	by	making	deeper	and	deeper	separations	between
periods	of	clean	transmission	and	periods	of	errors.	Suppose	you	divided	a	day
into	hours.	An	hour	might	pass	with	no	errors	at	all.	Then	an	hour	might	contain
errors.	Then	an	hour	might	pass	with	no	errors.

But	suppose	you	 then	divided	 the	hour	with	errors	 into	smaller	periods	of
twenty	 minutes.	 You	 would	 find	 that	 here,	 too,	 some	 periods	 would	 be
completely	 clean,	 while	 some	 would	 contain	 a	 burst	 of	 errors.	 In	 fact,
Mandelbrot	 argued—contrary	 to	 intuition—that	 you	 could	 never	 find	 a	 time
during	which	errors	were	scattered	continuously.	Within	any	burst	of	errors,	no
matter	 how	 short,	 there	 would	 always	 be	 periods	 of	 completely	 error-free
transmission.	 Furthermore,	 he	 discovered	 a	 consistent	 geometric	 relationship
between	the	bursts	of	errors	and	the	spaces	of	clean	transmission.	On	scales	of
an	hour	or	a	second,	the	proportion	of	error-free	periods	to	error-ridden	periods
remained	 constant.	 (Once,	 to	Mandelbrot’s	 horror,	 a	 batch	 of	 data	 seemed	 to
contradict	his	scheme—but	it	 turned	out	 that	 the	engineers	had	failed	to	record
the	most	extreme	cases,	on	the	assumption	that	they	were	irrelevant.)

Engineers	 had	 no	 framework	 for	 understanding	Mandelbrot’s	 description,
but	 mathematicians	 did.	 In	 effect,	 Mandelbrot	 was	 duplicating	 an	 abstract
construction	known	as	the	Cantor	set,	after	the	nineteenth-century	mathematician
Georg	Cantor.	To	make	a	Cantor	set,	you	start	with	the	interval	of	numbers	from
zero	 to	one,	 represented	by	a	 line	segment.	Then	you	remove	the	middle	 third.
That	leaves	two	segments,	and	you	remove	the	middle	third	of	each	(from	one-
ninth	 to	 two-ninths	 and	 from	 seven-ninths	 to	 eight-ninths).	 That	 leaves	 four
segments,	and	you	remove	the	middle	third	of	each—and	so	on	to	infinity.	What
remains?	 A	 strange	 “dust”	 of	 points,	 arranged	 in	 clusters,	 infinitely	many	 yet
infinitely	sparse.	Mandelbrot	was	thinking	of	transmission	errors	as	a	Cantor	set
arranged	in	time.

This	highly	abstract	description	had	practical	weight	for	scientists	trying	to
decide	 between	 different	 strategies	 of	 controlling	 error.	 In	 particular,	 it	meant
that,	 instead	of	 trying	 to	 increase	 signal	 strength	 to	 drown	out	more	 and	more
noise,	 engineers	 should	 settle	 for	 a	 modest	 signal,	 accept	 the	 inevitability	 of
errors	and	use	a	strategy	of	 redundancy	 to	catch	and	correct	 them.	Mandelbrot
also	changed	the	way	IBM’s	engineers	thought	about	the	cause	of	noise.	Bursts
of	errors	had	always	sent	the	engineers	looking	for	a	man	sticking	a	screwdriver
somewhere.	 But	Mandelbrot’s	 scaling	 patterns	 suggested	 that	 the	 noise	would



never	be	explained	on	the	basis	of	specific	local	events.
Mandelbrot	turned	to	other	data,	drawn	from	the	world’s	rivers.	Egyptians

have	kept	records	of	the	height	of	the	Nile	for	millennia.	It	is	a	matter	of	more
than	 passing	 concern.	 The	 Nile	 suffers	 unusually	 great	 variation,	 flooding
heavily	 in	 some	 years	 and	 subsiding	 in	 others.	 Mandelbrot	 classified	 the
variation	in	terms	of	two	kinds	of	effects,	common	in	economics	as	well,	which
he	called	the	Noah	and	Joseph	Effects.

The	 Noah	 Effect	 means	 discontinuity:	 when	 a	 quantity	 changes,	 it	 can
change	 almost	 arbitrarily	 fast.	 Economists	 traditionally	 imagined	 that	 prices
change	 smoothly—rapidly	 or	 slowly,	 as	 the	 case	may	 be,	 but	 smoothly	 in	 the
sense	 that	 they	 pass	 through	 all	 the	 intervening	 levels	 on	 their	 way	 from	 one
point	to	another.	That	image	of	motion	was	borrowed	from	physics,	like	much	of
the	mathematics	applied	 to	economics.	But	 it	was	wrong.	Prices	can	change	 in
instantaneous	 jumps,	 as	 swiftly	 as	 a	 piece	 of	 news	 can	 flash	 across	 a	 teletype
wire	 and	 a	 thousand	 brokers	 can	 change	 their	minds.	A	 stock	market	 strategy
was	doomed	to	fail,	Mandelbrot	argued,	if	it	assumed	that	a	stock	would	have	to
sell	for	$50	at	some	point	on	its	way	down	from	$60	to	$10.

THE	CANTOR	DUST.	Begin	with	a	 line;	 remove	 the	middle	 third;	 then	 remove	 the	middle	 third	of	 the



remaining	segments;	and	so	on.	The	Cantor	set	is	the	dust	of	points	that	remains.	They	are	infinitely	many,
but	their	total	length	is	0.

The	 paradoxical	 qualities	 of	 such	 constructions	 disturbed	 nineteenth-century	 mathematicians,	 but
Mandelbrot	saw	the	Cantor	set	as	a	model	for	 the	occurrence	of	errors	 in	an	electronic	 transmission	 line.
Engineers	 saw	periods	of	 error-free	 transmission,	mixed	with	periods	when	errors	would	come	 in	bursts.
Looked	at	more	 closely,	 the	bursts,	 too,	 contained	 error-free	periods	within	 them.	And	 so	on—it	was	 an
example	 of	 fractal	 time.	 At	 every	 time	 scale,	 from	 hours	 to	 seconds,	 Mandelbrot	 discovered	 that	 the
relationship	of	errors	to	clean	transmission	remained	constant.	Such	dusts,	he	contended,	are	indispensable
in	modeling	intermittency.

The	 Joseph	 Effect	 means	 persistence.	 There	 came	 seven	 years	 of	 great
plenty	throughout	the	land	of	Egypt.	And	there	shall	arise	after	them	seven	years
of	 famine.	 If	 the	 Biblical	 legend	 meant	 to	 imply	 periodicity,	 it	 was
oversimplified,	 of	 course.	 But	 floods	 and	 droughts	 do	 persist.	 Despite	 an
underlying	randomness,	the	longer	a	place	has	suffered	drought,	the	likelier	it	is
to	suffer	more.	Furthermore,	mathematical	analysis	of	the	Nile’s	height	showed
that	 persistence	 applied	over	 centuries	 as	well	 as	 over	 decades.	The	Noah	 and
Joseph	 Effects	 push	 in	 different	 directions,	 but	 they	 add	 up	 to	 this:	 trends	 in
nature	are	real,	but	they	can	vanish	as	quickly	as	they	come.

Discontinuity,	bursts	of	noise,	Cantor	dusts—phenomena	like	these	had	no
place	in	 the	geometries	of	 the	past	 two	thousand	years.	The	shapes	of	classical
geometry	 are	 lines	 and	 planes,	 circles	 and	 spheres,	 triangles	 and	 cones.	 They
represent	 a	 powerful	 abstraction	 of	 reality,	 and	 they	 inspired	 a	 powerful
philosophy	 of	 Platonic	 harmony.	 Euclid	made	 of	 them	 a	 geometry	 that	 lasted
two	millennia,	the	only	geometry	still	that	most	people	ever	learn.	Artists	found
an	ideal	beauty	in	them,	Ptolemaic	astronomers	built	a	theory	of	the	universe	out
of	them.	But	for	understanding	complexity,	they	turn	out	to	be	the	wrong	kind	of
abstraction.

Clouds	 are	 not	 spheres,	Mandelbrot	 is	 fond	 of	 saying.	Mountains	 are	 not
cones.	Lightning	does	not	travel	in	a	straight	line.	The	new	geometry	mirrors	a
universe	that	is	rough,	not	rounded,	scabrous,	not	smooth.	It	is	a	geometry	of	the
pitted,	 pocked,	 and	 broken	 up,	 the	 twisted,	 tangled,	 and	 intertwined.	 The
understanding	 of	 nature’s	 complexity	 awaited	 a	 suspicion	 that	 the	 complexity
was	 not	 just	 random,	 not	 just	 accident.	 It	 required	 a	 faith	 that	 the	 interesting
feature	of	a	 lightning	bolt’s	path,	 for	example,	was	not	 its	direction,	but	 rather
the	 distribution	 of	 zigs	 and	 zags.	Mandelbrot’s	 work	 made	 a	 claim	 about	 the
world,	 and	 the	 claim	 was	 that	 such	 odd	 shapes	 carry	 meaning.	 The	 pits	 and
tangles	 are	 more	 than	 blemishes	 distorting	 the	 classic	 shapes	 of	 Euclidian
geometry.	They	are	often	the	keys	to	the	essence	of	a	thing.

What	 is	 the	 essence	 of	 a	 coastline,	 for	 example?	 Mandelbrot	 asked	 this
question	in	a	paper	that	became	a	turning	point	for	his	thinking:	“How	Long	Is



the	Coast	of	Britain?”
Mandelbrot	 had	 come	 across	 the	 coastline	 question	 in	 an	 obscure

posthumous	 article	 by	 an	 English	 scientist,	 Lewis	 F.	 Richardson,	 who	 groped
with	a	surprising	number	of	the	issues	that	later	became	part	of	chaos.	He	wrote
about	 numerical	 weather	 prediction	 in	 the	 1920s,	 studied	 fluid	 turbulence	 by
throwing	a	sack	of	white	parsnips	into	the	Cape	Cod	Canal,	and	asked	in	a	1926
paper,	 “Does	 the	 Wind	 Possess	 a	 Velocity?”	 (“The	 question,	 at	 first	 sight
foolish,	improves	on	acquaintance,”	he	wrote.)	Wondering	about	coastlines	and
wiggly	 national	 borders,	 Richardson	 checked	 encyclopedias	 in	 Spain	 and
Portugal,	Belgium	and	 the	Netherlands	and	discovered	discrepancies	of	 twenty
percent	in	the	estimated	lengths	of	their	common	frontiers.

Mandelbrot’s	 analysis	 of	 this	 question	 struck	 listeners	 as	 either	 painfully
obvious	or	absurdly	false.	He	found	that	most	people	answered	 the	question	 in
one	of	 two	ways:	 “I	 don’t	 know,	 it’s	 not	my	 field,”	 or	 “I	 don’t	 know,	but	 I’ll
look	it	up	in	the	encyclopedia.”

In	fact,	he	argued,	any	coastline	is—in	a	sense—infinitely	long.	In	another
sense,	 the	 answer	 depends	 on	 the	 length	 of	 your	 ruler.	Consider	 one	 plausible
method	of	measuring.	A	surveyor	takes	a	set	of	dividers,	opens	them	to	a	length
of	one	yard,	and	walks	them	along	the	coastline.	The	resulting	number	of	yards
is	just	an	approximation	of	the	true	length,	because	the	dividers	skip	over	twists
and	 turns	 smaller	 than	 one	 yard,	 but	 the	 surveyor	 writes	 the	 number	 down
anyway.	 Then	 he	 sets	 the	 dividers	 to	 a	 smaller	 length—say,	 one	 foot—and
repeats	 the	 process.	 He	 arrives	 at	 a	 somewhat	 greater	 length,	 because	 the
dividers	will	capture	more	of	the	detail	and	it	will	take	more	than	three	one-foot
steps	to	cover	the	distance	previously	covered	by	a	one-yard	step.	He	writes	this
new	number	down,	sets	the	dividers	at	four	inches,	and	starts	again.	This	mental
experiment,	 using	 imaginary	 dividers,	 is	 a	 way	 of	 quantifying	 the	 effect	 of
observing	 an	 object	 from	 different	 distances,	 at	 different	 scales.	 An	 observer
trying	to	estimate	the	length	of	England’s	coastline	from	a	satellite	will	make	a
smaller	guess	 than	an	observer	 trying	 to	walk	 its	 coves	and	beaches,	who	will
make	a	smaller	guess	in	turn	than	a	snail	negotiating	every	pebble.



A	FRACTAL	SHORE.	A	computer-generated	coastline:	the	details	are	random,	but	the	fractal	dimension	is
constant,	 so	 the	 degree	 of	 roughness	 or	 irregularity	 looks	 the	 same	 no	 matter	 how	 much	 the	 image	 is
magnified.

Common	sense	suggests	that,	although	these	estimates	will	continue	to	get
larger,	 they	 will	 approach	 some	 particular	 final	 value,	 the	 true	 length	 of	 the
coastline.	The	measurements	should	converge,	in	other	words.	And	in	fact,	 if	a
coastline	were	some	Euclidean	shape,	such	as	a	circle,	this	method	of	summing
finer	 and	 finer	 straight-line	 distances	would	 indeed	 converge.	 But	Mandelbrot
found	that	as	the	scale	of	measurement	becomes	smaller,	the	measured	length	of
a	 coastline	 rises	 without	 limit,	 bays	 and	 peninsulas	 revealing	 ever-smaller
subbays	and	 subpeninsulas—at	 least	down	 to	atomic	 scales,	where	 the	process
does	finally	come	to	an	end.	Perhaps.

SINCE	 EUCLIDEAN	 MEASUREMENTS—length,	 depth,	 thickness—failed	 to
capture	the	essence	of	irregular	shapes,	Mandelbrot	turned	to	a	different	idea,	the
idea	of	dimension.	Dimension	is	a	quality	with	a	much	richer	life	for	scientists
than	 for	 nonscientists.	We	 live	 in	 a	 three-dimensional	world,	meaning	 that	we
need	 three	 numbers	 to	 specify	 a	 point:	 for	 example,	 longitude,	 latitude,	 and



altitude.	The	three	dimensions	are	imagined	as	directions	at	right	angles	to	one
another.	 This	 is	 still	 the	 legacy	 of	Euclidean	 geometry,	where	 space	 has	 three
dimensions,	a	plane	has	two,	a	line	has	one,	and	a	point	has	zero.

The	process	of	abstraction	that	allowed	Euclid	to	conceive	of	one–	or	two-
dimensional	objects	 spills	over	easily	 into	our	use	of	everyday	objects.	A	road
map,	 for	 all	 practical	 purposes,	 is	 a	 quintessentially	 two-dimensional	 thing,	 a
piece	of	a	plane.	 It	uses	 its	 two	dimensions	 to	carry	 information	of	a	precisely
two-dimensional	kind.	In	reality,	of	course,	road	maps	are	as	three-dimensional
as	 everything	 else,	 but	 their	 thickness	 is	 so	 slight	 (and	 so	 irrelevant	 to	 their
purpose)	 that	 it	 can	 be	 forgotten.	 Effectively,	 a	 road	 map	 remains	 two-
dimensional,	even	when	it	is	folded	up.	In	the	same	way,	a	thread	is	effectively
one-dimensional	and	a	particle	has	effectively	no	dimension	at	all.

Then	what	 is	 the	 dimension	 of	 a	 ball	 of	 twine?	Mandelbrot	 answered,	 It
depends	on	your	point	of	view.	From	a	great	distance,	the	ball	is	no	more	than	a
point,	with	zero	dimensions.	From	closer,	the	ball	is	seen	to	fill	spherical	space,
taking	up	three	dimensions.	From	closer	still,	the	twine	comes	into	view,	and	the
object	 becomes	 effectively	 one-dimensional,	 though	 the	 one	 dimension	 is
certainly	tangled	up	around	itself	in	a	way	that	makes	use	of	three-dimensional
space.	 The	 notion	 of	 how	 many	 numbers	 it	 takes	 to	 specify	 a	 point	 remains
useful.	 From	 far	 away,	 it	 takes	 none—the	 point	 is	 all	 there	 is.	 From	 closer,	 it
takes	three.	From	closer	still,	one	is	enough—any	given	position	along	the	length
of	twine	is	unique,	whether	the	twine	is	stretched	out	or	tangled	up	in	a	ball.

And	on	toward	microscopic	perspectives:	twine	turns	to	three-dimensional
columns,	the	columns	resolve	themselves	into	one-dimensional	fibers,	 the	solid
material	 dissolves	 into	 zero-dimensional	 points.	 Mandelbrot	 appealed,
unmathematically,	 to	 relativity:	 “The	 notion	 that	 a	 numerical	 result	 should
depend	 on	 the	 relation	 of	 object	 to	 observer	 is	 in	 the	 spirit	 of	 physics	 in	 this
century	and	is	even	an	exemplary	illustration	of	it.”

But	philosophy	aside,	the	effective	dimension	of	an	object	does	turn	out	to
be	 different	 from	 its	mundane	 three	 dimensions.	 A	weakness	 in	Mandelbrot’s
verbal	argument	seemed	to	be	its	reliance	on	vague	notions,	“from	far	away”	and
“a	little	closer.”	What	about	in	between?	Surely	there	was	no	clear	boundary	at
which	 a	 ball	 of	 twine	 changes	 from	 a	 three-dimensional	 to	 a	 one-dimensional
object.	Yet,	far	from	being	a	weakness,	the	ill-defined	nature	of	these	transitions
led	to	a	new	idea	about	the	problem	of	dimensions.

Mandelbrot	moved	beyond	dimensions	0,1,2,3…to	a	seeming	impossibility:
fractional	 dimensions.	 The	 notion	 is	 a	 conceptual	 high-wire	 act.	 For
nonmathematicians	 it	 requires	 a	 willing	 suspension	 of	 disbelief.	 Yet	 it	 proves
extraordinarily	powerful.



Fractional	dimension	becomes	a	way	of	measuring	qualities	that	otherwise
have	no	clear	definition:	the	degree	of	roughness	or	brokenness	or	irregularity	in
an	object.	A	twisting	coastline,	for	example,	despite	its	immeasurability	in	terms
of	 length,	 nevertheless	 has	 a	 certain	 characteristic	 degree	 of	 roughness.
Mandelbrot	 specified	 ways	 of	 calculating	 the	 fractional	 dimension	 of	 real
objects,	given	some	technique	of	constructing	a	shape	or	given	some	data,	and
he	 allowed	 his	 geometry	 to	make	 a	 claim	 about	 the	 irregular	 patterns	 he	 had
studied	in	nature.	The	claim	was	that	the	degree	of	irregularity	remains	constant
over	different	scales.	Surprisingly	often,	the	claim	turns	out	to	be	true.	Over	and
over	again,	the	world	displays	a	regular	irregularity.

One	wintry	 afternoon	 in	 1975,	 aware	 of	 the	 parallel	 currents	 emerging	 in
physics,	preparing	his	first	major	work	for	publication	in	book	form,	Mandelbrot
decided	he	needed	a	name	for	his	shapes,	his	dimensions,	and	his	geometry.	His
son	was	home	from	school,	and	Mandelbrot	found	himself	thumbing	through	the
boy’s	 Latin	 dictionary.	 He	 came	 across	 the	 adjective	 fractus,	 from	 the	 verb
frangere,	 to	 break.	The	 resonance	 of	 the	main	English	 cognates—fracture	 and
fraction—seemed	appropriate.	Mandelbrot	created	the	word	(noun	and	adjective,
English	and	French)	fractal.

IN	THE	MIND’S	EYE,	a	fractal	is	a	way	of	seeing	infinity.
Imagine	a	 triangle,	each	of	 its	sides	one	foot	 long.	Now	imagine	a	certain

transformation—a	particular,	well-defined,	easily	repeated	set	of	rules.	Take	the
middle	one-third	of	 each	 side	and	attach	a	new	 triangle,	 identical	 in	 shape	but
one-third	the	size.

The	result	is	a	star	of	David.	Instead	of	three	one-foot	segments,	the	outline
of	this	shape	is	now	twelve	four-inch	segments.	Instead	of	three	points,	there	are
six.



THE	KOCH	 SNOWFLAKE.	 “A	 rough	 but	 vigorous	 model	 of	 a	 coastline,”	 in	Mandelbrot’s	 words.	 To
construct	a	Koch	curve,	begin	with	a	triangle	with	sides	of	length	1.	At	the	middle	of	each	side,	add	a	new
triangle	one-third	the	size;	and	so	on.	The	length	of	the	boundary	is	3	×	4/3	×	4/3	×	4/3…—infinity.	Yet	the
area	remains	less	 than	the	area	of	a	circle	drawn	around	the	original	 triangle.	Thus	an	infinitely	long	line
surrounds	a	finite	area.

Now	take	each	of	the	twelve	sides	and	repeat	the	transformation,	attaching
a	smaller	 triangle	onto	 the	middle	 third.	Now	again,	and	so	on	 to	 infinity.	The
outline	becomes	more	and	more	detailed,	just	as	a	Cantor	set	becomes	more	and
more	sparse.	It	resembles	a	sort	of	ideal	snowflake.	It	is	known	as	a	Koch	curve
—a	curve	being	any	connected	line,	whether	straight	or	round—after	Helge	von
Koch,	the	Swedish	mathematician	who	first	described	it	in	1904.

On	reflection,	it	becomes	apparent	that	the	Koch	curve	has	some	interesting
features.	For	one	thing,	it	is	a	continuous	loop,	never	intersecting	itself,	because
the	new	triangles	on	each	side	are	always	small	enough	 to	avoid	bumping	 into
each	other.	Each	transformation	adds	a	little	area	to	the	inside	of	the	curve,	but
the	total	area	remains	finite,	not	much	bigger	than	the	original	triangle,	in	fact.	If
you	 drew	 a	 circle	 around	 the	 original	 triangle,	 the	 Koch	 curve	 would	 never
extend	beyond	it.

Yet	 the	 curve	 itself	 is	 infinitely	 long,	 as	 long	 as	 a	Euclidean	 straight	 line
extending	to	the	edges	of	an	unbounded	universe.	Just	as	the	first	transformation
replaces	a	one-foot	segment	with	four	four-inch	segments,	every	transformation
multiplies	the	total	length	by	four-thirds.	This	paradoxical	result,	infinite	length
in	a	finite	space,	disturbed	many	of	the	turn-of–the-century	mathematicians	who
thought	about	it.	The	Koch	curve	was	monstrous,	disrespectful	to	all	reasonable
intuition	 about	 shapes	 and—it	 almost	 went	 without	 saying—pathologically
unlike	anything	to	be	found	in	nature.

Under	 the	 circumstances,	 their	work	made	 little	 impact	 at	 the	 time,	 but	 a
few	 equally	 perverse	mathematicians	 imagined	 other	 shapes	with	 some	 of	 the



bizarre	 qualities	 of	 the	 Koch	 curve.	 There	 were	 Peano	 curves.	 There	 were
Sierpiński	carpets	and	Sierpiński	gaskets.	To	make	a	carpet,	start	with	a	square,
divide	 it	 three-by–three	 into	 nine	 equal	 squares,	 and	 remove	 the	 central	 one.
Then	repeat	the	operation	on	the	eight	remaining	squares,	putting	a	square	hole
in	the	center	of	each.	The	gasket	is	the	same	but	with	equilateral	triangles	instead
of	 squares;	 it	 has	 the	 hard-to–imagine	 property	 that	 any	 arbitrary	 point	 is	 a
branching	point,	a	fork	in	the	structure.	Hard	to	imagine,	that	is,	until	you	have
thought	 about	 the	 Eiffel	 Tower,	 a	 good	 three-dimensional	 approximation,	 its
beams	and	trusses	and	girders	branching	into	a	lattice	of	ever-thinner	members,	a
shimmering	network	of	fine	detail.	Eiffel,	of	course,	could	not	carry	the	scheme
to	 infinity,	but	he	appreciated	 the	 subtle	engineering	point	 that	allowed	him	 to
remove	weight	without	also	removing	structural	strength.

The	mind	cannot	visualize	the	whole	infinite	self-embedding	of	complexity.
But	 to	 someone	 with	 a	 geometer’s	 way	 of	 thinking	 about	 form,	 this	 kind	 of
repetition	 of	 structure	 on	 finer	 and	 finer	 scales	 can	 open	 a	 whole	 world.
Exploring	these	shapes,	pressing	one’s	mental	fingers	into	the	rubbery	edges	of
their	possibilities,	was	a	kind	of	playing,	and	Mandelbrot	took	a	childlike	delight
in	seeing	variations	that	no	one	had	seen	or	understood	before.	When	they	had
no	 names,	 he	 named	 them:	 ropes	 and	 sheets,	 sponges	 and	 foams,	 curds	 and
gaskets.

Fractional	dimension	proved	to	be	precisely	the	right	yardstick.	In	a	sense,
the	degree	of	 irregularity	corresponded	to	 the	efficiency	of	 the	object	 in	 taking
up	space.	A	simple,	Euclidean,	one-dimensional	line	fills	no	space	at	all.	But	the
outline	of	the	Koch	curve,	with	infinite	length	crowding	into	finite	area,	does	fill
space.	 It	 is	 more	 than	 a	 line,	 yet	 less	 than	 a	 plane.	 It	 is	 greater	 than	 one-
dimensional,	yet	less	than	a	two-dimensional	form.	Using	techniques	originated
by	mathematicians	 early	 in	 the	 century	 and	 then	 all	 but	 forgotten,	Mandelbrot
could	 characterize	 the	 fractional	 dimension	 precisely.	 For	 the	Koch	 curve,	 the
infinitely	extended	multiplication	by	four-thirds	gives	a	dimension	of	1.2618.



CONSTRUCTING	 WITH	 HOLES.	 A	 few	 mathematicians	 in	 the	 early	 twentieth	 century	 conceived
monstrous-seeming	objects	made	by	the	technique	of	adding	or	removing	infinitely	many	parts.	One	such
shape	is	the	Sierpinski	carpet,	constructed	by	cutting	the	center	one-ninth	of	a	square;	then	cutting	out	the
centers	of	the	eight	smaller	squares	that	remain;	and	so	on.	The	three-dimensional	analogue	is	the	Menger
sponge,	a	solid-looking	lattice	that	has	an	infinite	surface	area,	yet	zero	volume.

In	 pursuing	 this	 path,	Mandelbrot	 had	 two	 great	 advantages	 over	 the	 few
other	mathematicians	who	had	thought	about	such	shapes.	One	was	his	access	to
the	computing	resources	 that	go	with	 the	name	of	IBM.	Here	was	another	 task
ideally	 suited	 to	 the	 computer’s	 particular	 form	 of	 high-speed	 idiocy.	 Just	 as
meteorologists	 needed	 to	 perform	 the	 same	 few	 calculations	 at	 millions	 of
neighboring	points	 in	 the	atmosphere,	Mandelbrot	needed	 to	perform	an	easily
programmed	 transformation	 again	 and	 again	 and	 again	 and	 again.	 Ingenuity



could	 conceive	 of	 transformations.	 Computers	 could	 draw	 them—sometimes
with	 unexpected	 results.	 The	 early	 twentieth-century	 mathematicians	 quickly
reached	 a	 barrier	 of	 hard	 calculation,	 like	 the	 barrier	 faced	 by	 early	 pro-
tobiologists	without	microscopes.	 In	 looking	 into	 a	 universe	 of	 finer	 and	 finer
detail,	the	imagination	can	carry	one	only	so	far.

In	Mandelbrot’s	words:	“There	was	a	long	hiatus	of	a	hundred	years	where
drawing	did	not	play	any	role	in	mathematics	because	hand	and	pencil	and	ruler
were	exhausted.	They	were	well	understood	and	no	longer	in	the	forefront.	And
the	computer	did	not	exist.

“When	I	came	in	this	game,	there	was	a	total	absence	of	intuition.	One	had
to	create	an	intuition	from	scratch.	Intuition	as	it	was	trained	by	the	usual	tools—
the	 hand,	 the	 pencil,	 and	 the	 ruler—found	 these	 shapes	 quite	 monstrous	 and
pathological.	 The	 old	 intuition	 was	 misleading.	 The	 first	 pictures	 were	 to	 me
quite	 a	 surprise;	 then	 I	would	 recognize	 some	pictures	 from	previous	pictures,
and	so	on.

“Intuition	is	not	something	that	is	given.	I’ve	trained	my	intuition	to	accept
as	obvious	 shapes	which	were	 initially	 rejected	as	 absurd,	 and	 I	 find	everyone
else	can	do	the	same.”

Mandelbrot’s	 other	 advantage	 was	 the	 picture	 of	 reality	 he	 had	 begun
forming	in	his	encounters	with	cotton	prices,	with	electronic	transmission	noise,
and	with	 river	 floods.	The	picture	was	beginning	 to	come	 into	 focus	now.	His
studies	of	irregular	patterns	in	natural	processes	and	his	exploration	of	infinitely
complex	 shapes	 had	 an	 intellectual	 intersection:	 a	 quality	 of	 self-similarity.
Above	all,	fractal	meant	self-similar.

Self-similarity	is	symmetry	across	scale.	It	implies	recursion,	pattern	inside
of	 pattern.	Mandelbrot’s	 price	 charts	 and	 river	 charts	 displayed	 self-similarity,
because	 not	 only	 did	 they	 produce	 detail	 at	 finer	 and	 finer	 scales,	 they	 also
produced	detail	with	certain	constant	measurements.	Monstrous	shapes	 like	 the
Koch	 curve	 display	 self-similarity	 because	 they	 look	 exactly	 the	 same	 even
under	 high	 magnification.	 The	 self-similarity	 is	 built	 into	 the	 technique	 of
constructing	 the	 curves—the	 same	 transformation	 is	 repeated	 at	 smaller	 and
smaller	 scales.	 Self-similarity	 is	 an	 easily	 recognizable	 quality.	 Its	 images	 are
everywhere	in	the	culture:	 in	the	infinitely	deep	reflection	of	a	person	standing
between	 two	 mirrors,	 or	 in	 the	 cartoon	 notion	 of	 a	 fish	 eating	 a	 smaller	 fish
eating	 a	 smaller	 fish	 eating	 a	 smaller	 fish.	Mandelbrot	 likes	 to	 quote	 Jonathan
Swift:	“So,	Nat’ralists	observe,	a	Flea/Hath	smaller	Fleas	that	on	him	prey,/And
these	have	smaller	Fleas	to	bite	’em,/	And	so	proceed	ad	infinitum.”

IN	THE	NORTHEASTERN	United	States,	the	best	place	to	study	earthquakes	is



the	 Lamont-Doherty	 Geophysical	 Observatory,	 a	 group	 of	 unprepossessing
buildings	 hidden	 in	 the	 woods	 of	 southern	 New	 York	 State,	 just	 west	 of	 the
Hudson	 River.	 Lamont-Doherty	 is	 where	 Christopher	 Scholz,	 a	 Columbia
University	professor	specializing	in	the	form	and	structure	of	the	solid	earth,	first
started	thinking	about	fractals.

While	mathematicians	and	 theoretical	physicists	disregarded	Mandelbrot’s
work,	Scholz	was	precisely	the	kind	of	pragmatic,	working	scientist	most	ready
to	 pick	 up	 the	 tools	 of	 fractal	 geometry.	 He	 had	 stumbled	 across	 Benoit
Mandelbrot’s	name	 in	 the	1960s,	when	Mandelbrot	was	working	 in	economics
and	Scholz	was	an	M.I.T.	graduate	 student	 spending	a	great	deal	of	 time	on	a
stubborn	question	about	earthquakes.	 It	had	been	well	known	 for	 twenty	years
that	 the	 distribution	 of	 large	 and	 small	 earthquakes	 followed	 a	 particular
mathematical	pattern,	precisely	 the	same	scaling	pattern	 that	 seemed	 to	govern
the	distribution	of	personal	incomes	in	a	free-market	economy.	This	distribution
was	 observed	 everywhere	 on	 earth,	 wherever	 earthquakes	 were	 counted	 and
measured.	 Considering	 how	 irregular	 and	 unpredictable	 earthquakes	 were
otherwise,	 it	 was	 worthwhile	 to	 ask	 what	 sort	 of	 physical	 processes	 might
explain	this	regularity.	Or	so	it	seemed	to	Scholz.	Most	seismologists	had	been
content	to	note	the	fact	and	move	on.

Scholz	remembered	Mandelbrot’s	name,	and	in	1978	he	bought	a	profusely
illustrated,	 bizarrely	 erudite,	 equation-studded	 book	 called	 Fractals:	 Form,
Chance	and	Dimension.	 It	was	as	 if	Mandelbrot	had	collected	 in	one	 rambling
volume	everything	he	knew	or	suspected	about	the	universe.	Within	a	few	years
this	 book	 and	 its	 expanded	 and	 refined	 replacement,	The	Fractal	Geometry	 of
Nature,	had	sold	more	copies	than	any	other	book	of	high	mathematics.	Its	style
was	abstruse	and	exasperating,	by	turns	witty,	literary,	and	opaque.	Mandelbrot
himself	called	it	“a	manifesto	and	a	casebook.”

Like	a	 few	counterparts	 in	a	handful	of	other	 fields,	particularly	scientists
who	worked	on	the	material	parts	of	nature,	Scholz	spent	several	years	trying	to
figure	out	what	to	do	with	this	book.	It	was	far	from	obvious.	Fractals	was,	as
Scholz	 put	 it,	 “not	 a	 how-to	 book	 but	 a	 gee-whiz	 book.”	 Scholz,	 however,
happened	 to	 care	 deeply	 about	 surfaces,	 and	 surfaces	were	 everywhere	 in	 this
book.	 He	 found	 that	 he	 could	 not	 stop	 thinking	 about	 the	 promise	 of
Mandelbrot’s	 ideas.	He	began	 to	work	out	 a	way	of	using	 fractals	 to	describe,
classify,	and	measure	the	pieces	of	his	scientific	world.

He	soon	realized	that	he	was	not	alone,	although	it	was	several	more	years
before	fractals	conferences	and	seminars	began	multiplying.	The	unifying	ideas
of	 fractal	 geometry	 brought	 together	 scientists	 who	 thought	 their	 own
observations	 were	 idiosyncratic	 and	 who	 had	 no	 systematic	 way	 of



understanding	them.	The	insights	of	fractal	geometry	helped	scientists	who	study
the	way	things	meld	together,	the	way	they	branch	apart,	or	the	way	they	shatter.
It	 is	 a	method	of	 looking	 at	materials—the	microscopically	 jagged	 surfaces	 of
metals,	 the	 tiny	holes	 and	channels	of	porous	oil-bearing	 rock,	 the	 fragmented
landscapes	of	an	earthquake	zone.

As	 Scholz	 saw	 it,	 it	 was	 the	 business	 of	 geophysicists	 to	 describe	 the
surface	of	 the	earth,	 the	 surface	whose	 intersection	with	 the	 flat	oceans	makes
coastlines.	Within	the	top	of	the	solid	earth	are	surfaces	of	another	kind,	surfaces
of	 cracks.	Faults	 and	 fractures	 so	dominate	 the	 structure	of	 the	 earth’s	 surface
that	 they	 become	 the	 key	 to	 any	 good	 description,	more	 important	 on	 balance
than	the	material	they	run	through.	The	fractures	crisscross	the	earth’s	surface	in
three	 dimensions,	 creating	what	Scholz	whimsically	 called	 the	 “schizosphere.”
They	control	the	flow	of	fluid	through	the	ground—the	flow	of	water,	the	flow
of	 oil,	 and	 the	 flow	 of	 natural	 gas.	 They	 control	 the	 behavior	 of	 earthquakes.
Understanding	surfaces	was	paramount,	yet	Scholz	believed	that	his	profession
was	in	a	quandary.	In	truth,	no	framework	existed.

Geophysicists	 looked	 at	 surfaces	 the	 way	 anyone	 would,	 as	 shapes.	 A
surface	might	be	flat.	Or	it	might	have	a	particular	shape.	You	could	look	at	the
outline	of	a	Volkswagen	Beetle,	for	example,	and	draw	that	surface	as	a	curve.
The	 curve	would	 be	measurable	 in	 familiar	 Euclidean	ways.	You	 could	 fit	 an
equation	 to	 it.	 But	 in	 Scholz’s	 description,	 you	would	 only	 be	 looking	 at	 that
surface	through	a	narrow	spectral	band.	It	would	be	like	looking	at	the	universe
through	a	red	filter—you	see	what	is	happening	at	that	particular	wavelength	of
light,	but	you	miss	everything	happening	at	the	wavelengths	of	other	colors,	not
to	mention	that	vast	range	of	activity	at	parts	of	 the	spectrum	corresponding	to
infrared	radiation	or	radio	waves.	The	spectrum,	in	this	analogy,	corresponds	to
scale.	To	think	of	the	surface	of	a	Volkswagen	in	terms	of	its	Euclidean	shape	is
to	see	it	only	on	the	scale	of	an	observer	ten	meters	or	one	hundred	meters	away.
What	about	an	observer	one	kilometer	away,	or	one	hundred	kilometers?	What
about	an	observer	one	millimeter	away,	or	one	micron?

Imagine	tracing	the	surface	of	the	earth	as	it	would	look	from	a	distance	of
one	hundred	kilometers	out	in	space.	The	line	goes	up	and	down	over	trees	and
hillocks,	 buildings	 and—in	 a	 parking	 lot	 somewhere—a	Volkswagen.	On	 that
scale,	the	surface	is	just	a	bump	among	many	other	bumps,	a	bit	of	randomness.

Or	imagine	looking	at	the	Volkswagen	from	closer	and	closer,	zooming	in
with	 magnifying	 glass	 and	 microscope.	 At	 first	 the	 surface	 seems	 to	 get
smoother,	 as	 the	 roundness	of	bumpers	and	hood	passes	out	of	view.	But	 then
the	microscopic	surface	of	the	steel	turns	out	to	be	bumpy	itself,	in	an	apparently
random	way.	It	seems	chaotic.



Scholz	found	that	fractal	geometry	provided	a	powerful	way	of	describing
the	particular	bumpiness	of	the	earth’s	surface,	and	metallurgists	found	the	same
for	 the	 surfaces	 of	 different	 kinds	 of	 steel.	 The	 fractal	 dimension	 of	 a	metal’s
surface,	for	example,	often	provides	information	that	corresponds	to	the	metal’s
strength.	And	 the	 fractal	 dimension	of	 the	 earth’s	 surface	provides	 clues	 to	 its
important	qualities	as	well.	Scholz	thought	about	a	classic	geological	formation,
a	 talus	 slope	 on	 a	 mountainside.	 From	 a	 distance	 it	 is	 a	 Euclidean	 shape,
dimension	two.	As	a	geologist	approaches,	though,	he	finds	himself	walking	not
so	much	on	it	as	in	it—the	talus	has	resolved	itself	into	boulders	the	size	of	cars.
Its	 effective	 dimension	 has	 become	 about	 2.7,	 because	 the	 rock	 surfaces	 hook
over	and	wrap	around	and	nearly	fill	three-dimensional	space,	like	the	surface	of
a	sponge.

Fractal	 descriptions	 found	 immediate	 application	 in	 a	 series	 of	 problems
connected	to	the	properties	of	surfaces	in	contact	with	one	another.	The	contact
between	 tire	 treads	 and	 concrete	 is	 such	 a	 problem.	 So	 is	 contact	 in	machine
joints,	 or	 electrical	 contact.	 Contacts	 between	 surfaces	 have	 properties	 quite
independent	 of	 the	 materials	 involved.	 They	 are	 properties	 that	 turn	 out	 to
depend	on	the	fractal	quality	of	the	bumps	upon	bumps	upon	bumps.	One	simple
but	powerful	consequence	of	the	fractal	geometry	of	surfaces	is	that	surfaces	in
contact	do	not	touch	everywhere.	The	bumpiness	at	all	scales	prevents	that.	Even
in	 rock	 under	 enormous	 pressure,	 at	 some	 sufficiently	 small	 scale	 it	 becomes
clear	 that	 gaps	 remain,	 allowing	 fluid	 to	 flow.	 To	 Scholz,	 it	 is	 the	 Humpty-
Dumpty	Effect.	 It	 is	why	two	pieces	of	a	broken	teacup	can	never	be	rejoined,
even	though	they	appear	to	fit	 together	at	some	gross	scale.	At	a	smaller	scale,
irregular	bumps	are	failing	to	coincide.

Scholz	became	known	in	his	field	as	one	of	a	few	people	taking	up	fractal
techniques.	 He	 knew	 that	 some	 of	 his	 colleagues	 viewed	 this	 small	 group	 as
freaks.	 If	 he	 used	 the	 word	 fractal	 in	 the	 title	 of	 a	 paper,	 he	 felt	 that	 he	 was
regarded	either	as	being	admirably	current	or	not-so–admirably	on	a	bandwagon.
Even	the	writing	of	papers	forced	difficult	decisions,	between	writing	for	a	small
audience	 of	 fractal	 aficionados	 or	 writing	 for	 a	 broader	 geophysical	 audience
that	would	need	explanations	of	the	basic	concepts.	Still,	Scholz	considered	the
tools	of	fractal	geometry	indispensable.

“It’s	 a	 single	 model	 that	 allows	 us	 to	 cope	 with	 the	 range	 of	 changing
dimensions	 of	 the	 earth,”	 he	 said.	 “It	 gives	 you	mathematical	 and	 geometrical
tools	 to	describe	 and	make	predictions.	Once	you	get	 over	 the	hump,	 and	you
understand	 the	paradigm,	you	can	 start	 actually	measuring	 things	 and	 thinking
about	things	in	a	new	way.	You	see	them	differently.	You	have	a	new	vision.	It’s
not	the	same	as	the	old	vision	at	all—it’s	much	broader.”



HOW	BIG	IS	IT?	How	long	does	it	last?	These	are	the	most	basic	questions	a
scientist	 can	 ask	 about	 a	 thing.	 They	 are	 so	 basic	 to	 the	 way	 people
conceptualize	the	world	that	it	 is	not	easy	to	see	that	they	imply	a	certain	bias.
They	suggest	that	size	and	duration,	qualities	that	depend	on	scale,	are	qualities
with	meaning,	qualities	 that	 can	help	describe	 an	object	or	 classify	 it.	When	a
biologist	describes	a	human	being,	or	a	physicist	describes	a	quark,	how	big	and
how	 long	 are	 indeed	 appropriate	 questions.	 In	 their	 gross	 physical	 structure,
animals	are	very	much	tied	to	a	particular	scale.	Imagine	a	human	being	scaled
up	 to	 twice	 its	 size,	 keeping	 all	 proportions	 the	 same,	 and	 you	 imagine	 a
structure	whose	bones	will	collapse	under	its	weight.	Scale	is	important.

The	physics	of	earthquake	behavior	is	mostly	independent	of	scale.	A	large
earthquake	is	just	a	scaled-up	version	of	a	small	earthquake.	That	distinguishes
earthquakes	 from	 animals,	 for	 example—a	 ten-inch	 animal	must	 be	 structured
quite	 differently	 from	 a	 one-inch	 animal,	 and	 a	 hundred-inch	 animal	 needs	 a
different	architecture	still,	if	its	bones	are	not	to	snap	under	the	increased	mass.
Clouds,	 on	 the	 other	 hand,	 are	 scaling	 phenomena	 like	 earthquakes.	 Their
characteristic	 irregularity—describable	 in	 terms	 of	 fractal	 dimension—changes
not	at	all	as	they	are	observed	on	different	scales.	That	is	why	air	travelers	lose
all	 perspective	 on	 how	 far	 away	 a	 cloud	 is.	Without	 help	 from	 cues	 such	 as
haziness,	a	cloud	twenty	feet	away	can	be	indistinguishable	from	two	thousand
feet	 away.	 Indeed,	 analysis	 of	 satellite	 pictures	 has	 shown	 an	 invariant	 fractal
dimension	in	clouds	observed	from	hundreds	of	miles	away.

It	is	hard	to	break	the	habit	of	thinking	of	things	in	terms	of	how	big	they
are	and	how	long	 they	 last.	But	 the	claim	of	 fractal	geometry	 is	 that,	 for	some
elements	 of	 nature,	 looking	 for	 a	 characteristic	 scale	 becomes	 a	 distraction.
Hurricane.	 By	 definition,	 it	 is	 a	 storm	 of	 a	 certain	 size.	 But	 the	 definition	 is
imposed	by	people	on	nature.	In	reality,	atmospheric	scientists	are	realizing	that
tumult	 in	 the	air	 forms	a	continuum,	from	the	gusty	swirling	of	 litter	on	a	city
street	corner	to	the	vast	cyclonic	systems	visible	from	space.	Categories	mislead.
The	ends	of	the	continuum	are	of	a	piece	with	the	middle.

It	 happens	 that	 the	 equations	 of	 fluid	 flow	 are	 in	 many	 contexts
dimensionless,	 meaning	 that	 they	 apply	 without	 regard	 to	 scale.	 Scaled-down
airplane	wings	and	ship	propellers	can	be	tested	in	wind	tunnels	and	laboratory
basins.	And,	with	some	limitations,	small	storms	act	like	large	storms.

Blood	 vessels,	 from	 aorta	 to	 capillaries,	 form	 another	 kind	 of	 continuum.
They	branch	and	divide	and	branch	again	until	they	become	so	narrow	that	blood
cells	 are	 forced	 to	 slide	 through	 single	 file.	 The	 nature	 of	 their	 branching	 is
fractal.	 Their	 structure	 resembles	 one	 of	 the	 monstrous	 imaginary	 objects
conceived	by	Mandelbrot’s	 turn-of–the-century	mathematicians.	As	a	matter	of



physiological	necessity,	blood	vessels	must	perform	a	bit	of	dimensional	magic.
Just	 as	 the	 Koch	 curve,	 for	 example,	 squeezes	 a	 line	 of	 infinite	 length	 into	 a
small	 area,	 the	 circulatory	 system	 must	 squeeze	 a	 huge	 surface	 area	 into	 a
limited	volume.	In	terms	of	the	body’s	resources,	blood	is	expensive	and	space	is
at	a	premium.	The	fractal	structure	nature	has	devised	works	so	efficiently	that,
in	most	 tissue,	no	cell	 is	ever	more	 than	 three	or	four	cells	away	from	a	blood
vessel.	Yet	 the	vessels	and	blood	 take	up	 little	 space,	no	more	 than	about	 five
percent	 of	 the	 body.	 It	 is,	 as	 Mandelbrot	 put	 it,	 the	 Merchant	 of	 Venice
Syndrome—not	only	can’t	you	take	a	pound	of	flesh	without	spilling	blood,	you
can’t	take	a	milligram.

This	 exquisite	 structure—actually,	 two	 intertwining	 trees	 of	 veins	 and
arteries—is	far	from	exceptional.	The	body	is	filled	with	such	complexity.	In	the
digestive	 tract,	 tissue	 reveals	 undulations	 within	 undulations.	 The	 lungs,	 too,
need	 to	pack	 the	greatest	possible	surface	 into	 the	smallest	 space.	An	animal’s
ability	to	absorb	oxygen	is	roughly	proportional	to	the	surface	area	of	its	lungs.
Typical	human	lungs	pack	in	a	surface	bigger	than	a	tennis	court.	As	an	added
complication,	the	labyrinth	of	windpipes	must	merge	efficiently	with	the	arteries
and	veins.

Every	 medical	 student	 knows	 that	 lungs	 are	 designed	 to	 accommodate	 a
huge	surface	area.	But	anatomists	are	trained	to	look	at	one	scale	at	a	time—for
example,	 at	 the	millions	of	 alveoli,	microscopic	 sacs,	 that	 end	 the	 sequence	of
branching	 pipes.	 The	 language	 of	 anatomy	 tends	 to	 obscure	 the	 unity	 across
scales.	The	fractal	approach,	by	contrast,	embraces	the	whole	structure	in	terms
of	the	branching	that	produces	it,	branching	that	behaves	consistently	from	large
scales	 to	 small.	Anatomists	 study	 the	vas-culatory	 system	by	classifying	blood
vessels	into	categories	based	on	size—arteries	and	arterioles,	veins	and	venules.
For	some	purposes,	 those	categories	prove	useful.	But	 for	others	 they	mislead.
Sometimes	 the	 textbook	 approach	 seems	 to	 dance	 around	 the	 truth:	 “In	 the
gradual	transition	from	one	type	of	artery	to	another	it	is	sometimes	difficult	to
classify	the	intermediate	region.	Some	arteries	of	intermediate	caliber	have	walls
that	 suggest	 larger	 arteries,	while	 some	 large	 arteries	 have	walls	 like	 those	 of
medium-sized	arteries.	The	transitional	regions…are	often	designated	arteries	of
mixed	type.”

Not	immediately,	but	a	decade	after	Mandelbrot	published	his	physiological
speculations,	 some	 theoretical	 biologists	 began	 to	 find	 fractal	 organization
controlling	 structures	 all	 through	 the	 body.	 The	 standard	 “exponential”
description	 of	 bronchial	 branching	 proved	 to	 be	 quite	 wrong;	 a	 fractal
description	 turned	 out	 to	 fit	 the	 data.	 The	 urinary	 collecting	 system	 proved
fractal.	The	biliary	duct	 in	 the	 liver.	The	network	of	 special	 fibers	 in	 the	heart



that	carry	pulses	of	electric	current	to	the	contracting	muscles.	The	last	structure,
known	 to	 heart	 specialists	 as	 the	His-Purkinje	 network,	 inspired	 a	 particularly
important	 line	 of	 research.	Considerable	work	 on	 healthy	 and	 abnormal	 hearts
turned	out	 to	hinge	on	 the	details	of	how	 the	muscle	cells	of	 the	 left	and	 right
pumping	chambers	all	manage	to	coordinate	their	timing.	Several	chaos-minded
cardiologists	 found	 that	 the	 frequency	 spectrum	 of	 heartbeat	 timing,	 like
earthquakes	 and	 economic	 phenomena,	 followed	 fractal	 laws,	 and	 they	 argued
that	one	key	to	understanding	heartbeat	timing	was	the	fractal	organization	of	the
His-Purkinje	 network,	 a	 labyrinth	 of	 branching	pathways	organized	 to	 be	 self-
similar	on	smaller	and	smaller	scales.

How	 did	 nature	 manage	 to	 evolve	 such	 complicated	 architecture?
Mandelbrot’s	 point	 is	 that	 the	 complications	 exist	 only	 in	 the	 context	 of
traditional	 Euclidean	 geometry.	 As	 fractals,	 branching	 structures	 can	 be
described	 with	 transparent	 simplicity,	 with	 just	 a	 few	 bits	 of	 information.
Perhaps	the	simple	transformations	that	gave	rise	to	the	shapes	devised	by	Koch,
Peano,	 and	 Sierpiński	 have	 their	 analogue	 in	 the	 coded	 instructions	 of	 an
organism’s	 genes.	 DNA	 surely	 cannot	 specify	 the	 vast	 number	 of	 bronchi,
bronchioles,	 and	 alveoli	 or	 the	 particular	 spatial	 structure	 of	 the	 resulting	 tree,
but	 it	 can	 specify	 a	 repeating	 process	 of	 bifurcation	 and	 development.	 Such
processes	 suit	nature’s	purposes.	When	E.	 I.	DuPont	de	Nemours	&	Company
and	the	United	States	Army	finally	began	to	produce	a	synthetic	match	for	goose
down,	it	was	by	finally	realizing	that	the	phenomenal	air-trapping	ability	of	the
natural	product	came	from	the	fractal	nodes	and	branches	of	down’s	key	protein,
keratin.	Mandelbrot	glided	matter-of-factly	from	pulmonary	and	vascular	trees	to
real	botanical	 trees,	 trees	 that	need	 to	capture	 sun	and	 resist	wind,	with	 fractal
branches	 and	 fractal	 leaves.	And	 theoretical	 biologists	 began	 to	 speculate	 that
fractal	 scaling	 was	 not	 just	 common	 but	 universal	 in	 morphogenesis.	 They
argued	 that	 understanding	 how	 such	 patterns	were	 encoded	 and	 processed	 had
become	a	major	challenge	to	biology.

“I	 STARTED	 LOOKING	 in	 the	 trash	 cans	 of	 science	 for	 such	 phenomena,
because	I	suspected	that	what	I	was	observing	was	not	an	exception	but	perhaps
very	 widespread.	 I	 attended	 lectures	 and	 looked	 in	 unfashionable	 periodicals,
most	of	 them	of	 little	or	no	yield,	but	once	in	a	while	finding	some	interesting
things.	In	a	way	it	was	a	naturalist’s	approach,	not	a	theoretician’s	approach.	But
my	gamble	paid	off.”

Having	 consolidated	 a	 life’s	 collection	 of	 ideas	 about	 nature	 and
mathematical	 history	 into	 one	 book,	 Mandelbrot	 found	 an	 unaccustomed
measure	 of	 academic	 success.	 He	 became	 a	 fixture	 of	 the	 scientific	 lecture



circuit,	with	his	indispensable	trays	of	color	slides	and	his	wispy	white	hair.	He
began	to	win	prizes	and	other	professional	honors,	and	his	name	became	as	well
known	 to	 the	 nonscientific	 public	 as	 any	 mathematician’s.	 In	 part	 that	 was
because	of	the	aesthetic	appeal	of	his	fractal	pictures;	in	part	because	the	many
thousands	 of	 hobbyists	 with	 microcomputers	 could	 begin	 exploring	 his	 world
themselves.	In	part	it	was	because	he	put	himself	forward.	His	name	appeared	on
a	 little	 list	 compiled	 by	 the	 Harvard	 historian	 of	 science	 I.	 Bernard	 Cohen.
Cohen	had	scoured	the	annals	of	discovery	for	years,	looking	for	scientists	who
had	declared	their	own	work	to	be	“revolutions.”	All	told,	he	found	just	sixteen.
Robert	Symmer,	a	Scots	contemporary	of	Benjamin	Franklin	whose	ideas	about
electricity	were	 indeed	 radical,	but	wrong.	 Jean-Paul	Marat,	known	 today	only
for	 his	 bloody	 contribution	 to	 the	 French	 Revolution.	 Von	 Liebig.	 Hamilton.
Charles	Darwin,	 of	 course.	Virchow.	Cantor.	 Einstein.	Minkowski.	Von	Laue.
Alfred	Wegener—continental	drift.	Compton.	Just.	James	Watson—the	structure
of	DNA.	And	Benoit	Mandelbrot.

To	 pure	 mathematicians,	 however,	 Mandelbrot	 remained	 an	 outsider,
contending	as	bitterly	as	 ever	with	 the	politics	of	 science.	At	 the	height	of	his
success,	 he	 was	 reviled	 by	 some	 colleagues,	 who	 thought	 he	 was	 unnaturally
obsessed	with	his	place	in	history.	They	said	he	hectored	them	about	giving	due
credit.	 Unquestionably,	 in	 his	 years	 as	 a	 professional	 heretic	 he	 honed	 an
appreciation	 for	 the	 tactics	 as	well	 as	 the	 substance	 of	 scientific	 achievement.
Sometimes	when	articles	appeared	using	 ideas	from	fractal	geometry	he	would
call	or	write	 the	authors	 to	complain	 that	no	reference	was	made	 to	him	or	his
book.

His	admirers	 found	his	ego	easy	 to	forgive,	considering	 the	difficulties	he
had	overcome	 in	 getting	 recognition	 for	 his	work.	 “Of	 course,	 he	 is	 a	 bit	 of	 a
megalomaniac,	 he	 has	 this	 incredible	 ego,	 but	 it’s	 beautiful	 stuff	 he	 does,	 so
most	people	let	him	get	away	with	it,”	one	said.	In	the	words	of	another:	“He	had
so	 many	 difficulties	 with	 his	 fellow	 mathematicians	 that	 simply	 in	 order	 to
survive	 he	 had	 to	 develop	 this	 strategy	 of	 boosting	 his	 own	 ego.	 If	 he	 hadn’t
done	that,	 if	he	hadn’t	been	so	convinced	that	he	had	the	right	visions,	 then	he
would	never	have	succeeded.”

The	business	of	taking	and	giving	credit	can	become	obsessive	in	science.
Mandelbrot	did	plenty	of	both.	His	book	rings	with	 the	first	person:	I	claim…I
conceived	 and	 developed…and	 implemented…I	 have	 confirmed…I	 show…I
coined…In	my	 travels	 through	 newly	 opened	 or	 newly	 settled	 territory,	 1	was
often	moved	to	exert	the	right	of	naming	its	landmarks.

Many	 scientists	 failed	 to	 appreciate	 this	 kind	 of	 style.	 Nor	 were	 they
mollified	 that	 Mandelbrot	 was	 equally	 copious	 with	 his	 references	 to



predecessors,	 some	 thoroughly	obscure.	 (And	all,	 as	his	detractors	noted,	quite
safely	deceased.)	They	thought	it	was	just	his	way	of	trying	to	position	himself
squarely	in	the	center,	setting	himself	up	like	the	Pope,	casting	his	benedictions
from	one	side	of	the	field	to	the	other.	They	fought	back.	Scientists	could	hardly
avoid	 the	 word	 fractal,	 but	 if	 they	 wanted	 to	 avoid	 Mandelbrot’s	 name	 they
could	speak	of	fractional	dimension	as	Hausdorff-Besicovitch	dimension.	They
also—particularly	 mathematicians—resented	 the	 way	 he	 moved	 in	 and	 out	 of
different	 disciplines,	 making	 his	 claims	 and	 conjectures	 and	 leaving	 the	 real
work	of	proving	them	to	others.

It	 was	 a	 legitimate	 question.	 If	 one	 scientist	 announces	 that	 a	 thing	 is
probably	true,	and	another	demonstrates	it	with	rigor,	which	one	has	done	more
to	advance	science?	Is	 the	making	of	a	conjecture	an	act	of	discovery?	Or	is	 it
just	a	cold-blooded	staking	of	a	claim?	Mathematicians	have	always	faced	such
issues,	but	the	debate	became	more	intense	as	computers	began	to	play	their	new
role.	 Those	 who	 used	 computers	 to	 conduct	 experiments	 became	 more	 like
laboratory	 scientists,	playing	by	 rules	 that	allowed	discovery	without	 the	usual
theorem-proof,	theorem-proof	of	the	standard	mathematics	paper.

Mandelbrot’s	 book	 was	 wide-ranging	 and	 stuffed	 with	 the	 minutiae	 of
mathematical	history.	Wherever	chaos	led,	Mandelbrot	had	some	basis	to	claim
that	 he	 had	 been	 there	 first.	 Little	 did	 it	 matter	 that	 most	 readers	 found	 his
references	obscure	or	even	useless.	They	had	to	acknowledge	his	extraordinary
intuition	 for	 the	 direction	 of	 advances	 in	 fields	 he	 had	 never	 actually	 studied,
from	 seismology	 to	 physiology.	 It	 was	 sometimes	 uncanny,	 and	 sometimes
irritating.	 Even	 an	 admirer	 would	 cry	 with	 exasperation,	 “Mandelbrot	 didn’t
have	everybody’s	thoughts	before	they	did.”

It	 hardly	matters.	 The	 face	 of	 genius	 need	 not	 always	wear	 an	Einstein’s
saintlike	mien.	Yet	for	decades,	Mandelbrot	believes,	he	had	to	play	games	with
his	work.	He	had	 to	couch	original	 ideas	 in	 terms	 that	would	not	give	offense.
He	 had	 to	 delete	 his	 visionary-sounding	 prefaces	 to	 get	 his	 articles	 published.
When	he	wrote	the	first	version	of	his	book,	published	in	French	in	1975,	he	felt
he	 was	 forced	 to	 pretend	 it	 contained	 nothing	 too	 startling.	 That	 was	why	 he
wrote	 the	 latest	 version	 explicitly	 as	 “a	 manifesto	 and	 a	 casebook.”	 He	 was
coping	with	the	politics	of	science.





















THE	COMPLEX	BOUNDARIES	OF	NEWTON’S	METHOD.	The	attracting	pull	of	 four	points—in	 the
four	dark	holes—creates	“basins	of	attraction,”	each	a	different	color,	with	a	complicated	fractal	boundary.
The	image	represents	the	way	Newton’s	method	for	solving	equations	leads	from	different	starting	points	to
one	of	four	possible	solutions	(in	this	case	the	equation	is	x4	-	1	=	0).



FRACTAL	CLUSTERS.	A	random	clustering	of	praticles	generated	by	a	computer	produces	a	“percolation
network,”	one	of	many	visual	models	inspired	by	factal	geometry.	Applied	physicists	discovered	that	such
models	imitate	a	variety	of	real-world	processes,	such	as	the	formation	of	polymers	and	the	diffusion	of	oil
through	 factured	 rock.	 Each	 color	 in	 the	 percolation	 network	 represents	 a	 grouping	 that	 is	 connected
throughout.



THE	GREAT	RED	SPOT:	REAL	AND	SIMULATED.	The	Voyager	satellite	revealed	Jupiter’s	surface	is	a
seething,	turbulent	fluid,	with	horizontal	bands	of	east-west	flow.	The	Great	Red	Spot	is	seen	from	above
the	planet’s	equator	and	also	in	a	view	looking	down	on	the	South	Pole.
				Computer	graphics	from	Phillip	Marcus’s	simulation	present	the	South	Pole	view.	The	color	shows	the
direction	of	spin	for	particular	pieces	of	fluid:	pieces	turning	counterclockwise	are	red,	and	pieces	turning
clockwise	are	blue.	No	matter	what	the	staring	configuration,	clumps	of	blue	tend	to	bread	up,	while	the	red
tends	ot	merge	into	a	single	spot,	stable	and	coherent	amit	the	surrounding	tumult.

“The	politics	affected	the	style	in	a	sense	which	I	later	came	to	regret.	I	was
saying,	‘It’s	natural	to…,	It’s	an	interesting	observation	that….’	Now,	in	fact,	it
was	anything	but	natural,	and	the	interesting	observation	was	in	fact	the	result	of
very	 long	 investigations	 and	 search	 for	 proof	 and	 self-criticism.	 It	 had	 a
philosophical	and	removed	attitude	which	I	felt	was	necessary	to	get	it	accepted.
The	politics	was	 that,	 if	 I	 said	 I	was	proposing	a	 radical	departure,	 that	would
have	been	the	end	of	the	readers’	interest.

“Later	on,	I	got	back	some	such	statements,	people	saying,	‘It	is	natural	to
observe…’	That	was	not	what	I	had	bargained	for.”

Looking	 back,	 Mandelbrot	 saw	 that	 scientists	 in	 various	 disciplines
responded	to	his	approach	in	sadly	predictable	stages.	The	first	stage	was	always
the	same:	Who	are	you	and	why	are	you	 interested	 in	our	 field?	Second:	How
does	it	relate	to	what	we	have	been	doing,	and	why	don’t	you	explain	it	on	the



basis	of	what	we	know?	Third:	Are	you	 sure	 it’s	 standard	mathematics?	 (Yes,
I’m	sure.)	Then	why	don’t	we	know	it?	(Because	it’s	standard	but	very	obscure.)

Mathematics	differs	from	physics	and	other	applied	sciences	in	this	respect.
A	 branch	 of	 physics,	 once	 it	 becomes	 obsolete	 or	 unproductive,	 tends	 to	 be
forever	part	 of	 the	past.	 It	may	be	 a	historical	 curiosity,	 perhaps	 the	 source	of
some	inspiration	to	a	modern	scientist,	but	dead	physics	is	usually	dead	for	good
reason.	Mathematics,	 by	 contrast,	 is	 full	 of	 channels	 and	 byways	 that	 seem	 to
lead	 nowhere	 in	 one	 era	 and	 become	 major	 areas	 of	 study	 in	 another.	 The
potential	application	of	a	piece	of	pure	 thought	can	never	be	predicted.	That	 is
why	 mathematicians	 value	 work	 in	 an	 aesthetic	 way,	 seeking	 elegance	 and
beauty	 as	 artists	 do.	 It	 is	 also	why	Mandelbrot,	 in	his	 antiquarian	mode,	 came
across	so	much	good	mathematics	that	was	ready	to	be	dusted	off.

So	 the	 fourth	 stage	 was	 this:	 What	 do	 people	 in	 these	 branches	 of
mathematics	think	about	your	work?	(They	don’t	care,	because	it	doesn’t	add	to
the	mathematics.	In	fact,	they	are	surprised	that	their	ideas	represent	nature.)

In	 the	 end,	 the	 word	 fractal	 came	 to	 stand	 for	 a	 way	 of	 describing,
calculating,	and	thinking	about	shapes	that	are	irregular	and	fragmented,	jagged
and	 broken-up—shapes	 from	 the	 crystalline	 curves	 of	 snowflakes	 to	 the
discontinuous	dusts	of	galaxies.	A	fractal	curve	implies	an	organizing	structure
that	 lies	 hidden	 among	 the	 hideous	 complication	 of	 such	 shapes.	 High	 school
students	could	understand	fractals	and	play	with	them;	they	were	as	primary	as
the	elements	of	Euclid.	Simple	computer	programs	to	draw	fractal	pictures	made
the	rounds	of	personal	computer	hobbyists.

Mandelbrot	 found	 his	 most	 enthusiastic	 acceptance	 among	 applied
scientists	working	with	oil	or	 rock	or	metals,	particularly	 in	corporate	 research
centers.	By	the	middle	of	the	1980s,	vast	numbers	of	scientists	at	Exxon’s	huge
research	facility,	for	example,	worked	on	fractal	problems.	At	General	Electric,
fractals	 became	 an	 organizing	 principle	 in	 the	 study	 of	 polymers	 and	 also—
though	this	work	was	conducted	secretly—in	problems	of	nuclear	reactor	safety.
In	Hollywood,	fractals	found	their	most	whimsical	application	in	the	creation	of
phenomenally	realistic	landscapes,	earthly	and	extraterrestrial,	in	special	effects
for	movies.

The	patterns	 that	 people	 like	Robert	May	and	 James	Yorke	discovered	 in
the	 early	 1970s,	 with	 their	 complex	 boundaries	 between	 orderly	 and	 chaotic
behavior,	had	unsuspected	regularities	 that	could	only	be	described	 in	 terms	of
the	 relation	 of	 large	 scales	 to	 small.	 The	 structures	 that	 provided	 the	 key	 to
nonlinear	dynamics	proved	 to	be	 fractal.	And	on	 the	most	 immediate	practical
level,	 fractal	 geometry	 also	 provided	 a	 set	 of	 tools	 that	 were	 taken	 up	 by
physicists,	 chemists,	 seismologists,	 metallurgists,	 probability	 theorists	 and



physiologists.	 These	 researchers	 were	 convinced,	 and	 they	 tried	 to	 convince
others,	that	Mandelbrot’s	new	geometry	was	nature’s	own.

They	made	an	 irrefutable	 impact	on	orthodox	mathematics	and	physics	as
well,	but	Mandelbrot	himself	never	gained	the	full	respect	of	those	communities.
Even	so,	they	had	to	acknowledge	him.	One	mathematician	told	friends	that	he
had	 awakened	 one	 night	 still	 shaking	 from	 a	 nightmare.	 In	 this	 dream,	 the
mathematician	 was	 dead,	 and	 suddenly	 heard	 the	 unmistakable	 voice	 of	 God.
“You	know,”	He	remarked,	“there	really	was	something	to	that	Mandelbrot.”

THE	NOTION	OF	SELF-SIMILARITY	strikes	ancient	chords	in	our	culture.	An	old
strain	in	Western	thought	honors	the	idea.	Leibniz	imagined	that	a	drop	of	water
contained	 a	whole	 teeming	 universe,	 containing,	 in	 turn,	water	 drops	 and	 new
universes	within.	“To	see	the	world	in	a	grain	of	sand,”	Blake	wrote,	and	often
scientists	 were	 predisposed	 to	 see	 it.	When	 sperm	were	 first	 discovered,	 each
was	thought	to	be	a	homunculus,	a	human,	tiny	but	fully	formed.

But	 self-similarity	withered	 as	 a	 scientific	 principle,	 for	 a	 good	 reason.	 It
did	 not	 fit	 the	 facts.	 Sperm	 are	 not	merely	 scaled-down	humans—they	 are	 far
more	 interesting	 than	 that—and	 the	 process	 of	 ontogenetic	 development	 is	 far
more	interesting	than	mere	enlargement.	The	early	sense	of	self-similarity	as	an
organizing	principle	came	from	the	limitations	on	the	human	experience	of	scale.
How	else	to	imagine	the	very	great	and	very	small,	the	very	fast	and	very	slow,
but	as	extensions	of	the	known?

The	myth	died	hard	 as	 the	human	vision	was	 extended	by	 telescopes	 and
microscopes.	 The	 first	 discoveries	were	 realizations	 that	 each	 change	 of	 scale
brought	 new	 phenomena	 and	 new	 kinds	 of	 behavior.	 For	 modern	 particle
physicists,	the	process	has	never	ended.	Every	new	accelerator,	with	its	increase
in	energy	and	speed,	extends	science’s	field	of	view	to	tinier	particles	and	briefer
time	scales,	and	every	extension	seems	to	bring	new	information.

At	first	blush,	the	idea	of	consistency	on	new	scales	seems	to	provide	less
information.	In	part,	 that	is	because	a	parallel	 trend	in	science	has	been	toward
reductionism.	Scientists	break	things	apart	and	look	at	them	one	at	a	time.	If	they
want	 to	 examine	 the	 interaction	 of	 subatomic	 particles,	 they	 put	 two	 or	 three
together.	 There	 is	 complication	 enough.	 The	 power	 of	 self-similarity,	 though,
begins	 at	 much	 greater	 levels	 of	 complexity.	 It	 is	 a	 matter	 of	 looking	 at	 the
whole.

Although	Mandelbrot	 made	 the	most	 comprehensive	 geometric	 use	 of	 it,
the	 return	 of	 scaling	 ideas	 to	 science	 in	 the	 1960s	 and	 1970s	 became	 an
intellectual	 current	 that	 made	 itself	 felt	 simultaneously	 in	 many	 places.	 Self-
similarity	 was	 implicit	 in	 Edward	 Lorenz’s	 work.	 It	 was	 part	 of	 his	 intuitive



understanding	of	the	fine	structure	of	the	maps	made	by	his	system	of	equations,
a	 structure	 he	 could	 sense	 but	 not	 see	 on	 the	 computers	 available	 in	 1963.
Scaling	also	became	part	of	a	movement	in	physics	that	led,	more	directly	than
Mandelbrot’s	own	work,	to	the	discipline	known	as	chaos.	Even	in	distant	fields,
scientists	were	 beginning	 to	 think	 in	 terms	of	 theories	 that	 used	hierarchies	 of
scales,	as	in	evolutionary	biology,	where	it	became	clear	that	a	full	theory	would
have	to	recognize	patterns	of	development	in	genes,	in	individual	organisms,	in
species,	and	in	families	of	species,	all	at	once.

Paradoxically,	 perhaps,	 the	 appreciation	 of	 scaling	 phenomena	must	 have
come	 from	 the	 same	 kind	 of	 expansion	 of	 human	 vision	 that	 had	 killed	 the
earlier	naïve	ideas	of	self-similarity.	By	the	late	twentieth	century,	in	ways	never
before	conceivable,	images	of	the	incomprehensibly	small	and	the	unimaginably
large	 became	 part	 of	 everyone’s	 experience.	 The	 culture	 saw	 photographs	 of
galaxies	and	of	atoms.	No	one	had	to	imagine,	with	Leibniz,	what	the	universe
might	be	like	on	microscopic	or	 telescopic	scales—microscopes	and	telescopes
made	those	images	part	of	everyday	experience.	Given	the	eagerness	of	the	mind
to	 find	 analogies	 in	 experience,	 new	 kinds	 of	 comparison	 between	 large	 and
small	were	inevitable—and	some	of	them	were	productive.

Often	 the	 scientists	 drawn	 to	 fractal	 geometry	 felt	 emotional	 parallels
between	their	new	mathematical	aesthetic	and	changes	in	the	arts	in	the	second
half	 of	 the	 century.	 They	 felt	 that	 they	 were	 drawing	 some	 inner	 enthusiasm
from	the	culture	at	large.	To	Mandelbrot	the	epitome	of	the	Euclidean	sensibility
outside	mathematics	was	 the	architecture	of	 the	Bauhaus.	 It	might	 just	 as	well
have	 been	 the	 style	 of	 painting	 best	 exemplified	 by	 the	 color	 squares	 of	 Josef
Albers:	spare,	orderly,	 linear,	reductionist,	geometrical.	Geometrical—the	word
means	 what	 it	 has	 meant	 for	 thousands	 of	 years.	 Buildings	 that	 are	 called
geometrical	 are	 composed	 of	 simple	 shapes,	 straight	 lines	 and	 circles,
describable	with	just	a	few	numbers.	The	vogue	for	geometrical	architecture	and
painting	came	and	went.	Architects	no	longer	care	to	build	blockish	skyscrapers
like	 the	 Seagram	 Building	 in	 New	 York,	 once	 much	 hailed	 and	 copied.	 To
Mandelbrot	 and	 his	 followers	 the	 reason	 is	 clear.	 Simple	 shapes	 are	 inhuman.
They	fail	to	resonate	with	the	way	nature	organizes	itself	or	with	the	way	human
perception	sees	the	world.	In	the	words	of	Gert	Eilenberger,	a	German	physicist
who	took	up	nonlinear	science	after	specializing	in	superconductivity:	“Why	is	it
that	the	silhouette	of	a	storm-bent	leafless	tree	against	an	evening	sky	in	winter
is	perceived	as	beautiful,	but	the	corresponding	silhouette	of	any	multi-purpose
university	 building	 is	 not,	 in	 spite	 of	 all	 efforts	 of	 the	 architect?	 The	 answer
seems	to	me,	even	if	somewhat	speculative,	to	follow	from	the	new	insights	into
dynamical	 systems.	 Our	 feeling	 for	 beauty	 is	 inspired	 by	 the	 harmonious



arrangement	 of	 order	 and	 disorder	 as	 it	 occurs	 in	 natural	 objects—in	 clouds,
trees,	mountain	ranges,	or	snow	crystals.	The	shapes	of	all	these	are	dynamical
processes	 jelled	 into	 physical	 forms,	 and	 particular	 combinations	 of	 order	 and
disorder	are	typical	for	them.”

A	geometrical	 shape	has	 a	 scale,	 a	 characteristic	 size.	To	Mandelbrot,	 art
that	 satisfies	 lacks	 scale,	 in	 the	 sense	 that	 it	 contains	 important	 elements	 at	 all
sizes.	 Against	 the	 Seagram	 Building,	 he	 offers	 the	 architecture	 of	 the	 Beaux-
Arts,	with	its	sculptures	and	gargoyles,	its	quoins	and	jamb	stones,	its	cartouches
decorated	 with	 scrollwork,	 its	 cornices	 topped	 with	 cheneaux	 and	 lined	 with
dentils.	A	Beaux-Arts	paragon	like	 the	Paris	Opera	has	no	scale	because	 it	has
every	scale.	An	observer	seeing	the	building	from	any	distance	finds	some	detail
that	 draws	 the	 eye.	 The	 composition	 changes	 as	 one	 approaches	 and	 new
elements	of	the	structure	come	into	play.

Appreciating	 the	 harmonious	 structure	 of	 any	 architecture	 is	 one	 thing;
admiring	the	wildness	of	nature	is	quite	another.	In	terms	of	aesthetic	values,	the
new	 mathematics	 of	 fractal	 geometry	 brought	 hard	 science	 in	 tune	 with	 the
peculiarly	modern	 feeling	 for	 untamed,	 uncivilized,	 undomesticated	 nature.	At
one	time	rain	forests,	deserts,	bush,	and	badlands	represented	all	that	society	was
striving	to	subdue.	If	people	wanted	aesthetic	satisfaction	from	vegetation,	they
looked	at	gardens.	As	John	Fowles	put	it,	writing	of	eighteenth-century	England:
“The	 period	 had	 no	 sympathy	 with	 unregulated	 or	 primordial	 nature.	 It	 was
aggressive	wilderness,	 an	 ugly	 and	 all-invasive	 reminder	 of	 the	Fall,	 of	man’s
eternal	 exile	 from	 the	Garden	of	Eden….	Even	 its	 natural	 sciences…remained
essentially	 hostile	 to	 wild	 nature,	 seeing	 it	 only	 as	 something	 to	 be	 tamed,
classified,	utilised,	 exploited.”	By	 the	end	of	 the	 twentieth	century,	 the	culture
had	changed,	and	now	science	was	changing	with	it.

So	science	found	a	use	after	all	for	the	obscure	and	fanciful	cousins	of	the
Cantor	set	and	the	Koch	curve.	At	first,	these	shapes	could	have	served	as	items
of	 evidence	 in	 the	 divorce	 proceedings	 between	mathematics	 and	 the	 physical
sciences	 at	 the	 turn	 of	 the	 century,	 the	 end	 of	 a	 marriage	 that	 had	 been	 the
dominating	 theme	 of	 science	 since	 Newton.	 Mathematicians	 like	 Cantor	 and
Koch	 had	 delighted	 in	 their	 originality.	 They	 thought	 they	 were	 outsmarting
nature—when	 actually	 they	 had	 not	 yet	 caught	 up	with	 nature’s	 creation.	 The
prestigious	mainstream	of	physics,	too,	turned	away	from	the	world	of	everyday
experience.	 Only	 later,	 after	 Steve	 Smale	 brought	 mathematicians	 back	 to
dynamical	 systems,	 could	 a	 physicist	 say,	 “We	 have	 the	 astronomers	 and
mathematicians	 to	 thank	 for	 passing	 the	 field	 on	 to	 us,	 physicists,	 in	 a	 much
better	shape	than	we	left	it	to	them,	70	years	ago.”

Yet,	despite	Smale	and	despite	Mandelbrot,	it	was	to	be	the	physicists	after



all	 who	made	 a	 new	 science	 of	 chaos.	Mandelbrot	 provided	 an	 indispensable
language	and	a	catalogue	of	surprising	pictures	of	nature.	As	Mandelbrot	himself
acknowledged,	 his	 program	 described	 better	 than	 it	 explained.	 He	 could	 list
elements	 of	 nature	 along	 with	 their	 fractal	 dimensions—seacoasts,	 river
networks,	 tree	bark,	galaxies—and	scientists	 could	use	 those	numbers	 to	make
predictions.	But	 physicists	wanted	 to	 know	more.	 They	wanted	 to	 know	why.
There	 were	 forms	 in	 nature—not	 visible	 forms,	 but	 shapes	 embedded	 in	 the
fabric	of	motion—waiting	to	be	revealed.



Strange	Attractors

Big	whorls	have	little	whorls
Which	feed	on	their	velocity,
And	little	whorls	have	lesser	whorls
And	so	on	to	viscosity.

—LEWIS	F.	RICHARDSON



TURBULENCE	WAS	A	PROBLEM	with	pedigree.	The	great	physicists	all	thought
about	 it,	 formally	 or	 informally.	 A	 smooth	 flow	 breaks	 up	 into	 whorls	 and
eddies.	 Wild	 patterns	 disrupt	 the	 boundary	 between	 fluid	 and	 solid.	 Energy
drains	 rapidly	 from	 large-scale	 motions	 to	 small.	 Why?	 The	 best	 ideas	 came
from	 mathematicians;	 for	 most	 physicists,	 turbulence	 was	 too	 dangerous	 to
waste	 time	 on.	 It	 seemed	 almost	 unknowable.	 There	 was	 a	 story	 about	 the
quantum	 theorist	 Werner	 Heisenberg,	 on	 his	 deathbed,	 declaring	 that	 he	 will
have	 two	 questions	 for	 God:	 why	 relativity,	 and	 why	 turbulence.	 Heisenberg
says,	“I	really	think	He	may	have	an	answer	to	the	first	question.”

Theoretical	physics	had	reached	a	kind	of	standoff	with	the	phenomenon	of
turbulence.	In	effect,	science	had	drawn	a	line	on	the	ground	and	said,	Beyond
this	we	cannot	go.	On	the	near	side	of	 the	 line,	where	fluids	behave	 in	orderly
ways,	 there	was	plenty	 to	work	with.	Fortunately,	a	smooth-flowing	fluid	does
not	act	as	though	it	has	a	nearly	infinite	number	of	independent	molecules,	each
capable	 of	 independent	motion.	 Instead,	 bits	 of	 fluid	 that	 start	 nearby	 tend	 to
remain	nearby,	 like	horses	 in	harness.	Engineers	have	workable	 techniques	 for
calculating	 flow,	 as	 long	 as	 it	 remains	 calm.	 They	 use	 a	 body	 of	 knowledge
dating	back	to	the	nineteenth	century,	when	understanding	the	motions	of	liquids
and	gases	was	a	problem	on	the	front	lines	of	physics.

By	 the	modern	 era,	 however,	 it	 was	 on	 the	 front	 lines	 no	 longer.	 To	 the
deep	theorists,	fluid	dynamics	seemed	to	retain	no	mystery	but	the	one	that	was
unapproachable	even	in	heaven.	The	practical	side	was	so	well	understood	that	it
could	 be	 left	 to	 the	 technicians.	 Fluid	 dynamics	 was	 no	 longer	 really	 part	 of
physics,	 the	 physicists	 would	 say.	 It	 was	 mere	 engineering.	 Bright	 young
physicists	 had	 better	 things	 to	 do.	 Fluid	 dynamicists	 were	 generally	 found	 in
university	engineering	departments.	A	practical	interest	in	turbulence	has	always
been	in	the	foreground,	and	the	practical	interest	is	usually	one-sided:	make	the
turbulence	go	away.	 In	some	applications,	 turbulence	 is	desirable—inside	a	 jet
engine,	 for	 example,	where	 efficient	 burning	 depends	 on	 rapid	mixing.	But	 in
most,	 turbulence	 means	 disaster.	 Turbulent	 airflow	 over	 a	 wing	 destroys	 lift.
Turbulent	 flow	 in	 an	 oil	 pipe	 creates	 stupefying	 drag.	 Vast	 amounts	 of
government	 and	 corporate	money	 are	 staked	 on	 the	 design	 of	 aircraft,	 turbine
engines,	propellers,	submarine	hulls,	and	other	shapes	that	move	through	fluids.
Researchers	 must	 worry	 about	 flow	 in	 blood	 vessels	 and	 heart	 valves.	 They
worry	about	 the	 shape	and	evolution	of	explosions.	They	worry	about	vortices
and	eddies,	 flames	and	shock	waves.	 In	 theory	 the	World	War	II	atomic	bomb
project	was	a	problem	in	nuclear	physics.	In	reality	the	nuclear	physics	had	been
mostly	 solved	 before	 the	 project	 began,	 and	 the	 business	 that	 occupied	 the



scientists	assembled	at	Los	Alamos	was	a	problem	in	fluid	dynamics.
What	is	turbulence	then?	It	is	a	mess	of	disorder	at	all	scales,	small	eddies

within	large	ones.	It	is	unstable.	It	is	highly	dissipative,	meaning	that	turbulence
drains	energy	and	creates	drag.	It	 is	motion	turned	random.	But	how	does	flow
change	 from	 smooth	 to	 turbulent?	 Suppose	 you	 have	 a	 perfectly	 smooth	 pipe,
with	a	perfectly	even	source	of	water,	perfectly	shielded	from	vibrations—how
can	such	a	flow	create	something	random?

All	the	rules	seem	to	break	down.	When	flow	is	smooth,	or	laminar,	small
disturbances	 die	 out.	 But	 past	 the	 onset	 of	 turbulence,	 disturbances	 grow
catastrophically.	 This	 onset—this	 transition—became	 a	 critical	 mystery	 in
science.	The	channel	below	a	 rock	 in	a	 stream	becomes	a	whirling	vortex	 that
grows,	 splits	 off	 and	 spins	 downstream.	 A	 plume	 of	 cigarette	 smoke	 rises
smoothly	 from	 an	 ashtray,	 accelerating	 until	 it	 passes	 a	 critical	 velocity	 and
splinters	into	wild	eddies.	The	onset	of	turbulence	can	be	seen	and	measured	in
laboratory	 experiments;	 it	 can	 be	 tested	 for	 any	 new	 wing	 or	 propeller	 by
experimental	work	in	a	wind	tunnel;	but	its	nature	remains	elusive.	Traditionally,
knowledge	gained	has	always	been	special,	not	universal.	Research	by	trial	and
error	on	the	wing	of	a	Boeing	707	aircraft	contributes	nothing	to	research	by	trial
and	 error	 on	 the	 wing	 of	 an	 F–16	 fighter.	 Even	 supercomputers	 are	 close	 to
helpless	in	the	face	of	irregular	fluid	motion.

Something	shakes	a	fluid,	exciting	it.	The	fluid	 is	viscous—sticky,	so	 that
energy	 drains	 out	 of	 it,	 and	 if	 you	 stopped	 shaking,	 the	 fluid	would	 naturally
come	 to	 rest.	When	you	 shake	 it,	 you	 add	 energy	 at	 low	 frequencies,	 or	 large
wavelengths,	 and	 the	 first	 thing	 to	 notice	 is	 that	 the	 large	 wavelengths
decompose	into	small	ones.	Eddies	form,	and	smaller	eddies	within	them,	each
dissipating	the	fluid’s	energy	and	each	producing	a	characteristic	rhythm.	In	the
1930s	A.	N.	Kolmogorov	put	forward	a	mathematical	description	that	gave	some
feeling	 for	 how	 these	 eddies	work.	He	 imagined	 the	whole	 cascade	 of	 energy
down	through	smaller	and	smaller	scales	until	finally	a	limit	is	reached,	when	the
eddies	become	so	tiny	that	the	relatively	larger	effects	of	viscosity	take	over.

For	the	sake	of	a	clean	description,	Kolmogorov	imagined	that	these	eddies
fill	 the	whole	 space	 of	 the	 fluid,	making	 the	 fluid	 everywhere	 the	 same.	 This
assumption,	 the	assumption	of	homogeneity,	 turns	out	not	 to	be	 true,	and	even
Poincaré	knew	it	forty	years	earlier,	having	seen	at	the	rough	surface	of	a	river
that	 the	 eddies	 always	 mix	 with	 regions	 of	 smooth	 flow.	 The	 vorticity	 is
localized.	Energy	actually	dissipates	only	in	part	of	the	space.	At	each	scale,	as
you	look	closer	at	a	turbulent	eddy,	new	regions	of	calm	come	into	view.	Thus
the	 assumption	 of	 homogeneity	 gives	way	 to	 the	 assumption	 of	 intermittency.
The	 intermittent	 picture,	 when	 idealized	 somewhat,	 looks	 highly	 fractal,	 with



intermixed	 regions	of	 roughness	and	smoothness	on	scales	 running	down	from
the	large	to	the	small.	This	picture,	 too,	turns	out	to	fall	somewhat	short	of	the
reality.

Closely	related,	but	quite	distinct,	was	the	question	of	what	happens	when
turbulence	 begins.	 How	 does	 a	 flow	 cross	 the	 boundary	 from	 smooth	 to
turbulent?	Before	turbulence	becomes	fully	developed,	what	intermediate	stages
might	 exist?	 For	 these	 questions,	 a	 slightly	 stronger	 theory	 existed.	 This
orthodox	paradigm	came	from	Lev	D.	Landau,	the	great	Russian	scientist	whose
text	on	fluid	dynamics	remains	a	standard.	The	Landau	picture	is	a	piling	up	of
competing	 rhythms.	When	more	 energy	 comes	 into	 a	 system,	 he	 conjectured,
new	 frequencies	 begin	 one	 at	 a	 time,	 each	 incompatible	 with	 the	 last,	 as	 if	 a
violin	 string	 responds	 to	 harder	 bowing	 by	 vibrating	with	 a	 second,	 dissonant
tone,	 and	 then	 a	 third,	 and	 a	 fourth,	 until	 the	 sound	 becomes	 an
incomprehensible	cacophony.

Any	liquid	or	gas	is	a	collection	of	individual	bits,	so	many	that	they	may	as
well	be	 infinite.	 If	each	piece	moved	 independently,	 then	 the	 fluid	would	have
infinitely	many	possibilities,	infinitely	many	“degrees	of	freedom”	in	the	jargon,
and	the	equations	describing	the	motion	would	have	to	deal	with	infinitely	many
variables.	But	 each	particle	does	not	move	 independently—its	motion	depends
very	much	on	the	motion	of	its	neighbors—and	in	a	smooth	flow,	the	degrees	of
freedom	can	be	 few.	Potentially	complex	movements	 remain	coupled	 together.
Nearby	bits	 remain	nearby	or	drift	apart	 in	a	smooth,	 linear	way	 that	produces
neat	lines	in	wind-tunnel	pictures.	The	particles	in	a	column	of	cigarette	smoke
rise	as	one,	for	a	while.

Then	 confusion	 appears,	 a	 menagerie	 of	 mysterious	 wild	 motions.
Sometimes	these	motions	received	names:	 the	oscillatory,	 the	skewed	varicose,
the	 cross-roll,	 the	 knot,	 the	 zigzag.	 In	 Landau’s	 view,	 these	 unstable	 new
motions	 simply	 accumulated,	 one	 on	 top	 of	 another,	 creating	 rhythms	 with
overlapping	 speeds	 and	 sizes.	 Conceptually,	 this	 orthodox	 idea	 of	 turbulence
seemed	to	fit	 the	facts,	and	if	 the	 theory	was	mathematically	useless—which	it
was—well,	 so	 be	 it.	 Landau’s	 paradigm	was	 a	way	 of	 retaining	 dignity	while
throwing	up	the	hands.

Water	courses	through	a	pipe,	or	around	a	cylinder,	making	a	faint	smooth
hiss.	 In	your	mind,	you	 turn	up	 the	pressure.	A	back-and–forth	 rhythm	begins.
Like	 a	 wave,	 it	 knocks	 slowly	 against	 the	 pipe.	 Turn	 the	 knob	 again.	 From
somewhere,	a	second	frequency	enters,	out	of	synchronization	with	the	first.	The
rhythms	overlap,	 compete,	 jar	 against	 one	 another.	Already	 they	 create	 such	 a
complicated	 motion,	 waves	 banging	 against	 the	 walls,	 interfering	 with	 one
another,	 that	you	almost	cannot	follow	it.	Now	turn	up	the	knob	again.	A	third



frequency	enters,	then	a	fourth,	a	fifth,	a	sixth,	all	incommensurate.	The	flow	has
become	 extremely	 complicated.	Perhaps	 this	 is	 turbulence.	Physicists	 accepted
this	picture,	but	no	one	had	any	idea	how	to	predict	when	an	increase	in	energy
would	create	a	new	frequency,	or	what	the	new	frequency	would	be.	No	one	had
seen	 these	mysteriously	arriving	 frequencies	 in	an	experiment	because,	 in	 fact,
no	one	had	ever	tested	Landau’s	theory	for	the	onset	of	turbulence.

THEORISTS	CONDUCT	EXPERIMENTS	with	 their	brains.	Experimenters	have	 to
use	 their	 hands,	 too.	 Theorists	 are	 thinkers,	 experimenters	 are	 craftsmen.	 The
theorist	needs	no	accomplice.	The	experimenter	has	to	muster	graduate	students,
cajole	machinists,	flatter	 lab	assistants.	The	theorist	operates	 in	a	pristine	place
free	of	noise,	of	vibration,	of	dirt.	The	experimenter	develops	an	intimacy	with
matter	as	a	sculptor	does	with	clay,	battling	it,	shaping	it,	and	engaging	it.	The
theorist	invents	his	companions,	as	a	naive	Romeo	imagined	his	ideal	Juliet.	The
experimenter’s	lovers	sweat,	complain,	and	fart.

They	need	each	other,	but	theorists	and	experimenters	have	allowed	certain
inequities	to	enter	their	relationships	since	the	ancient	days	when	every	scientist
was	both.	Though	the	best	experimenters	still	have	some	of	the	theorist	in	them,
the	 converse	 does	 not	 hold.	Ultimately,	 prestige	 accumulates	 on	 the	 theorist’s
side	of	the	table.	In	high	energy	physics,	especially,	glory	goes	to	the	theorists,
while	 experimenters	 have	 become	 highly	 specialized	 technicians,	 managing
expensive	 and	 complicated	 equipment.	 In	 the	 decades	 since	World	War	 II,	 as
physics	 came	 to	 be	 defined	 by	 the	 study	 of	 fundamental	 particles,	 the	 best
publicized	 experiments	were	 those	 carried	 out	with	 particle	 accelerators.	 Spin,
symmetry,	 color,	 flavor—these	 were	 the	 glamorous	 abstractions.	 To	 most
laymen	following	science,	and	to	more	than	a	few	scientists,	the	study	of	atomic
particles	 was	 physics.	 But	 studying	 smaller	 particles,	 on	 shorter	 time	 scales,
meant	higher	 levels	of	 energy.	So	 the	machinery	needed	 for	good	experiments
grew	 with	 the	 years,	 and	 the	 nature	 of	 experimentation	 changed	 for	 good	 in
particle	 physics.	 The	 field	 was	 crowded,	 and	 the	 big	 experiment	 encouraged
teams.	The	particle	physics	papers	often	stood	out	in	Physical	Review	Letters:	a
typical	authors	list	could	take	up	nearly	one-quarter	of	a	paper’s	length.

Some	 experimenters,	 however,	 preferred	 to	 work	 alone	 or	 in	 pairs.	 They
worked	with	substances	closer	to	hand.	While	such	fields	as	hydrodynamics	had
lost	 status,	 solid-state	 physics	 had	 gained,	 eventually	 expanding	 its	 territory
enough	to	require	a	more	comprehensive	name,	“condensed	matter	physics”:	the
physics	of	 stuff.	 In	condensed	matter	physics,	 the	machinery	was	simpler.	The
gap	between	theorist	and	experimenter	remained	narrower.	Theorists	expressed	a
little	less	snobbery,	experimenters	a	little	less	defensiveness.



Even	 so,	 perspectives	 differed.	 It	 was	 fully	 in	 character	 for	 a	 theorist	 to
interrupt	 an	experimenter’s	 lecture	 to	 ask:	Wouldn’t	more	data	points	be	more
convincing?	Isn’t	that	graph	a	little	messy?	Shouldn’t	those	numbers	extend	up
and	down	the	scale	for	a	few	more	orders	of	magnitude?

And	in	return,	it	was	fully	in	character	for	Harry	Swinney	to	draw	himself
up	 to	 his	 maximum	 height,	 something	 around	 five	 and	 a	 half	 feet,	 and	 say,
“That’s	true,”	with	a	mixture	of	innate	Louisiana	charm	and	acquired	New	York
irascibility.	“That’s	true	if	you	have	an	infinite	amount	of	noise-free	data.”	And
wheel	 dismissively	 back	 toward	 the	 blackboard,	 adding,	 “In	 reality,	 of	 course,
you	have	a	limited	amount	of	noisy	data.”

Swinney	was	experimenting	with	stuff.	For	him	the	turning	point	had	come
when	 he	was	 a	 graduate	 student	 at	 Johns	Hopkins.	 The	 excitement	 of	 particle
physics	was	palpable.	The	 inspiring	Murray	Gell-Mann	came	 to	 talk	once,	and
Swinney	was	captivated.	But	when	he	looked	into	what	graduate	students	did,	he
discovered	 that	 they	 were	 all	 writing	 computer	 programs	 or	 soldering	 spark
chambers.	It	was	then	that	he	began	talking	to	an	older	physicist	starting	to	work
on	phase	transitions—changes	from	solid	to	liquid,	from	nonmagnet	to	magnet,
from	conductor	to	superconductor.	Before	long	Swinney	had	an	empty	room—
not	 much	 bigger	 than	 a	 closet,	 but	 it	 was	 his	 alone.	 He	 had	 an	 equipment
catalogue,	 and	 he	 began	 ordering.	 Soon	 he	 had	 a	 table	 and	 a	 laser	 and	 some
refrigerating	equipment	and	some	probes.	He	designed	an	apparatus	to	measure
how	well	carbon	dioxide	conducted	heat	around	the	critical	point	where	it	turned
from	vapor	 to	 liquid.	Most	people	 thought	 that	 the	 thermal	conductivity	would
change	slightly.	Swinney	 found	 that	 it	 changed	by	a	 factor	of	1,000.	That	was
exciting—alone	in	a	tiny	room,	discovering	something	that	no	one	else	knew.	He
saw	the	other-worldly	light	that	shines	from	a	vapor,	any	vapor,	near	the	critical
point,	the	light	called	“opalescence”	because	the	soft	scattering	of	rays	gives	the
white	glow	of	an	opal.

Like	 so	 much	 of	 chaos	 itself,	 phase	 transitions	 involve	 a	 kind	 of
macroscopic	behavior	 that	seems	hard	 to	predict	by	 looking	at	 the	microscopic
details.	 When	 a	 solid	 is	 heated,	 its	 molecules	 vibrate	 with	 the	 added	 energy.
They	push	outward	against	 their	bonds	and	force	 the	substance	 to	expand.	The
more	 heat,	 the	more	 expansion.	Yet	 at	 a	 certain	 temperature	 and	 pressure,	 the
change	becomes	sudden	and	discontinuous.	A	rope	has	been	stretching;	now	it
breaks.	 Crystalline	 form	 dissolves,	 and	 the	 molecules	 slide	 away	 from	 one
another.	They	obey	fluid	laws	that	could	not	have	been	inferred	from	any	aspect
of	the	solid.	The	average	atomic	energy	has	barely	changed,	but	the	material—
now	a	liquid,	or	a	magnet,	or	a	superconductor—has	entered	a	new	realm.

Günter	Ahlers,	 at	AT&T	Bell	 Laboratories	 in	New	 Jersey,	 had	 examined



the	 so-called	 superfluid	 transition	 in	 liquid	 helium,	 in	 which,	 as	 temperature
falls,	the	material	becomes	a	sort	of	magical	flowing	liquid	with	no	perceptible
viscosity	or	friction.	Others	had	studied	superconductivity.	Swinney	had	studied
the	 critical	 point	 where	 matter	 changes	 between	 liquid	 and	 vapor.	 Swinney,
Ahlers,	Pierre	Bergé,	 Jerry	Gollub,	Marzio	Giglio—by	 the	middle	1970s	 these
experimenters	 and	 others	 in	 the	 United	 States,	 France,	 and	 Italy,	 all	 from	 the
young	tradition	of	exploring	phase	 transitions,	were	 looking	for	new	problems.
As	intimately	as	a	mail	carrier	learns	the	stoops	and	alleys	of	his	neighborhood,
they	had	learned	the	peculiar	signposts	of	substances	changing	their	fundamental
state.	They	had	studied	a	brink	upon	which	matter	stands	poised.

The	march	of	phase	transition	research	had	proceeded	along	stepping	stones
of	 analogy:	 a	 nonmagnet-magnet	 phase	 transition	 proved	 to	 be	 like	 a	 liquid-
vapor	phase	transition.	The	fluid-superfluid	phase	transition	proved	to	be	like	the
conductor-superconductor	phase	transition.	The	mathematics	of	one	experiment
applied	to	many	other	experiments.	By	the	1970s	the	problem	had	been	largely
solved.	 A	 question,	 though,	 was	 how	 far	 the	 theory	 could	 be	 extended.	What
other	 changes	 in	 the	world,	when	 examined	 closely,	would	 prove	 to	 be	 phase
transitions?

It	was	neither	 the	most	original	 idea	nor	 the	most	obvious	 to	apply	phase
transition	 techniques	 to	 flow	 in	 fluids.	Not	 the	most	original	because	 the	great
hydrodynamic	pioneers,	Reynolds	and	Rayleigh	and	their	followers	in	the	early
twentieth	century,	had	already	noted	that	a	carefully	controlled	fluid	experiment
produces	 a	 change	 in	 the	 quality	 of	 motion—in	 mathematical	 terms	 a
bifurcation.	In	a	fluid	cell,	for	example,	liquid	heated	from	the	bottom	suddenly
goes	from	motionlessness	to	motion.	Physicists	were	tempted	to	suppose	that	the
physical	character	of	that	bifurcation	resembled	the	changes	in	a	substance	that
fell	under	the	rubric	of	phase	transitions.

It	was	not	 the	most	obvious	sort	of	experiment	because,	unlike	 real	phase
transitions,	 these	 fluid	 bifurcations	 entailed	 no	 change	 in	 the	 substance	 itself.
Instead	 they	 added	 a	 new	 element:	 motion.	 A	 still	 liquid	 becomes	 a	 flowing
liquid.	 Why	 should	 the	 mathematics	 of	 such	 a	 change	 correspond	 to	 the
mathematics	of	a	condensing	vapor?

IN	 1973	 SWINNEY	 was	 teaching	 at	 the	 City	 College	 of	 New	 York.	 Jerry
Gollub,	 a	 serious	 and	 boyish	 graduate	 of	Harvard,	was	 teaching	 at	Haverford.
Haverford,	 a	mildly	 bucolic	 liberal	 arts	 college	 near	Philadelphia,	 seemed	 less
than	an	ideal	place	for	a	physicist	to	end	up.	It	had	no	graduate	students	to	help
with	 laboratory	work	and	otherwise	 fill	 in	 the	bottom	half	of	 the	 all-important
mentor-protégé	partnership.	Gollub,	 though,	 loved	teaching	undergraduates	and



began	building	up	the	college’s	physics	department	into	a	center	widely	known
for	the	quality	of	its	experimental	work.	That	year,	he	took	a	sabbatical	semester
and	came	to	New	York	to	collaborate	with	Swinney.

With	the	analogy	in	mind	between	phase	transitions	and	fluid	instabilities,
the	two	men	decided	to	examine	a	classic	system	of	liquid	confined	between	two
vertical	cylinders.	One	cylinder	rotated	inside	the	other,	pulling	the	liquid	around
with	 it.	 The	 system	 enclosed	 its	 flow	 between	 surfaces.	 Thus	 it	 restricted	 the
possible	motion	of	the	liquid	in	space,	unlike	jets	and	wakes	in	open	water.	The
rotating	cylinders	produced	what	was	known	as	Couette-Taylor	flow.	Typically,
the	inner	cylinder	spins	inside	a	stationary	shell,	as	a	matter	of	convenience.	As
the	 rotation	 begins	 and	 picks	 up	 speed,	 the	 first	 instability	 occurs:	 the	 liquid
forms	an	elegant	pattern	 resembling	a	 stack	of	 inner	 tubes	at	 a	 service	 station.
Doughnut-shaped	bands	appear	around	the	cylinder,	stacked	one	atop	another.	A
speck	in	the	fluid	rotates	not	just	east	to	west	but	also	up	and	in	and	down	and
out	around	the	doughnuts.	This	much	was	already	understood.	G.	I.	Taylor	had
seen	it	and	measured	it	in	1923.

FLOW	BETWEEN	ROTATING	CYLINDERS.	The	patterned	flow	of	water	between	 two	cylinders	gave
Harry	Swinney	and	Jerry	Gollub	a	way	to	look	at	the	onset	of	turbulence.	As	the	rate	of	spin	is	increased,



the	structure	grows	more	complex.	First	the	water	forms	a	characteristic	pattern	of	flow	resembling	stacked
doughnuts.	Then	the	doughnuts	begin	to	ripple.	The	physicists	used	a	laser	to	measure	the	water’s	changing
velocity	as	each	new	instability	appeared.

To	study	Couette	flow,	Swinney	and	Gollub	built	an	apparatus	that	fit	on	a
desktop,	an	outer	glass	cylinder	the	size	of	a	skinny	can	of	tennis	balls,	about	a
foot	 high	 and	 two	 inches	 across.	An	 inner	 cylinder	 of	 steel	 slid	 neatly	 inside,
leaving	 just	 one-eighth	 of	 an	 inch	 between	 for	 water.	 “It	 was	 a	 string-and–
sealing-wax	 affair,”	 said	 Freeman	 Dyson,	 one	 of	 an	 unexpected	 series	 of
prominent	sightseers	in	the	months	that	followed.	“You	had	these	two	gentlemen
in	 a	 poky	 little	 lab	 with	 essentially	 no	 money	 doing	 an	 absolutely	 beautiful
experiment.	It	was	the	beginning	of	good	quantitative	work	on	turbulence.”

The	 two	had	 in	mind	 a	 legitimate	 scientific	 task	 that	would	have	brought
them	 a	 standard	 bit	 of	 recognition	 for	 their	 work	 and	 would	 then	 have	 been
forgotten.	Swinney	and	Gollub	intended	to	confirm	Landau’s	idea	for	the	onset
of	turbulence.	The	experimenters	had	no	reason	to	doubt	it.	They	knew	that	fluid
dynamicists	believed	the	Landau	picture.	As	physicists	they	liked	it	because	it	fit
the	 general	 picture	 of	 phase	 transitions,	 and	 Landau	 himself	 had	 provided	 the
most	 workable	 early	 framework	 for	 studying	 phase	 transitions,	 based	 on	 his
insight	 that	 such	 phenomena	might	 obey	 universal	 laws,	 with	 regularities	 that
overrode	differences	in	particular	substances.	When	Harry	Swinney	studied	the
liquid-vapor	critical	point	in	carbon	dioxide,	he	did	so	with	Landau’s	conviction
that	his	 findings	would	carry	over	 to	 the	 liquid-vapor	critical	point	 in	xenon—
and	 indeed	 they	 did.	 Why	 shouldn’t	 turbulence	 prove	 to	 be	 a	 steady
accumulation	of	conflicting	rhythms	in	a	moving	fluid?

Swinney	 and	 Gollub	 prepared	 to	 combat	 the	 messiness	 of	 moving	 fluids
with	an	arsenal	of	neat	experimental	techniques	built	up	over	years	of	studying
phase	 transitions	 in	 the	 most	 delicate	 of	 circumstances.	 They	 had	 laboratory
styles	 and	 measuring	 equipment	 that	 a	 fluid	 dynamicist	 would	 never	 have
imagined.	To	probe	 the	 rolling	 currents,	 they	used	 laser	 light.	A	beam	shining
through	 the	 water	 would	 produce	 a	 deflection,	 or	 scattering,	 that	 could	 be
measured	in	a	 technique	called	laser	doppler	 interferometry.	And	the	stream	of
data	could	be	 stored	and	processed	by	a	computer—a	device	 that	 in	1975	was
rarely	seen	in	a	tabletop	laboratory	experiment.

Landau	 had	 said	 new	 frequencies	would	 appear,	 one	 at	 a	 time,	 as	 a	 flow
increased.	“So	we	read	that,”	Swinney	recalled,	“and	we	said,	fine,	we	will	look
at	 the	 transitions	 where	 these	 frequencies	 come	 in.	 So	 we	 looked,	 and	 sure
enough	 there	 was	 a	 very	 well-defined	 transition.	 We	 went	 back	 and	 forth
through	the	transition,	bringing	the	rotation	speed	of	the	cylinder	up	and	down.	It



was	very	well	defined.”
When	 they	 began	 reporting	 results,	 Swinney	 and	 Gollub	 confronted	 a

sociological	boundary	in	science,	between	the	domain	of	physics	and	the	domain
of	fluid	dynamics.	The	boundary	had	certain	vivid	characteristics.	In	particular,
it	 determined	 which	 bureaucracy	 within	 the	 National	 Science	 Foundation
controlled	 their	 financing.	 By	 the	 1980s	 a	 Couette-Taylor	 experiment	 was
physics	again,	but	in	1973	it	was	just	plain	fluid	dynamics,	and	for	people	who
were	accustomed	to	fluid	dynamics,	 the	first	numbers	coming	out	of	 this	small
City	College	laboratory	were	suspiciously	clean.	Fluid	dynamicists	 just	did	not
believe	 them.	They	were	not	accustomed	to	experiments	 in	 the	precise	style	of
phase-transition	physics.	Furthermore,	 in	the	perspective	of	fluid	dynamics,	 the
theoretical	point	of	such	an	experiment	was	hard	to	see.	The	next	time	Swinney
and	Gollub	 tried	 to	 get	National	Science	Foundation	money,	 they	were	 turned
down.	Some	referees	did	not	credit	their	results,	and	some	said	there	was	nothing
new.

But	the	experiment	had	never	stopped.	“There	was	the	transition,	very	well
defined,”	Swinney	 said.	 “So	 that	was	 great.	Then	we	went	 on,	 to	 look	 for	 the
next	one.”

There	 the	 expected	 Landau	 sequence	 broke	 down.	 Experiment	 failed	 to
confirm	theory.	At	the	next	transition	the	flow	jumped	all	the	way	to	a	confused
state	 with	 no	 distinguishable	 cycles	 at	 all.	 No	 new	 frequencies,	 no	 gradual
buildup	of	complexity.	“What	we	found	was,	it	became	chaotic.”	A	few	months
later,	a	lean,	intensely	charming	Belgian	appeared	at	the	door	to	their	laboratory.

DAVID	RUELLE	SOMETIMES	SAID	there	were	two	kinds	of	physicists,	the	kind
that	grew	up	taking	apart	radios—this	being	an	era	before	solid-state,	when	you
could	 still	 look	 at	 wires	 and	 orange-glowing	 vacuum	 tubes	 and	 imagine
something	about	the	flow	of	electrons—and	the	kind	that	played	with	chemistry
sets.	Ruelle	played	with	chemistry	 sets,	or	not	quite	 sets	 in	 the	 later	American
sense,	but	chemicals,	explosive	or	poisonous,	cheerfully	dispensed	in	his	native
northern	 Belgium	 by	 the	 local	 pharmacist	 and	 then	 mixed,	 stirred,	 heated,
crystallized,	and	sometimes	blown	up	by	Ruelle	himself.	He	was	born	in	Ghent
in	1935,	the	son	of	a	gymnastics	teacher	and	a	university	professor	of	linguistics,
and	though	he	made	his	career	 in	an	abstract	realm	of	science	he	always	had	a
taste	 for	 a	 dangerous	 side	 of	 nature	 that	 hid	 its	 surprises	 in	 cryptogamous
fungoid	mushrooms	or	saltpeter,	sulfur,	and	charcoal.

It	 was	 in	 mathematical	 physics,	 though,	 that	 Ruelle	 made	 his	 lasting
contribution	to	the	exploration	of	chaos.	By	1970	he	had	joined	the	Institut	des
Hautes	Études	Scientifiques,	an	 institute	outside	Paris	modeled	on	 the	 Institute



for	 Advanced	 Study	 in	 Princeton.	 He	 had	 already	 developed	 what	 became	 a
lifelong	habit	of	leaving	the	institute	and	his	family	periodically	to	take	solitary
walks,	 weeks	 long,	 carrying	 only	 a	 backpack	 through	 empty	 wildernesses	 in
Iceland	or	rural	Mexico.	Often	he	saw	no	one.	When	he	came	across	humans	and
accepted	their	hospitality—perhaps	a	meal	of	maize	tortillas,	with	no	fat,	animal
or	 vegetable—he	 felt	 that	 he	was	 seeing	 the	world	 as	 it	 existed	 two	millennia
before.	When	he	returned	to	the	institute	he	would	begin	his	scientific	existence
again,	his	face	just	a	little	more	gaunt,	the	skin	stretched	a	little	more	tightly	over
his	round	brow	and	sharp	chin.	Ruelle	had	heard	talks	by	Steve	Smale	about	the
horseshoe	map	and	 the	chaotic	possibilities	of	dynamical	systems.	He	had	also
thought	about	fluid	turbulence	and	the	classic	Landau	picture.	He	suspected	that
these	ideas	were	related—and	contradictory.

Ruelle	had	no	experience	with	fluid	flows,	but	that	did	not	discourage	him
any	more	than	it	had	discouraged	his	many	unsuccessful	predecessors.	“Always
nonspecialists	find	the	new	things,”	he	said.	“There	is	not	a	natural	deep	theory
of	 turbulence.	 All	 the	 questions	 you	 can	 ask	 about	 turbulence	 are	 of	 a	 more
general	 nature,	 and	 therefore	 accessible	 to	 nonspecialists.”	 It	 was	 easy	 to	 see
why	 turbulence	 resisted	 analysis.	 The	 equations	 of	 fluid	 flow	 are	 nonlinear
partial	 differential	 equations,	 unsolvable	 except	 in	 special	 cases.	 Yet	 Ruelle
worked	out	an	abstract	alternative	to	Landau’s	picture,	couched	in	the	language
of	Smale,	with	 images	of	space	as	a	pliable	material	 to	be	squeezed,	stretched,
and	folded	into	shapes	like	horseshoes.	He	wrote	a	paper	at	his	institute	with	a
visiting	Dutch	mathematician,	Floris	Takens,	and	they	published	it	in	1971.	The
style	 was	 unmistakably	 mathematics—physicists,	 beware!—meaning	 that
paragraphs	would	begin	with	Definition	or	Proposition	or	Proof,	followed	by	the
inevitable	thrust:	Let….

“Proposition	(5.2).	Let	Xµ	be	a	one-parameter	family	of	Ck	vectorfields	on
a	Hilbert	space	H	such	that…”

Yet	 the	 title	 claimed	a	connection	with	 the	 real	world:	 “On	 the	Nature	of
Turbulence,”	 a	 deliberate	 echo	 of	 Landau’s	 famous	 title,	 “On	 the	 Problem	 of
Turbulence.”	The	clear	purpose	of	Ruelle	and	Takens’s	argument	went	beyond
mathematics;	they	meant	to	offer	a	substitute	for	the	traditional	view	of	the	onset
of	 turbulence.	 Instead	of	a	piling	up	of	 frequencies,	 leading	 to	an	 infinitude	of
independent	 overlapping	 motions,	 they	 proposed	 that	 just	 three	 independent
motions	 would	 produce	 the	 full	 complexity	 of	 turbulence.	 Mathematically
speaking,	some	of	their	logic	turned	out	to	be	obscure,	wrong,	borrowed,	or	all
three—opinions	still	varied	fifteen	years	later.

But	the	insight,	the	commentary,	the	marginalia,	and	the	physics	woven	into
the	 paper	 made	 it	 a	 lasting	 gift.	Most	 seductive	 of	 all	 was	 an	 image	 that	 the



authors	 called	 a	 strange	 attractor.	 This	 phrase	 was	 psychoanalytically
“suggestive,”	Ruelle	felt	 later.	 Its	status	 in	 the	study	of	chaos	was	such	that	he
and	Takens	 jousted	 below	 a	 polite	 surface	 for	 the	 honor	 of	 having	 chosen	 the
words.	The	 truth	was	 that	neither	quite	 remembered,	but	Takens,	a	 tall,	 ruddy,
fiercely	Nordic	man,	might	say,	“Did	you	ever	ask	God	whether	he	created	this
damned	 universe?…I	 don’t	 remember	 anything….	 I	 often	 create	 without
remembering	 it,”	while	Ruelle,	 the	paper’s	 senior	author,	would	 remark	softly,
“Takens	happened	to	be	visiting	IHES.	Different	people	work	differently.	Some
people	would	try	to	write	a	paper	all	by	themselves	so	they	keep	all	the	credit.”

The	 strange	 attractor	 lives	 in	 phase	 space,	 one	 of	 the	 most	 powerful
inventions	of	modern	science.	Phase	space	gives	a	way	of	turning	numbers	into
pictures,	abstracting	every	bit	of	essential	information	from	a	system	of	moving
parts,	mechanical	or	fluid,	and	making	a	flexible	road	map	to	all	its	possibilities.
Physicists	 already	worked	with	 two	 simpler	 kinds	 of	 “attractors”:	 fixed	 points
and	 limit	 cycles,	 representing	 behavior	 that	 reached	 a	 steady	 state	 or	 repeated
itself	continuously.

In	phase	space	the	complete	state	of	knowledge	about	a	dynamical	system
at	a	single	instant	in	time	collapses	to	a	point.	That	point	is	the	dynamical	system
—at	that	instant.	At	the	next	instant,	though,	the	system	will	have	changed,	ever
so	 slightly,	 and	 so	 the	 point	 moves.	 The	 history	 of	 the	 system	 time	 can	 be
charted	 by	 the	 moving	 point,	 tracing	 its	 orbit	 through	 phase	 space	 with	 the
passage	of	time.

How	 can	 all	 the	 information	 about	 a	 complicated	 system	 be	 stored	 in	 a
point?	 If	 the	system	has	only	 two	variables,	 the	answer	 is	 simple.	 It	 is	 straight
from	 the	 Cartesian	 geometry	 taught	 in	 high	 school—one	 variable	 on	 the
horizontal	axis,	the	other	on	the	vertical.	If	the	system	is	a	swinging,	frictionless
pendulum,	 one	 variable	 is	 position	 and	 the	 other	 velocity,	 and	 they	 change
continuously,	making	a	line	of	points	that	traces	a	loop,	repeating	itself	forever,
around	 and	 around.	 The	 same	 system	 with	 a	 higher	 energy	 level—swinging
faster	and	farther—forms	a	loop	in	phase	space	similar	to	the	first,	but	larger.

A	little	realism,	in	the	form	of	friction,	changes	the	picture.	We	do	not	need
the	equations	of	motion	 to	know	the	destiny	of	a	pendulum	subject	 to	 friction.
Every	 orbit	 must	 eventually	 end	 up	 at	 the	 same	 place,	 the	 center:	 position	 0,
velocity	 0.	 This	 central	 fixed	 point	 “attracts”	 the	 orbits.	 Instead	 of	 looping
around	forever,	 they	spiral	 inward.	The	 friction	dissipates	 the	system’s	energy,
and	in	phase	space	the	dissipation	shows	itself	as	a	pull	toward	the	center,	from
the	outer	regions	of	high	energy	to	the	inner	regions	of	low	energy.	The	attractor
—the	 simplest	 kind	possible—is	 like	 a	pinpoint	magnet	 embedded	 in	 a	 rubber
sheet.



One	 advantage	 of	 thinking	 of	 states	 as	 points	 in	 space	 is	 that	 it	 makes
change	 easier	 to	watch.	A	 system	whose	 variables	 change	 continuously	 up	 or
down	 becomes	 a	 moving	 point,	 like	 a	 fly	 moving	 around	 a	 room.	 If	 some
combinations	of	variables	never	occur,	 then	a	scientist	can	simply	imagine	that
part	of	the	room	as	out	of	bounds.	The	fly	never	goes	there.	If	a	system	behaves
periodically,	 coming	 around	 to	 the	 same	 state	 again	 and	 again,	 then	 the	 fly
moves	 in	 a	 loop,	 passing	 through	 the	 same	 position	 in	 phase	 space	 again	 and
again.	Phase-space	portraits	of	physical	systems	exposed	patterns	of	motion	that
were	invisible	otherwise,	as	an	infrared	landscape	photograph	can	reveal	patterns
and	 details	 that	 exist	 just	 beyond	 the	 reach	 of	 perception.	 When	 a	 scientist
looked	 at	 a	 phase	 portrait,	 he	 could	 use	 his	 imagination	 to	 think	 back	 to	 the
system	itself.	This	loop	corresponds	to	that	periodicity.	This	twist	corresponds	to
that	change.	This	empty	void	corresponds	to	that	physical	impossibility.

Even	in	two	dimensions,	phase-space	portraits	had	many	surprises	in	store,
and	 even	 desktop	 computers	 could	 easily	 demonstrate	 some	 of	 them,	 turning
equations	 into	 colorful	 moving	 trajectories.	 Some	 physicists	 began	 making
movies	 and	 videotapes	 to	 show	 their	 colleagues,	 and	 some	mathematicians	 in
California	 published	 books	with	 a	 series	 of	 green,	 blue,	 and	 red	 cartoon-style
drawings—“chaos	comics,”	 some	of	 their	 colleagues	 said,	with	 just	 a	 touch	of
malice.	 Two	 dimensions	 did	 not	 begin	 to	 cover	 the	 kinds	 of	 systems	 that
physicists	needed	to	study.	They	had	to	show	more	variables	than	two,	and	that
meant	 more	 dimensions.	 Every	 piece	 of	 a	 dynamical	 system	 that	 can	 move
independently	 is	 another	 variable,	 another	 degree	of	 freedom.	Every	degree	of
freedom	requires	another	dimension	 in	phase	 space,	 to	make	sure	 that	a	 single
point	contains	enough	information	to	determine	the	state	of	the	system	uniquely.
The	 simple	 equations	 Robert	 May	 studied	 were	 one-dimensional—a	 single
number	was	enough,	a	number	 that	might	 stand	 for	 temperature	or	population,
and	 that	 number	 defined	 the	 position	 of	 a	 point	 on	 a	 one-dimensional	 line.
Lorenz’s	 stripped-down	 system	of	 fluid	 convection	was	 three-dimensional,	 not
because	 the	 fluid	 moved	 through	 three	 dimensions,	 but	 because	 it	 took	 three
distinct	numbers	to	nail	down	the	state	of	the	fluid	at	any	instant.

Spaces	of	four,	five,	or	more	dimensions	tax	the	visual	imagination	of	even
the	 most	 agile	 topologist.	 But	 complex	 systems	 have	 many	 independent
variables.	 Mathematicians	 had	 to	 accept	 the	 fact	 that	 systems	 with	 infinitely
many	degrees	of	 freedom—untrammeled	nature	expressing	 itself	 in	a	 turbulent
waterfall	 or	 an	 unpredictable	 brain—required	 a	 phase	 space	 of	 infinite
dimensions.	But	who	could	handle	such	a	 thing?	It	was	a	hydra,	merciless	and
uncontrollable,	 and	 it	 was	 Landau’s	 image	 for	 turbulence:	 infinite	 modes,
infinite	degrees	of	freedom,	infinite	dimensions.



Velocity	is	zero	as	the	pendulum	starts	its	swing.	Position	is	a	negative	number,	the	distance	to	the	left	of
the	center.
The	two	numbers	specify	a	single	point	in	two-dimensional	phase	space.
Velocity	reaches	its	maximum	as	the	pendulum’s	position	passes	through	zero.
Velocity	declines	again	to	zero,	and	then	becomes	negative	to	represent	leftward	motion.



ANOTHER	WAY	TO	SEE	A	PENDULUM.	One	point	in	phase	space	(right)	contains	all	the	information
about	the	state	of	a	dynamical	system	at	any	instant	(left).	For	a	simple	pendulum,	two	numbers—velocity
and	position—are	all	you	need	to	know.



The	 points	 trace	 a	 trajectory	 that	 provides	 a	 way	 of	 visualizing	 the	 continuous	 longterm	 behavior	 of	 a
dynamical	system.	A	repeating	loop	represents	a	system	that	repeats	itself	at	regular	intervals	forever.

If	the	repeating	behavior	is	stable,	as	in	a	pendulum	clock,	then	the	system	returns	to	this	orbit	after
small	perturbations.	In	phase	space,	trajectories	near	the	orbit	are	drawn	into	it;	the	orbit	is	an	attractor.



An	attractor	can	be	a	single	point.	For	a	pendulum	steadily	losing	energy	to	friction,	all	trajectories	spiral
inward	toward	a	point	that	represents	a	steady	state—in	this	case,	the	steady	state	of	no	motion	at	all.

A	PHYSICIST	HAD	GOOD	REASON	to	dislike	a	model	that	found	so	little	clarity
in	 nature.	 Using	 the	 nonlinear	 equations	 of	 fluid	 motion,	 the	 world’s	 fastest
supercomputers	were	incapable	of	accurately	tracking	a	turbulent	flow	of	even	a
cubic	centimeter	for	more	than	a	few	seconds.	The	blame	for	this	was	certainly
nature’s	more	 than	Landau’s,	 but	 even	 so	 the	Landau	picture	went	 against	 the
grain.	 Absent	 any	 knowledge,	 a	 physicist	 might	 be	 permitted	 to	 suspect	 that
some	 principle	was	 evading	 discovery.	 The	 great	 quantum	 theorist	 Richard	 P.
Feynman	 expressed	 this	 feeling.	 “It	 always	 bothers	 me	 that,	 according	 to	 the
laws	 as	 we	 understand	 them	 today,	 it	 takes	 a	 computing	 machine	 an	 infinite
number	of	logical	operations	to	figure	out	what	goes	on	in	no	matter	how	tiny	a
region	of	 space,	and	no	matter	how	 tiny	a	 region	of	 time.	How	can	all	 that	be
going	on	 in	 that	 tiny	 space?	Why	should	 it	 take	an	 infinite	 amount	of	 logic	 to
figure	out	what	one	tiny	piece	of	space/time	is	going	to	do?”

Like	so	many	of	those	who	began	studying	chaos,	David	Ruelle	suspected
that	 the	 visible	 patterns	 in	 turbulent	 flow—self-entangled	 stream	 lines,	 spiral
vortices,	whorls	that	rise	before	the	eye	and	vanish	again—must	reflect	patterns



explained	by	laws	not	yet	discovered.	In	his	mind,	the	dissipation	of	energy	in	a
turbulent	flow	must	still	lead	to	a	kind	of	contraction	of	the	phase	space,	a	pull
toward	an	attractor.	Certainly	 the	attractor	would	not	be	a	 fixed	point,	because
the	flow	would	never	come	to	rest.	Energy	was	pouring	into	the	system	as	well
as	draining	out.	What	other	kind	of	attractor	could	 it	be?	According	 to	dogma,
only	 one	 other	 kind	 existed,	 a	 periodic	 attractor,	 or	 limit	 cycle—an	 orbit	 that
attracted	all	other	nearby	orbits.	If	a	pendulum	gains	energy	from	a	spring	while
it	loses	it	through	friction—that	is,	if	the	pendulum	is	driven	as	well	as	damped
—a	stable	orbit	may	be	the	closed	loop	in	phase	space	that	represents	the	regular
swinging	motion	of	a	grandfather	clock.	No	matter	where	the	pendulum	starts,	it
will	settle	into	that	one	orbit.	Or	will	it?	For	some	initial	conditions—those	with
the	lowest	energy—the	pendulum	will	still	settle	to	a	stop,	so	the	system	actually
has	two	attractors,	one	a	closed	loop	and	the	other	a	fixed	point.	Each	attractor
has	its	“basin,”	just	as	two	nearby	rivers	have	their	own	watershed	regions.

In	the	short	term	any	point	in	phase	space	can	stand	for	a	possible	behavior
of	 the	 dynamical	 system.	 In	 the	 long	 term	 the	 only	 possible	 behaviors	 are	 the
attractors	 themselves.	 Other	 kinds	 of	 motion	 are	 transient.	 By	 definition,
attractors	 had	 the	 important	 property	 of	 stability—in	 a	 real	 system,	 where
moving	 parts	 are	 subject	 to	 bumps	 and	 jiggles	 from	 real-world	 noise,	 motion
tends	to	return	to	the	attractor.	A	bump	may	shove	a	trajectory	away	for	a	brief
time,	but	the	resulting	transient	motions	die	out.	Even	if	the	cat	knocks	into	it,	a
pendulum	clock	does	not	switch	to	a	sixty-two–second	minute.	Turbulence	in	a
fluid	was	a	behavior	of	a	different	order,	never	producing	any	single	rhythm	to
the	exclusion	of	others.	A	well-known	characteristic	of	 turbulence	was	that	 the
whole	broad	spectrum	of	possible	cycles	was	present	at	once.	Turbulence	is	like
white	 noise,	 or	 static.	 Could	 such	 a	 thing	 arise	 from	 a	 simple,	 deterministic
system	of	equations?

Ruelle	 and	 Takens	wondered	whether	 some	 other	 kind	 of	 attractor	 could
have	 the	 right	 set	 of	 properties.	 Stable—representing	 the	 final	 state	 of	 a
dynamical	system	in	a	noisy	world.	Low-dimensional—an	orbit	in	a	phase	space
that	 might	 be	 a	 rectangle	 or	 a	 box,	 with	 just	 a	 few	 degrees	 of	 freedom.
Nonperiodic—never	repeating	itself,	and	never	falling	into	a	steady	grandfather-
clock	rhythm.	Geometrically	the	question	was	a	puzzle:	What	kind	of	orbit	could
be	drawn	in	a	limited	space	so	that	it	would	never	repeat	itself	and	never	cross
itself—because	once	a	system	returns	to	a	state	it	has	been	in	before,	it	thereafter
must	follow	the	same	path.	To	produce	every	rhythm,	the	orbit	would	have	to	be
an	infinitely	long	line	in	a	finite	area.	In	other	words—but	the	word	had	not	been
invented—it	would	have	to	be	fractal.

By	mathematical	 reasoning,	Ruelle	 and	Takens	 claimed	 that	 such	 a	 thing



must	exist.	They	had	never	seen	one,	and	they	did	not	draw	one.	But	the	claim
was	enough.	Later,	delivering	a	plenary	address	to	the	International	Congress	of
Mathematicians	in	Warsaw,	with	the	comfortable	advantage	of	hindsight,	Ruelle
declared:	“The	reaction	of	the	scientific	public	to	our	proposal	was	quite	cold.	In
particular,	 the	notion	 that	continuous	spectrum	would	be	associated	with	a	 few
degrees	 of	 freedom	 was	 viewed	 as	 heretical	 by	 many	 physicists.”	 But	 it	 was
physicists—a	handful,	 to	be	sure—who	recognized	 the	 importance	of	 the	1971
paper	and	went	to	work	on	its	implications.

ACTUALLY,	BY	1971	the	scientific	literature	already	contained	one	small	line
drawing	of	the	unimaginable	beast	that	Ruelle	and	Takens	were	trying	to	bring
alive.	Edward	Lorenz	had	attached	it	to	his	1963	paper	on	deterministic	chaos,	a
picture	with	 just	 two	curves	on	 the	 right,	one	 inside	 the	other,	 and	 five	on	 the
left.	To	plot	 just	 these	seven	 loops	 required	500	successive	calculations	on	 the
computer.	A	point	moving	along	this	trajectory	in	phase	space,	around	the	loops,
illustrated	 the	 slow,	 chaotic	 rotation	 of	 a	 fluid	 as	 modeled	 by	 Lorenz’s	 three
equations	 for	 convection.	Because	 the	 system	had	 three	 independent	 variables,
this	attractor	lay	in	a	three-dimensional	phase	space.	Although	Lorenz	drew	only
a	fragment	of	it,	he	could	see	more	than	he	drew:	a	sort	of	double	spiral,	like	a
pair	of	butterfly	wings	 interwoven	with	 infinite	dexterity.	When	the	rising	heat
of	his	system	pushed	the	fluid	around	in	one	direction,	the	trajectory	stayed	on
the	 right	 wing;	 when	 the	 rolling	 motion	 stopped	 and	 reversed	 itself,	 the
trajectory	would	swing	across	to	the	other	wing.

The	attractor	was	stable,	low-dimensional,	and	nonperiodic.	It	could	never
intersect	itself,	because	if	it	did,	returning	to	a	point	already	visited,	from	then	on
the	motion	would	repeat	itself	in	a	periodic	loop.	That	never	happened—that	was
the	beauty	of	 the	attractor.	Those	 loops	and	spirals	were	 infinitely	deep,	never
quite	joining,	never	intersecting.	Yet	they	stayed	inside	a	finite	space,	confined
by	 a	 box.	How	 could	 that	 be?	How	 could	 infinitely	many	 paths	 lie	 in	 a	 finite
space?

In	an	era	before	Mandelbrot’s	pictures	of	fractals	had	flooded	the	scientific
marketplace,	the	details	of	constructing	such	a	shape	were	hard	to	imagine,	and
Lorenz	 acknowledged	 an	 “apparent	 contradiction”	 in	 his	 tentative	 description.
“It	 is	 difficult	 to	 reconcile	 the	 merging	 of	 two	 surfaces,	 one	 containing	 each
spiral,	with	the	inability	of	two	trajectories	to	merge,”	he	wrote.	But	he	saw	an
answer	 too	 delicate	 to	 appear	 in	 the	 few	 calculations	 within	 range	 of	 his
computer.	Where	the	spirals	appear	to	join,	the	surfaces	must	divide,	he	realized,
forming	separate	layers	in	the	manner	of	a	flaky	mille-feuille.	“We	see	that	each
surface	is	really	a	pair	of	surfaces,	so	that,	where	they	appear	to	merge,	there	are



really	four	surfaces.	Continuing	this	process	for	another	circuit,	we	see	that	there
are	 really	 eight	 surfaces,	 etc.,	 and	we	 finally	 conclude	 that	 there	 is	 an	 infinite
complex	of	 surfaces,	 each	 extremely	 close	 to	one	or	 the	other	of	 two	merging
surfaces.”	 It	 was	 no	wonder	 that	meteorologists	 in	 1963	 left	 such	 speculation
alone,	nor	 that	Ruelle	a	decade	later	felt	astonishment	and	excitement	when	he
finally	learned	of	Lorenz’s	work.	He	went	to	visit	Lorenz	once,	in	the	years	that
followed,	and	left	with	a	small	sense	of	disappointment	that	they	had	not	talked
more	of	their	common	territory	in	science.	With	characteristic	diffidence,	Lorenz
made	 the	 occasion	 a	 social	 one,	 and	 they	 went	 with	 their	 wives	 to	 an	 art
museum.

THE	FIRST	STRANGE	ATTRACTOR.	In	1963	Edward	Lorenz	could	compute	only	the	first	few	strands
of	the	attractor	for	his	simple	system	of	equations.	But	he	could	see	that	the	interleaving	of	the	two	spiral
wings	must	have	an	extraordinary	structure	on	invisibly	small	scales.

The	effort	 to	pursue	the	hints	put	forward	by	Ruelle	and	Takens	took	two
paths.	One	was	 the	 theoretical	 struggle	 to	visualize	 strange	 attractors.	Was	 the
Lorenz	 attractor	 typical?	What	 other	 sorts	 of	 shapes	were	 possible?	The	 other
was	 a	 line	 of	 experimental	 work	 meant	 to	 confirm	 or	 refute	 the	 highly



unmathematical	leap	of	faith	that	suggested	the	applicability	of	strange	attractors
to	chaos	in	nature.

In	 Japan	 the	 study	 of	 electrical	 circuits	 that	 imitated	 the	 behavior	 of
mechanical	 springs—but	 much	 faster—led	 Yoshisuke	 Ueda	 to	 discover	 an
extraordinarily	beautiful	set	of	strange	attractors.	(He	met	an	Eastern	version	of
the	coolness	that	greeted	Ruelle:	“Your	result	is	no	more	than	an	almost	periodic
oscillation.	 Don’t	 form	 a	 selfish	 concept	 of	 steady	 states.”)	 In	 Germany	 Otto
Rössler,	a	nonpracticing	medical	doctor	who	came	to	chaos	by	way	of	chemistry
and	 theoretical	 biology,	 began	with	 an	 odd	 ability	 to	 see	 strange	 attractors	 as
philosophical	 objects,	 letting	 the	 mathematics	 follow	 along	 behind.	 Rössler’s
name	became	attached	to	a	particularly	simple	attractor	in	the	shape	of	a	band	of
ribbon	with	a	fold	in	 it,	much	studied	because	it	was	easy	to	draw,	but	he	also
visualized	attractors	in	higher	dimensions—“a	sausage	in	a	sausage	in	a	sausage
in	a	sausage,”	he	would	say,	“take	it	out,	fold	it,	squeeze	it,	put	it	back.”	Indeed,
the	folding	and	squeezing	of	space	was	a	key	to	constructing	strange	attractors,
and	perhaps	 a	 key	 to	 the	 dynamics	 of	 the	 real	 systems	 that	 gave	 rise	 to	 them.
Rössler	felt	that	these	shapes	embodied	a	self-organizing	principle	in	the	world.
He	would	imagine	something	like	a	wind	sock	on	an	airfield,	“an	open	hose	with
a	hole	 in	 the	 end,	 and	 the	wind	 forces	 its	way	 in,”	he	 said.	 “Then	 the	wind	 is
trapped.	Against	its	will,	energy	is	doing	something	productive,	like	the	devil	in
medieval	 history.	 The	 principle	 is	 that	 nature	 does	 something	 against	 its	 own
will	and,	by	self-entanglement,	produces	beauty.”

Making	 pictures	 of	 strange	 attractors	 was	 not	 a	 trivial	 matter.	 Typically,
orbits	would	wind	their	ever-more–complicated	paths	through	three	dimensions
or	more,	 creating	a	dark	 scribble	 in	 space	with	 an	 internal	 structure	 that	 could
not	be	seen	from	the	outside.	To	convert	these	three-dimensional	skeins	into	flat
pictures,	 scientists	 first	 used	 the	 technique	 of	 projection,	 in	 which	 a	 drawing
represented	 the	 shadow	 that	 an	 attractor	 would	 cast	 on	 a	 surface.	 But	 with
complicated	 strange	 attractors,	 projection	 just	 smears	 the	 detail	 into	 an
indecipherable	mess.	A	more	revelatory	technique	was	to	make	a	return	map,	or
a	Poincaré	map,	 in	effect,	taking	a	slice	from	the	tangled	heart	of	the	attractor,
removing	a	 two-dimensional	 section	 just	 as	 a	pathologist	prepares	a	 section	of
tissue	for	a	microscope	slide.

The	 Poincaré	 map	 removes	 a	 dimension	 from	 an	 attractor	 and	 turns	 a
continuous	line	into	a	collection	of	points.	In	reducing	an	attractor	to	its	Poincaré
map,	 a	 scientist	 implicitly	 assumes	 that	 he	 can	 preserve	much	 of	 the	 essential
movement.	 He	 can	 imagine,	 for	 example,	 a	 strange	 attractor	 buzzing	 around
before	his	 eyes,	 its	 orbits	 carrying	up	and	down,	 left	 and	 right,	 and	 to	 and	 fro
through	his	 computer	 screen.	Each	 time	 the	 orbit	 passes	 through	 the	 screen,	 it



leaves	a	glowing	point	at	the	place	of	intersection,	and	the	points	either	form	a
random	blotch	or	begin	to	trace	some	shape	in	phosphorus.

The	process	corresponds	 to	sampling	 the	state	of	a	system	every	so	often,
instead	of	continuously.	When	to	sample—where	to	take	the	slice	from	a	strange
attractor—is	 a	 question	 that	 gives	 an	 investigator	 some	 flexibility.	 The	 most
informative	interval	might	correspond	to	some	physical	feature	of	the	dynamical
system:	for	example,	a	Poincaré	map	could	sample	 the	velocity	of	a	pendulum
bob	 each	 time	 it	 passed	 through	 its	 lowest	 point.	 Or	 the	 investigator	 could
choose	some	regular	 time	 interval,	 freezing	successive	states	 in	 the	 flash	of	an
imaginary	strobe	light.	Either	way,	such	pictures	finally	began	to	reveal	the	fine
fractal	structure	guessed	at	by	Edward	Lorenz.

EXPOSING	AN	ATTRACTOR’S	 STRUCTURE.	 The	 strange	 attractor	 above—first	 one	 orbit,	 then	 ten,
then	 one	 hundred—depicts	 the	 chaotic	 behavior	 of	 a	 rotor,	 a	 pendulum	 swinging	 through	 a	 full	 circle,
driven	 by	 an	 energetic	 kick	 at	 regular	 intervals.	 By	 the	 time	 1,000	 orbits	 have	 been	 drawn	 (below),	 the
attractor	has	become	an	impenetrably	tangled	skein.

To	 see	 the	 structure	within,	 a	 computer	 can	 take	 a	 slice	 through	 an	 attractor,	 a	 so-called	Poincaré
section.	 The	 technique	 reduces	 a	 three-dimensional	 picture	 to	 two	 dimensions.	 Each	 time	 the	 trajectory
passes	through	a	plane,	it	marks	a	point,	and	gradually	a	minutely	detailed	pattern	emerges.	This	example
has	 more	 than	 8,000	 points,	 each	 standing	 for	 a	 full	 orbit	 around	 the	 attractor.	 In	 effect,	 the	 system	 is



“sampled”	at	regular	intervals.	One	kind	of	information	is	lost;	another	is	brought	out	in	high	relief.

THE	MOST	 ILLUMINATING	 STRANGE	ATTRACTOR,	 because	 it	was	 the	 simplest,
came	 from	 a	 man	 far	 removed	 from	 the	 mysteries	 of	 turbulence	 and	 fluid
dynamics.	He	was	an	astronomer,	Michel	Hénon	of	the	Nice	Observatory	on	the
southern	 coast	 of	 France.	 In	 one	 way,	 of	 course,	 astronomy	 gave	 dynamical
systems	 its	 start,	 the	 clockwork	motions	of	 planets	 providing	Newton	with	his
triumph	and	Laplace	with	his	inspiration.	But	celestial	mechanics	differed	from
most	earthly	systems	in	a	crucial	respect.	Systems	that	lose	energy	to	friction	are
dissipative.	Astronomical	systems	are	not:	they	are	conservative,	or	Hamiltonian.
Actually,	on	a	nearly	infinitesimal	scale,	even	astronomical	systems	suffer	a	kind
of	 drag,	 with	 stars	 radiating	 away	 energy	 and	 tidal	 friction	 draining	 some
momentum	 from	 orbiting	 bodies,	 but	 for	 practical	 purposes,	 astronomers’
calculations	could	 ignore	dissipation.	And	without	dissipation,	 the	phase	 space
would	 not	 fold	 and	 contract	 in	 the	 way	 needed	 to	 produce	 an	 infinite	 fractal
layering.	A	strange	attractor	could	never	arise.	Could	chaos?

Many	astronomers	have	 long	and	happy	careers	without	giving	dynamical
systems	a	thought,	but	Hénon	was	different.	He	was	born	in	Paris	in	1931,	a	few
years	 younger	 than	 Lorenz	 but,	 like	 him,	 a	 scientist	 with	 a	 certain	 unfulfilled
attraction	 to	mathematics.	Hénon	 liked	 small,	 concrete	 problems	 that	 could	 be
attached	 to	 physical	 situations—“not	 like	 the	 kind	 of	 mathematics	 people	 do
today,”	 he	 would	 say.	When	 computers	 reached	 a	 size	 suitable	 for	 hobbyists,
Hénon	got	one,	 a	Heathkit	 that	he	 soldered	 together	 and	played	with	 at	 home.
Long	 before	 that,	 though,	 he	 took	 on	 a	 particularly	 baffling	 problem	 in
dynamics.	 It	 concerned	globular	 clusters—crowded	balls	 of	 stars,	 sometimes	 a
million	 in	 one	 place,	 that	 form	 the	 oldest	 and	 possibly	 the	 most	 breathtaking
objects	 in	 the	night	 sky.	Globular	clusters	are	amazingly	dense	with	stars.	The
problem	of	how	they	stay	together	and	how	they	evolve	over	time	has	perplexed
astronomers	throughout	the	twentieth	century.

Dynamically	speaking,	a	globular	cluster	is	a	big	many-body	problem.	The
two-body	problem	is	easy.	Newton	solved	it	completely.	Each	body—the	earth
and	the	moon,	for	example—travels	in	a	perfect	ellipse	around	the	system’s	joint
center	 of	 gravity.	 Add	 just	 one	 more	 gravitational	 object,	 however,	 and
everything	 changes.	The	 three-body	problem	 is	 hard,	 and	worse	 than	hard.	As
Poincaré	 discovered,	 it	 is	most	 often	 impossible.	 The	 orbits	 can	 be	 calculated
numerically	for	a	while,	and	with	powerful	computers	they	can	be	tracked	for	a
long	while	before	uncertainties	begin	to	take	over.	But	the	equations	cannot	be
solved	 analytically,	 which	 means	 that	 longterm	 questions	 about	 a	 three-body
system	cannot	be	answered.	Is	the	solar	system	stable?	It	certainly	appears	to	be,



in	 the	 short	 term,	 but	 even	 today	 no	 one	 knows	 for	 sure	 that	 some	 planetary
orbits	could	not	become	more	and	more	eccentric	until	 the	planets	fly	off	from
the	system	forever.

A	system	like	a	globular	cluster	is	far	too	complex	to	be	treated	directly	as	a
many-body	 problem,	 but	 its	 dynamics	 can	 be	 studied	with	 the	 help	 of	 certain
compromises.	It	is	reasonable,	for	example,	to	think	of	individual	stars	winging
their	way	 through	 an	 average	 gravitational	 field	with	 a	 particular	 gravitational
center.	 Every	 so	 often,	 however,	 two	 stars	 will	 approach	 each	 other	 closely
enough	 that	 their	 interaction	 must	 be	 treated	 separately.	 And	 astronomers
realized	that	globular	clusters	generally	must	not	be	stable.	Binary	star	systems
tend	to	form	inside	them,	stars	pairing	off	in	tight	little	orbits,	and	when	a	third
star	 encounters	 a	 binary,	 one	 of	 the	 three	 tends	 to	 get	 a	 sharp	 kick.	 Every	 so
often,	 a	 star	will	 gain	 enough	energy	 from	such	an	 interaction	 to	 reach	escape
velocity	and	depart	 the	cluster	forever;	 the	rest	of	 the	cluster	will	 then	contract
slightly.	When	Hénon	 took	 on	 this	 problem	 for	 his	 doctoral	 thesis	 in	 Paris	 in
1960,	he	made	a	rather	arbitrary	assumption:	that	as	the	cluster	changed	scale,	it
would	 remain	 self-similar.	 Working	 out	 the	 calculations,	 he	 reached	 an
astonishing	result.	The	core	of	a	cluster	would	collapse,	gaining	kinetic	energy
and	seeking	a	state	of	infinite	density.	This	was	hard	to	imagine,	and	furthermore
it	 was	 not	 supported	 by	 the	 evidence	 of	 clusters	 so	 far	 observed.	 But	 slowly
Hénon’s	theory—later	given	the	name	“gravothermal	collapse”—took	hold.

Thus	 fortified,	willing	 to	 try	mathematics	 on	 old	 problems	 and	willing	 to
pursue	unexpected	results	to	their	unlikely	outcomes,	he	began	work	on	a	much
easier	problem	in	star	dynamics.

This	time,	in	1962,	visiting	Princeton	University,	he	had	access	for	the	first
time	 to	 computers,	 just	 as	 Lorenz	 at	M.I.T.	 was	 starting	 to	 use	 computers	 in
meteorology.	 Hénon	 began	 modeling	 the	 orbits	 of	 stars	 around	 their	 galactic
center.	In	reasonably	simple	form,	galactic	orbits	can	be	treated	like	the	orbits	of
planets	 around	 a	 sun,	 with	 one	 exception:	 the	 central	 gravity	 source	 is	 not	 a
point,	but	a	disk	with	thickness	in	three	dimensions.

He	 made	 a	 compromise	 with	 the	 differential	 equations.	 “To	 have	 more
freedom	 of	 experimentation,”	 as	 he	 put	 it,	 “we	 forget	 momentarily	 about	 the
astronomical	 origin	 of	 the	 problem.”	 Although	 he	 did	 not	 say	 so	 at	 the	 time,
“freedom	of	experimentation”	meant,	in	part,	freedom	to	play	with	the	problem
on	a	primitive	computer.	His	machine	had	less	than	a	thousandth	of	the	memory
on	a	single	chip	of	a	personal	computer	twenty-five	years	later,	and	it	was	slow,
too.	But	 like	 later	experimenters	 in	 the	phenomena	of	chaos,	Hénon	found	that
the	oversimplification	paid	off.	By	abstracting	only	the	essence	of	his	system,	he
made	 discoveries	 that	 applied	 to	 other	 systems	 as	 well,	 and	 more	 important



systems.	 Years	 later,	 galactic	 orbits	 were	 still	 a	 theoretical	 game,	 but	 the
dynamics	of	such	systems	were	under	intense,	expensive	investigation	by	those
interested	 in	 the	 orbits	 of	 particles	 in	 high-energy	 accelerators	 and	 those
interested	 in	 the	 confinement	 of	magnetic	 plasmas	 for	 the	 creation	 of	 nuclear
fusion.

Stellar	orbits	in	galaxies,	on	a	time	scale	of	some	200	million	years,	take	on
a	 three-dimensional	 character	 instead	 of	 making	 perfect	 ellipses.	 Three-
dimensional	orbits	are	as	hard	to	visualize	when	the	orbits	are	real	as	when	they
are	 imaginary	 constructions	 in	 phase	 space.	 So	 Hénon	 used	 a	 technique
comparable	 to	 the	making	 of	 Poincaré	maps.	He	 imagined	 a	 flat	 sheet	 placed
upright	on	one	side	of	the	galaxy	so	that	every	orbit	would	sweep	through	it,	as
horses	on	a	race	track	sweep	across	the	finish	line.	Then	he	would	mark	the	point
where	the	orbit	crossed	this	plane	and	trace	the	movement	of	the	point	from	orbit
to	orbit.

Hénon	had	to	plot	these	points	by	hand,	but	eventually	the	many	scientists
using	this	technique	would	watch	them	appear	on	a	computer	screen,	like	distant
street	lamps	coming	on	one	by	one	at	nightfall.	A	typical	orbit	might	begin	with
a	point	 toward	 the	 lower	 left	 of	 the	page.	Then,	on	 the	next	go-round,	 a	point
would	appear	a	few	inches	to	the	right.	Then	another,	more	to	the	right	and	up	a
little—and	so	on.	At	 first	no	pattern	would	be	obvious,	but	after	 ten	or	 twenty
points	 an	 egg-shaped	 curve	 would	 take	 shape.	 The	 successive	 points	 actually
make	a	circuit	around	 the	curve,	but	since	 they	do	not	come	around	 to	exactly
the	 same	place,	 eventually,	 after	 hundreds	or	 thousands	of	 points,	 the	 curve	 is
solidly	outlined.

Such	 orbits	 are	 not	 completely	 regular,	 since	 they	 never	 exactly	 repeat
themselves,	 but	 they	 are	 certainly	 predictable,	 and	 they	 are	 far	 from	 chaotic.
Points	 never	 arrive	 inside	 the	 curve	 or	 outside	 it.	 Translated	 back	 to	 the	 full
three-dimensional	picture,	 the	orbits	were	outlining	a	torus,	or	doughnut	shape,
and	Hénon’s	mapping	was	 a	 cross-section	 of	 the	 torus.	 So	 far,	 he	was	merely
illustrating	what	all	his	predecessors	had	taken	for	granted.	Orbits	were	periodic.
At	 the	 observatory	 in	 Copenhagen,	 from	 1910	 to	 1930,	 a	 generation	 of
astronomers	painstakingly	observed	and	calculated	hundreds	of	such	orbits—but
they	 were	 only	 interested	 in	 the	 ones	 that	 proved	 periodic.	 “I,	 too,	 was
convinced,	 like	everyone	else	at	 that	 time,	 that	all	orbits	should	be	regular	 like
this,”	 Hénon	 said.	 But	 he	 and	 his	 graduate	 student	 at	 Princeton,	 Carl	 Heiles,
continued	computing	different	orbits,	 steadily	 increasing	 the	 level	of	energy	 in
their	abstract	system.	Soon	they	saw	something	utterly	new.

First	 the	 egg-shaped	 curve	 twisted	 into	 something	 more	 complicated,
crossing	itself	in	figure	eights	and	splitting	apart	into	separate	loops.	Still,	every



orbit	 fell	 on	 some	 loop.	Then,	 at	 even	higher	 levels,	 another	 change	occurred,
quite	abruptly.	“Here	comes	the	surprise,”	Hénon	and	Heiles	wrote.	Some	orbits
became	so	unstable	 that	 the	points	would	scatter	randomly	across	 the	paper.	In
some	places,	curves	could	still	be	drawn;	in	others,	no	curve	fit	the	points.	The
picture	 became	 quite	 dramatic:	 evidence	 of	 complete	 disorder	mixed	with	 the
clear	remnants	of	order,	forming	shapes	that	suggested	“islands”	and	“chains	of
islands”	 to	 these	 astronomers.	 They	 tried	 two	 different	 computers	 and	 two
different	methods	of	integration,	but	the	results	were	the	same.	They	could	only
explore	 and	 speculate.	 Based	 solely	 on	 their	 numerical	 experimentation,	 they
made	 a	 guess	 about	 the	 deep	 structure	 of	 such	 pictures.	 With	 greater
magnification,	 they	 suggested,	 more	 islands	 would	 appear	 on	 smaller	 and
smaller	 scales,	perhaps	all	 the	way	 to	 infinity.	Mathematical	proof	was	needed
—“but	the	mathematical	approach	to	the	problem	does	not	seem	too	easy.”

ORBITS	 AROUND	 THE	 GALACTIC	 CENTER.	 To	 understand	 the	 trajectories	 of	 the	 stars	 through	 a
galaxy,	Michel	Hénon	computed	the	intersections	of	an	orbit	with	a	plane.	The	resulting	patterns	depended
on	 the	 system’s	 total	 energy.	The	points	 from	a	 stable	 orbit	 gradually	 produced	 a	 continuous,	 connected
curve	 (left).	 Other	 energy	 levels,	 however,	 produced	 complicated	 mixtures	 of	 stability	 and	 chaos,
represented	by	regions	of	scattered	points.



Hénon	went	on	to	other	problems,	but	fourteen	years	later,	when	finally	he
heard	about	 the	strange	attractors	of	David	Ruelle	and	Edward	Lorenz,	he	was
prepared	to	 listen.	By	1976	he	had	moved	to	 the	Observatory	of	Nice,	perched
high	above	the	Mediterranean	Sea	on	the	Grande	Corniche,	and	he	heard	a	talk
by	a	visiting	physicist	about	the	Lorenz	attractor.	The	physicist	had	been	trying
different	techniques	to	illuminate	the	fine	“micro-structure”	of	the	attractor,	with
little	success.	Hénon,	though	dissipative	systems	were	not	his	field	(“sometimes
astronomers	are	fearful	of	dissipative	systems—they’re	untidy”),	thought	he	had
an	idea.

Once	again,	he	decided	to	throw	out	all	reference	to	the	physical	origins	of
the	 system	 and	 concentrate	 only	 on	 the	 geometrical	 essence	 he	 wanted	 to
explore.	Where	 Lorenz	 and	 others	 had	 stuck	 to	 differential	 equations—flows,
with	continuous	changes	 in	space	and	 time—he	turned	 to	difference	equations,
discrete	in	time.	The	key,	he	believed,	was	the	repeated	stretching	and	folding	of
phase	space	in	the	manner	of	a	pastry	chef	who	rolls	the	dough,	folds	it,	rolls	it
out	 again,	 folds	 it,	 creating	 a	 structure	 that	 will	 eventually	 be	 a	 sheaf	 of	 thin
layers.	Hénon	 drew	 a	 flat	 oval	 on	 a	 piece	 of	 paper.	 To	 stretch	 it,	 he	 picked	 a
short	numerical	function	that	would	move	any	point	in	the	oval	to	a	new	point	in
a	shape	that	was	stretched	upward	in	the	center,	an	arch.	This	was	a	mapping—
point	 by	 point,	 the	 entire	 oval	was	 “mapped”	 onto	 the	 arch.	 Then	 he	 chose	 a
second	mapping,	 this	 time	 a	 contraction	 that	would	 shrink	 the	 arch	 inward	 to
make	it	narrower.	And	then	a	third	mapping	turned	the	narrow	arch	on	its	side,
so	that	it	would	line	up	neatly	with	the	original	oval.	The	three	mappings	could
be	combined	into	a	single	function	for	purposes	of	calculation.

In	spirit	he	was	following	Smale’s	horseshoe	idea.	Numerically,	the	whole
process	was	so	simple	that	it	could	easily	be	tracked	on	a	calculator.	Any	point
has	an	x	coordinate	and	a	y	coordinate	to	fix	its	horizontal	and	vertical	position.
To	find	the	new	x,	the	rule	was	to	take	the	old	y,	add	1	and	subtract	1.4	times	the
old	x	squared.	To	find	the	new	y,	multiply	0.3	by	the	old	x.	That	is:	xnew	=	y	+1
–	1.4x2	and	ynew	=	0.3x.	Hénon	picked	a	starting	point	more	or	less	at	random,
took	his	calculator	and	started	plotting	new	points,	one	after	another,	until	he	had
plotted	 thousands.	 Then	 he	 used	 a	 real	 computer,	 an	 IBM	 7040,	 and	 quickly
plotted	 five	million.	Anyone	with	 a	 personal	 computer	 and	 a	 graphics	 display
could	easily	do	the	same.

At	first	the	points	appear	to	jump	randomly	around	the	screen.	The	effect	is
that	 of	 a	 Poincaré	 section	 of	 a	 three-dimensional	 attractor,	weaving	 erratically
back	 and	 forth	 across	 the	 display.	 But	 quickly	 a	 shape	 begins	 to	 emerge,	 an
outline	 curved	 like	 a	 banana.	 The	 longer	 the	 program	 runs,	 the	 more	 detail



appears.	Parts	of	the	outline	seem	to	have	some	thickness,	but	then	the	thickness
resolves	 itself	 into	 two	 distinct	 lines,	 then	 the	 two	 into	 four,	 one	 pair	 close
together	 and	one	pair	 farther	 apart.	On	greater	magnification,	 each	of	 the	 four
lines	turns	out	to	be	composed	of	two	more	lines—and	so	on,	ad	infinitum.	Like
Lorenz’s	attractor,	Hénon’s	displays	infinite	regress,	like	an	unending	sequence
of	Russian	dolls	one	inside	the	other.

The	nested	detail,	lines	within	lines,	can	be	seen	in	final	form	in	a	series	of
pictures	 with	 progressively	 greater	 magnification.	 But	 the	 eerie	 effect	 of	 the
strange	 attractor	 can	 be	 appreciated	 another	 way	 when	 the	 shape	 emerges	 in
time,	point	by	point.	It	appears	like	a	ghost	out	of	the	mist.	New	points	scatter	so
randomly	across	the	screen	that	it	seems	incredible	that	any	structure	is	there,	let
alone	a	structure	so	intricate	and	fine.	Any	two	consecutive	points	are	arbitrarily
far	apart,	just	like	any	two	points	initially	nearby	in	a	turbulent	flow.	Given	any
number	of	points,	it	is	impossible	to	guess	where	the	next	will	appear—except,
of	course,	that	it	will	be	somewhere	on	the	attractor.

The	points	wander	so	randomly,	the	pattern	appears	so	ethereally,	that	it	is
hard	to	remember	that	the	shape	is	an	attractor.	It	is	not	just	any	trajectory	of	a
dynamical	 system.	 It	 is	 the	 trajectory	 toward	 which	 all	 other	 trajectories
converge.	That	is	why	the	choice	of	starting	conditions	does	not	matter.	As	long
as	 the	starting	point	 lies	somewhere	near	 the	attractor,	 the	next	few	points	will
converge	to	the	attractor	with	great	rapidity.

YEARS	BEFORE,	WHEN	DAVID	RUELLE	arrived	at	the	City	College	laboratory
of	Gollub	 and	 Swinney	 in	 1974,	 the	 three	 physicists	 found	 themselves	with	 a
slender	 link	 between	 theory	 and	 experiment.	 One	 piece	 of	 mathematics,
philosophically	 bold	 but	 technically	 uncertain.	One	 cylinder	 of	 turbulent	 fluid,
not	much	 to	 look	at,	but	 clearly	out	of	harmony	with	 the	old	 theory.	The	men
spent	the	afternoon	talking,	and	then	Swinney	and	Gollub	left	for	a	vacation	with
their	wives	in	Gollub’s	cabin	in	the	Adirondack	mountains.	They	had	not	seen	a
strange	 attractor,	 and	 they	 had	 not	 measured	 much	 of	 what	 might	 actually
happen	at	 the	onset	of	 turbulence.	But	 they	knew	 that	Landau	was	wrong,	and
they	suspected	that	Ruelle	was	right.



THE	ATTRACTOR	OF	HÉNON.	A	 simple	 combination	of	 folding	 and	 stretching	produced	 an	 attractor
that	easy	 to	compute	yet	 still	poorly	understood	by	mathematicians.	As	 thousands,	 the	millions	of	points
appear,	more	and	more	detail	emerges.	What	appear	to	be	single	lines	prove,	on	magnification,	to	be	pairs,
then	pairs	of	pairs.	Yet	whether	any	two	successive	points	appear	nearby	or	far	apart	is	unpredictable.

As	an	element	 in	 the	world	 revealed	by	computer	exploration,	 the	strange
attractor	 began	 as	 a	 mere	 possibility,	 marking	 a	 place	 where	 many	 great
imaginations	in	the	twentieth	century	had	failed	to	go.	Soon,	when	scientists	saw
what	 computers	 had	 to	 show,	 it	 seemed	 like	 a	 face	 they	 had	 been	 seeing
everywhere,	 in	 the	 music	 of	 turbulent	 flows	 or	 in	 clouds	 scattered	 like	 veils
across	the	sky.	Nature	was	constrained.	Disorder	was	channeled,	it	seemed,	into
patterns	with	some	common	underlying	theme.

Later,	 the	 recognition	 of	 strange	 attractors	 fed	 the	 revolution	 in	 chaos	 by
giving	numerical	explorers	a	clear	program	to	carry	out.	They	looked	for	strange
attractors	everywhere,	wherever	nature	seemed	to	be	behaving	randomly.	Many
argued	that	the	earth’s	weather	might	lie	on	a	strange	attractor.	Others	assembled
millions	 of	 pieces	 of	 stock	 market	 data	 and	 began	 searching	 for	 a	 strange
attractor	there,	peering	at	randomness	through	the	adjustable	lens	of	a	computer.

In	the	middle	1970s	these	discoveries	lay	in	the	future.	No	one	had	actually



seen	a	 strange	 attractor	 in	 an	 experiment,	 and	 it	was	 far	 from	clear	how	 to	go
about	 looking	 for	 one.	 In	 theory	 the	 strange	 attractor	 could	 give	mathematical
substance	 to	 fundamental	 new	 properties	 of	 chaos.	 Sensitive	 dependence	 on
initial	 conditions	 was	 one.	 “Mixing”	 was	 another,	 in	 a	 sense	 that	 would	 be
meaningful	 to	a	 jet	engine	designer,	for	example,	concerned	about	 the	efficient
combination	 of	 fuel	 and	 oxygen.	 But	 no	 one	 knew	 how	 to	 measure	 these
properties,	 how	 to	 attach	 numbers	 to	 them.	 Strange	 attractors	 seemed	 fractal,
implying	 that	 their	 true	 dimension	 was	 fractional,	 but	 no	 one	 knew	 how	 to
measure	 the	dimension	or	 how	 to	 apply	 such	 a	measurement	 in	 the	 context	 of
engineering	problems.

Most	important,	no	one	knew	whether	strange	attractors	would	say	anything
about	the	deepest	problem	with	nonlinear	systems.	Unlike	linear	systems,	easily
calculated	and	easily	classified,	nonlinear	systems	still	seemed,	in	their	essence,
beyond	classification—each	different	from	every	other.	Scientists	might	begin	to
suspect	 that	 they	 shared	 common	 properties,	 but	 when	 it	 came	 time	 to	 make
measurements	and	perform	calculations,	each	nonlinear	system	was	a	world	unto
itself.	Understanding	one	seemed	to	offer	no	help	in	understanding	the	next.	An
attractor	 like	 Lorenz’s	 illustrated	 the	 stability	 and	 the	 hidden	 structure	 of	 a
system	that	otherwise	seemed	patternless,	but	how	did	this	peculiar	double	spiral
help	researchers	exploring	unrelated	systems?	No	one	knew.

For	 now,	 the	 excitement	 went	 beyond	 pure	 science.	 Scientists	 who	 saw
these	 shapes	 allowed	 themselves	 to	 forget	 momentarily	 the	 rules	 of	 scientific
discourse.	 Ruelle,	 for	 example:	 “I	 have	 not	 spoken	 of	 the	 esthetic	 appeal	 of
strange	 attractors.	 These	 systems	 of	 curves,	 these	 clouds	 of	 points	 suggest
sometimes	 fireworks	 or	 galaxies,	 sometimes	 strange	 and	 disquieting	 vegetal
proliferations.	 A	 realm	 lies	 there	 of	 forms	 to	 explore,	 and	 harmonies	 to
discover.”



Universality

The	iterating	of	these	lines	brings	gold;
The	framing	of	this	circle	on	the	ground
Brings	whirlwinds,	tempests,	thunder	and	lightning.

—MARLOWE,	Dr.	Faustus



A	 FEW	 DOZEN	 YARDS	 upstream	 from	 a	waterfall,	 a	 smooth	 flowing	 stream
seems	 to	 intuit	 the	 coming	 drop.	 The	 water	 begins	 to	 speed	 and	 shudder.
Individual	 rivulets	stand	out	 like	coarse,	 throbbing	veins.	Mitchell	Feigenbaum
stands	 at	 streamside.	He	 is	 sweating	 slightly	 in	 sports	 coat	 and	 corduroys	 and
puffing	on	a	cigarette.	He	has	been	walking	with	friends,	but	they	have	gone	on
ahead	 to	 the	 quieter	 pools	 upstream.	 Suddenly,	 in	 what	 might	 be	 a	 demented
high-speed	parody	of	a	 tennis	spectator,	he	starts	 turning	his	head	from	side	 to
side.	 “You	 can	 focus	 on	 something,	 a	 bit	 of	 foam	 or	 something.	 If	 you	move
your	head	fast	enough,	you	can	all	of	a	sudden	discern	the	whole	structure	of	the
surface,	and	you	can	feel	it	in	your	stomach.”	He	draws	in	more	smoke	from	his
cigarette.	“But	 for	anyone	with	a	mathematical	background,	 if	you	 look	at	 this
stuff,	or	you	see	clouds	with	all	their	puffs	on	top	of	puffs,	or	you	stand	at	a	sea
wall	in	a	storm,	you	know	that	you	really	don’t	know	anything.”

Order	in	chaos.	It	was	science’s	oldest	cliché.	The	idea	of	hidden	unity	and
common	 underlying	 form	 in	 nature	 had	 an	 intrinsic	 appeal,	 and	 it	 had	 an
unfortunate	history	of	inspiring	pseudoscientists	and	cranks.	When	Feigenbaum
came	 to	 Los	 Alamos	 National	 Laboratory	 in	 1974,	 a	 year	 shy	 of	 his	 thirtieth
birthday,	 he	 knew	 that	 if	 physicists	were	 to	make	 something	 of	 the	 idea	 now,
they	would	need	a	practical	framework,	a	way	to	turn	ideas	into	calculations.	It
was	far	from	obvious	how	to	make	a	first	approach	to	the	problem.

Feigenbaum	 was	 hired	 by	 Peter	 Carruthers,	 a	 calm,	 deceptively	 genial
physicist	who	came	from	Cornell	in	1973	to	take	over	the	Theoretical	Division.
His	first	act	was	to	dismiss	a	half-dozen	senior	scientists—Los	Alamos	provides
its	staff	with	no	equivalent	of	university	tenure—and	to	replace	them	with	some
bright	young	researchers	of	his	own	choosing.	As	a	scientific	manager,	he	had
strong	ambition,	but	he	knew	from	experience	that	good	science	cannot	always
be	planned.

“If	you	had	set	up	a	committee	in	the	laboratory	or	in	Washington	and	said,
‘Turbulence	 is	 really	 in	 our	 way,	 we’ve	 got	 to	 understand	 it,	 the	 lack	 of
understanding	really	destroys	our	chance	of	making	progress	in	a	lot	of	fields,’
then,	of	course,	you	would	hire	a	team.	You’d	get	a	giant	computer.	You’d	start
running	big	programs.	And	you	would	never	get	anywhere.	Instead	we	have	this
smart	guy,	sitting	quietly—talking	to	people,	to	be	sure,	but	mostly	working	all
by	 himself.”	 They	 had	 talked	 about	 turbulence,	 but	 time	 passed,	 and	 even
Carruthers	was	no	longer	sure	where	Feigenbaum	was	headed.	“I	thought	he	had
quit	and	found	a	different	problem.	Little	did	I	know	that	this	other	problem	was
the	 same	 problem.	 It	 seems	 to	 have	 been	 the	 issue	 on	 which	 many	 different
fields	 of	 science	were	 stuck—they	were	 stuck	 on	 this	 aspect	 of	 the	 nonlinear



behavior	of	systems.	Now,	nobody	would	have	thought	that	the	right	background
for	 this	 problem	 was	 to	 know	 particle	 physics,	 to	 know	 something	 about
quantum	field	theory,	and	to	know	that	in	quantum	field	theory	you	have	these
structures	 known	 as	 the	 renormalization	 group.	 Nobody	 knew	 that	 you	would
need	 to	 understand	 the	 general	 theory	 of	 stochastic	 processes,	 and	 also	 fractal
structures.

“Mitchell	had	the	right	background.	He	did	the	right	thing	at	the	right	time,
and	he	did	it	very	well.	Nothing	partial.	He	cleaned	out	the	whole	problem.”

Feigenbaum	brought	to	Los	Alamos	a	conviction	that	his	science	had	failed
to	 understand	 hard	 problems—nonlinear	 problems.	Although	 he	 had	 produced
almost	 nothing	 as	 a	 physicist,	 he	 had	 accumulated	 an	 unusual	 intellectual
background.	 He	 had	 a	 sharp	 working	 knowledge	 of	 the	 most	 challenging
mathematical	analysis,	new	kinds	of	computational	 technique	that	pushed	most
scientists	 to	 their	 limits.	 He	 had	 managed	 not	 to	 purge	 himself	 of	 some
seemingly	unscientific	 ideas	 from	eighteenth-century	Romanticism.	He	wanted
to	 do	 science	 that	 would	 be	 new.	 He	 began	 by	 putting	 aside	 any	 thought	 of
understanding	 real	 complexity	 and	 instead	 turned	 to	 the	 simplest	 nonlinear
equations	he	could	find.

THE	MYSTERY	 OF	 THE	 UNIVERSE	 first	 announced	 itself	 to	 the	 four-year–old
Mitchell	 Feigenbaum	 through	 a	 Silvertone	 radio	 sitting	 in	 his	 parents’	 living
room	in	the	Flatbush	section	of	Brooklyn	soon	after	the	war.	He	was	dizzy	with
the	 thought	of	music	 arriving	 from	no	 tangible	 cause.	The	phonograph,	on	 the
other	 hand,	 he	 felt	 he	 understood.	 His	 grandmother	 had	 given	 him	 a	 special
dispensation	to	put	on	the	78s.

His	father	was	a	chemist	who	worked	for	the	Port	of	New	York	Authority
and	later	for	Clairol.	His	mother	taught	in	the	city’s	public	schools.	Mitchell	first
decided	 to	 become	 an	 electrical	 engineer,	 a	 sort	 of	 professional	 known	 in
Brooklyn	to	make	a	good	living.	Later	he	realized	that	what	he	wanted	to	know
about	a	radio	was	more	likely	to	be	found	in	physics.	He	was	one	of	a	generation
of	scientists	 raised	 in	 the	outer	boroughs	of	New	York	who	made	 their	way	 to
brilliant	careers	via	the	great	public	high	schools—in	his	case,	Samuel	J.	Tilden
—and	then	City	College.

Growing	up	smart	in	Brooklyn	was	in	some	measure	a	matter	of	steering	an
uneven	course	between	the	world	of	mind	and	the	world	of	other	people.	He	was
immensely	gregarious	when	very	young,	which	he	regarded	as	a	key	to	not	being
beaten	 up.	 But	 something	 clicked	when	 he	 realized	 he	 could	 learn	 things.	 He
became	more	and	more	detached	from	his	friends.	Ordinary	conversation	could
not	hold	his	interest.	Sometime	in	his	last	year	of	college,	it	struck	him	that	he



had	missed	his	 adolescence,	 and	he	made	a	deliberate	project	 out	of	 regaining
touch	with	humanity.	He	would	sit	silently	in	the	cafeteria,	listening	to	students
chatting	about	shaving	or	food,	and	gradually	he	relearned	much	of	the	science
of	talking	to	people.

He	 graduated	 in	 1964	 and	 went	 on	 to	 the	 Massachusetts	 Institute	 of
Technology,	where	he	got	his	doctorate	in	elementary	particle	physics	in	1970.
Then	he	 spent	 a	 fruitless	 four	years	 at	Cornell	 and	at	 the	Virginia	Polytechnic
Institute—fruitless,	 that	 is,	 in	 terms	 of	 the	 steady	 publication	 of	 work	 on
manageable	problems	that	is	essential	for	a	young	university	scientist.	Postdocs
were	 supposed	 to	 produce	 papers.	 Occasionally	 an	 advisor	 would	 ask
Feigenbaum	 what	 had	 happened	 to	 some	 problem,	 and	 he	 would	 say,	 “Oh,	 I
understood	it.”

Newly	 installed	 at	 Los	 Alamos,	 Carruthers,	 a	 formidable	 scientist	 in	 his
own	 right,	 prided	 himself	 on	 his	 ability	 to	 spot	 talent.	 He	 looked	 not	 for
intelligence	 but	 for	 a	 sort	 of	 creativity	 that	 seemed	 to	 flow	 from	 some	magic
gland.	He	always	remembered	the	case	of	Kenneth	Wilson,	another	soft-spoken
Cornell	physicist	who	seemed	to	be	producing	absolutely	nothing.	Anyone	who
talked	 to	Wilson	 for	 long	 realized	 that	 he	 had	 a	 deep	 capacity	 for	 seeing	 into
physics.	So	the	question	of	Wilson’s	tenure	became	a	subject	of	serious	debate.
The	 physicists	 willing	 to	 gamble	 on	 his	 unproven	 potential	 prevailed—and	 it
was	as	if	a	dam	burst.	Not	one	but	a	flood	of	papers	came	forth	from	Wilson’s
desk	drawers,	including	work	that	won	him	the	Nobel	Prize	in	1982.

Wilson’s	 great	 contribution	 to	 physics,	 along	 with	 work	 by	 two	 other
physicists,	 Leo	 Kadanoff	 and	 Michael	 Fisher,	 was	 an	 important	 ancestor	 of
chaos	theory.	These	men,	working	independently,	were	all	thinking	in	different
ways	about	what	happened	in	phase	transitions.	They	were	studying	the	behavior
of	matter	near	the	point	where	it	changes	from	one	state	to	another—from	liquid
to	 gas,	 or	 from	 unmagnetized	 to	magnetized.	 As	 singular	 boundaries	 between
two	 realms	 of	 existence,	 phase	 transitions	 tend	 to	 be	 highly	 nonlinear	 in	 their
mathematics.	The	 smooth	and	predictable	behavior	of	matter	 in	any	one	phase
tends	 to	 be	 little	 help	 in	 understanding	 the	 transitions.	 A	 pot	 of	 water	 on	 the
stove	heats	up	 in	 a	 regular	way	until	 it	 reaches	 the	boiling	point.	But	 then	 the
change	 in	 temperature	pauses	while	 something	quite	 interesting	happens	at	 the
molecular	interface	between	liquid	and	gas.

As	Kadanoff	 viewed	 the	 problem	 in	 the	 1960s,	 phase	 transitions	 pose	 an
intellectual	puzzle.	Think	of	a	block	of	metal	being	magnetized.	As	it	goes	into
an	ordered	state,	it	must	make	a	decision.	The	magnet	can	be	oriented	one	way
or	the	other.	It	is	free	to	choose.	But	each	tiny	piece	of	the	metal	must	make	the
same	choice.	How?



Somehow,	 in	 the	 process	 of	 choosing,	 the	 atoms	 of	 the	 metal	 must
communicate	 information	 to	 one	 another.	 Kadanoff’s	 insight	 was	 that	 the
communication	can	be	most	simply	described	 in	 terms	of	scaling.	 In	effect,	he
imagined	 dividing	 the	 metal	 into	 boxes.	 Each	 box	 communicates	 with	 its
immediate	neighbors.	The	way	to	describe	that	communication	is	the	same	as	the
way	 to	describe	 the	communication	of	any	atom	with	 its	neighbors.	Hence	 the
usefulness	of	scaling:	the	best	way	to	think	of	the	metal	is	in	terms	of	a	fractal-
like	model,	with	boxes	of	all	different	sizes.

Much	mathematical	analysis,	and	much	experience	with	real	systems,	was
needed	to	establish	the	power	of	the	scaling	idea.	Kadanoff	felt	that	he	had	taken
an	 unwieldy	 business	 and	 created	 a	 world	 of	 extreme	 beauty	 and	 self-
containedness.	Part	of	the	beauty	lay	in	its	universality.	Kadanoff’s	idea	gave	a
backbone	 to	 the	most	striking	fact	about	critical	phenomena,	namely	 that	 these
seemingly	 unrelated	 transitions—the	 boiling	 of	 liquids,	 the	 magnetizing	 of
metals—all	follow	the	same	rules.

Then	Wilson	did	the	work	that	brought	the	whole	theory	together	under	the
rubric	of	renormalization	group	theory,	providing	a	powerful	way	of	carrying	out
real	calculations	about	real	systems.	Renormalization	had	entered	physics	in	the
1940s	as	a	part	of	quantum	theory	that	made	it	possible	to	calculate	interactions
of	 electrons	 and	 photons.	 A	 problem	 with	 such	 calculations,	 as	 with	 the
calculations	Kadanoff	and	Wilson	worried	about,	was	that	some	items	seemed	to
require	 treatment	 as	 infinite	 quantities,	 a	 messy	 and	 unpleasant	 business.
Renormalizing	 the	 system,	 in	 ways	 devised	 by	 Richard	 Feynman,	 Julian
Schwinger,	Freeman	Dyson,	and	other	physicists,	got	rid	of	the	infinities.

Only	much	later,	in	the	1960s,	did	Wilson	dig	down	to	the	underlying	basis
for	 renormalization’s	 success.	 Like	 Kadanoff,	 he	 thought	 about	 scaling
principles.	 Certain	 quantities,	 such	 as	 the	mass	 of	 a	 particle,	 had	 always	 been
considered	fixed—as	the	mass	of	any	object	in	everyday	experience	is	fixed.	The
renormalization	 shortcut	 succeeded	 by	 acting	 as	 though	 a	 quantity	 like	 mass
were	not	fixed	at	all.	Such	quantities	seemed	to	float	up	or	down	depending	on
the	scale	 from	which	 they	were	viewed.	 It	 seemed	absurd.	Yet	 it	was	an	exact
analogue	of	what	Benoit	Mandelbrot	was	realizing	about	geometrical	shapes	and
the	 coastline	 of	 England.	 Their	 length	 could	 not	 be	 measured	 independent	 of
scale.	There	was	a	kind	of	relativity	in	which	the	position	of	the	observer,	near
or	far,	on	the	beach	or	in	a	satellite,	affected	the	measurement.	As	Mandelbrot,
too,	 had	 seen,	 the	 variation	 across	 scales	 was	 not	 arbitrary;	 it	 followed	 rules.
Variability	in	the	standard	measures	of	mass	or	length	meant	that	a	different	sort
of	 quantity	 was	 remaining	 fixed.	 In	 the	 case	 of	 fractals,	 it	 was	 the	 fractional
dimension—a	 constant	 that	 could	 be	 calculated	 and	 used	 as	 a	 tool	 for	 further



calculations.	 Allowing	 mass	 to	 vary	 depending	 on	 scale	 meant	 that
mathematicians	could	recognize	similarity	across	scales.

So	for	the	hard	work	of	calculation,	Wilson’s	renormalization	group	theory
provided	a	different	route	into	infinitely	dense	problems.	Until	then	the	only	way
to	 approach	 highly	 nonlinear	 problems	 was	 with	 a	 device	 called	 perturbation
theory.	 For	 purposes	 of	 calculation,	 you	 assume	 that	 the	 nonlinear	 problem	 is
reasonably	 close	 to	 some	 solvable,	 linear	 problem—just	 a	 small	 perturbation
away.	You	 solve	 the	 linear	 problem	and	perform	a	 complicated	bit	 of	 trickery
with	the	leftover	part,	expanding	it	into	what	are	called	Feynman	diagrams.	The
more	 accuracy	 you	 need,	 the	 more	 of	 these	 agonizing	 diagrams	 you	 must
produce.	With	 luck,	 your	 calculations	 converge	 toward	 a	 solution.	 Luck	 has	 a
way	 of	 vanishing,	 however,	 whenever	 a	 problem	 is	 especially	 interesting.
Feigenbaum,	 like	 every	 other	 young	 particle	 physicist	 in	 the	 1960s,	 found
himself	doing	endless	Feynman	diagrams.	He	was	 left	with	 the	conviction	 that
perturbation	 theory	 was	 tedious,	 nonilluminating,	 and	 stupid.	 So	 he	 loved
Wilson’s	new	renormalization	group	theory.	By	acknowledging	self-similarity,	it
gave	a	way	of	collapsing	the	complexity,	one	layer	at	a	time.

In	practice	the	renormalization	group	was	far	from	foolproof.	It	required	a
good	deal	of	 ingenuity	 to	choose	 just	 the	 right	calculations	 to	capture	 the	self-
similarity.	However,	 it	worked	well	 enough	 and	 often	 enough	 to	 inspire	 some
physicists,	Feigenbaum	included,	to	try	it	on	the	problem	of	turbulence.	After	all,
self-similarity	 seemed	 to	 be	 the	 signature	 of	 turbulence,	 fluctuations	 upon
fluctuations,	whorls	upon	whorls.	But	what	about	 the	onset	of	 turbulence—the
mysterious	 moment	 when	 an	 orderly	 system	 turned	 chaotic.	 There	 was	 no
evidence	that	the	renormalization	group	had	anything	to	say	about	this	transition.
There	was	no	evidence,	for	example,	that	the	transition	obeyed	laws	of	scaling.

AS	 A	 GRADUATE	 STUDENT	 at	 M.I.T.,	 Feigenbaum	 had	 an	 experience	 that
stayed	with	him	for	many	years.	He	was	walking	with	friends	around	the	Lincoln
Reservoir	 in	Boston.	He	was	developing	 a	habit	 of	 taking	 four–	 and	 five-hour
walks,	attuning	himself	to	the	panoply	of	impressions	and	ideas	that	would	flow
through	his	mind.	On	this	day	he	became	detached	from	the	group	and	walked
alone.	He	passed	some	picnickers	and,	as	he	moved	away,	he	glanced	back	every
so	 often,	 hearing	 the	 sounds	 of	 their	 voices,	 watching	 the	 motions	 of	 hands
gesticulating	or	reaching	for	food.	Suddenly	he	felt	that	the	tableau	had	crossed
some	threshold	into	incomprehensibility.	The	figures	were	too	small	to	be	made
out.	 The	 actions	 seemed	 disconnected,	 arbitrary,	 random.	 What	 faint	 sounds
reached	him	had	lost	meaning.

The	 ceaseless	 motion	 and	 incomprehensible	 bustle	 of	 life.	 Feigenbaum



recalled	 the	 words	 of	 Gustav	 Mahler,	 describing	 a	 sensation	 that	 he	 tried	 to
capture	 in	 the	 third	 movement	 of	 his	 Second	 Symphony.	 Like	 the	 motions	 of
dancing	 figures	 in	a	brilliantly	 lit	ballroom	 into	which	you	 look	 from	 the	dark
night	outside	and	from	such	a	distance	that	the	music	is	inaudible….	Life	may
appear	 senseless	 to	 you.	 Feigenbaum	 was	 listening	 to	 Mahler	 and	 reading
Goethe,	 immersing	 himself	 in	 their	 high	Romantic	 attitudes.	 Inevitably	 it	 was
Goethe’s	 Faust	 he	 most	 reveled	 in,	 soaking	 up	 its	 combination	 of	 the	 most
passionate	 ideas	 about	 the	 world	 with	 the	 most	 intellectual.	 Without	 some
Romantic	 inclinations,	 he	 surely	 would	 have	 dismissed	 a	 sensation	 like	 his
confusion	at	the	reservoir.	After	all,	why	shouldn’t	phenomena	lose	meaning	as
they	 are	 seen	 from	 greater	 distances?	 Physical	 laws	 provided	 a	 trivial
explanation	 for	 their	 shrinking.	 On	 second	 thought	 the	 connection	 between
shrinking	 and	 loss	 of	 meaning	 was	 not	 so	 obvious.	Why	 should	 it	 be	 that	 as
things	become	small	they	also	become	incomprehensible?

He	tried	quite	seriously	 to	analyze	this	experience	in	 terms	of	 the	 tools	of
theoretical	physics,	wondering	what	he	could	say	about	the	brain’s	machinery	of
perception.	You	 see	 some	human	 transactions	 and	you	make	deductions	 about
them.	Given	the	vast	amount	of	information	available	to	your	senses,	how	does
your	decoding	apparatus	sort	it	out?	Clearly—or	almost	clearly—the	brain	does
not	own	any	direct	copies	of	stuff	in	the	world.	There	is	no	library	of	forms	and
ideas	against	which	to	compare	the	images	of	perception.	Information	is	stored
in	 a	 plastic	 way,	 allowing	 fantastic	 juxtapositions	 and	 leaps	 of	 imagination.
Some	chaos	exists	out	 there,	and	 the	brain	seems	 to	have	more	 flexibility	 than
classical	physics	in	finding	the	order	in	it.

At	the	same	time,	Feigenbaum	was	thinking	about	color.	One	of	the	minor
skirmishes	of	science	in	the	first	years	of	the	nineteenth	century	was	a	difference
of	opinion	between	Newton’s	followers	in	England	and	Goethe	in	Germany	over
the	 nature	 of	 color.	 To	Newtonian	 physics,	Goethe’s	 ideas	were	 just	 so	much
pseudoscientific	meandering.	Goethe	 refused	 to	view	color	as	a	static	quantity,
to	be	measured	in	a	spectrometer	and	pinned	down	like	a	butterfly	to	cardboard.
He	 argued	 that	 color	 is	 a	 matter	 of	 perception.	 “With	 light	 poise	 and
counterpoise,	Nature	oscillates	within	her	prescribed	limits,”	he	wrote,	“yet	thus
arise	all	the	varieties	and	conditions	of	the	phenomena	which	are	presented	to	us
in	space	and	time.”

The	 touchstone	 of	 Newton’s	 theory	 was	 his	 famous	 experiment	 with	 a
prism.	A	 prism	 breaks	 a	 beam	 of	white	 light	 into	 a	 rainbow	 of	 colors,	 spread
across	 the	whole	 visible	 spectrum,	 and	Newton	 realized	 that	 those	 pure	 colors
must	be	 the	elementary	components	 that	add	 to	produce	white.	Further,	with	a
leap	 of	 insight,	 he	 proposed	 that	 the	 colors	 corresponded	 to	 frequencies.	 He



imagined	 that	 some	vibrating	bodies—corpuscles	was	 the	 antique	word—must
be	 producing	 colors	 in	 proportion	 to	 the	 speed	 of	 the	 vibrations.	 Considering
how	 little	 evidence	 supported	 this	 notion,	 it	 was	 as	 unjustifiable	 as	 it	 was
brilliant.	What	is	red?	To	a	physicist,	it	is	light	radiating	in	waves	between	620
to	 800	 bil-lionths	 of	 a	 meter	 long.	 Newton’s	 optics	 proved	 themselves	 a
thousand	 times	 over,	 while	 Goethe’s	 treatise	 on	 color	 faded	 into	 merciful
obscurity.	 When	 Feigenbaum	 went	 looking	 for	 it,	 he	 discovered	 that	 the	 one
copy	in	Harvard’s	libraries	had	been	removed.

He	 finally	 did	 track	down	a	 copy,	 and	he	 found	 that	Goethe	had	 actually
performed	 an	 extraordinary	 set	 of	 experiments	 in	 his	 investigation	 of	 colors.
Goethe	began	as	Newton	had,	with	a	prism.	Newton	had	held	a	prism	before	a
light,	casting	the	divided	beam	onto	a	white	surface.	Goethe	held	the	prism	to	his
eye	and	 looked	 through	 it.	He	perceived	no	color	 at	 all,	 neither	 a	 rainbow	nor
individual	hues.	Looking	at	a	clear	white	surface	or	a	clear	blue	sky	through	the
prism	produced	the	same	effect:	uniformity.

But	if	a	slight	spot	interrupted	the	white	surface	or	a	cloud	appeared	in	the
sky,	 then	 he	 would	 see	 a	 burst	 of	 color.	 It	 is	 “the	 interchange	 of	 light	 and
shadow,”	Goethe	concluded,	 that	causes	color.	He	went	on	 to	explore	 the	way
people	 perceive	 shadows	 cast	 by	 different	 sources	 of	 colored	 light.	 He	 used
candles	and	pencils,	mirrors	and	colored	glass,	moonlight	and	sunlight,	crystals,
liquids,	and	color	wheels	in	a	thorough	range	of	experiments.	For	example,	he	lit
a	 candle	 before	 a	 piece	 of	 white	 paper	 at	 twilight	 and	 held	 up	 a	 pencil.	 The
shadow	 in	 the	candlelight	was	a	brilliant	blue.	Why?	The	white	paper	alone	 is
perceived	as	white,	either	 in	 the	declining	daylight	or	 in	 the	added	 light	of	 the
warmer	candle.	How	does	a	shadow	divide	the	white	into	a	region	of	blue	and	a
region	 of	 reddish-yellow?	 Color	 is	 “a	 degree	 of	 darkness,”	 Goethe	 argued,
“allied	 to	 shadow.”	Above	 all,	 in	 a	more	modern	 language,	 color	 comes	 from
boundary	conditions	and	singularities.

Where	Newton	was	 reductionist,	Goethe	was	holistic.	Newton	broke	 light
apart	 and	 found	 the	most	 basic	 physical	 explanation	 for	 color.	Goethe	walked
through	 flower	 gardens	 and	 studied	 paintings,	 looking	 for	 a	 grand,	 all-
encompassing	explanation.	Newton	made	his	theory	of	color	fit	a	mathematical
scheme	 for	 all	 of	 physics.	 Goethe,	 fortunately	 or	 unfortunately,	 abhorred
mathematics.

Feigenbaum	 persuaded	 himself	 that	 Goethe	 had	 been	 right	 about	 color.
Goethe’s	 ideas	 resemble	 a	 facile	 notion,	 popular	 among	 psychologists,	 that
makes	 a	 distinction	 between	 hard	 physical	 reality	 and	 the	 variable	 subjective
perception	of	it.	The	colors	we	perceive	vary	from	time	to	time	and	from	person
to	 person—that	 much	 is	 easy	 to	 say.	 But	 as	 Feigenbaum	 understood	 them,



Goethe’s	 ideas	 had	more	 true	 science	 in	 them.	They	were	 hard	 and	 empirical.
Over	and	over	again,	Goethe	emphasized	the	repeatability	of	his	experiments.	It
was	 the	perception	of	color,	 to	Goethe,	 that	was	universal	and	objective.	What
scientific	 evidence	 was	 there	 for	 a	 definable	 real-world	 quality	 of	 redness
independent	of	our	perception?

Feigenbaum	 found	 himself	 asking	 what	 sort	 of	 mathematical	 formalisms
might	correspond	 to	human	perception,	particularly	a	perception	 that	 sifted	 the
messy	multiplicity	 of	 experience	 and	 found	 universal	 qualities.	Redness	 is	 not
necessarily	a	particular	bandwidth	of	light,	as	the	Newtonians	would	have	it.	It	is
a	 territory	of	a	chaotic	universe,	and	 the	boundaries	of	 that	 territory	are	not	so
easy	 to	 describe—yet	 our	 minds	 find	 redness	 with	 regular	 and	 verifiable
consistency.	 These	 were	 the	 thoughts	 of	 a	 young	 physicist,	 far	 removed,	 it
seemed,	 from	 such	 problems	 as	 fluid	 turbulence.	 Still,	 to	 understand	 how	 the
human	mind	 sorts	 through	 the	 chaos	 of	 perception,	 surely	 one	would	 need	 to
understand	how	disorder	can	produce	universality.

WHEN	 FEIGENBAUM	 BEGAN	 to	 think	 about	 nonlinearity	 at	 Los	 Alamos,	 he
realized	that	his	education	had	taught	him	nothing	useful.	To	solve	a	system	of
nonlinear	 differential	 equations	 was	 impossible,	 notwithstanding	 the	 special
examples	 constructed	 in	 textbooks.	 Perturbative	 technique,	 making	 successive
corrections	 to	 a	 solvable	problem	 that	one	hoped	would	 lie	 somewhere	nearby
the	 real	 one,	 seemed	 foolish.	 He	 read	 through	 texts	 on	 nonlinear	 flows	 and
oscillations	 and	 decided	 that	 little	 existed	 to	 help	 a	 reasonable	 physicist.	 His
computational	 equipment	 consisting	 solely	 of	 pencil	 and	 paper,	 Feigenbaum
decided	to	start	with	an	analogue	of	the	simple	equation	that	Robert	May	studied
in	the	context	of	population	biology.

It	 happened	 to	 be	 the	 equation	 high	 school	 students	 use	 in	 geometry	 to
graph	a	parabola.	 It	can	be	written	as	y	=	r(x-x2).	Every	value	of	x	produces	a
value	of	y,	and	the	resulting	curve	expresses	the	relation	of	the	two	numbers	for
the	range	of	values.	If	x	(this	year’s	population)	is	small,	then	y	(next	year’s)	is
small,	but	 larger	 than	x;	 the	curve	is	rising	steeply.	 If	x	 is	 in	 the	middle	of	 the
range,	then	y	is	large.	But	the	parabola	levels	off	and	falls,	so	that	if	x	is	large,
then	y	will	be	small	again.	That	 is	what	produces	 the	equivalent	of	population
crashes	in	ecological	modeling,	preventing	unrealistic	unrestrained	growth.

For	May	and	then	Feigenbaum,	the	point	was	to	use	this	simple	calculation
not	 once,	 but	 repeated	 endlessly	 as	 a	 feedback	 loop.	 The	 output	 of	 one
calculation	 was	 fed	 back	 in	 as	 input	 for	 the	 next.	 To	 see	 what	 happened
graphically,	 the	 parabola	 helped	 enormously.	Pick	 a	 starting	value	 along	 the	x
axis.	Draw	a	line	up	to	where	it	meets	the	parabola.	Read	the	resulting	value	off



the	y	 axis.	And	 start	 all	 over	with	 the	new	value.	The	 sequence	bounces	 from
place	 to	place	on	 the	parabola	at	 first,	and	 then,	perhaps,	homes	 in	on	a	stable
equilibrium,	where	x	and	y	are	equal	and	the	value	thus	does	not	change.

In	 spirit,	 nothing	 could	 have	 been	 further	 removed	 from	 the	 complex
calculations	of	 standard	physics.	 Instead	of	a	 labyrinthine	scheme	 to	be	solved
one	 time,	 this	 was	 a	 simple	 calculation	 performed	 over	 and	 over	 again.	 The
numerical	 experimenter	 would	 watch,	 like	 a	 chemist	 peering	 at	 a	 reaction
bubbling	away	inside	a	beaker.	Here	the	output	was	just	a	string	of	numbers,	and
it	did	not	always	converge	to	a	steady	final	state.	It	could	end	up	oscillating	back
and	forth	between	two	values.	Or	as	May	had	explained	to	population	biologists,
it	 could	 keep	 on	 changing	 chaotically	 as	 long	 as	 anyone	 cared	 to	 watch.	 The
choice	 among	 these	 different	 possible	 behaviors	 depended	 on	 the	 value	 of	 the
tuning	parameter.

Feigenbaum	 carried	 out	 numerical	 work	 of	 this	 faintly	 experimental	 sort
and,	 at	 the	 same	 time,	 tried	 more	 traditional	 theoretical	 ways	 of	 analyzing
nonlinear	 functions.	 Even	 so,	 he	 could	 not	 see	 the	whole	 picture	 of	what	 this
equation	 could	 do.	 But	 he	 could	 see	 that	 the	 possibilities	 were	 already	 so
complicated	 that	 they	 would	 be	 viciously	 hard	 to	 analyze.	 He	 also	 knew	 that
three	Los	Alamos	mathematicians—Nicholas	Metropolis,	Paul	Stein,	and	Myron
Stein—had	studied	such	“maps”	 in	1971,	and	now	Paul	Stein	warned	him	 that
the	 complexity	 was	 frightening	 indeed.	 If	 this	 simplest	 of	 equations	 already
proved	intractable,	what	about	the	far	more	complicated	equations	that	a	scientist
would	write	down	for	real	systems?	Feigenbaum	put	the	whole	problem	on	the
shelf.

In	 the	 brief	 history	 of	 chaos,	 this	 one	 innocent-looking	 equation	 provides
the	 most	 succinct	 example	 of	 how	 different	 sorts	 of	 scientists	 looked	 at	 one
problem	 in	many	 different	ways.	 To	 the	 biologists,	 it	 was	 an	 equation	with	 a
message:	Simple	systems	can	do	complicated	things.	To	Metropolis,	Stein,	and
Stein,	the	problem	was	to	catalogue	a	collection	of	topological	patterns	without
reference	to	any	numerical	values.	They	would	begin	the	feedback	process	at	a
particular	point	and	watch	the	succeeding	values	bounce	from	place	to	place	on
the	 parabola.	 As	 the	 values	 moved	 to	 the	 right	 or	 the	 left,	 they	 wrote	 down
sequences	 of	R’s	 and	 L’s.	 Pattern	 number	 one:	 R.	 Pattern	 number	 two:	RLR.
Pattern	 number	 193:	 RLLLLLRRLL.	 These	 sequences	 had	 some	 interesting
features	to	a	mathematician—they	always	seemed	to	repeat	in	the	same	special
order.	But	to	a	physicist	they	looked	obscure	and	tedious.

No	 one	 realized	 it	 then,	 but	 Lorenz	 had	 looked	 at	 the	 same	 equation	 in
1964,	as	a	metaphor	for	a	deep	question	about	climate.	The	question	was	so	deep
that	almost	no	one	had	 thought	 to	ask	 it	before:	Does	a	climate	exist?	That	 is,



does	the	earth’s	weather	have	a	longterm	average?	Most	meteorologists,	then	as
now,	 took	 the	 answer	 for	 granted.	 Surely	 any	measurable	 behavior,	 no	matter
how	it	fluctuates,	must	have	an	average.	Yet	on	reflection,	it	is	far	from	obvious.
As	Lorenz	pointed	out,	 the	average	weather	 for	 the	 last	12,000	years	has	been
notably	different	than	the	average	for	the	previous	12,000,	when	most	of	North
America	was	covered	by	ice.	Was	there	one	climate	that	changed	to	another	for
some	 physical	 reason?	 Or	 is	 there	 an	 even	 longer-term	 climate	 within	 which
those	 periods	 were	 just	 fluctuations?	 Or	 is	 it	 possible	 that	 a	 system	 like	 the
weather	may	never	converge	to	an	average?

Lorenz	asked	a	second	question.	Suppose	you	could	actually	write	down	the
complete	set	of	equations	that	govern	the	weather.	In	other	words,	suppose	you
had	 God’s	 own	 code.	 Could	 you	 then	 use	 the	 equations	 to	 calculate	 average
statistics	 for	 temperature	 or	 rainfall?	 If	 the	 equations	 were	 linear,	 the	 answer
would	be	an	easy	yes.	But	they	are	nonlinear.	Since	God	has	not	made	the	actual
equations	available,	Lorenz	instead	examined	the	quadratic	difference	equation.

Like	 May,	 Lorenz	 first	 examined	 what	 happened	 as	 the	 equation	 was
iterated,	 given	 some	 parameter.	 With	 low	 parameters	 he	 saw	 the	 equation
reaching	a	stable	fixed	point.	There,	certainly,	the	system	produced	a	“climate”
in	 the	most	 trivial	 sense	 possible—the	 “weather”	 never	 changed.	With	 higher
parameters	he	 saw	 the	possibility	of	oscillation	between	 two	points,	 and	 there,
too,	 the	 system	 converged	 to	 a	 simple	 average.	 But	 beyond	 a	 certain	 point,
Lorenz	saw	that	chaos	ensues.	Since	he	was	thinking	about	climate,	he	asked	not
only	whether	continual	feedback	would	produce	periodic	behavior,	but	also	what
the	 average	 output	would	 be.	And	 he	 recognized	 that	 the	 answer	was	 that	 the
average,	 too,	 fluctuated	unstably.	When	 the	parameter	value	was	changed	ever
so	 slightly,	 the	 average	 might	 change	 dramatically.	 By	 analogy,	 the	 earth’s
climate	 might	 never	 settle	 reliably	 into	 an	 equilibrium	with	 average	 longterm
behavior.

As	a	mathematics	paper,	Lorenz’s	climate	work	would	have	been	a	failure
—he	 proved	 nothing	 in	 the	 axiomatic	 sense.	 As	 a	 physics	 paper,	 too,	 it	 was
seriously	 flawed,	because	he	 could	not	 justify	using	 such	a	 simple	 equation	 to
draw	conclusions	 about	 the	 earth’s	 climate.	Lorenz	knew	what	 he	was	 saying,
though.	“The	writer	feels	that	this	resemblance	is	no	mere	accident,	but	that	the
difference	equation	captures	much	of	the	mathematics,	even	if	not	the	physics,	of
the	 transitions	 from	 one	 regime	 of	 flow	 to	 another,	 and,	 indeed,	 of	 the	whole
phenomenon	 of	 instability.”	Even	 twenty	 years	 later,	 no	 one	 could	 understand
what	 intuition	 justified	 such	 a	 bold	 claim,	 published	 in	 Tellus,	 a	 Swedish
meteorology	 journal.	 (“Tellus!	 Nobody	 reads	 Tellus,”	 a	 physicist	 exclaimed
bitterly.)	 Lorenz	 was	 coming	 to	 understand	 ever	 more	 deeply	 the	 peculiar



possibilities	 of	 chaotic	 systems—more	 deeply	 than	 he	 could	 express	 in	 the
language	of	meteorology.

As	 he	 continued	 to	 explore	 the	 changing	 masks	 of	 dynamical	 systems,
Lorenz	realized	 that	systems	slightly	more	complicated	 than	 the	quadratic	map
could	 produce	 other	 kinds	 of	 unexpected	 patterns.	 Hiding	 within	 a	 particular
system	could	be	more	than	one	stable	solution.	An	observer	might	see	one	kind
of	behavior	over	a	very	 long	 time,	yet	 a	completely	different	kind	of	behavior
could	be	just	as	natural	for	the	system.	Such	a	system	is	called	intransitive.	It	can
stay	in	one	equilibrium	or	the	other,	but	not	both.	Only	a	kick	from	outside	can
force	 it	 to	 change	 states.	 In	 a	 trivial	 way,	 a	 standard	 pendulum	 clock	 is	 an
intransitive	system.	A	steady	flow	of	energy	comes	in	from	a	wind-up	spring	or
a	battery	through	an	escapement	mechanism.	A	steady	flow	of	energy	is	drained
out	by	friction.	The	obvious	equilibrium	state	is	a	regular	swinging	motion.	If	a
passerby	bumps	the	clock,	the	pendulum	might	speed	up	or	slow	down	from	the
momentary	 jolt	 but	will	 quickly	 return	 to	 its	 equilibrium.	But	 the	 clock	 has	 a
second	equilibrium	as	well—a	second	valid	solution	to	its	equations	of	motion—
and	 that	 is	 the	 state	 in	which	 the	 pendulum	 is	 hanging	 straight	 down	 and	 not
moving.	A	less	trivial	intransitive	system—perhaps	with	several	distinct	regions
of	utterly	different	behavior—could	be	climate	itself.

Climatologists	who	 use	 global	 computer	models	 to	 simulate	 the	 longterm
behavior	of	the	earth’s	atmosphere	and	oceans	have	known	for	several	years	that
their	 models	 allow	 at	 least	 one	 dramatically	 different	 equilibrium.	 During	 the
entire	geological	past,	this	alternative	climate	has	never	existed,	but	it	could	be
an	 equally	 valid	 solution	 to	 the	 system	 of	 equations	 governing	 the	 earth.	 It	 is
what	 some	 climatologists	 call	 the	 White	 Earth	 climate:	 an	 earth	 whose
continents	 are	 covered	 by	 snow	 and	 whose	 oceans	 are	 covered	 by	 ice.	 A
glaciated	earth	would	reflect	seventy	percent	of	the	incoming	solar	radiation	and
so	 would	 stay	 extremely	 cold.	 The	 lowest	 layer	 of	 the	 atmosphere,	 the
troposphere,	 would	 be	 much	 thinner.	 The	 storms	 that	 would	 blow	 across	 the
frozen	surface	would	be	much	smaller	than	the	storms	we	know.	In	general,	the
climate	would	be	 less	hospitable	 to	 life	as	we	know	it.	Computer	models	have
such	 a	 strong	 tendency	 to	 fall	 into	 the	 White	 Earth	 equilibrium	 that
climatologists	find	themselves	wondering	why	it	has	never	come	about.	 It	may
simply	be	a	matter	of	chance.

To	 push	 the	 earth’s	 climate	 into	 the	 glaciated	 state	would	 require	 a	 huge
kick	from	some	external	source.	But	Lorenz	described	yet	another	plausible	kind
of	behavior	called	“almost-intransitivity.”	An	almost-intransitive	system	displays
one	 sort	 of	 average	 behavior	 for	 a	 very	 long	 time,	 fluctuating	 within	 certain
bounds.	 Then,	 for	 no	 reason	 whatsoever,	 it	 shifts	 into	 a	 different	 sort	 of



behavior,	 still	 fluctuating	 but	 producing	 a	 different	 average.	 The	 people	 who
design	computer	models	are	aware	of	Lorenz’s	discovery,	but	they	try	at	all	costs
to	 avoid	 almost-intransitivity.	 It	 is	 too	 unpredictable.	 Their	 natural	 bias	 is	 to
make	models	with	 a	 strong	 tendency	 to	 return	 to	 the	 equilibrium	we	measure
every	day	on	the	real	planet.	Then,	to	explain	large	changes	in	climate,	they	look
for	 external	 causes—changes	 in	 the	 earth’s	 orbit	 around	 the	 sun,	 for	 example.
Yet	 it	 takes	 no	 great	 imagination	 for	 a	 climatologist	 to	 see	 that	 almost-
intransitivity	might	well	explain	why	the	earth’s	climate	has	drifted	in	and	out	of
long	Ice	Ages	at	mysterious,	irregular	intervals.	If	so,	no	physical	cause	need	be
found	for	the	timing.	The	Ice	Ages	may	simply	be	a	byproduct	of	chaos.

LIKE	 A	 GUN	 COLLECTOR	 wistfully	 recalling	 the	 Colt	 .45	 in	 the	 era	 of
automatic	weaponry,	the	modern	scientist	nurses	a	certain	nostalgia	for	the	HP–
65	hand-held	calculator.	In	the	few	years	of	its	supremacy,	this	machine	changed
many	 scientists’	 working	 habits	 forever.	 For	 Feigenbaum,	 it	 was	 the	 bridge
between	pencil-and–paper	 and	 a	 style	 of	working	with	 computers	 that	 had	not
yet	been	conceived.

He	knew	nothing	of	Lorenz,	but	 in	 the	summer	of	1975,	at	a	gathering	 in
Aspen,	 Colorado,	 he	 heard	 Steve	 Smale	 talk	 about	 some	 of	 the	mathematical
qualities	of	 the	same	quadratic	difference	equation.	Smale	seemed	to	think	that
there	were	 some	 interesting	open	questions	 about	 the	 exact	 point	 at	which	 the
mapping	changes	from	periodic	to	chaotic.	As	always,	Smale	had	a	sharp	instinct
for	 questions	worth	 exploring.	 Feigenbaum	decided	 to	 look	 into	 it	 once	more.
With	 his	 calculator	 he	 began	 to	 use	 a	 combination	 of	 analytic	 algebra	 and
numerical	exploration	to	piece	 together	an	understanding	of	 the	quadratic	map,
concentrating	on	the	boundary	region	between	order	and	chaos.

Metaphorically—but	 only	 metaphorically—he	 knew	 that	 this	 region	 was
like	the	mysterious	boundary	between	smooth	flow	and	turbulence	in	a	fluid.	It
was	 the	 region	 that	 Robert	 May	 had	 called	 to	 the	 attention	 of	 population
biologists	who	had	previously	failed	to	notice	the	possibility	of	any	but	orderly
cycles	 in	 changing	 animal	 populations.	En	 route	 to	 chaos	 in	 this	 region	was	 a
cascade	 of	 period-doublings,	 the	 splitting	 of	 two-cycles	 into	 four-cycles,	 four-
cycles	into	eight-cycles,	and	so	on.	These	splittings	made	a	a	fascinating	pattern.
They	were	the	points	at	which	a	slight	change	in	fecundity,	for	example,	might
lead	a	population	of	gypsy	moths	to	change	from	a	four-year	cycle	to	an	eight-
year	 cycle.	 Feigenbaum	 decided	 to	 begin	 by	 calculating	 the	 exact	 parameter
values	that	produced	the	splittings.

In	the	end,	it	was	the	slowness	of	the	calculator	that	led	him	to	a	discovery
that	 August.	 It	 took	 ages—minutes,	 in	 fact—to	 calculate	 the	 exact	 parameter



value	 of	 each	 period-doubling.	The	 higher	 up	 the	 chain	 he	went,	 the	 longer	 it
took.	 With	 a	 fast	 computer,	 and	 with	 a	 printout,	 Feigenbaum	 might	 have
observed	no	pattern.	But	he	had	to	write	the	numbers	down	by	hand,	and	then	he
had	to	think	about	them	while	he	was	waiting,	and	then,	to	save	time,	he	had	to
guess	where	the	next	answer	would	be.

Yet	 all	 in	 an	 instant	 he	 saw	 that	 he	 did	 not	 have	 to	 guess.	 There	was	 an
unexpected	 regularity	 hidden	 in	 this	 system:	 the	 numbers	 were	 converging
geometrically,	the	way	a	line	of	identical	telephone	poles	converges	toward	the
horizon	 in	 a	 perspective	 drawing.	 If	 you	 know	 how	 big	 to	 make	 any	 two
telephone	poles,	 you	know	all	 the	 rest;	 the	 ratio	of	 the	 second	 to	 the	 first	will
also	be	the	ratio	of	the	third	to	the	second,	and	so	on.	The	period-doublings	were
not	 just	 coming	 faster	 and	 faster,	 but	 they	were	 coming	 faster	 and	 faster	 at	 a
constant	rate.

Why	should	this	be	so?	Ordinarily,	the	presence	of	geometric	convergence
suggests	that	something,	somewhere,	is	repeating	itself	on	different	scales.	But	if
there	 was	 a	 scaling	 pattern	 inside	 this	 equation,	 no	 one	 had	 ever	 seen	 it.
Feigenbaum	calculated	the	ratio	of	convergence	to	the	finest	precision	possible
on	his	machine—three	decimal	places—and	came	up	with	a	number,	4.669.	Did
this	particular	ratio	mean	anything?	Feigenbaum	did	what	anyone	would	do	who
cared	about	numbers.	He	spent	the	rest	of	the	day	trying	to	fit	the	number	to	all
the	standard	constants—π,	e,	and	so	forth.	It	was	a	variant	of	none.

Oddly,	 Robert	 May	 realized	 later	 that	 he,	 too,	 had	 seen	 this	 geometric
convergence.	But	he	forgot	it	as	quickly	as	he	noted	it.	From	May’s	perspective
in	 ecology,	 it	was	 a	numerical	 peculiarity	 and	nothing	more.	 In	 the	 real-world
systems	 he	was	 considering,	 systems	 of	 animal	 populations	 or	 even	 economic
models,	the	inevitable	noise	would	overwhelm	any	detail	that	precise.	The	very
messiness	 that	 had	 led	 him	 so	 far	 stopped	 him	 at	 the	 crucial	 point.	May	was
excited	 by	 the	 gross	 behavior	 of	 the	 equation.	 He	 never	 imagined	 that	 the
numerical	details	would	prove	important.

Feigenbaum	knew	what	he	had,	because	geometric	convergence	meant	that
something	in	this	equation	was	scaling,	and	he	knew	that	scaling	was	important.
All	 of	 renormalization	 theory	 depended	 on	 it.	 In	 an	 apparently	 unruly	 system,
scaling	 meant	 that	 some	 quality	 was	 being	 preserved	 while	 everything	 else
changed.	Some	regularity	lay	beneath	the	turbulent	surface	of	the	equation.	But
where?	It	was	hard	to	see	what	to	do	next.

Summer	 turns	 rapidly	 to	 autumn	 in	 the	 rarefied	 Los	 Alamos	 air,	 and
October	had	nearly	ended	when	Feigenbaum	was	struck	by	an	odd	thought.	He
knew	that	Metropolis,	Stein,	and	Stein	had	looked	at	other	equations	as	well	and
had	found	that	certain	patterns	carried	over	from	one	sort	of	function	to	another.



The	same	combinations	of	R’s	and	L’s	appeared,	and	they	appeared	in	the	same
order.	 One	 function	 had	 involved	 the	 sine	 of	 a	 number,	 a	 twist	 that	 made
Feigenbaum’s	carefully	worked-out	approach	to	the	parabola	equation	irrelevant.
He	would	have	to	start	over.	So	he	took	his	HP–65	again	and	began	to	compute
the	period-doublings	 for	xt+1	=	 r	 sin	π	xt.	Calculating	a	 trigonometric	 function
made	the	process	that	much	slower,	and	Feigenbaum	wondered	whether,	as	with
the	 simpler	 version	 of	 the	 equation,	 he	would	 be	 able	 to	 use	 a	 shortcut.	 Sure
enough,	 scanning	 the	 numbers,	 he	 realized	 that	 they	 were	 again	 converging
geometrically.	It	was	simply	a	matter	of	calculating	the	convergence	rate	for	this
new	 equation.	 Again,	 his	 precision	 was	 limited,	 but	 he	 got	 a	 result	 to	 three
decimal	places:	4.669.

It	was	the	same	number.	Incredibly,	this	trigonometric	function	was	not	just
displaying	a	consistent,	geometric	regularity.	It	was	displaying	a	regularity	that
was	numerically	 identical	 to	 that	of	a	much	simpler	function.	No	mathematical
or	physical	theory	existed	to	explain	why	two	equations	so	different	in	form	and
meaning	should	lead	to	the	same	result.

Feigenbaum	 called	 Paul	 Stein.	 Stein	 was	 not	 prepared	 to	 believe	 the
coincidence	 on	 such	 scanty	 evidence.	 The	 precision	 was	 low,	 after	 all.
Nevertheless,	Feigenbaum	also	called	his	parents	in	New	Jersey	to	tell	them	he
had	 stumbled	 across	 something	 profound.	 He	 told	 his	mother	 it	 was	 going	 to
make	 him	 famous.	 Then	 he	 started	 trying	 other	 functions,	 anything	 he	 could
think	 of	 that	went	 through	 a	 sequence	 of	 bifurcations	 on	 the	way	 to	 disorder.
Every	one	produced	the	same	number.

Feigenbaum	had	played	with	numbers	all	his	life.	When	he	was	a	teen-ager
he	knew	how	to	calculate	logarithms	and	sines	that	most	people	would	look	up
in	 tables.	But	 he	 had	 never	 learned	 to	 use	 any	 computer	 bigger	 than	 his	 hand
calculator—and	 in	 this	 he	 was	 typical	 of	 physicists	 and	 mathematicians,	 who
tended	 to	 disdain	 the	mechanistic	 thinking	 that	 computer	work	 implied.	Now,
though,	it	was	time.	He	asked	a	colleague	to	teach	him	Fortran,	and,	by	the	end
of	 the	 day,	 for	 a	 variety	 of	 functions,	 he	 had	 calculated	 his	 constant	 to	 five
decimal	 places,	 4.66920.	 That	 night	 he	 read	 about	 double	 precision	 in	 the
manual,	 and	 the	next	day	he	got	as	 far	as	4.6692016090—enough	precision	 to
convince	Stein.	Feigenbaum	wasn’t	quite	sure	he	had	convinced	himself,	though.
He	had	set	out	to	look	for	regularity—that	was	what	understanding	mathematics
meant—but	he	had	also	set	out	knowing	that	particular	kinds	of	equations,	 just
like	 particular	 physical	 systems,	 behave	 in	 special,	 characteristic	 ways.	 These
equations	were	simple,	after	all.	Feigenbaum	understood	the	quadratic	equation,
he	understood	the	sine	equation—the	mathematics	was	trivial.	Yet	something	in



the	heart	of	these	very	different	equations,	repeating	over	and	over	again,	created
a	 single	 number.	 He	 had	 stumbled	 upon	 something:	 perhaps	 just	 a	 curiosity;
perhaps	a	new	law	of	nature.

Imagine	 that	 a	 prehistoric	 zoologist	 decides	 that	 some	 things	 are	 heavier
than	 other	 things—they	 have	 some	 abstract	 quality	 he	 calls	 weight—and	 he
wants	 to	 investigate	 this	 idea	 scientifically.	 He	 has	 never	 actually	 measured
weight,	 but	 he	 thinks	 he	 has	 some	 understanding	 of	 the	 idea.	He	 looks	 at	 big
snakes	and	little	snakes,	big	bears	and	little	bears,	and	he	guesses	that	the	weight
of	these	animals	might	have	some	relationship	to	their	size.	He	builds	a	scale	and
starts	weighing	 snakes.	To	his	astonishment,	 every	 snake	weighs	 the	 same.	To
his	 consternation,	 every	 bear	 weighs	 the	 same,	 too.	 And	 to	 his	 further
amazement,	 bears	 weigh	 the	 same	 as	 snakes.	 They	 all	 weigh	 4.6692016090.
Clearly	weight	is	not	what	he	supposed.	The	whole	concept	requires	rethinking.

Rolling	 streams,	 swinging	 pendulums,	 electronic	 oscillators—many
physical	 systems	 went	 through	 a	 transition	 on	 the	 way	 to	 chaos,	 and	 those
transitions	 had	 remained	 too	 complicated	 for	 analysis.	 These	were	 all	 systems
whose	 mechanics	 seemed	 perfectly	 well	 understood.	 Physicists	 knew	 all	 the
right	 equations;	 yet	moving	 from	 the	 equations	 to	 an	 understanding	 of	 global,
longterm	behavior	seemed	impossible.	Unfortunately,	equations	for	fluids,	even
pendulums,	were	far	more	challenging	than	the	simple	one-dimensional	logistic
map.	But	Feigenbaum’s	discovery	implied	that	those	equations	were	beside	the
point.	They	were	 irrelevant.	When	order	 emerged,	 it	 suddenly	 seemed	 to	have
forgotten	what	 the	original	equation	was.	Quadratic	or	 trigonometric,	 the	result
was	the	same.	“The	whole	tradition	of	physics	is	that	you	isolate	the	mechanisms
and	then	all	the	rest	flows,”	he	said.	“That’s	completely	falling	apart.	Here	you
know	 the	 right	 equations	 but	 they’re	 just	 not	 helpful.	 You	 add	 up	 all	 the
microscopic	pieces	and	you	find	that	you	cannot	extend	them	to	the	long	term.
They’re	 not	 what’s	 important	 in	 the	 problem.	 It	 completely	 changes	 what	 it
means	to	know	something.”

Although	 the	 connection	 between	 numerics	 and	 physics	 was	 faint,
Feigenbaum	 had	 found	 evidence	 that	 he	 needed	 to	 work	 out	 a	 new	 way	 of
calculating	 complex	 nonlinear	 problems.	 So	 far,	 all	 available	 techniques	 had
depended	 on	 the	 details	 of	 the	 functions.	 If	 the	 function	 was	 a	 sine	 function,
Feigenbaum’s	 carefully	 worked-out	 calculations	 were	 sine	 calculations.	 His
discovery	 of	 universality	 meant	 that	 all	 those	 techniques	 would	 have	 to	 be
thrown	 out.	 The	 regularity	 had	 nothing	 to	 do	with	 sines.	 It	 had	 nothing	 to	 do
with	 parabolas.	 It	 had	nothing	 to	 do	with	 any	particular	 function.	But	why?	 It
was	 frustrating.	Nature	 had	 pulled	 back	 a	 curtain	 for	 an	 instant	 and	 offered	 a
glimpse	of	unexpected	order.	What	else	was	behind	that	curtain?



WHEN	INSPIRATION	CAME,	it	was	in	the	form	of	a	picture,	a	mental	image	of
two	 small	 wavy	 forms	 and	 one	 big	 one.	 That	 was	 all—a	 bright,	 sharp	 image
etched	 in	his	mind,	no	more,	perhaps,	 than	 the	visible	 top	of	a	vast	 iceberg	of
mental	processing	that	had	taken	place	below	the	waterline	of	consciousness.	It
had	to	do	with	scaling,	and	it	gave	Feigenbaum	the	path	he	needed.

He	 was	 studying	 attractors.	 The	 steady	 equilibrium	 reached	 by	 his
mappings	 is	 a	 fixed	 point	 that	 attracts	 all	 others—no	matter	 what	 the	 starting
“population,”	it	will	bounce	steadily	in	toward	the	attractor.	Then,	with	the	first
period-doubling,	 the	 attractor	 splits	 in	 two,	 like	 a	 dividing	 cell.	At	 first,	 these
two	points	are	practically	together;	then,	as	the	parameter	rises,	they	float	apart.
Then	 another	 period-doubling:	 each	 point	 of	 the	 attractor	 divides	 again,	 at	 the
same	moment.	Feigenbaum’s	number	let	him	predict	when	the	period-doublings
would	occur.	Now	he	discovered	that	he	could	also	predict	the	precise	values	of
each	 point	 on	 this	 ever-more–complicated	 attractor—two	 points,	 four	 points,
eight	 points…He	 could	 predict	 the	 actual	 populations	 reached	 in	 the	 year-to–
year	oscillations.	There	was	yet	another	geometric	convergence.	These	numbers,
too,	obeyed	a	law	of	scaling.

Feigenbaum	 was	 exploring	 a	 forgotten	 middle	 ground	 be	 tween
mathematics	and	physics.	His	work	was	hard	to	classify.	It	was	not	mathematics;
he	was	not	proving	anything.	He	was	studying	numbers,	yes,	but	numbers	are	to
a	mathematician	what	bags	of	coins	are	to	an	investment	banker:	nominally	the
stuff	 of	 his	 profession,	 but	 actually	 too	 gritty	 and	 particular	 to	waste	 time	 on.
Ideas	 are	 the	 real	 currency	of	mathematicians.	Feigenbaum	was	carrying	out	 a
program	 in	 physics,	 and,	 strange	 as	 it	 seemed,	 it	 was	 almost	 a	 kind	 of
experimental	physics.



ZEROING	IN	ON	CHAOS.	A	simple	equation,	repeated	many	times	over:	Mitchell	Feigenbaum	focused
on	 straightforward	 functions,	 taking	 one	 number	 as	 input	 and	 producing	 another	 as	 output.	 For	 animal
populations,	a	function	might	express	the	relationship	between	this	year’s	population	and	next	year’s.

One	way	 to	 visualize	 such	 functions	 is	 to	make	 a	 graph,	 plotting	 input	 on	 the	 horizontal	 axis	 and
output	on	 the	vertical	axis.	For	each	possible	 input,	x,	 there	 is	 just	one	output,	y,	and	these	form	a	shape
represented	by	the	heavy	line.

Then,	 to	 represent	 the	 longterm	behavior	of	 the	 system,	Feigenbaum	drew	a	 trajectory	 that	 started
with	some	arbitrary	x.	Because	each	y	was	then	fed	back	into	the	same	function	as	new	input,	he	could	use	a
sort	of	schematic	shortcut:	The	trajectory	would	bounce	off	the	45–degree	line,	the	line	where	x	equals	y.

For	an	ecologist,	the	most	obvious	sort	of	function	for	population	growth	is	linear—the	Malthusian
scenario	of	steady,	limitless	growth	by	a	fixed	percentage	each	year	(left).	More	realistic	functions	formed
an	arch,	sending	the	population	back	downward	when	it	became	too	high.	Illustrated	is	the	“logistic	map,”	a
perfect	 parabola,	 defined	by	 the	 function	 y	=	 rx(1–x),	where	 the	 value	 of	 r,	 from	0	 to	 4,	 determines	 the
parabola’s	steepness.	But	Feigenbaum	discovered	that	it	did	not	matter	precisely	what	sort	of	arch	he	used;
the	 details	 of	 the	 equation	 were	 beside	 the	 point.	 What	 mattered	 was	 that	 the	 function	 should	 have	 a
“hump.”

The	 behavior	 depended	 sensitively,	 though,	 on	 the	 steepness—the	 degree	 of	 nonlinearity,	 or	what
Robert	May	called	“boom-and–bustiness.”	Too	shallow	a	function	would	produce	extinction:	Any	starting
population	would	lead	eventually	to	zero.	Increasing	the	steepness	produced	the	steady	equilibrium	that	a
traditional	ecologist	would	expect;	that	point,	drawing	in	all	trajectories,	was	a	one-dimensional	“attractor.”

Beyond	a	certain	point,	a	bifurcation	produced	an	oscillating	population	with	period	two.	Then	more
period-doublings	would	occur,	and	finally	(bottom	right)	the	trajectory	would	refuse	to	settle	down	at	all.

Such	 images	were	 a	 starting	 point	 for	 Feigenbaum	when	 he	 tried	 to	 construct	 a	 theory.	He	 began



thinking	 in	 terms	of	recursion:	functions	of	functions,	and	functions	of	functions	of	functions,	and	so	on;
maps	with	two	humps,	and	then	four….

Numbers	 and	 functions	 were	 his	 object	 of	 study,	 instead	 of	 mesons	 and
quarks.	 They	 had	 trajectories	 and	 orbits.	 He	 needed	 to	 inquire	 into	 their
behavior.	He	needed—in	a	phrase	that	later	became	a	cliché	of	the	new	science
—to	create	intuition.	His	accelerator	and	his	cloud	chamber	were	the	computer.
Along	with	his	 theory,	 he	was	building	 a	methodology.	Ordinarily	 a	 computer
user	would	construct	a	problem,	feed	it	in,	and	wait	for	the	machine	to	calculate
its	solution—one	problem,	one	solution.	Feigenbaum	and	the	chaos	researchers
who	followed	needed	more.	They	needed	to	do	what	Lorenz	had	done,	to	create
miniature	 universes	 and	 observe	 their	 evolution.	 Then	 they	 could	 change	 this
feature	 or	 that	 and	 observe	 the	 changed	 paths	 that	 would	 result.	 They	 were
armed	with	 the	 new	 conviction,	 after	 all,	 that	 tiny	 changes	 in	 certain	 features
could	lead	to	remarkable	changes	in	overall	behavior.

Feigenbaum	 quickly	 discovered	 how	 ill-suited	 the	 computer	 facilities	 of
Los	 Alamos	 were	 for	 the	 style	 of	 computing	 he	 wanted	 to	 develop.	 Despite
enormous	resources,	 far	greater	 than	at	most	universities,	Los	Alamos	had	few
terminals	capable	of	displaying	graphs	and	pictures,	and	 those	 few	were	 in	 the
Weapons	Division.	Feigenbaum	wanted	to	take	numbers	and	plot	them	as	points
on	a	map.	He	had	to	resort	to	the	most	primitive	method	conceivable:	long	rolls
of	 printout	 paper	 with	 lines	 made	 by	 printing	 rows	 of	 spaces	 followed	 by	 an
asterisk	 or	 a	 plus	 sign.	 The	 official	 policy	 at	 Los	 Alamos	 held	 that	 one	 big
computer	was	worth	 far	more	 than	many	 little	 computers—a	 policy	 that	went
with	the	one	problem,	one	solution	tradition.	Little	computers	were	discouraged.
Furthermore,	 any	 division’s	 purchase	 of	 a	 computer	 would	 have	 to	 meet
stringent	 government	 guidelines	 and	 a	 formal	 review.	 Only	 later,	 with	 the
budgetary	 complicity	 of	 the	Theoretical	Division,	 did	Feigenbaum	become	 the
recipient	of	a	$20,000	“desktop	calculator.”	Then	he	could	change	his	equations
and	pictures	on	 the	run,	 tweaking	 them	and	 tuning	 them,	playing	 the	computer
like	 a	 musical	 instrument.	 For	 now,	 the	 only	 terminals	 capable	 of	 serious
graphics	 were	 in	 high-security	 areas—behind	 the	 fence,	 in	 local	 parlance.
Feigenbaum	 had	 to	 use	 a	 terminal	 hooked	 up	 by	 telephone	 lines	 to	 a	 central
computer.	 The	 reality	 of	 working	 in	 such	 an	 arrangement	 made	 it	 hard	 to
appreciate	the	raw	power	of	the	computer	at	the	other	end	of	the	line.	Even	the
simplest	tasks	took	minutes.	To	edit	a	line	of	a	program	meant	pressing	Return
and	 waiting	 while	 the	 terminal	 hummed	 incessantly	 and	 the	 central	 computer
played	its	electronic	round	robin	with	other	users	across	the	laboratory.

While	 he	was	 computing,	 he	was	 thinking.	What	 new	mathematics	 could



produce	the	multiple	scaling	patterns	he	was	observing?	Something	about	these
functions	 must	 be	 recursive,	 he	 realized,	 self-referential,	 the	 behavior	 of	 one
guided	 by	 the	 behavior	 of	 another	 hidden	 inside	 it.	 The	wavy	 image	 that	 had
come	to	him	in	a	moment	of	inspiration	expressed	something	about	the	way	one
function	 could	 be	 scaled	 to	 match	 another.	 He	 applied	 the	 mathematics	 of
renormalization	 group	 theory,	with	 its	 use	 of	 scaling	 to	 collapse	 infinities	 into
manageable	 quantities.	 In	 the	 spring	 of	 1976	 he	 entered	 a	 mode	 of	 existence
more	 intense	 than	 any	 he	 had	 lived	 through.	 He	would	 concentrate	 as	 if	 in	 a
trance,	 programming	 furiously,	 scribbling	with	 his	 pencil,	 programming	 again.
He	could	not	call	C	division	for	help,	because	that	would	mean	signing	off	the
computer	to	use	the	telephone,	and	reconnection	was	chancy.	He	could	not	stop
for	more	than	five	minutes’	thought,	because	the	computer	would	automatically
disconnect	 his	 line.	 Every	 so	 often	 the	 computer	 would	 go	 down	 anyway,
leaving	him	shaking	with	adrenalin.	He	worked	for	 two	months	without	pause.
His	functional	day	was	twenty-two	hours.	He	would	try	to	go	to	sleep	in	a	kind
of	buzz,	and	awaken	two	hours	later	with	his	thoughts	exactly	where	he	had	left
them.	His	diet	was	strictly	coffee.	(Even	when	healthy	and	at	peace,	Feigenbaum
subsisted	 exclusively	 on	 the	 reddest	 possible	 meat,	 coffee,	 and	 red	 wine.	 His
friends	speculated	that	he	must	be	getting	his	vitamins	from	cigarettes.)

In	the	end,	a	doctor	called	it	off.	He	prescribed	a	modest	regimen	of	Valium
and	 an	 enforced	 vacation.	 But	 by	 then	 Feigenbaum	 had	 created	 a	 universal
theory.

UNIVERSALITY	 MADE	 THE	 DIFFERENCE	 between	 beautiful	 and	 useful.
Mathematicians,	beyond	a	certain	point,	care	little	whether	they	are	providing	a
technique	 for	 calculation.	 Physicists,	 beyond	 a	 certain	 point,	 need	 numbers.
Universality	offered	 the	hope	 that	by	solving	an	easy	problem	physicists	could
solve	 much	 harder	 problems.	 The	 answers	 would	 be	 the	 same.	 Further,	 by
placing	his	 theory	 in	 the	 framework	of	 the	 renormalization	group,	Feigenbaum
gave	 it	 a	 clothing	 that	 physicists	 would	 recognize	 as	 a	 tool	 for	 calculating,
almost	something	standard.

But	 what	 made	 universality	 useful	 also	 made	 it	 hard	 for	 physicists	 to
believe.	Universality	meant	that	different	systems	would	behave	identically.	Of
course,	 Feigenbaum	 was	 only	 studying	 simple	 numerical	 functions.	 But	 he
believed	 that	 his	 theory	 expressed	 a	 natural	 law	 about	 systems	 at	 the	 point	 of
transition	between	orderly	and	turbulent.	Everyone	knew	that	turbulence	meant	a
continuous	spectrum	of	different	frequencies,	and	everyone	had	wondered	where
the	 different	 frequencies	 came	 from.	 Suddenly	 you	 could	 see	 the	 frequencies
coming	 in	 sequentially.	 The	 physical	 implication	 was	 that	 real-world	 systems



would	behave	in	 the	same,	recognizable	way,	and	that	furthermore	 it	would	be
measurably	the	same.	Feigenbaum’s	universality	was	not	just	qualitative,	it	was
quantitative;	not	just	structural,	but	metrical.	It	extended	not	just	to	patterns,	but
to	precise	numbers.	To	a	physicist,	that	strained	credulity.

Years	 later	Feigenbaum	still	kept	 in	a	desk	drawer,	where	he	could	get	at
them	quickly,	his	rejection	letters.	By	then	he	had	all	the	recognition	he	needed.
His	Los	Alamos	work	had	won	him	prizes	and	awards	that	brought	prestige	and
money.	But	it	still	rankled	that	editors	of	the	top	academic	journals	had	deemed
his	work	 unfit	 for	 publication	 for	 two	 years	 after	 he	 began	 submitting	 it.	 The
notion	of	a	scientific	breakthrough	so	original	and	unexpected	that	it	cannot	be
published	seems	a	slightly	tarnished	myth.	Modern	science,	with	its	vast	flow	of
information	 and	 its	 impartial	 system	 of	 peer	 review,	 is	 not	 supposed	 to	 be	 a
matter	of	taste.	One	editor	who	sent	back	a	Feigenbaum	manuscript	recognized
years	later	that	he	had	rejected	a	paper	that	was	a	turning	point	for	the	field;	yet
he	 still	 argued	 that	 the	 paper	 had	 been	 unsuited	 to	 his	 journal’s	 audience	 of
applied	 mathematicians.	 In	 the	 meantime,	 even	 without	 publication,
Feigenbaum’s	 breakthrough	 became	 a	 superheated	 piece	 of	 news	 in	 certain
circles	of	mathematics	and	physics.	The	kernel	of	 theory	was	disseminated	 the
way	 most	 science	 is	 now	 disseminated—through	 lectures	 and	 preprints.
Feigenbaum	described	his	work	at	conferences,	and	requests	for	photocopies	of
his	papers	came	in	by	the	score	and	then	by	the	hundred.

MODERN	 ECONOMICS	 RELIES	 HEAVILY	 on	 the	 efficient	 market	 theory.
Knowledge	 is	 assumed	 to	 flow	 freely	 from	place	 to	place.	The	people	making
important	decisions	are	supposed	to	have	access	to	more	or	less	the	same	body
of	 information.	 Of	 course,	 pockets	 of	 ignorance	 or	 inside	 information	 remain
here	and	there,	but	on	the	whole,	once	knowledge	is	public,	economists	assume
that	 it	 is	 known	 everywhere.	 Historians	 of	 science	 often	 take	 for	 granted	 an
efficient	market	theory	of	their	own.	When	a	discovery	is	made,	when	an	idea	is
expressed,	it	is	assumed	to	become	the	common	property	of	the	scientific	world.
Each	 discovery	 and	 each	 new	 insight	 builds	 on	 the	 last.	 Science	 rises	 like	 a
building,	brick	by	brick.	Intellectual	chronicles	can	be,	for	all	practical	purposes,
linear.

That	view	of	science	works	best	when	a	well-defined	discipline	awaits	the
resolution	of	a	well-defined	problem.	No	one	misunderstood	the	discovery	of	the
molecular	structure	of	DNA,	for	example.	But	the	history	of	ideas	is	not	always
so	neat.	As	nonlinear	 science	 arose	 in	 odd	 corners	 of	 different	 disciplines,	 the
flow	of	ideas	failed	to	follow	the	standard	logic	of	historians.	The	emergence	of
chaos	 as	 an	 entity	 unto	 itself	 was	 a	 story	 not	 only	 of	 new	 theories	 and	 new



discoveries,	but	also	of	 the	belated	understanding	of	old	 ideas.	Many	pieces	of
the	 puzzle	 had	 been	 seen	 long	 before—by	 Poincaré,	 by	 Maxwell,	 even	 by
Einstein—and	then	forgotten.	Many	new	pieces	were	understood	at	first	only	by
a	few	insiders.	A	mathematical	discovery	was	understood	by	mathematicians,	a
physics	discovery	by	physicists,	a	meteorological	discovery	by	no	one.	The	way
ideas	spread	became	as	important	as	the	way	they	originated.

Each	scientist	had	a	private	constellation	of	 intellectual	parents.	Each	had
his	own	picture	of	the	landscape	of	ideas,	and	each	picture	was	limited	in	its	own
way.	Knowledge	was	 imperfect.	Scientists	were	biased	by	 the	customs	of	 their
disciplines	 or	 by	 the	 accidental	 paths	 of	 their	 own	 educations.	 The	 scientific
world	can	be	surprisingly	finite.	No	committee	of	scientists	pushed	history	into	a
new	 channel—a	 handful	 of	 individuals	 did	 it,	 with	 individual	 perceptions	 and
individual	goals.

Afterwards,	a	consensus	began	to	take	shape	about	which	innovations	and
which	 contributions	 had	 been	 most	 influential.	 But	 the	 consensus	 involved	 a
certain	element	of	revisionism.	In	the	heat	of	discovery,	particularly	during	the
late	 1970s,	 no	 two	 physicists,	 no	 two	 mathematicians	 understood	 chaos	 in
exactly	 the	 same	 way.	 A	 scientist	 accustomed	 to	 classical	 systems	 without
friction	 or	 dissipation	 would	 place	 himself	 in	 a	 lineage	 descending	 from
Russians	like	A.	N.	Kolmogorov	and	V.	I.	Arnold.	A	mathematician	accustomed
to	classical	dynamical	systems	would	envision	a	line	from	Poincaré	to	Birkhoff
to	 Levinson	 to	 Smale.	 Later,	 a	 mathematician’s	 constellation	 might	 center	 on
Smale,	 Guckenheimer,	 and	 Ruelle.	 Or	 it	 might	 emphasize	 a	 computationally
inclined	set	of	forebears	associated	with	Los	Alamos:	Ulam,	Metropolis,	Stein.
A	 theoretical	 physicist	 might	 think	 of	 Ruelle,	 Lorenz,	 Rössler,	 and	 Yorke.	 A
biologist	would	 think	of	Smale,	Guckenheimer,	May,	and	Yorke.	The	possible
combinations	were	endless.	A	scientist	working	with	materials—a	geologist	or	a
seismologist—would	 credit	 the	 direct	 influence	 of	 Mandelbrot;	 a	 theoretical
physicist	would	barely	acknowledge	knowing	the	name.

Feigenbaum’s	 role	 would	 become	 a	 special	 source	 of	 contention.	 Much
later,	when	he	was	riding	a	crest	of	semicelebrity,	some	physicists	went	out	of
their	way	to	cite	other	people	who	had	been	working	on	the	same	problem	at	the
same	time,	give	or	take	a	few	years.	Some	accused	him	of	focusing	too	narrowly
on	a	small	piece	of	the	broad	spectrum	of	chaotic	behavior.	“Feigenbaumology”
was	overrated,	a	physicist	might	say—a	beautiful	piece	of	work,	to	be	sure,	but
not	 as	broadly	 influential	 as	Yorke’s	work,	 for	 example.	 In	1984,	Feigenbaum
was	 invited	 to	 address	 the	 Nobel	 Symposium	 in	 Sweden,	 and	 there	 the
controversy	 swirled.	 Benoit	 Mandelbrot	 gave	 a	 wickedly	 pointed	 talk	 that
listeners	 later	described	as	his	“antifeigenbaum	lecture.”	Somehow	Mandelbrot



had	 exhumed	 a	 twenty-year–old	 paper	 on	 period-doubling	 by	 a	 Finnish
mathematician	 named	 Myrberg,	 and	 he	 kept	 describing	 the	 Feigenbaum
sequences	as	“Myrberg	sequences.”

But	Feigenbaum	had	discovered	universality	and	created	a	theory	to	explain
it.	That	was	the	pivot	on	which	the	new	science	swung.	Unable	to	publish	such
an	 astonishing	 and	 counterintuitive	 result,	 he	 spread	 the	 word	 in	 a	 series	 of
lectures	 at	 a	 New	 Hampshire	 conference	 in	 August	 1976,	 an	 international
mathematics	 meeting	 at	 Los	 Alamos	 in	 September,	 a	 set	 of	 talks	 at	 Brown
University	 in	November.	The	discovery	 and	 the	 theory	met	 surprise,	 disbelief,
and	excitement.	The	more	a	scientist	had	thought	about	nonlinearity,	the	more	he
felt	 the	 force	 of	 Feigenbaum’s	 universality.	One	 put	 it	 simply:	 “It	was	 a	 very
happy	 and	 shocking	 discovery	 that	 there	were	 structures	 in	 nonlinear	 systems
that	are	always	the	same	if	you	looked	at	them	the	right	way.”	Some	physicists
picked	up	not	just	the	ideas	but	also	the	techniques.	Playing	with	these	maps—
just	 playing—gave	 them	 chills.	 With	 their	 own	 calculators,	 they	 could
experience	the	surprise	and	satisfaction	that	had	kept	Feigenbaum	going	at	Los
Alamos.	 And	 they	 refined	 the	 theory.	 Hearing	 his	 talk	 at	 the	 Institute	 for
Advanced	 Study	 in	 Princeton,	 Predrag	Cvitanović,	 a	 particle	 physicist,	 helped
Feigenbaum	 simplify	 his	 theory	 and	 extend	 its	 universality.	 But	 all	 the	while,
Cvitanović	pretended	it	was	just	a	pastime;	he	could	not	bring	himself	to	admit
to	his	colleagues	what	he	was	doing.

Among	mathematicians,	 too,	a	reserved	attitude	prevailed,	 largely	because
Feigenbaum	did	not	provide	a	 rigorous	proof.	 Indeed,	not	until	1979	did	proof
come	on	mathematicians’	 terms,	 in	work	by	Oscar	E.	Lanford	III.	Feigenbaum
often	 recalled	 presenting	 his	 theory	 to	 a	 distinguished	 audience	 at	 the	 Los
Alamos	meeting	in	September.	He	had	barely	begun	to	describe	the	work	when
the	 eminent	mathematician	Mark	Kac	 rose	 to	 ask:	 “Sir,	 do	 you	mean	 to	 offer
numerics	or	a	proof?”

More	than	the	one	and	less	than	the	other,	Feigenbaum	replied.
“Is	it	what	any	reasonable	man	would	call	a	proof?”
Feigenbaum	 said	 that	 the	 listeners	 would	 have	 to	 judge	 for	 themselves.

After	he	was	done	speaking,	he	polled	Kac,	who	responded,	with	a	sardonically
trilled	r:	“Yes,	that’s	indeed	a	reasonable	man’s	proof.	The	details	can	be	left	to
the	r-r–rigorous	mathematicians.”

A	 movement	 had	 begun,	 and	 the	 discovery	 of	 universality	 spurred	 it
forward.	In	the	summer	of	1977,	two	physicists,	Joseph	Ford	and	Giulio	Casati,
organized	the	first	conference	on	a	science	called	chaos.	It	was	held	in	a	gracious
villa	in	Como,	Italy,	a	tiny	city	at	the	southern	foot	of	the	lake	of	the	same	name,
a	 stunningly	 deep	 blue	 catchbasin	 for	 the	melting	 snow	 from	 the	 Italian	Alps.



One	hundred	 people	 came—mostly	 physicists,	 but	 also	 curious	 scientists	 from
other	 fields.	 “Mitch	 had	 seen	 universality	 and	 found	 out	 how	 it	 scaled	 and
worked	out	a	way	of	getting	to	chaos	that	was	intuitively	appealing,”	Ford	said.
“It	was	the	first	time	we	had	a	clear	model	that	everybody	could	understand.

“And	it	was	one	of	those	things	whose	time	had	come.	In	disciplines	from
astronomy	 to	 zoology,	 people	were	 doing	 the	 same	 things,	 publishing	 in	 their
narrow	 disciplinary	 journals,	 just	 totally	 unaware	 that	 the	 other	 people	 were
around.	They	thought	they	were	by	themselves,	and	they	were	regarded	as	a	bit
eccentric	in	their	own	areas.	They	had	exhausted	the	simple	questions	you	could
ask	and	begun	to	worry	about	phenomena	that	were	a	bit	more	complicated.	And
these	 people	were	 just	weepingly	 grateful	 to	 find	 out	 that	 everybody	 else	was
there,	too.”

LATER,	FEIGENBAUM	LIVED	in	a	bare	space,	a	bed	in	one	room,	a	computer	in
another,	 and,	 in	 the	 third,	 three	 black	 electronic	 towers	 for	 playing	 his	 solidly
Germanic	 record	 collection.	 His	 one	 experiment	 in	 home	 furnishing,	 the
purchase	of	an	expensive	marble	coffee	table	while	he	was	in	Italy,	had	ended	in
failure;	he	received	a	parcel	of	marble	chips.	Piles	of	papers	and	books	lined	the
walls.	He	 talked	 rapidly,	his	 long	hair,	gray	now	mixed	with	brown,	 sweeping
back	from	his	forehead.	“Something	dramatic	happened	in	the	twenties.	For	no
good	 reason	 physicists	 stumbled	 upon	 an	 essentially	 correct	 description	 of	 the
world	around	them—because	the	theory	of	quantum	mechanics	is	in	some	sense
essentially	correct.	It	tells	you	how	you	can	take	dirt	and	make	computers	from
it.	It’s	the	way	we’ve	learned	to	manipulate	our	universe.	It’s	the	way	chemicals
are	made	and	plastics	and	what	not.	One	knows	how	to	compute	with	it.	It’s	an
extravagantly	good	theory—except	at	some	level	it	doesn’t	make	good	sense.

“Some	part	of	the	imagery	is	missing.	If	you	ask	what	the	equations	really
mean	and	what	is	the	description	of	the	world	according	to	this	theory,	it’s	not	a
description	that	entails	your	intuition	of	the	world.	You	can’t	think	of	a	particle
moving	as	though	it	has	a	trajectory.	You’re	not	allowed	to	visualize	it	that	way.
If	you	start	asking	more	and	more	subtle	questions—what	does	 this	 theory	 tell
you	 the	 world	 looks	 like?—in	 the	 end	 it’s	 so	 far	 out	 of	 your	 normal	 way	 of
picturing	 things	 that	 you	 run	 into	 all	 sorts	 of	 conflicts.	Now	maybe	 that’s	 the
way	the	world	really	is.	But	you	don’t	really	know	that	there	isn’t	another	way	of
assembling	all	this	information	that	doesn’t	demand	so	radical	a	departure	from
the	way	in	which	you	intuit	things.

“There’s	a	fundamental	presumption	in	physics	that	the	way	you	understand
the	world	is	that	you	keep	isolating	its	ingredients	until	you	understand	the	stuff
that	you	think	is	truly	fundamental.	Then	you	presume	that	the	other	things	you



don’t	understand	are	details.	The	assumption	is	that	there	are	a	small	number	of
principles	that	you	can	discern	by	looking	at	things	in	their	pure	state—this	is	the
true	 analytic	 notion—and	 then	 somehow	 you	 put	 these	 together	 in	 more
complicated	ways	when	you	want	to	solve	more	dirty	problems.	If	you	can.

“In	 the	 end,	 to	 understand	 you	 have	 to	 change	 gears.	 You	 have	 to
reassemble	 how	 you	 conceive	 of	 the	 important	 things	 that	 are	 going	 on.	 You
could	 have	 tried	 to	 simulate	 a	 model	 fluid	 system	 on	 a	 computer.	 It’s	 just
beginning	to	be	possible.	But	it	would	have	been	a	waste	of	effort,	because	what
really	 happens	 has	 nothing	 to	 do	 with	 a	 fluid	 or	 a	 particular	 equation.	 It’s	 a
general	 description	of	what	happens	 in	 a	 large	variety	of	 systems	when	 things
work	 on	 themselves	 again	 and	 again.	 It	 requires	 a	 different	 way	 of	 thinking
about	the	problem.

“When	you	look	at	this	room—you	see	junk	sitting	over	there	and	a	person
sitting	over	here	and	doors	over	there—you’re	supposed	to	take	the	elementary
principles	of	matter	and	write	down	the	wave	functions	to	describe	them.	Well,
this	 is	 not	 a	 feasible	 thought.	Maybe	God	 could	do	 it,	 but	 no	 analytic	 thought
exists	for	understanding	such	a	problem.

“It’s	not	an	academic	question	any	more	to	ask	what’s	going	to	happen	to	a
cloud.	People	very	much	want	to	know—and	that	means	there’s	money	available
for	it.	That	problem	is	very	much	within	the	realm	of	physics	and	it’s	a	problem
very	much	of	 the	 same	caliber.	You’re	 looking	 at	 something	 complicated,	 and
the	 present	 way	 of	 solving	 it	 is	 to	 try	 to	 look	 at	 as	 many	 points	 as	 you	 can,
enough	stuff	to	say	where	the	cloud	is,	where	the	warm	air	is,	what	its	velocity
is,	and	so	forth.	Then	you	stick	 it	 into	 the	biggest	machine	you	can	afford	and
you	 try	 to	 get	 an	 estimate	 of	 what	 it’s	 going	 to	 do	 next.	 But	 this	 is	 not	 very
realistic.”

He	stubbed	out	one	cigarette	and	lit	another.	“One	has	to	look	for	different
ways.	One	has	to	look	for	scaling	structures—how	do	big	details	relate	to	little
details.	 You	 look	 at	 fluid	 disturbances,	 complicated	 structures	 in	 which	 the
complexity	 has	 come	 about	 by	 a	 persistent	 process.	 At	 some	 level	 they	 don’t
care	very	much	what	the	size	of	the	process	is—it	could	be	the	size	of	a	pea	or
the	 size	 of	 a	 basketball.	The	process	 doesn’t	 care	where	 it	 is,	 and	moreover	 it
doesn’t	 care	 how	 long	 it’s	 been	 going.	 The	 only	 things	 that	 can	 ever	 be
universal,	in	a	sense,	are	scaling	things.

“In	a	way,	art	is	a	theory	about	the	way	the	world	looks	to	human	beings.
It’s	 abundantly	 obvious	 that	 one	 doesn’t	 know	 the	 world	 around	 us	 in	 detail.
What	artists	have	accomplished	is	realizing	that	there’s	only	a	small	amount	of
stuff	that’s	important,	and	then	seeing	what	it	was.	So	they	can	do	some	of	my
research	for	me.	When	you	look	at	early	stuff	of	Van	Gogh	there	are	zillions	of



details	that	are	put	into	it,	there’s	always	an	immense	amount	of	information	in
his	paintings.	It	obviously	occurred	to	him,	what	is	the	irreducible	amount	of	this
stuff	 that	 you	 have	 to	 put	 in.	 Or	 you	 can	 study	 the	 horizons	 in	 Dutch	 ink
drawings	from	around	1600,	with	tiny	trees	and	cows	that	look	very	real.	If	you
look	closely,	the	trees	have	sort	of	leafy	boundaries,	but	it	doesn’t	work	if	that’s
all	 it	 is—there	 are	 also,	 sticking	 in	 it,	 little	 pieces	 of	 twiglike	 stuff.	 There’s	 a
definite	 interplay	between	 the	softer	 textures	and	 the	 things	with	more	definite
lines.	 Somehow	 the	 combination	 gives	 the	 correct	 perception.	With	 Ruysdael
and	Turner,	if	you	look	at	the	way	they	construct	complicated	water,	it	is	clearly
done	in	an	iterative	way.	There’s	some	level	of	stuff,	and	then	stuff	painted	on
top	 of	 that,	 and	 then	 corrections	 to	 that.	 Turbulent	 fluids	 for	 those	 painters	 is
always	something	with	a	scale	idea	in	it.

“I	truly	do	want	to	know	how	to	describe	clouds.	But	to	say	there’s	a	piece
over	here	with	that	much	density,	and	next	to	it	a	piece	with	this	much	density—
to	accumulate	that	much	detailed	information,	I	think	is	wrong.	It’s	certainly	not
how	a	human	being	perceives	those	things,	and	it’s	not	how	an	artist	perceives
them.	Somewhere	 the	business	of	writing	down	partial	differential	equations	 is
not	to	have	done	the	work	on	the	problem.

“Somehow	 the	 wondrous	 promise	 of	 the	 earth	 is	 that	 there	 are	 things
beautiful	 in	 it,	 things	wondrous	 and	 alluring,	 and	 by	 virtue	 of	 your	 trade	 you
want	 to	 understand	 them.”	 He	 put	 the	 cigarette	 down.	 Smoke	 rose	 from	 the
ashtray,	 first	 in	 a	 thin	 column	 and	 then	 (with	 a	 nod	 to	 universality)	 in	 broken
tendrils	that	swirled	upward	to	the	ceiling.



The	Experimenter

It’s	an	experience	like	no	other	experience	I	can	describe,	the	best	thing	that	can
happen	 to	 a	 scientist,	 realizing	 that	 something	 that’s	 happened	 in	 his	 or	 her
mind	 exactly	 corresponds	 to	 something	 that	 happens	 in	 nature.	 It’s	 startling
every	 time	 it	 occurs.	One	 is	 surprised	 that	 a	 construct	 of	 one’s	own	mind	 can
actually	be	 realized	 in	 the	honest-to–goodness	world	out	 there.	A	great	 shock,
and	a	great,	great	joy.



—LEO	KADANOFF

“ALBERT	 IS	 GETTING	MATURE.”	 So	 they	 said	 at	 École	Normale	 Supérieure,
the	academy	which,	with	École	Polytechnique,	sits	atop	the	French	educational
hierarchy.	They	wondered	whether	age	was	taking	its	toll	on	Albert	Libchaber,
who	had	made	a	distinguished	name	for	himself	as	a	low-temperature	physicist,
studying	 the	 quantum	 behavior	 of	 superfluid	 helium	 at	 temperatures	 a	 breath
away	from	absolute	zero.	He	had	prestige	and	a	secure	place	on	the	faculty.	And
now	 in	 1977	 he	 was	 wasting	 his	 time	 and	 the	 university’s	 resources	 on	 an
experiment	 that	 seemed	 trivial.	 Libchaber	 himself	 worried	 that	 he	 would	 be
jeopardizing	the	career	of	any	graduate	student	he	employed	on	such	a	project,
so	he	got	the	assistance	of	a	professional	engineer	instead.

Five	years	before	the	Germans	invaded	Paris,	Libchaber	was	born	there,	the
son	of	Polish	Jews,	the	grandson	of	a	rabbi.	He	survived	the	war	the	same	way
Benoit	Mandelbrot	did,	by	hiding	in	the	countryside,	separated	from	his	parents
because	 their	accents	were	 too	dangerous.	His	parents	managed	 to	survive;	 the
rest	of	the	family	was	lost	to	the	Nazis.	In	a	quirk	of	political	fate,	Libchaber’s
own	life	was	saved	by	the	protection	of	a	local	chief	of	the	Pétain	secret	police,	a
man	 whose	 fervent	 right-wing	 beliefs	 were	 matched	 only	 by	 his	 fervent
antiracism.	After	the	war,	 the	ten-year–old	boy	returned	the	favor.	He	testified,
only	 half-comprehending,	 before	 a	war	 crimes	 commission,	 and	 his	 testimony
saved	the	man.

Moving	 through	 the	world	of	French	academic	science,	Libchaber	 rose	 in
his	 profession,	 his	 brilliance	 never	 questioned.	 His	 colleagues	 did	 sometimes
think	 he	 was	 a	 little	 crazy—a	 Jewish	 mystic	 amid	 the	 rationalists,	 a	 Gaullist
where	most	scientists	were	Communists.	They	joked	about	his	Great	Man	theory
of	 history,	 his	 fixation	 on	 Goethe,	 his	 obsession	 with	 old	 books.	 He	 had
hundreds	 of	 original	 editions	 of	 works	 by	 scientists,	 some	 dating	 back	 to	 the
1600s.	He	 read	 them	not	as	historical	curiosities	but	as	a	 source	of	 fresh	 ideas
about	 the	nature	of	reality,	 the	same	reality	he	was	probing	with	his	 lasers	and
his	 high-technology	 refrigeration	 coils.	 In	 his	 engineer,	 Jean	 Maurer,	 he	 had
found	a	 compatible	 spirit,	 a	Frenchman	who	worked	only	when	he	 felt	 like	 it.
Libchaber	thought	Maurer	would	find	his	new	project	amusing—his	understated
Gallic	euphemism	for	intriguing	or	exciting	or	profound.	The	two	set	out	in	1977
to	build	an	experiment	that	would	reveal	the	onset	of	turbulence.

As	an	 experimenter,	Libchaber	was	known	 for	 a	nineteenth-century	 style:
clever	 mind,	 nimble	 hands,	 always	 preferring	 ingenuity	 to	 brute	 force.	 He



disliked	giant	technology	and	heavy	computation.	His	idea	of	a	good	experiment
was	like	a	mathematician’s	idea	of	a	good	proof.	Elegance	counted	as	much	as
results.	Even	so,	some	colleagues	thought	he	was	carrying	things	too	far	with	his
onset-of–turbulence	 experiment.	 It	 was	 small	 enough	 to	 carry	 around	 in	 a
matchbox—and	 sometimes	 Libchaber	 did	 carry	 it	 around,	 like	 some	 piece	 of
conceptual	 art.	 He	 called	 it	 “Helium	 in	 a	 Small	 Box.”	 The	 heart	 of	 the
experiment	was	 even	 smaller,	 a	 cell	 about	 the	 size	 of	 a	 lemon	 seed,	 carved	 in
stainless	steel	with	 the	sharpest	possible	edges	and	walls.	 Into	 the	cell	was	fed
liquid	helium	chilled	to	about	four	degrees	above	absolute	zero,	warm	compared
to	Libchaber’s	old	superfluid	experiments.

The	 laboratory	occupied	 the	second	floor	of	 the	École	physics	building	 in
Paris,	just	a	few	hundred	feet	from	Louis	Pasteur’s	old	laboratory.	Like	all	good
general-purpose	physics	 laboratories,	Libchaber’s	existed	 in	a	 state	of	 constant
mess,	 paint	 cans	 and	 hand	 tools	 strewn	 about	 on	 floors	 and	 tables,	 odd-sized
pieces	 of	metal	 and	 plastic	 everywhere.	 Amid	 the	 disarray,	 the	 apparatus	 that
held	Libchaber’s	minuscule	fluid	cell	was	a	striking	bit	of	purposefulness.	Below
the	stainless	steel	cell	sat	a	bottom	plate	of	high-purity	copper.	Above	sat	a	top
plate	 of	 sapphire	 crystal.	 The	 materials	 were	 chosen	 according	 to	 how	 they
conducted	heat.	There	were	 tiny	electric	heating	coils	 and	Teflon	gaskets.	The
liquid	 helium	 flowed	 down	 from	 a	 reservoir,	 itself	 just	 a	 half-inch	 cube.	 The
whole	 system	 sat	 inside	 a	 container	 that	maintained	 an	 extreme	 vacuum.	And
that	 container,	 in	 turn,	 sat	 in	 a	 bath	 of	 liquid	 nitrogen,	 to	 help	 stabilize	 the
temperature.

Vibration	 always	 worried	 Libchaber.	 Experiments,	 like	 real	 nonlinear
systems,	 existed	 against	 a	 constant	 background	 of	 noise.	 Noise	 hampered
measurement	and	corrupted	data.	In	sensitive	flows—and	Libchaber’s	would	be
as	sensitive	as	he	could	make	it—noise	might	sharply	perturb	a	nonlinear	flow,
knocking	 it	 from	 one	 kind	 of	 behavior	 into	 another.	 But	 nonlinearity	 can
stabilize	a	system	as	well	as	destabilize	it.	Nonlinear	feedback	regulates	motion,
making	it	more	robust.	In	a	linear	system,	a	perturbation	has	a	constant	effect.	In
the	presence	of	nonlinearity,	a	perturbation	can	feed	on	itself	until	it	dies	away
and	 the	 system	 returns	 automatically	 to	 a	 stable	 state.	 Libchaber	 believed	 that
biological	 systems	 used	 their	 nonlinearity	 as	 a	 defense	 against	 noise.	 The
transfer	 of	 energy	 by	 proteins,	 the	 wave	motion	 of	 the	 heart’s	 electricity,	 the
nervous	 system—all	 these	 kept	 their	 versatility	 in	 a	 noisy	 world.	 Libchaber
hoped	that	whatever	structure	underlay	fluid	flow	would	prove	robust	enough	for
his	experiment	to	detect.



“HELIUM	 IN	 A	 SMALL	 BOX.”	 Albert	 Libchaber’s	 delicate	 experiment:	 Its	 heart	 was	 a	 carefully
machined	 rectangular	 cell	 containing	 liquid	 helium;	 tiny	 sapphire	 “bolometers”	 measured	 the	 fluid’s
temperature.	The	tiny	cell	was	embedded	in	a	casing	designed	to	shield	it	from	the	noise	and	vibration	and
to	allow	precise	control	of	the	heating.

His	 plan	 was	 to	 create	 convection	 in	 the	 liquid	 helium	 by	 making	 the
bottom	 plate	 warmer	 than	 the	 top	 plate.	 It	 was	 exactly	 the	 convection	 model
described	 by	 Edward	 Lorenz,	 the	 classic	 system	 known	 as	 Rayleigh-Bénard
convection.	Libchaber	was	not	aware	of	Lorenz—not	yet.	Nor	had	he	any	idea	of
Mitchell	Feigenbaum’s	theory.	In	1977	Feigenbaum	was	beginning	to	travel	the
scientific	 lecture	 circuit,	 and	 his	 discoveries	 were	 making	 their	 mark	 where
scientists	knew	how	 to	 interpret	 them.	But	as	 far	as	most	physicists	could	 tell,
the	patterns	and	regularities	of	Feigenbaumology	bore	no	obvious	connection	to
real	 systems.	Those	patterns	came	out	of	 a	digital	 calculator.	Physical	 systems
were	 infinitely	 more	 complicated.	 Without	 more	 evidence,	 the	 most	 anyone
could	 say	 was	 that	 Feigenbaum	 had	 discovered	 a	 mathematical	 analogy	 that
looked	like	the	beginning	of	turbulence.

Libchaber	knew	that	American	and	French	experiments	had	weakened	the
Landau	idea	for	the	onset	of	turbulence	by	showing	that	turbulence	arrived	in	a



sudden	 transition,	 instead	 of	 a	 continuous	 piling-up	 of	 different	 frequencies.
Experimenters	like	Jerry	Gollub	and	Harry	Swinney,	with	their	flow	in	a	rotating
cylinder,	had	demonstrated	that	a	new	theory	was	needed,	but	they	had	not	been
able	 to	see	 the	 transition	 to	chaos	 in	clear	detail.	Libchaber	knew	that	no	clear
image	of	 the	 onset	 of	 turbulence	had	 emerged	 in	 a	 laboratory,	 and	he	decided
that	his	speck	of	a	fluid	cell	would	give	a	picture	of	the	greatest	possible	clarity.

A	 NARROWING	OF	 VISION	 helps	 keep	 science	moving.	By	 their	 lights,	 fluid
dynamicists	were	correct	 to	doubt	the	high	level	of	precision	that	Swinney	and
Gollub	 claimed	 to	 have	 achieved	 in	 Couette	 flow.	 By	 their	 lights,
mathematicians	were	 correct	 to	 resent	 Ruelle,	 as	 they	 did.	He	 had	 broken	 the
rules.	He	had	put	 forward	 an	 ambitious	 physical	 theory	 in	 the	 guise	 of	 a	 tight
mathematical	statement.	He	had	made	it	hard	to	separate	what	he	assumed	from
what	he	proved.	The	mathematician	who	refuses	to	endorse	an	idea	until	it	meets
the	 standard	of	 theorem,	proof,	 theorem,	proof,	 plays	 a	 role	 that	 his	 discipline
has	written	for	him:	consciously	or	not,	he	is	standing	watch	against	frauds	and
mystics.	 The	 journal	 editor	who	 rejects	 new	 ideas	 because	 they	 are	 cast	 in	 an
unfamiliar	style	may	make	his	victims	think	that	he	is	guarding	turf	on	behalf	of
his	established	colleagues,	but	he,	 too,	has	a	 role	 to	play	 in	a	community	with
reason	 to	 beware	 of	 the	 untried.	 “Science	 was	 constructed	 against	 a	 lot	 of
nonsense,”	 as	Libchaber	 himself	 said.	When	his	 colleagues	 called	Libchaber	 a
mystic,	the	epithet	was	not	always	meant	to	be	endearing.





He	was	an	experimenter,	careful	and	disciplined,	known	for	precision	in	his
prodding	 of	 matter.	 Yet	 he	 had	 a	 feeling	 for	 the	 abstract,	 ill-defined,	 ghostly
thing	called	 flow.	Flow	was	shape	plus	change,	motion	plus	 form.	A	physicist,
conceiving	 systems	 of	 differential	 equations,	 would	 call	 their	 mathematical
movement	 a	 flow.	Flow	was	 a	Platonic	 idea,	 assuming	 that	 change	 in	 systems
reflected	some	reality	independent	of	the	particular	instant.	Libchaber	embraced
Plato’s	 sense	 that	 hidden	 forms	 fill	 the	universe.	 “But	you	know	 that	 they	do!
You	have	seen	leaves.	When	you	look	at	all	the	leaves,	aren’t	you	struck	by	the
fact	 that	 the	 number	 of	 generic	 shapes	 is	 limited?	 You	 could	 easily	 draw	 the
main	 shape.	 It	 would	 be	 of	 some	 interest	 to	 try	 to	 understand	 that.	 Or	 other
shapes.	 In	 an	 experiment	 you	 have	 seen	 liquid	 penetrating	 into	 a	 liquid.”	 His
desk	was	strewn	with	pictures	of	such	experiments,	fat	fractal	fingers	of	liquid.
“Now,	 in	 your	 kitchen,	 if	 you	 turn	 on	your	 gas,	 you	 see	 that	 the	 flame	 is	 this
shape	again.	 It’s	very	broad.	 It’s	universal.	 I	 don’t	 care	whether	 it’s	 a	burning
flame	or	a	liquid	in	a	liquid	or	a	solid	growing	crystal—what	I’m	interested	in	is
this	shape.

“There	 has	 been	 since	 the	 eighteenth	 century	 some	 kind	 of	 dream	 that
science	was	missing	the	evolution	of	shape	in	space	and	the	evolution	of	shape



in	 time.	If	you	think	of	a	flow,	you	can	think	of	a	flow	in	many	ways,	flow	in
economics	 or	 a	 flow	 in	 history.	 First	 it	may	 be	 laminar,	 then	 bifurcating	 to	 a
more	complicated	state,	perhaps	with	oscillations.	Then	it	may	be	chaotic.”

The	 universality	 of	 shapes,	 the	 similarities	 across	 scales,	 the	 recursive
power	 of	 flows	 within	 flows—all	 sat	 just	 beyond	 reach	 of	 the	 standard
differential-calculus	approach	 to	equations	of	change.	But	 that	was	not	easy	 to
see.	 Scientific	 problems	 are	 expressed	 in	 the	 available	 scientific	 language.	 So
far,	 the	 twentieth	century’s	best	expression	of	Libchaber’s	 intuition	about	 flow
needed	the	language	of	poetry.	Wallace	Stevens,	for	example,	asserted	a	feeling
about	the	world	that	stepped	ahead	of	the	knowledge	available	to	physicists.	He
had	an	uncanny	suspicion	about	flow,	how	it	repeated	itself	while	changing:

“The	flecked	river
Which	kept	flowing	and	never	the	same	way	twice,	flowing
Through	many	places,	as	if	it	stood	still	in	one.”
Stevens’s	poetry	often	imparts	a	vision	of	tumult	in	atmosphere	and	water.

It	 also	 conveys	 a	 faith	 about	 the	 invisible	 forms	 that	 order	 takes	 in	 nature,	 a
belief

“that,	in	the	shadowless	atmosphere,
The	knowledge	of	things	lay	round	but	unperceived.”
When	Libchaber	and	some	other	experimenters	in	the	1970s	began	looking

into	the	motion	of	fluids,	they	did	so	with	something	approaching	this	subversive
poetic	intent.	They	suspected	a	connection	between	motion	and	universal	form.
They	 accumulated	 data	 in	 the	 only	 way	 possible,	 writing	 down	 numbers	 or
recording	them	in	a	digital	computer.	But	then	they	looked	for	ways	to	organize
the	 data	 in	 ways	 that	 would	 reveal	 shapes.	 They	 hoped	 to	 express	 shapes	 in
terms	 of	motion.	 They	were	 convinced	 that	 dynamical	 shapes	 like	 flames	 and
organic	 shapes	 like	 leaves	 borrowed	 their	 form	 from	 some	 not-yet-understood
weaving	 of	 forces.	 These	 experimenters,	 the	 ones	 who	 pursued	 chaos	 most
relentlessly,	 succeeded	 by	 refusing	 to	 accept	 any	 reality	 that	 could	 be	 frozen
motionless.	Even	Libchaber	would	not	have	gone	so	far	as	to	express	it	in	such
terms,	 but	 their	 conception	 came	 close	 to	 what	 Stevens	 felt	 as	 an	 “insolid
billowing	of	the	solid”:

“The	vigor	of	glory,	a	glittering	in	the	veins,
As	things	emerged	and	moved	and	were	dissolved,

Either	in	distance,	change	or	nothingness,
The	visible	transformations	of	summer	night,

An	argentine	abstraction	approaching	form



And	suddenly	denying	itself	away.”

FOR	 LIBCHABER,	 GOETHE,	 NOT	 STEVENS,	 supplied	 mystical	 inspiration.
While	Feigenbaum	was	 looking	 through	Harvard’s	 library	for	Goethe’s	Theory
of	Colors,	Libchaber	 had	 already	managed	 to	 add	 to	 his	 collection	 an	 original
edition	of	 the	even	more	obscure	monograph	On	 the	Transformation	of	Plants.
This	 was	 Goethe’s	 sidelong	 assault	 on	 physicists	 who,	 he	 believed,	 worried
exclusively	 about	 static	 phenomena	 rather	 than	 the	 vital	 forces	 and	 flows	 that
produce	 the	 shapes	we	 see	 from	 instant	 to	 instant.	 Part	 of	Goethe’s	 legacy—a
negligible	 part,	 as	 far	 as	 literary	 historians	 were	 concerned—was	 a
pseudoscientific	 following	 in	 Germany	 and	 Switzerland,	 kept	 alive	 by	 such
philosophers	 as	 Rudolf	 Steiner	 and	 Theodor	 Schwenk.	 These	 men,	 too,
Libchaber	admired	as	much	as	a	physicist	could.

“Sensitive	 chaos”—Das	 sensible	 Chaos—was	 Schwenk’s	 phrase	 for	 the
relation	between	force	and	form.	He	used	it	for	the	title	of	a	strange	little	book
first	published	in	1965	and	falling	sporadically	in	and	out	of	print	 thereafter.	It
was	 a	 book	 first	 about	water.	The	English	 edition	 carried	 an	 admiring	 preface
from	 Commandant	 Jacques	 Y.	 Cousteau	 and	 testimonials	 from	 the	 Water
Resources	 Bulletin	 and	 the	 Journal	 of	 the	 institute	 of	 Water	 Engineers.	 Little
pretense	at	science	marred	Schwenk’s	exposition,	and	none	at	mathematics.	Yet
he	observed	flawlessly.	He	laid	out	a	multitude	of	natural	flowing	shapes	with	an
artist’s	 eye.	He	 assembled	 photographs	 and	made	 dozens	 of	 precise	 drawings,
like	the	sketches	of	a	cell	biologist	peering	through	his	first	microscope.	He	had
an	open-mindedness	and	a	naïveté	that	would	have	made	Goethe	proud.

Flow	 fills	 his	 pages.	 Great	 rivers	 like	 the	 Mississippi	 and	 the	 Bassin
d’Arcachon	 in	France	meander	 in	wide	 curves	 to	 the	 sea.	 In	 the	 sea	 itself,	 the
Gulf	Stream,	too,	meanders,	making	loops	that	swing	east	and	west.	It	is	a	giant
river	 of	warm	water	 amid	 cold,	 as	 Schwenk	 said,	 a	 river	 that	 “builds	 its	 own
banks	out	of	the	cold	water	itself.”	When	the	flow	itself	is	past	or	invisible,	the
evidence	 of	 flow	 remains.	 Rivers	 of	 air	 leave	 their	 mark	 on	 the	 desert	 sand,
showing	the	waves.	The	flow	of	the	ebbing	tide	inscribes	a	network	of	veins	on	a
beach.	 Schwenk	 did	 not	 believe	 in	 coincidence.	 He	 believed	 in	 universal
principles,	and,	more	 than	universality,	he	believed	 in	a	certain	spirit	 in	nature
that	made	his	prose	uncomfortably	anthropomorphic.	His	“archetypal	principle”
was	 this:	 that	 flow	 “wants	 to	 realize	 itself,	 regardless	 of	 the	 surrounding
material.”

Within	 currents,	 he	 knew,	 there	 are	 secondary	 currents.	 Water	 moving
down	a	meandering	river	flows,	secondarily,	around	the	river’s	axis,	toward	one
bank,	down	to	the	riverbed,	across	toward	the	other	bank,	up	toward	the	surface,



like	a	particle	spiraling	around	a	doughnut.	The	trail	of	any	water	particle	forms
a	 string	 twisting	 around	other	 strings.	Schwenk	had	 a	 topologist’s	 imagination
for	 such	 patterns.	 “This	 picture	 of	 strands	 twisted	 together	 in	 a	 spiral	 is	 only
accurate	with	respect	to	the	actual	movement.	One	does	often	speak	of	‘strands’
of	 water;	 they	 are	 however	 not	 really	 single	 strands	 but	 whole	 surfaces,
interweaving	spatially	and	flowing	past	each	other.”	He	saw	rhythms	competing
in	waves,	waves	overtaking	one	another,	dividing	surfaces,	and	boundary	layers.
He	 saw	 eddies	 and	 vortices	 and	 vortex	 trains,	 understanding	 them	 as	 the
“rolling”	of	one	surface	about	another.	Here	he	came	as	close	as	a	philosopher
could	 to	 the	physicist’s	conception	of	 the	dynamics	of	approaching	 turbulence.
His	 artistic	 conviction	 assumed	 universality.	 To	 Schwenk,	 vortices	 meant
instability,	 and	 instability	meant	 that	 a	 flow	was	 fighting	 an	 inequality	within
itself,	and	the	inequality	was	“archetypal.”	The	rolling	of	eddies,	the	unfurling	of
ferns,	 the	 creasing	 of	 mountain	 ranges,	 the	 hollowing	 of	 animal	 organs	 all
followed	one	path,	as	he	saw	it.	It	had	nothing	to	do	with	any	particular	medium,
or	 any	 particular	 kind	 of	 difference.	 The	 inequalities	 could	 be	 slow	 and	 fast,
warm	 and	 cold,	 dense	 and	 tenuous,	 salt	 and	 fresh,	 viscous	 and	 fluid,	 acid	 and
alkaline.	At	the	boundary,	life	blossoms.

Life,	 though,	 was	 D’Arcy	 Wentworth	 Thompson’s	 territory.	 This
extraordinary	naturalist	wrote	in	1917:	“It	may	be	that	all	the	laws	of	energy,	and
all	 the	 properties	 of	 matter,	 and	 all	 the	 chemistry	 of	 all	 the	 colloids	 are	 as
powerless	to	explain	the	body	as	they	are	impotent	to	comprehend	the	soul.	For
my	 part,	 I	 think	 not.”	 D’Arcy	 Thompson	 brought	 to	 the	 study	 of	 life	 exactly
what	 Schwenk,	 fatally,	 lacked:	mathematics.	 Schwenk	 argued	 by	 analogy.	His
case—spiritual,	 flowering,	 encyclopedic—finally	 came	 down	 to	 a	 display	 of
similarities.	 D’Arcy	 Thompson’s	 masterwork,	 On	 Growth	 and	 Form,	 shared
something	of	Schwenk’s	mood	and	something	of	his	method.	The	modern	reader
wonders	 how	 much	 to	 credit	 the	 meticulous	 pictures	 of	 multipronged	 falling
droplets	 of	 liquid,	 hanging	 in	 sinuous	 tendrils,	 displayed	 next	 to	 astonishingly
similar	living	jellyfish.	Is	this	just	a	highbrow	case	of	coincidence?	If	two	forms
look	alike,	must	we	look	for	like	causes?

D’Arcy	Thompson	surely	stands	as	 the	most	 influential	biologist	ever	 left
on	 the	 fringes	 of	 legitimate	 science.	 The	 twentieth	 century’s	 revolution	 in
biology,	 well	 under	 way	 in	 his	 lifetime,	 passed	 him	 by	 utterly.	 He	 ignored
chemistry,	misunderstood	 the	 cell,	 and	 could	 not	 have	 predicted	 the	 explosive
development	of	genetics.	His	writing,	even	in	his	time,	seemed	too	classical	and
literary—too	 beautiful—to	 be	 reliably	 scientific.	 No	 modern	 biologist	 has	 to
read	D’Arcy	 Thompson.	 Yet	 somehow	 the	 greatest	 biologists	 find	 themselves
drawn	 to	his	book.	Sir	Peter	Medawar	called	 it	 “beyond	comparison	 the	 finest



work	 of	 literature	 in	 all	 the	 annals	 of	 science	 that	 have	 been	 recorded	 in	 the
English	 tongue.”	 Stephen	 Jay	 Gould	 found	 no	 place	 better	 to	 turn	 for	 the
intellectual	pedigree	of	his	own	growing	sense	that	nature	constrains	the	shapes
of	 things.	 Apart	 from	 D’Arcy	 Thompson,	 not	 many	 modern	 biologists	 had
pursued	 the	undeniable	unity	of	 living	organisms.	 “Few	had	asked	whether	 all
the	patterns	might	be	reduced	to	a	single	system	of	generating	forces,”	as	Gould
put	it.	“And	few	seemed	to	sense	what	significance	such	a	proof	of	unity	might
possess	for	the	science	of	organic	form.”

MEANDERING	AND	SPIRALING	FLOWS.	Theodor	Schwenk	depicted	the	currents	of	natural	flows	as
strands	with	complicated	secondary	motions.	“They	are	however	not	really	single	strands,”	he	wrote,	“but
whole	surfaces,	interweaving	spatially.…”



DROPS	DESCENDING.	D’Arcy	Wentworth	Thompson	showed	the	hanging	threads	and	columns	made	by
ink	drops	falling	through	water	(left)	and	by	jellyfish	(right).	“An	extremely	curious	result…is	to	show	how
sensitive	 these…drops	 are	 to	 physical	 conditions.	 For	 using	 the	 same	 gelatine	 all	 the	while,	 and	merely
varying	the	density	of	the	fluid	in	the	third	decimal	place,	we	obtain	a	whole	range	of	configurations,	from
the	ordinary	hanging	drop	to	the	same	with	a	ribbed	pattern….”

This	 classicist,	 polyglot,	mathematician,	 zoologist	 tried	 to	 see	 life	whole,
just	 as	 biology	 was	 turning	 so	 productively	 toward	 methods	 that	 reduced
organisms	to	 their	constituent	functioning	parts.	Reductionism	triumphed,	most
thrillingly	 in	molecular	biology	but	everywhere	else	as	well,	 from	evolution	 to
medicine.	 How	 else	 to	 understand	 cells	 but	 by	 understanding	membranes	 and
nuclei	 and	 ultimately	 proteins,	 enzymes,	 chromosomes,	 and	 base	 pairs?	When
biology	finally	broached	 the	 interior	workings	of	sinuses,	 retinas,	nerves,	brain
tissue,	 it	 became	 unamusingly	 quaint	 to	 care	 about	 the	 shape	 of	 the	 skull.
D’Arcy	Thompson	was	the	last	to	do	so.	He	was	also	the	last	great	biologist	for
many	 years	 to	 devote	 rhetorical	 energy	 to	 a	 careful	 discussion	 of	 cause,
particularly	 the	distinction	between	 final	 cause	and	efficient	or	physical	 cause.
Final	cause	is	cause	based	on	purpose	or	design:	a	wheel	is	round	because	that
shape	makes	 transportation	possible.	Physical	cause	 is	mechanical:	 the	earth	 is



round	because	gravity	pulls	a	 spinning	 fluid	 into	a	 spheroid.	The	distinction	 is
not	 always	 so	 obvious.	 A	 drinking	 glass	 is	 round	 because	 that	 is	 the	 most
comfortable	shape	to	hold	or	drink	from.	A	drinking	glass	is	round	because	that
is	the	shape	naturally	assumed	by	spun	pottery	or	blown	glass.

In	 science,	on	 the	whole,	physical	 cause	dominates.	 Indeed,	 as	astronomy
and	physics	emerged	from	the	shadow	of	religion,	no	small	part	of	the	pain	came
from	 discarding	 arguments	 by	 design,	 forward-looking	 teleology—the	 earth	 is
what	 it	 is	 so	 that	 humanity	 can	 do	what	 it	 does.	 In	 biology,	 however,	Darwin
firmly	 established	 teleology	 as	 the	 central	mode	 of	 thinking	 about	 cause.	 The
biological	world	may	not	fulfill	God’s	design,	but	it	fulfills	a	design	shaped	by
natural	selection.	Natural	selection	operates	not	on	genes	or	embryos,	but	on	the
final	product.	So	an	adaptationist	explanation	for	the	shape	of	an	organism	or	the
function	of	an	organ	always	looks	to	its	cause,	not	its	physical	cause	but	its	final
cause.	Final	cause	survives	in	science	wherever	Darwinian	thinking	has	become
habitual.	 A	 modern	 anthropologist	 speculating	 about	 cannibalism	 or	 ritual
sacrifice	 tends,	 rightly	or	wrongly,	 to	ask	only	what	purpose	 it	 serves.	D’Arcy
Thompson	saw	this	coming.	He	begged	that	biology	remember	physical	cause	as
well,	mechanism	and	 teleology	 together.	He	devoted	himself	 to	 explaining	 the
mathematical	and	physical	forces	that	work	on	life.	As	adaptationism	took	hold,
such	explanations	came	to	seem	irrelevant.	It	became	a	rich	and	fruitful	problem
to	explain	a	leaf	in	terms	of	how	natural	selection	shaped	such	an	effective	solar
panel.	Only	much	later	did	some	scientists	start	to	puzzle	again	over	the	side	of
nature	 left	 unexplained.	 Leaves	 come	 in	 just	 a	 few	 shapes,	 of	 all	 the	 shapes
imaginable;	and	the	shape	of	a	leaf	is	not	dictated	by	its	function.

The	mathematics	available	 to	D’Arcy	Thompson	could	not	prove	what	he
wanted	to	prove.	The	best	he	could	do	was	draw,	for	example,	skulls	of	related
species	 with	 a	 crosshatching	 of	 coordinates,	 demonstrating	 that	 a	 simple
geometric	transformation	turned	one	into	the	other.	For	simple	organisms—with
shapes	 so	 tantalizingly	 reminiscent	 of	 liquid	 jets,	 droplet	 splashes,	 and	 other
manifestations	 of	 flow—he	 suspected	 physical	 causes,	 such	 as	 gravity	 and
surface	tension,	that	just	could	not	do	the	formative	work	he	asked	of	them.	Why
then,	was	Albert	Libchaber	thinking	about	On	Growth	and	Form	when	he	began
his	fluid	experiments?

D’Arcy	Thompson’s	 intuition	about	 the	 forces	 that	 shape	 life	came	closer
than	 anything	 in	 the	 mainstream	 of	 biology	 to	 the	 perspective	 of	 dynamical
systems.	 He	 thought	 of	 life	 as	 life,	 always	 in	 motion,	 always	 responding	 to
rhythms—the	 “deep-seated	 rhythms	 of	 growth”	 which	 he	 believed	 created
universal	 forms.	He	considered	his	proper	 study	not	 just	 the	material	 forms	of
things	 but	 their	 dynamics—“the	 interpretation,	 in	 terms	 of	 force,	 of	 the



operations	 of	 Energy.”	 He	 was	 enough	 of	 a	 mathematician	 to	 know	 that
cataloguing	 shapes	 proved	 nothing.	 But	 he	was	 enough	 of	 a	 poet	 to	 trust	 that
neither	accident	nor	purpose	could	explain	the	striking	universality	of	forms	he
had	assembled	in	his	long	years	of	gazing	at	nature.	Physical	laws	must	explain
it,	 governing	 force	 and	 growth	 in	 ways	 that	 were	 just	 out	 of	 understanding’s
reach.	 Plato	 again.	 Behind	 the	 particular,	 visible	 shapes	 of	 matter	 must	 lie
ghostly	forms	serving	as	invisible	templates.	Forms	in	motion.

LIBCHABER	 CHOSE	 LIQUID	 HELIUM	 for	 his	 experiment.	 Liquid	 helium	 has
exceedingly	 low	 viscosity,	 so	 it	 will	 roll	 at	 the	 slightest	 push.	 The	 equivalent
experiment	 in	 a	 medium-viscosity	 fluid	 like	 water	 or	 air	 would	 have	 taken	 a
much	larger	box.	With	low	viscosity,	Libchaber	made	his	experiment	that	much
more	 sensitive	 to	 heating.	To	 cause	 convection	 in	 his	millimeter-wide	 cell,	 he
had	only	to	create	a	temperature	difference	of	a	thousandth	of	a	degree	between
the	top	and	bottom	surfaces.	That	was	why	the	cell	had	to	be	so	tiny.	In	a	larger
box,	 where	 the	 liquid	 helium	 would	 have	 more	 room	 to	 roll,	 the	 equivalent
motion	would	require	even	less	heating,	much	less.	In	a	box	ten	times	larger	in
each	 direction,	 the	 size	 of	 a	 grape—a	 thousand	 times	 greater	 in	 volume—
convection	would	begin	with	a	heat	differential	of	a	millionth	of	a	degree.	Such
minute	temperature	variations	could	not	be	controlled.

In	 the	 planning,	 in	 the	 design,	 in	 the	 construction,	 Libchaber	 and	 his
engineer	devoted	themselves	to	eliminating	any	hint	of	messiness.	In	fact,	 they
did	 all	 they	 could	 to	 eliminate	 the	 motion	 they	 were	 trying	 to	 study.	 Fluid
motion,	from	smooth	flow	to	turbulence,	is	thought	of	as	motion	through	space.
Its	complexity	appears	as	a	spatial	complexity,	its	disturbances	and	vortices	as	a
spatial	 chaos.	 But	 Libchaber	 was	 looking	 for	 rhythms	 that	 would	 expose
themselves	as	change	over	 time.	Time	was	 the	playing	 field	and	 the	yardstick.
He	squeezed	space	down	nearly	to	a	one-dimensional	point.	He	was	bringing	to
an	extreme	a	technique	that	his	predecessors	in	fluid	experimentation	had	used,
too.	 Everyone	 knew	 that	 an	 enclosed	 flow—Rayleigh-Bénard	 convection	 in	 a
box	or	Couette-Taylor	rotation	in	a	cylinder—behaved	measurably	better	than	an
open	flow,	like	waves	in	the	ocean	or	the	air.	In	open	flow,	the	boundary	surface
remains	free,	and	the	complexity	multiplies.

Since	convection	in	a	rectilinear	box	produces	rolls	of	fluid	like	hot	dogs—
or	in	this	case	like	sesame	seeds—he	chose	the	dimensions	of	his	cell	carefully
to	allow	precisely	enough	room	for	two	rolls.	The	liquid	helium	would	rise	in	the
center,	 turn	up	 and	over	 to	 the	 left	 and	 right,	 and	 then	descend	on	 the	outside
edges	of	the	cell.	It	was	an	arrested	geometry.	The	wobbling	would	be	confined.
Clean	lines	and	careful	proportions	would	eliminate	any	extraneous	fluctuations.



Libchaber	froze	the	space	so	that	he	could	play	with	the	time.
Once	 the	 experiment	 began,	 the	 helium	 rolling	 inside	 the	 cell	 inside	 the

vacuum	container	inside	the	nitrogen	bath,	Libchaber	would	need	some	way	to
see	what	was	happening.	He	embedded	two	microscopic	 temperature	probes	 in
the	sapphire	upper	surface	of	the	cell.	Their	output	was	recorded	continuously	by
a	pen	plotter.	Thus	he	could	monitor	the	temperatures	at	two	spots	at	the	top	of
the	 fluid.	 It	 was	 so	 sensitive,	 so	 clever,	 another	 physicist	 said,	 that	 Libchaber
succeeded	in	cheating	nature.

This	miniature	masterpiece	of	precision	took	two	years	to	explore	fully,	but
it	was,	as	he	said,	the	right	brush	for	his	painting,	not	too	grand	or	sophisticated.
He	 finally	 saw	 everything.	Running	 his	 experiment	 hour	 after	 hour,	 night	 and
day,	 Libchaber	 found	 a	 more	 intricate	 pattern	 of	 behavior	 in	 the	 onset	 of
turbulence	 than	 he	 had	 ever	 imagined.	 The	 full	 period-doubling	 cascade
appeared.	Libchaber	confined	and	purified	the	motion	of	a	fluid	that	rises	when
heated.	The	process	begins	with	the	first	bifurcation,	the	onset	of	motion	as	soon
as	 the	 bottom	 plate	 of	 high-purity	 copper	 heats	 up	 enough	 to	 overcome	 the
tendency	 of	 the	 fluid	 to	 remain	 still.	At	 a	 few	 degrees	 above	 absolute	 zero,	 a
mere	one-thousandth	of	a	degree	is	enough.	The	liquid	at	the	bottom	warms	and
expands	enough	 to	become	lighter	 than	 the	cool	 liquid	above.	To	 let	 the	warm
liquid	rise,	the	cool	liquid	must	sink.	Immediately,	to	let	both	motions	occur,	the
liquid	organizes	itself	into	a	pair	of	rolling	cylinders.	The	rolls	reach	a	constant
speed,	 and	 the	 system	settles	 into	 an	 equilibrium—a	moving	equilibrium,	with
heat	energy	being	converted	steadily	into	motion	and	dissipating	through	friction
back	to	heat	and	passing	out	through	the	cool	top	plate.

So	 far,	 Libchaber	 was	 reproducing	 a	 well-known	 experiment	 in	 fluid
mechanics,	 so	well	known	 that	 it	was	disdained.	 “It	was	classical	physics,”	he
said,	“which	unfortunately	meant	it	was	old,	which	meant	it	was	uninteresting.”
It	 also	 happened	 to	 be	 precisely	 the	 flow	 that	 Lorenz	 had	 modeled	 with	 his
system	of	three	equations.	But	a	real-world	experiment—real	liquid,	a	box	cut	by
a	machinist,	 a	 laboratory	 subject	 to	 the	 vibrations	 of	 Parisian	 traffic—already
made	 the	 task	 of	 collecting	 data	 far	more	 troublesome	 than	 simply	 generating
numbers	by	a	computer.

Experimenters	 like	 Libchaber	 used	 a	 simple	 pen	 plotter	 to	 record	 the
temperature,	 as	 measured	 by	 a	 probe	 embedded	 in	 the	 top	 surface.	 In	 the
equilibrium	motion	after	 the	 first	 bifurcation,	 the	 temperature	 at	 any	one	point
remains	 steady,	 more	 or	 less,	 and	 the	 pen	 records	 a	 straight	 line.	With	 more
heating,	 more	 instability	 sets	 in.	 A	 kink	 develops	 in	 each	 roll,	 and	 the	 kink
moves	steadily	back	and	forth.	This	wobble	shows	up	as	a	changing	temperature,
up	 and	down	between	 two	values.	The	pen	now	draws	 a	wavy	 line	 across	 the



paper.
From	 a	 simple	 temperature	 line,	 changing	 continuously	 and	 shaken	 by

experimental	 noise,	 it	 becomes	 impossible	 to	 read	 the	 exact	 timing	 of	 new
bifurcations	or	to	deduce	their	nature.	The	line	makes	erratic	peaks	and	valleys
that	 seem	 almost	 as	 random	 as	 a	 stock	market	 fever	 line.	 Libchaber	 analyzed
such	 data	 by	 turning	 it	 into	 a	 spectrum	 diagram,	 meant	 to	 reveal	 the	 main
frequencies	hidden	in	the	changing	temperatures.	Making	a	spectrum	diagram	of
data	from	an	experiment	is	 like	graphing	the	sound	frequencies	that	make	up	a
complex	chord	in	a	symphony.	An	uneven	line	of	fuzziness	always	runs	across
the	 bottom	 of	 the	 graph—experimental	 noise.	 The	 main	 tones	 show	 up	 as
vertical	 spikes:	 the	 louder	 the	 tone,	 the	 higher	 the	 spike.	 Similarly,	 if	 the	 data
produce	a	dominant	frequency—a	rhythm	peaking	once	a	second,	for	example—
then	that	frequency	will	show	up	as	a	spike	on	a	spectrum	diagram.

In	Libchaber’s	 experiment,	 as	 it	 happened,	 the	 first	wavelength	 to	 appear
was	about	 two	seconds.	The	next	bifurcation	brought	a	subtle	change.	The	roll
continued	 to	wobble	 and	 the	 bolometer	 temperature	 continued	 to	 rise	 and	 fall
with	a	dominant	rhythm.	But	on	odd	cycles	 the	 temperature	started	going	a	bit
higher	 than	 before,	 and	 on	 even	 cycles	 a	 bit	 lower.	 In	 fact,	 the	 maximum
temperature	 split	 in	 two,	 so	 that	 there	were	 two	 different	maximums	 and	 two
minimums.	The	pen	 line,	 though	hard	 to	read,	developed	a	wobble	on	 top	of	a
wobble—a	metawobble.	On	the	spectrum	diagram,	that	showed	up	more	clearly.
The	 old	 frequency	 was	 still	 strongly	 present,	 since	 the	 temperature	 still	 rose
every	two	seconds.	Now,	however,	a	new	frequency	appeared	at	exactly	half	the
old	 frequency,	 because	 the	 system	 had	 developed	 a	 component	 that	 repeated
every	four	seconds.	As	the	bifurcations	continued,	it	was	possible	to	distinguish
a	 strangely	 consistent	 pattern:	 new	 frequencies	 appeared	 at	 double	 the	 old,	 so
that	the	diagram	filled	in	the	quarters	and	the	eighths	and	the	sixteenths,	starting
to	resemble	a	picket	fence	with	alternating	short	and	tall	pickets.

Even	 to	 a	 man	 looking	 for	 hidden	 forms	 in	 messy	 data,	 tens	 and	 then
hundreds	 of	 runs	 were	 necessary	 before	 the	 habits	 of	 this	 tiny	 cell	 started	 to
come	clear.	Peculiar	things	could	always	happen	as	Libchaber	and	his	engineer
slowly	 turned	 up	 the	 temperature	 and	 the	 system	 settled	 from	one	 equilibrium
into	another.	Sometimes	transient	frequencies	would	appear,	slide	slowly	across
the	 spectrum	 diagram,	 and	 disappear.	 Sometimes,	 the	 clean	 geometry
notwithstanding,	three	rolls	would	develop	instead	of	two—and	how	could	they
know,	really,	what	was	happening	inside	that	tiny	cell?



TWO	 WAYS	 OF	 SEEING	 A	 BIFURCATION.	 When	 an	 experiment	 like	 Libchaber’s	 convection	 cell
produces	a	steady	oscillation,	its	phase-space	portrait	is	a	loop,	repeating	itself	at	regular	intervals	(top	left).
An	experimenter	measuring	the	frequencies	in	the	data	will	see	a	spectrum	diagram	with	a	strong	spike	for
this	 single	 rhythm.	 After	 a	 period-doubling	 bifurcation,	 the	 system	 loops	 twice	 before	 repeating	 itself
exactly	(center),	and	now	the	experimenter	sees	a	new	rhythm	at	half	the	frequency—twice	the	period—of
the	original.	New	period-doublings	fill	in	the	spectrum	diagram	with	more	spikes.

IF	LIBCHABER	HAD	KNOWN	 then	of	Feigenbaum’s	discovery	of	universality,
he	would	have	known	exactly	where	to	look	for	his	bifurcations	and	what	to	call
them.	By	1979	a	growing	group	of	mathematicians	and	mathematically	inclined
physicists	were	paying	attention	 to	Feigenbaum’s	new	 theory.	But	 the	mass	of
scientists	familiar	with	the	problems	of	real	physical	systems	believed	that	they
had	good	 reason	 to	withhold	 judgment.	Complexity	was	 one	 thing	 in	 the	 one-
dimensional	systems,	the	maps	of	May	and	Feigenbaum.	It	was	surely	something
else	 in	 the	 two–	 or	 three–	 or	 four-dimensional	 systems	 of	mechanical	 devices
that	 an	 engineer	 could	build.	Those	 required	 serious	differential	 equations,	not
just	simple	difference	equations.	And	another	chasm	seemed	to	divide	those	low-
dimensional	systems	from	systems	of	fluid	flow,	which	physicists	thought	of	as
potentially	 infinite-dimensional	 systems.	 Even	 a	 cell	 like	 Libchaber’s,	 so
carefully	 structured,	 had	 a	 virtual	 infinitude	 of	 fluid	 particles.	 Each	 particle



represented	at	least	the	potential	for	independent	motion.	In	some	circumstances,
any	particle	might	be	the	locus	of	some	new	twist	or	vortex.

REAL-WORLD	 DATA	 CONFIRMING	 THEORY.	 Libchaber’s	 spectrum	 diagrams	 showed	 vividly	 the
precise	 pattern	 of	 period-doubling	 predicted	 by	 theory.	 The	 spikes	 of	 new	 frequencies	 stand	 out	 clearly
above	 the	 experimental	 noise.	 Feigenbaum’s	 scaling	 theory	 predicted	 not	 only	when	 and	where	 the	 new
frequencies	would	arrive	but	also	how	strong	they	would	be-their	amplitudes.

“The	 notion	 that	 the	 actual	 relevant	 meat-and–potatoes	 motion	 in	 such	 a
system	boils	down	to	maps—nobody	understood	that,”	said	Pierre	Hohenberg	of
AT&T	Bell	Laboratories	in	New	Jersey.	Hohenberg	became	one	of	the	very	few
physicists	 to	 follow	 the	 new	 theory	 and	 the	 new	 experiments	 together.
“Feigenbaum	 may	 have	 dreamt	 of	 that,	 but	 he	 certainly	 didn’t	 say	 it.
Feigenbaum’s	 work	 was	 about	 maps.	 Why	 should	 physicists	 be	 interested	 in
maps?—it’s	a	game.	Really,	as	long	as	they	were	playing	around	with	maps,	 it
seemed	pretty	remote	from	what	we	wanted	to	understand.

“But	 when	 it	 was	 seen	 in	 experiments,	 that’s	 when	 it	 really	 became
exciting.	 The	 miracle	 is	 that,	 in	 systems	 that	 are	 interesting,	 you	 can	 still
understand	 behavior	 in	 detail	 by	 a	 model	 with	 a	 small	 number	 of	 degrees	 of



freedom.”
It	 was	 Hohenberg,	 in	 the	 end,	 who	 brought	 the	 theorist	 and	 the

experimenter	together.	He	ran	a	workshop	at	Aspen	in	the	summer	of	1979,	and
Libchaber	 was	 there.	 (Four	 years	 earlier,	 at	 the	 same	 summer	 workshop,
Feigenbaum	had	listened	to	Steve	Smale	talk	about	a	number—just	a	number—
that	seemed	to	pop	up	when	a	mathematician	looked	at	the	transition	to	chaos	in
a	 certain	 equation.)	 When	 Libchaber	 described	 his	 experiments	 with	 liquid
helium,	Hohenberg	 took	note.	On	his	way	home,	Hohenberg	happened	 to	 stop
and	see	Feigenbaum	in	New	Mexico.	Not	long	after,	Feigenbaum	paid	a	call	on
Libchaber	 in	 Paris.	 They	 stood	 amid	 the	 scattered	 parts	 and	 instruments	 of
Libchaber’s	 laboratory.	 Libchaber	 proudly	 displayed	 his	 tiny	 cell	 and	 let
Feigenbaum	explain	his	latest	theory.	Then	they	walked	through	the	Paris	streets
looking	 for	 the	 best	 possible	 cup	 of	 coffee.	 Libchaber	 remembered	 later	 how
surprised	he	was	to	see	a	theorist	so	young	and	so,	he	would	say,	lively.

THE	LEAP	FROM	MAPS	TO	FLUID	FLOW	 seemed	so	great	 that	even	 those	most
responsible	 sometimes	 felt	 it	 was	 like	 a	 dream.	 How	 nature	 could	 tie	 such
complexity	to	such	simplicity	was	far	from	obvious.	“You	have	to	regard	it	as	a
kind	of	miracle,	not	like	the	usual	connection	between	theory	and	experiment,”
Jerry	Gollub	said.	Within	a	few	years,	the	miracle	was	being	repeated	again	and
again	in	a	vast	bestiary	of	laboratory	systems:	bigger	fluid	cells	with	water	and
mercury,	 electronic	 oscillators,	 lasers,	 even	 chemical	 reactions.	 Theorists
adapted	Feigenbaum’s	techniques	and	found	other	mathematical	routes	to	chaos,
cousins	of	period-doubling:	such	patterns	as	intermittency	and	quasiperiodicity.
These,	too,	proved	universal	in	theory	and	experiment.

The	 experimenters’	 discoveries	 helped	 set	 in	motion	 the	 era	 of	 computer
experimentation.	 Physicists	 discovered	 that	 computers	 produced	 the	 same
qualitative	 pictures	 as	 real	 experiments,	 and	 produced	 them	millions	 of	 times
faster	 and	 more	 reliably.	 To	 many,	 even	 more	 convincing	 than	 Libchaber’s
results	 was	 a	 fluid	model	 created	 by	Valter	 Franceschini	 of	 the	 University	 of
Modena,	 Italy—a	system	of	 five	differential	 equations	 that	produced	attractors
and	 period-doubling.	 Franceschini	 knew	 nothing	 of	 Feigenbaum,	 but	 his
complex,	 many-dimensional	 model	 produced	 the	 same	 constants	 Feigenbaum
had	 found	 in	 one-dimensional	 maps.	 In	 1980	 a	 European	 group	 provided	 a
convincing	mathematical	 explanation:	 dissipation	 bleeds	 a	 complex	 system	 of
many	conflicting	motions,	eventually	bringing	the	behavior	of	many	dimensions
down	to	one.

Outside	 of	 computers,	 to	 find	 a	 strange	 attractor	 in	 a	 fluid	 experiment
remained	 a	 serious	 challenge.	 It	 occupied	 experimenters	 like	 Harry	 Swinney



well	 into	 the	 1980s.	 And	 when	 the	 experimenters	 finally	 succeeded,	 the	 new
computer	experts	often	belittled	their	results	as	just	the	rough,	predictable	echoes
of	 the	 magnificently	 detailed	 pictures	 their	 graphics	 terminals	 were	 already
churning	out.	In	a	computer	experiment,	when	you	generated	your	thousands	or
millions	 of	 data	 points,	 patterns	made	 themselves	more	 or	 less	 apparent.	 In	 a
laboratory,	as	in	the	real	world,	useful	information	had	to	be	distinguished	from
noise.	In	a	computer	experiment	data	flowed	like	wine	from	a	magic	chalice.	In	a
laboratory	experiment	you	had	to	fight	for	every	drop.

Still,	 the	new	theories	of	Feigenbaum	and	others	would	not	have	captured
so	 wide	 a	 community	 of	 scientists	 on	 the	 strength	 of	 computer	 experiments
alone.	 The	 modifications,	 the	 compromises,	 the	 approximations	 needed	 to
digitize	systems	of	nonlinear	differential	equations	were	too	suspect.	Simulations
break	reality	into	chunks,	as	many	as	possible	but	always	too	few.	A	computer
model	is	just	a	set	of	arbitrary	rules,	chosen	by	programmers.	A	real-world	fluid,
even	in	a	stripped-down	millimeter	cell,	has	the	undeniable	potential	for	all	the
free,	untrammeled	motion	of	natural	disorder.	It	has	the	potential	for	surprise.

In	 the	 age	 of	 computer	 simulation,	 when	 flows	 in	 everything	 from	 jet
turbines	to	heart	valves	are	modeled	on	supercomputers,	it	is	hard	to	remember
how	easily	nature	can	confound	an	experimenter.	In	fact,	no	computer	today	can
completely	simulate	even	so	simple	a	system	as	Libchaber’s	liquid	helium	cell.
Whenever	a	good	physicist	examines	a	simulation,	he	must	wonder	what	bit	of
reality	was	left	out,	what	potential	surprise	was	sidestepped.	Libchaber	liked	to
say	 that	 he	 would	 not	 want	 to	 fly	 in	 a	 simulated	 airplane—he	would	 wonder
what	 had	 been	 missed.	 Furthermore,	 he	 would	 say	 that	 computer	 simulations
help	 to	 build	 intuition	 or	 to	 refine	 calculations,	 but	 they	 do	 not	 give	 birth	 to
genuine	discovery.	This,	at	any	rate,	is	the	experimenter’s	creed.	His	experiment
was	so	immaculate,	his	scientific	goals	so	abstract,	that	there	were	still	physicists
who	considered	Libchaber’s	work	more	philosophy	or	mathematics	than	physics.
He	 believed,	 in	 turn,	 that	 the	 ruling	 standards	 of	 his	 field	 were	 reductionist,
giving	primacy	to	the	properties	of	atoms.	“A	physicist	would	ask	me,	How	does
this	atom	come	here	and	stick	there?	And	what	is	the	sensitivity	to	the	surface?
And	can	you	write	the	Hamiltonian	of	the	system?

“And	 if	 I	 tell	 him,	 I	 don’t	 care,	 what	 interests	 me	 is	 this	 shape,	 the
mathematics	of	 the	 shape	and	 the	evolution,	 the	bifurcation	 from	 this	 shape	 to
that	 shape	 to	 this	 shape,	 he	 will	 tell	 me,	 that’s	 not	 physics,	 you	 are	 doing
mathematics.	 Even	 today	 he	 will	 tell	 me	 that.	 Then	 what	 can	 I	 say?	 Yes,	 of
course,	I	am	doing	mathematics.	But	it	is	relevant	to	what	is	around	us.	That	is
nature,	too.”

The	patterns	he	found	were	indeed	abstract.	They	were	mathematical.	They



said	 nothing	 about	 the	 properties	 of	 liquid	 helium	 or	 copper	 or	 about	 the
behavior	 of	 atoms	 near	 absolute	 zero.	 But	 they	 were	 the	 patterns	 that
Libchaber’s	mystical	forebears	had	dreamed	of.	They	made	legitimate	a	realm	of
experimentation	in	which	many	scientists,	from	chemists	to	electrical	engineers,
soon	 became	 explorers,	 seeking	 out	 the	 new	 elements	 of	motion.	The	 patterns
were	there	to	see	the	first	time	he	succeeded	in	raising	the	temperature	enough	to
isolate	 the	 first	 period-doubling,	 and	 the	 next,	 and	 the	 next.	 According	 to	 the
new	 theory,	 the	 bifurcations	 should	 have	 produced	 a	 geometry	 with	 precise
scaling,	 and	 that	 was	 just	 what	 Libchaber	 saw,	 the	 universal	 Feigenbaum
constants	turning	in	that	instant	from	a	mathematical	ideal	to	a	physical	reality,
measurable	 and	 reproducible.	 He	 remembered	 the	 feeling	 long	 afterward,	 the
eerie	witnessing	of	one	bifurcation	after	another	and	then	the	realization	that	he
was	seeing	an	infinite	cascade,	rich	with	structure.	It	was,	as	he	said,	amusing.



Images	of	Chaos

What	else,	when	chaos	draws	all	forces	inward	To	shape	a	single	leaf.
—CONRAD	AIKEN



MICHAEL	BARNSLEY	MET	Mitchell	Feigenbaum	at	a	conference	in	Corsica	in
1979.	 That	 was	 when	 Barnsley,	 an	 Oxford-educated	 mathematician,	 learned
about	universality	and	period-doubling	and	 infinite	cascades	of	bifurcations.	A
good	 idea,	 he	 thought,	 just	 the	 sort	 of	 idea	 that	 was	 sure	 to	 send	 scientists
rushing	to	cut	off	pieces	for	themselves.	For	his	part,	Barnsley	thought	he	saw	a
piece	that	no	one	else	had	noticed.

Where	 were	 these	 cycles	 of	 2,	 4,	 8,	 16,	 these	 Feigenbaum	 sequences,
coming	from?	Did	they	appear	by	magic	out	of	some	mathematical	void,	or	did
they	suggest	the	shadow	of	something	deeper	still.	Barnsley’s	intuition	was	that
they	must	be	part	of	some	fabulous	fractal	object	so	far	hidden	from	view.

For	 this	 idea,	 he	 had	 a	 context,	 the	 numerical	 territory	 known	 as	 the
complex	plane.	In	the	complex	plane,	the	numbers	from	minus	infinity	to	infinity
—all	the	real	numbers,	that	is—lie	on	a	line	stretching	from	the	far	west	to	the
far	east,	with	zero	at	the	center.	But	this	line	is	only	the	equator	of	a	world	that
also	stretches	to	infinity	in	the	north	and	the	south.	Each	number	is	composed	of
two	 parts,	 a	 real	 part,	 corresponding	 to	 east-west	 longitude,	 and	 an	 imaginary
part,	 corresponding	 to	 north-south	 latitude.	 By	 convention,	 these	 complex
numbers	are	written	this	way:	2	+	3i,	the	i	signifying	the	imaginary	part.	The	two
parts	 give	 each	 number	 a	 unique	 address	 in	 this	 two-dimensional	 plane.	 The
original	 line	 of	 real	 numbers,	 then,	 is	 just	 a	 special	 case,	 the	 set	 of	 numbers
whose	imaginary	part	equals	zero.	In	the	complex	plane,	to	look	only	at	the	real
numbers—only	 at	 points	 on	 the	 equator—would	 be	 to	 limit	 one’s	 vision	 to
occasional	intersections	of	shapes	that	might	reveal	other	secrets	when	viewed	in
two	dimensions.	So	Barnsley	suspected.

The	names	real	and	imaginary	originated	when	ordinary	numbers	did	seem
more	real	than	this	new	hybrid,	but	by	now	the	names	were	recognized	as	quite
arbitrary,	both	sorts	of	numbers	being	just	as	real	and	just	as	 imaginary	as	any
other	sort.	Historically,	 imaginary	numbers	were	invented	to	fill	 the	conceptual
vacuum	produced	by	the	question:	What	is	the	square	root	of	a	negative	number?
By	convention,	the	square	root	of	–1	is	i,	the	square	root	of	–4	is	2i,	and	so	on.	It
was	only	a	short	step	to	the	realization	that	combinations	of	real	and	imaginary
numbers	allowed	new	kinds	of	calculations	with	polynomial	equations.	Complex
numbers	can	be	added,	multiplied,	averaged,	factored,	integrated.	Just	about	any
calculation	on	real	numbers	can	be	tried	on	complex	numbers	as	well.	Barnsley,
when	 he	 began	 translating	 Feigenbaum	 functions	 into	 the	 complex	 plane,	 saw
outlines	 emerging	 of	 a	 fantastical	 family	 of	 shapes,	 seemingly	 related	 to	 the
dynamical	 ideas	 intriguing	 experimental	 physicists,	 but	 also	 startling	 as
mathematical	constructs.



These	cycles	do	not	 appear	out	of	 thin	 air	 after	 all,	 he	 realized.	They	 fall
into	 the	 real	 line	 off	 the	 complex	 plane,	 where,	 if	 you	 look,	 there	 is	 a
constellation	 of	 cycles,	 of	 all	 orders.	 There	 always	 was	 a	 two-cycle,	 a	 three-
cycle,	a	 four-cycle,	 floating	 just	out	of	sight	until	 they	arrived	on	 the	real	 line.
Barnsley	 hurried	 back	 from	 Corsica	 to	 his	 office	 at	 the	 Georgia	 Institute	 of
Technology	 and	 produced	 a	 paper.	 He	 shipped	 it	 off	 to	 Communications	 in
Mathematical	 Physics	 for	 publication.	 The	 editor,	 as	 it	 happened,	 was	 David
Ruelle,	and	Ruelle	had	some	bad	news.	Barnsley	had	unwittingly	rediscovered	a
buried	fifty-year–old	piece	of	work	by	a	French	mathematician.	“Ruelle	shunted
it	 back	 to	me	 like	 a	 hot	 potato	 and	 said,	 ‘Michael,	 you’re	 talking	 about	 Julia
sets,’”	Barnsley	recalled.

Ruelle	added	one	piece	of	advice:	“Get	in	touch	with	Mandelbrot.”

JOHN	HUBBARD,	AN	AMERICAN	MATHEMATICIAN	with	a	 taste	for	fashionable
bold	 shirts,	 had	 been	 teaching	 elementary	 calculus	 to	 first-year	 university
students	in	Orsay,	France,	three	years	before.	Among	the	standard	topics	that	he
covered	 was	 Newton’s	 method,	 the	 classic	 scheme	 for	 solving	 equations	 by
making	 successively	 better	 approximations.	 Hubbard	 was	 a	 little	 bored	 with
standard	topics,	however,	and	for	once	he	decided	to	teach	Newton’s	method	in
a	way	that	would	force	his	students	to	think.

Newton’s	method	is	old,	and	it	was	already	old	when	Newton	invented	it.
The	ancient	Greeks	used	a	version	of	it	to	find	square	roots.	The	method	begins
with	 a	 guess.	 The	 guess	 leads	 to	 a	 better	 guess,	 and	 the	 process	 of	 iteration
zooms	 in	 on	 an	 answer	 like	 a	 dynamical	 system	 seeking	 its	 steady	 state.	 The
process	 is	 fast,	 the	 number	 of	 accurate	 decimal	 digits	 generally	 doubling	with
each	step.	Nowadays,	of	course,	square	roots	succumb	to	more	analytic	methods,
as	do	all	roots	of	degree-two	polynomial	equations—those	in	which	variables	are
raised	only	to	the	second	power.	But	Newton’s	method	works	for	higher-degree
polynomial	 equations	 that	 cannot	 be	 solved	 directly.	 The	 method	 also	 works
beautifully	 in	 a	 variety	 of	 computer	 algorithms,	 iteration	 being,	 as	 always,	 the
computer’s	 forte.	 One	 tiny	 awkwardness	 about	 Newton’s	 method	 is	 that
equations	 usually	 have	 more	 than	 one	 solution,	 particularly	 when	 complex
solutions	 are	 included.	Which	 solution	 the	method	 finds	depends	on	 the	 initial
guess.	 In	 practical	 terms,	 students	 find	 that	 this	 is	 no	 problem	 at	 all.	 You
generally	 have	 a	 good	 idea	 of	 where	 to	 start,	 and	 if	 your	 guess	 seems	 to	 be
converging	to	the	wrong	solution,	you	just	start	someplace	else.

One	 might	 ask	 exactly	 what	 sort	 of	 route	 Newton’s	 method	 traces	 as	 it
winds	 toward	 a	 root	 of	 a	 degree-two	 polynomial	 on	 the	 complex	 plane.	 One
might	 answer,	 thinking	 geometrically,	 that	 the	 method	 simply	 seeks	 out



whichever	of	 the	 two	roots	 is	closer	 to	 the	 initial	guess.	That	 is	what	Hubbard
told	his	students	at	Orsay	when	the	question	arose	one	day.

“Now,	 for	 equations	 of,	 say,	 degree	 three,	 the	 situation	 seems	 more
complicated,”	 Hubbard	 said	 confidently.	 “I	 will	 think	 of	 it	 and	 tell	 you	 next
week.”

He	still	presumed	that	the	hard	thing	would	be	to	teach	his	students	how	to
calculate	 the	 iteration	and	 that	making	 the	 initial	guess	would	be	easy.	But	 the
more	he	thought	about	it,	the	less	he	knew—about	what	constituted	an	intelligent
guess	or,	 for	 that	matter,	about	what	Newton’s	method	really	did.	The	obvious
geometric	guess	would	be	to	divide	the	plane	into	three	equal	pie	wedges,	with
one	root	 inside	each	wedge,	but	Hubbard	discovered	 that	 that	would	not	work.
Strange	things	happened	near	the	boundaries.	Furthermore,	Hubbard	discovered
that	he	was	not	 the	first	mathematician	 to	stumble	on	this	surprisingly	difficult
question.	Arthur	Cayley	had	tried	in	1879	to	move	from	the	manageable	second-
degree	 case	 to	 the	 frighteningly	 intractable	 third-degree	 case.	 But	 Hubbard,	 a
century	later,	had	a	tool	at	hand	that	Cayley	lacked.

Hubbard	 was	 the	 kind	 of	 rigorous	 mathematician	 who	 despised	 guesses,
approximations,	half-truths	based	on	intuition	rather	than	proof.	He	was	the	kind
of	 mathematician	 who	 would	 continue	 to	 insist,	 twenty	 years	 after	 Edward
Lorenz’s	attractor	entered	 the	 literature,	 that	no	one	 really	knew	whether	 those
equations	 gave	 rise	 to	 a	 strange	 attractor.	 It	 was	 unproved	 conjecture.	 The
familiar	 double	 spiral,	 he	 said,	 was	 not	 proof	 but	 mere	 evidence,	 something
computers	drew.

Now,	in	spite	of	himself,	Hubbard	began	using	a	computer	to	do	what	the
orthodox	 techniques	had	not	 done.	The	 computer	would	prove	nothing.	But	 at
least	it	might	unveil	the	truth	so	that	a	mathematician	could	know	what	it	was	he
should	 try	 to	 prove.	 So	 Hubbard	 began	 to	 experiment.	 He	 treated	 Newton’s
method	 not	 as	 a	way	 of	 solving	 problems	 but	 as	 a	 problem	 in	 itself.	Hubbard
considered	the	simplest	example	of	a	degree-three	polynomial,	the	equation	x3–
1	=0.	That	is,	find	the	cube	root	of	1.	In	real	numbers,	of	course,	there	is	just	the
trivial	 solution:	 1.	 But	 the	 polynomial	 also	 has	 two	 complex	 solutions:	 –½	 +
i√3/2,	and	–½	–	 i√3/2.	Plotted	 in	 the	complex	plane,	 these	 three	roots	mark	an
equilateral	 triangle,	with	 one	 point	 at	 three	 o’clock,	 one	 at	 seven	 o’clock,	 and
one	 at	 eleven	 o’clock.	 Given	 any	 complex	 number	 as	 a	 starting	 point,	 the
question	was	to	see	which	of	the	three	solutions	Newton’s	method	would	lead	to.
It	was	as	if	Newton’s	method	were	a	dynamical	system	and	the	three	solutions
were	 three	attractors.	Or	 it	was	as	 if	 the	complex	plane	were	a	smooth	surface
sloping	down	toward	three	deep	valleys.	A	marble	starting	from	anywhere	on	the
plane	should	roll	into	one	of	the	valleys—but	which?



Hubbard	set	about	sampling	the	infinitude	of	points	that	make	up	the	plane.
He	 had	 his	 computer	 sweep	 from	 point	 to	 point,	 calculating	 the	 flow	 of
Newton’s	method	for	each	one,	and	color-coding	the	results.	Starting	points	that
led	to	one	solution	were	all	colored	blue.	Points	that	 led	to	the	second	solution
were	 red,	 and	 points	 that	 led	 to	 the	 third	 were	 green.	 In	 the	 crudest
approximation,	he	 found,	 the	dynamics	of	Newton’s	method	did	 indeed	divide
the	plane	 into	 three	pie	wedges.	Generally	 the	points	near	a	particular	 solution
led	 quickly	 into	 that	 solution.	 But	 systematic	 computer	 exploration	 showed
complicated	underlying	organization	that	could	never	have	been	seen	by	earlier
mathematicians,	 able	 only	 to	 calculate	 a	 point	 here	 and	 a	 point	 there.	 While
some	 starting	 guesses	 converged	 quickly	 to	 a	 root,	 others	 bounced	 around
seemingly	 at	 random	 before	 finally	 converging	 to	 a	 solution.	 Sometimes	 it
seemed	 that	 a	 point	 could	 fall	 into	 a	 cycle	 that	would	 repeat	 itself	 forever—a
periodic	cycle—without	ever	reaching	one	of	the	three	solutions.

As	Hubbard	 pushed	 his	 computer	 to	 explore	 the	 space	 in	 finer	 and	 finer
detail,	he	and	his	students	were	bewildered	by	the	picture	that	began	to	emerge.
Instead	of	 a	 neat	 ridge	between	 the	blue	 and	 red	valleys,	 for	 example,	 he	 saw
blotches	 of	 green,	 strung	 together	 like	 jewels.	 It	 was	 as	 if	 a	 marble,	 caught
between	the	conflicting	tugs	of	two	nearby	valleys,	would	end	up	in	the	third	and
most	distant	valley	 instead.	A	boundary	between	two	colors	never	quite	forms.
On	even	closer	 inspection,	 the	 line	between	a	green	blotch	and	 the	blue	valley
proved	 to	 have	 patches	 of	 red.	 And	 so	 on—the	 boundary	 finally	 revealed	 to
Hubbard	 a	 peculiar	 property	 that	 would	 seem	 bewildering	 even	 to	 someone
familiar	 with	Mandelbrot’s	 monstrous	 fractals:	 no	 point	 serves	 as	 a	 boundary
between	 just	 two	 colors.	Wherever	 two	 colors	 try	 to	 come	 together,	 the	 third
always	 inserts	 itself,	 with	 a	 series	 of	 new,	 self-similar	 intrusions.	 Impossibly,
every	boundary	point	borders	a	region	of	each	of	the	three	colors.

Hubbard	 embarked	 on	 a	 study	 of	 these	 complicated	 shapes	 and	 their
implications	 for	 mathematics.	 His	 work	 and	 the	 work	 of	 his	 colleagues	 soon
became	a	new	line	of	attack	on	the	problem	of	dynamical	systems.	He	realized
that	the	mapping	of	Newton’s	method	was	just	one	of	a	whole	unexplored	family
of	 pictures	 that	 reflected	 the	 behavior	 of	 forces	 in	 the	 real	 world.	 Michael
Barnsley	 was	 looking	 at	 other	 members	 of	 the	 family.	 Benoit	Mandelbrot,	 as
both	men	soon	learned,	was	discovering	the	granddaddy	of	all	these	shapes.



BOUNDARIES	OF	INFINITE	COMPLEXITY.	When	a	pie	 is	cut	 into	 three	slices,	 they	meet	at	a	single
point,	and	the	boundaries	between	any	two	slices	are	simple.	But	many	processes	of	abstract	mathematics
and	real-world	physics	turn	out	to	create	boundaries	that	are	almost	unimaginably	complex.

Above,	Newton’s	method	applied	to	finding	the	cube	root	of	–1	divides	the	plane	into	three	identical
regions,	 one	of	which	 is	 shown	 in	white.	All	white	 points	 are	 “attracted”	 to	 the	 root	 lying	 in	 the	 largest
white	 area;	 all	 black	 points	 are	 attracted	 to	 one	 of	 the	 other	 two	 roots.	 The	 boundary	 has	 the	 peculiar
property	that	every	point	on	it	borders	all	three	regions.	And,	as	the	insets	show,	magnified	segments	reveal
a	fractal	structure,	repeating	the	basic	pattern	on	smaller	and	smaller	scales.

THE	 MANDELBROT	 SET	 IS	 the	 most	 complex	 object	 in	 mathematics,	 its
admirers	like	to	say.	An	eternity	would	not	be	enough	time	to	see	it	all,	its	disks
studded	 with	 prickly	 thorns,	 its	 spirals	 and	 filaments	 curling	 outward	 and
around,	 bearing	bulbous	molecules	 that	 hang,	 infinitely	 variegated,	 like	 grapes
on	God’s	personal	vine.	Examined	in	color	through	the	adjustable	window	of	a
computer	screen,	the	Mandelbrot	set	seems	more	fractal	than	fractals,	so	rich	is
its	complication	across	scales.	A	cataloguing	of	the	different	images	within	it	or
a	 numerical	 description	 of	 the	 set’s	 outline	 would	 require	 an	 infinity	 of
information.	But	here	 is	 a	paradox:	 to	 send	a	 full	description	of	 the	 set	over	 a
transmission	line	requires	just	a	few	dozen	characters	of	code.	A	terse	computer
program	 contains	 enough	 information	 to	 reproduce	 the	 entire	 set.	 Those	 who



were	first	 to	understand	the	way	the	set	commingles	complexity	and	simplicity
were	caught	unprepared—even	Mandelbrot.	The	Mandelbrot	set	became	a	kind
of	 public	 emblem	 for	 chaos,	 appearing	 on	 the	 glossy	 covers	 of	 conference
brochures	and	engineering	quarterlies,	 forming	 the	centerpiece	of	an	exhibit	of
computer	art	that	traveled	internationally	in	1985	and	1986.	Its	beauty	was	easy
to	 feel	 from	 these	 pictures;	 harder	 to	 grasp	 was	 the	 meaning	 it	 had	 for	 the
mathematicians	who	slowly	understood	it.

Many	 fractal	 shapes	 can	 be	 formed	 by	 iterated	 processes	 in	 the	 complex
plane,	 but	 there	 is	 just	 one	 Mandelbrot	 set.	 It	 started	 appearing,	 vague	 and
spectral,	when	Mandelbrot	 tried	 to	 find	a	way	of	generalizing	about	 a	 class	of
shapes	known	as	Julia	sets.	These	were	invented	and	studied	during	World	War	I
by	 the	French	mathematicians	Gaston	 Julia	 and	Pierre	Fatou,	 laboring	without
the	 pictures	 that	 a	 computer	 could	 provide.	Mandelbrot	 had	 seen	 their	modest
drawings	and	read	their	work—already	obscure—when	he	was	twenty	years	old.
Julia	sets,	in	a	variety	of	guises,	were	precisely	the	objects	intriguing	Barnsley.
Some	 Julia	 sets	 are	 like	 circles	 that	have	been	pinched	and	deformed	 in	many
places	to	give	them	a	fractal	structure.	Others	are	broken	into	regions,	and	still
others	are	disconnected	dusts.	But	neither	words	nor	 the	concepts	of	Euclidean
geometry	 serve	 to	 describe	 them.	 The	 French	 mathematician	 Adrien	 Douady
said:	 “You	 obtain	 an	 incredible	 variety	 of	 Julia	 sets:	 some	 are	 a	 fatty	 cloud,
others	are	a	skinny	bush	of	brambles,	some	look	 like	 the	sparks	which	float	 in
the	air	after	a	firework	has	gone	off.	One	has	the	shape	of	a	rabbit,	lots	of	them
have	sea-horse	tails.”



AN	ASSORTMENT	OF	JULIA	SETS.

In	 1979	 Mandelbrot	 discovered	 that	 he	 could	 create	 one	 image	 in	 the
complex	plane	that	would	serve	as	a	catalogue	of	Julia	sets,	a	guide	to	each	and
every	 one.	He	was	 exploring	 the	 iteration	 of	 complicated	 processes,	 equations
with	square	roots	and	sines	and	cosines.	Even	after	building	his	intellectual	life
around	the	proposition	that	simplicity	breeds	complexity,	he	did	not	immediately
understand	how	extraordinary	was	 the	object	hovering	 just	beyond	 the	view	of
his	computer	screens	at	IBM	and	Harvard.	He	pressed	his	programmers	hard	for
more	detail,	 and	 they	 sweated	over	 the	 allocation	of	 already	 strained	memory,
the	 new	 interpolation	 of	 points	 on	 an	 IBM	mainframe	 computer	with	 a	 crude
black	and	white	display	tube.	To	make	matters	worse,	the	programmers	always
had	 to	 stand	 guard	 against	 a	 common	 pitfall	 of	 computer	 exploration,	 the
production	 of	 “artifacts,”	 features	 that	 sprang	 solely	 from	 some	 quirk	 of	 the
machine	and	would	disappear	when	a	program	was	written	differently.

Then	 Mandelbrot	 turned	 his	 attention	 to	 a	 simple	 mapping	 that	 was
particularly	easy	to	program.	On	a	rough	grid,	with	a	program	that	repeated	the
feedback	loop	just	a	few	times,	the	first	outlines	of	disks	appeared.	A	few	lines
of	 pencil	 calculation	 showed	 that	 the	 disks	were	mathematically	 real,	 not	 just



products	of	some	computational	oddity.	To	the	right	and	left	of	the	main	disks,
hints	 of	 more	 shapes	 appeared.	 In	 his	 mind,	 he	 said	 later,	 he	 saw	 more:	 a
hierarchy	of	shapes,	atoms	sprouting	smaller	atoms	ad	infinitum.	And	where	the
set	 intersected	 the	 real	 line,	 its	 successively	 smaller	 disks	 scaled	 with	 a
geometric	regularity	that	dynamicists	now	recognized:	the	Feigenbaum	sequence
of	bifurcations.

That	 encouraged	him	 to	 push	 the	 computation	 further,	 refining	 those	 first
crude	 images,	 and	he	 soon	discovered	dirt	 cluttering	 the	edge	of	 the	disks	and
also	floating	in	the	space	nearby.	As	he	tried	calculating	in	finer	and	finer	detail,
he	 suddenly	 felt	 that	 his	 string	 of	 good	 luck	 had	 broken.	 Instead	 of	 becoming
sharper,	 the	 pictures	 became	 messier.	 He	 headed	 back	 to	 IBM’s	Westchester
County	 research	 center	 to	 try	 computing	 power	 on	 a	 proprietary	 scale	 that
Harvard	could	not	match.	To	his	surprise,	the	growing	messiness	was	the	sign	of
something	real.	Sprouts	and	tendrils	spun	languidly	away	from	the	main	island.
Mandelbrot	 saw	 a	 seemingly	 smooth	 boundary	 resolve	 itself	 into	 a	 chain	 of
spirals	like	the	tails	of	sea	horses.	The	irrational	fertilized	the	rational.

The	Mandelbrot	 set	 is	 a	 collection	 of	 points.	 Every	 point	 in	 the	 complex
plane—that	is,	every	complex	number—is	either	in	the	set	or	outside	it.	One	way
to	 define	 the	 set	 is	 in	 terms	 of	 a	 test	 for	 every	 point,	 involving	 some	 simple
iterated	arithmetic.	To	test	a	point,	take	the	complex	number;	square	it;	add	the
original	number;	square	the	result;	add	the	original	number;	square	the	result—
and	so	on,	over	and	over	again.	If	the	total	runs	away	to	infinity,	then	the	point	is
not	in	the	Mandelbrot	set.	If	the	total	remains	finite	(it	could	be	trapped	in	some
repeating	 loop,	 or	 it	 could	 wander	 chaotically),	 then	 the	 point	 is	 in	 the
Mandelbrot	set.

This	 business	 of	 repeating	 a	 process	 indefinitely	 and	 asking	 whether	 the
result	 is	 infinite	 resembles	 feedback	processes	 in	 the	 everyday	world.	 Imagine
that	you	are	setting	up	a	microphone,	amplifier,	and	speakers	in	an	auditorium.
You	are	worried	about	the	squeal	of	sonic	feedback.	If	the	microphone	picks	up
a	loud	enough	noise,	the	amplified	sound	from	the	speakers	will	feed	back	into
the	microphone	in	an	endless,	ever	louder	loop.	On	the	other	hand,	if	the	sound
is	small	enough,	it	will	just	die	away	to	nothing.	To	model	this	feedback	process
with	numbers,	you	might	 take	a	starting	number,	multiply	 it	by	 itself,	multiply
the	 result	 by	 itself,	 and	 so	 on.	 You	 would	 discover	 that	 large	 numbers	 lead
quickly	 to	 infinity:	 10,	 100,	 10,000….	But	 small	 numbers	 lead	 to	 zero:	½,	¼
1/16….	To	make	 a	geometric	 picture,	 you	define	 a	 collection	of	 all	 the	points
that,	when	fed	into	this	equation,	do	not	run	away	to	infinity.	Consider	the	points
on	 a	 line	 from	zero	upward.	 If	 a	 point	 produces	 a	 squeal	 of	 feedback,	 color	 it
white.	Otherwise	color	it	black.	Soon	enough,	you	will	have	a	shape	that	consists



of	a	black	line	from	0	to	1.

THE	MANDELBROT	SET	EMERGES.	 In	Benoit	Mandelbrot’s	 first	 crude	 computer	 printouts,	 a	 rough
structure	 appeared,	 gaining	 more	 detail	 as	 the	 quality	 of	 the	 computation	 improved.	Were	 the	 buglike,
floating	“molecules”	isolated	islands?	Or	were	they	attached	to	the	main	body	by	filaments	too	fine	to	be
observed?	It	was	impossible	to	tell.







For	a	one-dimensional	process,	no	one	need	actually	resort	to	experimental
trial.	It	is	easy	enough	to	establish	that	numbers	greater	than	one	lead	to	infinity
and	the	rest	do	not.	But	in	the	two	dimensions	of	the	complex	plane,	to	deduce	a
shape	 defined	 by	 an	 iterated	 process,	 knowing	 the	 equation	 is	 generally	 not
enough.	 Unlike	 the	 traditional	 shapes	 of	 geometry,	 circles	 and	 ellipses	 and
parabolas,	 the	Mandelbrot	 set	 allows	 no	 shortcuts.	 The	 only	 way	 to	 see	 what
kind	of	shape	goes	with	a	particular	equation	is	by	trial	and	error,	and	the	trial-
and–error	 style	 brought	 the	 explorers	 of	 this	 new	 terrain	 closer	 in	 spirit	 to
Magellan	than	to	Euclid.

Joining	the	world	of	shapes	to	the	world	of	numbers	in	this	way	represented
a	break	with	 the	past.	New	geometries	always	begin	when	someone	changes	a
fundamental	rule.	Suppose	space	can	be	curved	instead	of	flat,	a	geometer	says,
and	the	result	is	a	weird	curved	parody	of	Euclid	that	provides	precisely	the	right
framework	 for	 the	 general	 theory	 of	 relativity.	 Suppose	 space	 can	 have	 four
dimensions,	or	five,	or	six.	Suppose	the	number	expressing	dimension	can	be	a
fraction.	 Suppose	 shapes	 can	 be	 twisted,	 stretched,	 knotted.	Or,	 now,	 suppose
shapes	 are	 defined,	 not	 by	 solving	 an	 equation	 once,	 but	 by	 iterating	 it	 in	 a
feedback	loop.

Julia,	 Fatou,	 Hubbard,	 Barnsley,	 Mandelbrot—these	 mathematicians
changed	 the	 rules	 about	 how	 to	make	 geometrical	 shapes.	 The	 Euclidean	 and
Cartesian	methods	of	 turning	equations	 into	curves	are	 familiar	 to	anyone	who
has	 studied	 high	 school	 geometry	 or	 found	 a	 point	 on	 a	 map	 using	 two
coordinates.	 Standard	 geometry	 takes	 an	 equation	 and	 asks	 for	 the	 set	 of
numbers	that	satisfy	it.	The	solutions	to	an	equation	like	x2	+	y2	=	1,	then,	form	a
shape,	 in	 this	 case	 a	 circle.	Other	 simple	 equations	produce	other	pictures,	 the
ellipses,	 parabolas,	 and	 hyperbolas	 of	 conic	 sections	 or	 even	 the	 more
complicated	shapes	produced	by	differential	equations	in	phase	space.	But	when
a	 geometer	 iterates	 an	 equation	 instead	 of	 solving	 it,	 the	 equation	 becomes	 a
process	instead	of	a	description,	dynamic	instead	of	static.	When	a	number	goes
into	the	equation,	a	new	number	comes	out;	the	new	number	goes	in,	and	so	on,
points	hopping	from	place	 to	place.	A	point	 is	plotted	not	when	 it	 satisfies	 the
equation	but	when	it	produces	a	certain	kind	of	behavior.	One	behavior	might	be
a	steady	state.	Another	might	be	a	convergence	to	a	periodic	repetition	of	states.
Another	might	be	an	out-of–control	race	to	infinity.

Before	computers,	even	Julia	and	Fatou,	who	understood	the	possibilities	of
this	new	kind	of	shape-making,	 lacked	 the	means	of	making	 it	a	science.	With
computers,	 trial-and–error	 geometry	 became	 possible.	 Hubbard	 explored
Newton’s	 method	 by	 calculating	 the	 behavior	 of	 point	 after	 point,	 and
Mandelbrot	 first	 viewed	 his	 set	 the	 same	 way,	 using	 a	 computer	 to	 sweep



through	the	points	of	the	plane,	one	after	another.	Not	all	the	points,	of	course.
Time	and	computers	being	finite,	such	calculations	use	a	grid	of	points.	A	finer
grid	 gives	 a	 sharper	 picture,	 at	 the	 expense	 of	 longer	 computation.	 For	 the
Mandelbrot	 set,	 the	 calculation	 was	 simple,	 because	 the	 process	 itself	 was	 so
simple:	 the	 iteration	 in	 the	 complex	 plane	 of	 the	 mapping	 z→z2	 +	 c.	 Take	 a
number,	multiply	it	by	itself,	and	add	the	original	number.

As	Hubbard	grew	comfortable	with	 this	new	style	of	exploring	shapes	by
computer,	he	also	brought	to	bear	an	innovative	mathematical	style,	applying	the
methods	of	complex	analysis,	an	area	of	mathematics	that	had	not	been	applied
to	dynamical	systems	before.	Everything	was	coming	together,	he	felt.	Separate
disciplines	 within	 mathematics	 were	 converging	 at	 a	 crossroads.	 He	 knew	 it
would	not	suffice	 to	see	 the	Mandelbrot	set;	before	he	was	done,	he	wanted	 to
understand	it,	and	indeed,	he	finally	claimed	that	he	did	understand	it.

If	 the	boundary	were	merely	 fractal	 in	 the	sense	of	Mandelbrot’s	 turn-of–
the-century	monsters,	then	one	picture	would	look	more	or	less	like	the	last.	The
principle	of	 self-similarity	at	different	 scales	would	make	 it	possible	 to	predict
what	 the	 electronic	 microscope	 would	 see	 at	 the	 next	 level	 of	 magnification.
Instead,	 each	 foray	 deeper	 into	 the	 Mandelbrot	 set	 brought	 new	 surprises.
Mandelbrot	 started	worrying	 that	 he	 had	 offered	 too	 restrictive	 a	 definition	 of
fractal;	 he	 certainly	wanted	 the	word	 to	 apply	 to	 this	 new	object.	 The	 set	 did
prove	 to	 contain,	when	magnified	 enough,	 rough	 copies	 of	 itself,	 tiny	 buglike
objects	 floating	off	 from	the	main	body,	but	greater	magnification	showed	that
none	 of	 these	 molecules	 exactly	 matched	 any	 other.	 There	 were	 always	 new
kinds	 of	 sea	 horses,	 new	 curling	 hothouse	 species.	 In	 fact,	 no	 part	 of	 the	 set
exactly	resembles	any	other	part,	at	any	magnification.

The	discovery	of	floating	molecules	raised	an	immediate	problem,	though.
Was	the	Mandelbrot	set	connected,	one	continent	with	far-flung	peninsulas?	Or
was	it	a	dust,	a	main	body	surrounded	by	fine	islands?	It	was	far	from	obvious.
No	guidance	came	from	the	experience	with	Julia	sets,	because	Julia	sets	came
in	 both	 flavors,	 some	whole	 shapes	 and	 some	 dusts.	 The	 dusts,	 being	 fractal,
have	 the	 peculiar	 property	 that	 no	 two	 pieces	 are	 “together”—because	 every
piece	is	separated	from	every	other	by	a	region	of	empty	space—yet	no	piece	is
“alone,”	 since	 whenever	 you	 find	 one	 piece,	 you	 can	 always	 find	 a	 group	 of
pieces	arbitrarily	close	by.	As	Mandelbrot	looked	at	his	pictures,	he	realized	that
computer	 experimentation	 was	 failing	 to	 settle	 this	 fundamental	 question.	 He
focused	 more	 sharply	 on	 the	 specks	 hovering	 about	 the	 main	 body.	 Some
disappeared,	but	others	grew	into	clear	near-replicas.	They	seemed	independent.
But	possibly	they	were	connected	by	lines	so	thin	that	they	continued	to	escape
the	lattice	of	computed	points.



Douady	 and	Hubbard	 used	 a	 brilliant	 chain	 of	 new	mathematics	 to	 prove
that	every	floating	molecule	does	indeed	hang	on	a	filigree	that	binds	it	to	all	the
rest,	a	delicate	web	springing	from	tiny	outcroppings	on	the	main	set,	a	“devil’s
polymer,”	in	Mandelbrot’s	phrase.	The	mathematicians	proved	that	any	segment
—no	matter	where,	 and	 no	matter	 how	 small—would,	when	 blown	 up	 by	 the
computer	microscope,	reveal	new	molecules,	each	resembling	the	main	set	and
yet	 not	 quite	 the	 same.	 Every	 new	molecule	would	 be	 surrounded	 by	 its	 own
spirals	and	flamelike	projections,	and	those,	inevitably,	would	reveal	molecules
tinier	 still,	 always	 similar,	 never	 identical,	 fulfilling	 some	mandate	 of	 infinite
variety,	a	miracle	of	miniaturization	in	which	every	new	detail	was	sure	to	be	a
universe	of	its	own,	diverse	and	entire.

“EVERYTHING	WAS	 VERY	 GEOMETRIC	 straight-line	 approaches,”	 said	Heinz-
Otto	Peitgen.	He	was	talking	about	modern	art.	“The	work	of	Josef	Albers,	for
example,	 trying	 to	 discover	 the	 relation	 of	 colors,	 this	 was	 essentially	 just
squares	of	different	colors	put	onto	each	other.	These	things	were	very	popular.
If	you	look	at	it	now	it	seems	to	have	passed.	People	don’t	like	it	any	more.	In
Germany	they	built	huge	apartment	blocks	in	the	Bauhaus	style	and	people	move
out,	they	don’t	like	to	live	there.	There	are	very	deep	reasons,	it	seems	to	me,	in
society	right	now	to	dislike	some	aspects	of	our	conception	of	nature.”	Peitgen
had	been	helping	a	visitor	select	blowups	of	regions	of	the	Mandelbrot	set,	Julia
sets,	and	other	complex	iterative	processes,	all	exquisitely	colored.	In	his	small
California	office	he	offered	 slides,	 large	 transparencies,	 even	a	Mandelbrot	 set
calendar.	“The	deep	enthusiasm	we	have	has	to	do	with	this	different	perspective
of	looking	at	nature.	What	is	the	true	aspect	of	the	natural	object?	The	tree,	let’s
say—what	 is	 important?	 Is	 it	 the	 straight	 line,	 or	 is	 it	 the	 fractal	 object?”	 At
Cornell,	 meanwhile,	 John	 Hubbard	 was	 struggling	 with	 the	 demands	 of
commerce.	Hundreds	of	letters	were	flowing	into	the	mathematics	department	to
request	Mandelbrot	 set	 pictures,	 and	 he	 realized	 he	 had	 to	 create	 samples	 and
price	 lists.	 Dozens	 of	 images	 were	 already	 calculated	 and	 stored	 in	 his
computers,	ready	for	instant	display,	with	the	help	of	the	graduate	students	who
remembered	 the	 technical	 detail.	 But	 the	 most	 spectacular	 pictures,	 with	 the
finest	resolution	and	the	most	vivid	coloration,	were	coming	from	two	Germans,
Peitgen	 and	 Peter	H.	Richter,	 and	 their	 team	 of	 scientists	 at	 the	University	 of
Bremen,	with	the	enthusiastic	sponsorship	of	a	local	bank.

Peitgen	and	Richter,	one	a	mathematician	and	the	other	a	physicist,	turned
their	careers	over	 to	the	Mandelbrot	set.	It	held	a	universe	of	 ideas	for	 them:	a
modern	philosophy	of	art,	a	 justification	of	 the	new	role	of	experimentation	 in
mathematics,	 a	 way	 of	 bringing	 complex	 systems	 before	 a	 large	 public.	 They



published	glossy	catalogs	and	books,	and	they	traveled	around	the	world	with	a
gallery	exhibit	of	their	computer	images.	Richter	had	come	to	complex	systems
from	physics	by	way	of	chemistry	and	 then	biochemistry,	studying	oscillations
in	biological	pathways.	In	a	series	of	papers	on	such	phenomena	as	the	immune
system	 and	 the	 conversion	 of	 sugar	 into	 energy	 by	 yeast,	 he	 found	 that
oscillations	 often	 governed	 the	 dynamics	 of	 processes	 that	 were	 customarily
viewed	as	static,	for	the	good	reason	that	living	systems	cannot	easily	be	opened
up	for	examination	in	real	time.	Richter	kept	clamped	to	his	windowsill	a	well-
oiled	double	pendulum,	his	“pet	dynamical	system,”	custom-made	for	him	by	his
university	machine	shop.	From	time	to	time	he	would	set	it	spinning	in	chaotic
nonrhythms	 that	 he	 could	 emulate	 on	 a	 computer	 as	well.	 The	 dependence	 on
initial	conditions	was	so	sensitive	that	the	gravitational	pull	of	a	single	raindrop
a	mile	 away	mixed	 up	 the	motion	within	 fifty	 or	 sixty	 revolutions,	 about	 two
minutes.	 His	 multicolor	 graphic	 pictures	 of	 the	 phase	 space	 of	 this	 double
pendulum	showed	the	mingled	regions	of	periodicity	and	chaos,	and	he	used	the
same	 graphic	 techniques	 to	 display,	 for	 example,	 idealized	 regions	 of
magnetization	in	a	metal	and	also	to	explore	the	Mandelbrot	set.

For	 his	 colleague	 Peitgen	 the	 study	 of	 complexity	 provided	 a	 chance	 to
create	new	traditions	in	science	instead	of	just	solving	problems.	“In	a	brand	new
area	like	this	one,	you	can	start	thinking	today	and	if	you	are	a	good	scientist	you
might	be	able	to	come	up	with	interesting	solutions	in	a	few	days	or	a	week	or	a
month,”	Peitgen	said.	The	subject	is	unstructured.

“In	a	structured	subject,	it	is	known	what	is	known,	what	is	unknown,	what
people	have	already	tried	and	doesn’t	lead	anywhere.	There	you	have	to	work	on
a	 problem	 which	 is	 known	 to	 be	 a	 problem,	 otherwise	 you	 get	 lost.	 But	 a
problem	 which	 is	 known	 to	 be	 a	 problem	 must	 be	 hard,	 otherwise	 it	 would
already	have	been	solved.”

Peitgen	 shared	 little	 of	 the	 mathematicians’	 unease	 with	 the	 use	 of
computers	 to	 conduct	 experiments.	 Granted,	 every	 result	 must	 eventually	 be
made	rigorous	by	the	standard	methods	of	proof,	or	it	would	not	be	mathematics.
To	 see	 an	 image	 on	 a	 graphics	 screen	 does	 not	 guarantee	 its	 existence	 in	 the
language	 of	 theorem	 and	 proof.	 But	 the	 very	 availability	 of	 that	 image	 was
enough	 to	 change	 the	 evolution	 of	 mathematics.	 Computer	 exploration	 was
giving	mathematicians	the	freedom	to	take	a	more	natural	path,	Peitgen	believed.
Temporarily,	for	the	moment,	a	mathematician	could	suspend	the	requirement	of
rigorous	 proof.	 He	 could	 go	 wherever	 experiments	 might	 lead	 him,	 just	 as	 a
physicist	 could.	 The	 numerical	 power	 of	 computation	 and	 the	 visual	 cues	 to
intuition	would	 suggest	 promising	 avenues	 and	 spare	 the	mathematician	 blind
alleys.	 Then,	 new	 paths	 having	 been	 found	 and	 new	 objects	 isolated,	 a



mathematician	 could	 return	 to	 standard	 proofs.	 “Rigor	 is	 the	 strength	 of
mathematics,”	 Peitgen	 said.	 “That	we	 can	 continue	 a	 line	 of	 thought	which	 is
absolutely	guaranteed—mathematicians	never	want	to	give	that	up.	But	you	can
look	at	situations	that	can	be	understood	partially	now	and	with	rigor	perhaps	in
future	 generations.	Rigor,	 yes,	 but	 not	 to	 the	 extent	 that	 I	 drop	 something	 just
because	I	can’t	do	it	now.”

By	the	1980s	a	home	computer	could	handle	arithmetic	precise	enough	to
make	 colorful	 pictures	 of	 the	 set,	 and	 hobbyists	 quickly	 found	 that	 exploring
these	 pictures	 at	 ever-greater	 magnification	 gave	 a	 vivid	 sense	 of	 expanding
scale.	 If	 the	 set	were	 thought	 of	 as	 a	 planet-sized	 object,	 a	 personal	 computer
could	 show	 the	 whole	 object,	 or	 features	 the	 size	 of	 cities,	 or	 the	 size	 of
buildings,	or	the	size	of	rooms,	or	the	size	of	books,	or	the	size	of	letters,	or	the
size	of	 bacteria,	 or	 the	 size	 of	 atoms.	The	people	who	 looked	 at	 such	pictures
saw	that	all	the	scales	had	similar	patterns,	yet	every	scale	was	different.	And	all
these	microscopic	landscapes	were	generated	by	the	same	few	lines	of	computer
code.*

THE	BOUNDARY	IS	WHERE	a	Mandelbrot	set	program	spends	most	of	its	time
and	makes	all	of	its	compromises.	There,	when	100	or	1,000	or	10,000	iterations
fail	to	break	away,	a	program	still	cannot	be	absolutely	certain	that	a	point	falls
inside	 the	 step.	 Who	 knows	 what	 the	 millionth	 iteration	 will	 bring?	 So	 the
programs	that	made	the	most	striking,	most	deeply	magnified	pictures	of	the	set
ran	on	heavy	mainframe	computers,	or	computers	devoted	to	parallel	processing,
with	thousands	of	individual	brains	performing	the	same	arithmetic	in	lock	step.
The	boundary	is	where	points	are	slowest	to	escape	the	pull	of	the	set.	It	is	as	if
they	 are	 balanced	 between	 competing	 attractors,	 one	 at	 zero	 and	 the	 other,	 in
effect,	ringing	the	set	at	a	distance	of	infinity.

When	scientists	moved	from	the	Mandelbrot	set	 itself	 to	new	problems	of
representing	real	physical	phenomena,	 the	qualities	of	 the	set’s	boundary	came
to	the	fore.	The	boundary	between	two	or	more	attractors	in	a	dynamical	system
served	as	a	threshold	of	a	kind	that	seems	to	govern	so	many	ordinary	processes,
from	the	breaking	of	materials	to	the	making	of	decisions.	Each	attractor	in	such
a	system	has	its	basin,	as	a	river	has	a	watershed	basin	that	drains	into	it.	Each
basin	 has	 a	 boundary.	 For	 an	 influential	 group	 in	 the	 early	 1980s,	 a	 most
promising	new	field	of	mathematics	and	physics	was	 the	study	of	 fractal	basin
boundaries.

This	 branch	 of	 dynamics	 concerned	 itself	 not	 with	 describing	 the	 final,
stable	 behavior	 of	 a	 system	 but	 with	 the	 way	 a	 system	 chooses	 between
competing	 options.	 A	 system	 like	 Lorenz’s	 now-classic	 model	 has	 just	 one



attractor	in	it,	one	behavior	that	prevails	when	the	system	settles	down,	and	it	is
a	 chaotic	 attractor.	 Other	 systems	 may	 end	 up	 with	 nonchaotic	 steady-state
behavior—but	 with	 more	 than	 one	 possible	 steady	 state.	 The	 study	 of	 fractal
basin	 boundaries	 was	 the	 study	 of	 systems	 that	 could	 reach	 one	 of	 several
nonchaotic	 final	 states,	 raising	 the	 question	 of	 how	 to	 predict	 which.	 James
Yorke,	who	pioneered	the	investigation	of	fractal	basin	boundaries	a	decade	after
giving	 chaos	 its	 name,	 proposed	 an	 imaginary	 pinball	 machine.	 Like	 most
pinball	machines	it	has	a	plunger	with	a	spring.	You	pull	back	the	plunger	and
release	 it	 to	 send	 the	 ball	 up	 into	 the	 playing	 area.	 The	 machine	 has	 the
customary	 tilted	 landscape	 of	 rubber	 edges	 and	 electric	 bouncers	 that	 give	 the
ball	a	kick	of	extra	energy.	The	kick	is	important:	it	means	that	energy	does	not
just	 decay	 smoothly.	 For	 simplicity’s	 sake	 this	machine	 has	 no	 flippers	 at	 the
bottom,	just	two	exit	ramps.	The	ball	must	leave	by	one	ramp	or	the	other.

This	is	deterministic	pinball—no	shaking	the	machine.	Only	one	parameter
controls	 the	 ball’s	 destination,	 and	 that	 is	 the	 initial	 position	 of	 the	 plunger.
Imagine	 that	 the	machine	 is	 laid	out	 so	 that	a	 short	pull	of	 the	plunger	always
means	that	the	ball	will	end	up	rolling	out	the	right-hand	ramp,	while	a	long	pull
always	 means	 that	 the	 ball	 will	 finish	 in	 the	 left-hand	 ramp.	 In	 between,	 the
behavior	 gets	 complex,	with	 the	 ball	 bouncing	 from	bumper	 to	 bumper	 in	 the
usual	 energetic,	 noisy,	 and	 variably	 long-lived	manner	 before	 finally	 choosing
one	exit	or	the	other.

Now	imagine	making	a	graph	of	the	result	of	each	possible	starting	position
of	 the	 plunger.	 The	 graph	 is	 just	 a	 line.	 If	 a	 position	 leads	 to	 a	 right-hand
departure,	plot	a	red	point,	and	plot	a	green	point	for	left.	What	can	we	expect	to
find	about	these	attractors	as	a	function	of	the	initial	position?

The	 boundary	 proves	 to	 be	 a	 fractal	 set,	 not	 necessarily	 self-similar,	 but
infinitely	 detailed.	 Some	 regions	 of	 the	 line	 will	 be	 pure	 red	 or	 green,	 while
others,	when	magnified,	will	show	new	regions	of	red	within	the	green,	or	green
within	 the	 red.	 For	 some	 plunger	 positions,	 that	 is,	 a	 tiny	 change	 makes	 no
difference.	 But	 for	 others,	 even	 an	 arbitrarily	 small	 change	 will	 make	 the
difference	between	red	and	green.

To	 add	 a	 second	 dimension	 meant	 adding	 a	 second	 parameter,	 a	 second
degree	of	freedom.	With	a	pinball	machine,	for	example,	one	might	consider	the
effect	of	changing	the	tilt	of	the	playing	slope.	One	would	discover	a	kind	of	in-
and–out	 complexity	 that	 would	 give	 nightmares	 to	 engineers	 responsible	 for
controlling	the	stability	of	sensitive,	energetic	real	systems	with	more	than	one
parameter—electrical	 power	 grids,	 for	 example,	 and	 nuclear	 generating	 plants,
both	of	which	became	 targets	of	chaos-inspired	 research	 in	 the	1980s.	For	one
value	of	parameter	A,	parameter	B	might	produce	a	reassuring,	orderly	kind	of



behavior,	with	 coherent	 regions	of	 stability.	Engineers	 could	make	 studies	 and
graphs	 of	 exactly	 the	 kind	 their	 linear-oriented	 training	 suggested.	Yet	 lurking
nearby	might	be	another	value	of	parameter	A	that	transforms	the	importance	of
parameter	B.

Yorke	 would	 rise	 at	 conferences	 to	 display	 pictures	 of	 fractal	 basin
boundaries.	 Some	 pictures	 represented	 the	 behavior	 of	 forced	 pendulums	 that
could	 end	 up	 in	 one	 of	 two	 final	 states—the	 forced	 pendulum	 being,	 as	 his
audiences	 well	 knew,	 a	 fundamental	 oscillator	 with	 many	 guises	 in	 everyday
life.	 “Nobody	 can	 say	 that	 I’ve	 rigged	 the	 system	 by	 choosing	 a	 pendulum,”
Yorke	would	say	jovially.	“This	is	the	kind	of	thing	you	see	throughout	nature.
But	the	behavior	is	different	from	anything	you	see	in	the	literature.	It’s	fractal
behavior	 of	 a	wild	 kind.”	The	 pictures	would	 be	 fantastic	 swirls	 of	white	 and
black,	 as	 if	 a	 kitchen	mixing	 bowl	 had	 sputtered	 a	 few	 times	 in	 the	 course	 of
incompletely	 folding	 together	 vanilla	 and	 chocolate	 pudding.	 To	 make	 such
pictures,	his	computer	had	swept	through	a	1,000	by	1,000	grid	of	points,	each
representing	a	different	 starting	position	 for	 the	pendulum,	and	had	plotted	 the
outcome:	black	or	white.	These	were	basins	of	attraction,	mixed	and	folded	by
the	familiar	equations	of	Newtonian	motion,	and	the	result	was	more	boundary
than	anything	else.	Typically,	more	than	three-quarters	of	the	plotted	points	lay
on	the	boundary.



FRACTAL	BASIN	BOUNDARIES.	Even	when	 a	 dynamical	 system’s	 longterm	behavior	 is	 not	 chaotic,
chaos	 can	 appear	 at	 the	 boundary	 between	 one	 kind	 of	 steady	 behavior	 and	 another.	Often	 a	 dynamical
system	 has	 more	 than	 one	 equilibrium	 state,	 like	 a	 pendulum	 that	 can	 come	 to	 a	 halt	 at	 either	 of	 two
magnets	placed	at	its	base.	Each	equilibrium	is	an	attractor,	and	the	boundary	between	two	attractors	can	be
complicated	 but	 smooth	 (left).	 Or	 the	 boundary	 can	 be	 complicated	 but	 not	 smooth.	 The	 highly	 fractal
interspersing	of	white	and	black	(right)	is	a	phase-space	diagram	of	a	pendulum.	The	system	is	sure	to	reach
one	of	two	possible	steady	states.	For	some	starting	conditions,	the	outcome	is	quite	predictable—black	is
black	and	white	is	white.	But	near	the	boundary,	prediction	becomes	impossible.

To	researchers	and	engineers,	there	was	a	lesson	in	these	pictures—a	lesson
and	a	warning.	Too	often,	 the	potential	 range	of	behavior	of	 complex	 systems
had	 to	 be	 guessed	 from	a	 small	 set	 of	 data.	When	 a	 system	worked	normally,
staying	within	a	narrow	range	of	parameters,	engineers	made	their	observations
and	 hoped	 that	 they	 could	 extrapolate	 more	 or	 less	 linearly	 to	 less	 usual
behavior.	But	scientists	studying	fractal	basin	boundaries	showed	that	the	border
between	 calm	 and	 catastrophe	 could	 be	 far	 more	 complex	 than	 anyone	 had
dreamed.	 “The	whole	 electrical	 power	 grid	 of	 the	 East	Coast	 is	 an	 oscillatory
system,	most	of	the	time	stable,	and	you’d	like	to	know	what	happens	when	you
perturb	 it,”	Yorke	 said.	 “You	need	 to	know	what	 the	boundary	 is.	The	 fact	 is,
they	have	no	idea	what	the	boundary	looks	like.”



Fractal	basin	boundaries	addressed	deep	issues	in	theoretical	physics.	Phase
transitions	were	matters	of	thresholds,	and	Peitgen	and	Richter	looked	at	one	of
the	best-studied	kinds	of	phase	transitions,	magnetization	and	nonmagnetization
in	materials.	Their	pictures	of	such	boundaries	displayed	the	peculiarly	beautiful
complexity	 that	 was	 coming	 to	 seem	 so	 natural,	 cauliflower	 shapes	 with
progressively	more	 tangled	 knobs	 and	 furrows.	As	 they	 varied	 the	 parameters
and	increased	their	magnification	of	details,	one	picture	seemed	more	and	more
random,	until	suddenly,	unexpectedly,	deep	in	the	heart	of	a	bewildering	region,
appeared	 a	 familiar	 oblate	 form,	 studded	with	 buds:	 the	Mandelbrot	 set,	 every
tendril	and	every	atom	in	place.	It	was	another	signpost	of	universality.	“Perhaps
we	should	believe	in	magic,”	they	wrote.

MICHAEL	BARNSLEY	TOOK	 a	different	 road.	He	 thought	 about	nature’s	own
images,	 particularly	 the	 patterns	 generated	 by	 living	 organisms.	 He
experimented	with	Julia	sets	and	tried	other	processes,	always	looking	for	ways
of	 generating	 even	 greater	 variability.	 Finally,	 he	 turned	 to	 randomness	 as	 the
basis	for	a	new	technique	of	modeling	natural	shapes.	When	he	wrote	about	his
technique,	he	called	 it	“the	global	construction	of	 fractals	by	means	of	 iterated
function	 systems.”	When	 he	 talked	 about	 it,	 however,	 he	 called	 it	 “the	 chaos
game.”

To	 play	 the	 chaos	 game	 quickly,	 you	 need	 a	 computer	 with	 a	 graphics
screen	and	a	 random	number	generator,	but	 in	principle	a	sheet	of	paper	and	a
coin	work	just	as	well.	You	choose	a	starting	point	somewhere	on	the	paper.	It
does	not	matter	where.	You	invent	two	rules,	a	heads	rule	and	a	tails	rule.	A	rule
tells	you	how	to	take	one	point	to	another:	“Move	two	inches	to	the	northeast,”
or	“Move	25	percent	closer	to	the	center.”	Now	you	start	flipping	the	coin	and
marking	points,	using	the	heads	rule	when	the	coin	comes	up	heads	and	the	tails
rule	 when	 it	 comes	 up	 tails.	 If	 you	 throw	 away	 the	 first	 fifty	 points,	 like	 a
blackjack	 dealer	 burying	 the	 first	 few	 cards	 in	 a	 new	 deal,	 you	 will	 find	 the
chaos	 game	 producing	 not	 a	 random	 field	 of	 dots	 but	 a	 shape,	 revealed	 with
greater	and	greater	sharpness	as	the	game	goes	on.

Barnsley’s	 central	 insight	 was	 this:	 Julia	 sets	 and	 other	 fractal	 shapes,
though	properly	viewed	as	the	outcome	of	a	deterministic	process,	had	a	second,
equally	 valid	 existence	 as	 the	 limit	 of	 a	 random	 process.	 By	 analogy,	 he
suggested,	one	could	imagine	a	map	of	Great	Britain	drawn	in	chalk	on	the	floor
of	a	room.	A	surveyor	with	standard	tools	would	find	it	complicated	to	measure
the	area	of	these	awkward	shapes,	with	fractal	coastlines,	after	all.	But	suppose
you	throw	grains	of	rice	into	the	air	one	by	one,	allowing	them	to	fall	randomly
to	 the	floor	and	counting	 the	grains	 that	 land	 inside	 the	map.	As	 time	goes	on,



the	 result	begins	 to	 approach	 the	area	of	 the	 shapes—as	 the	 limit	of	 a	 random
process.	In	dynamical	terms,	Barnsley’s	shapes	proved	to	be	attractors.

The	chaos	game	made	use	of	a	fractal	quality	of	certain	pictures,	the	quality
of	being	built	up	of	small	copies	of	the	main	picture.	The	act	of	writing	down	a
set	of	rules	to	be	iterated	randomly	captured	certain	global	information	about	a
shape,	and	the	iteration	of	the	rules	regurgitated	the	information	without	regard
to	scale.	The	more	 fractal	a	shape	was,	 in	 this	sense,	 the	simpler	would	be	 the
appropriate	 rules.	 Barnsley	 quickly	 found	 that	 he	 could	 generate	 all	 the	 now-
classic	 fractals	 from	Mandelbrot’s	 book.	Mandelbrot’s	 technique	 had	 been	 an
infinite	 succession	 of	 construction	 and	 refinement.	 For	 the	Koch	 snowflake	 or
the	Sierpiński	 gasket,	 one	would	 remove	 line	 segments	 and	 replace	 them	with
specified	figures.	By	using	the	chaos	game	instead,	Barnsley	made	pictures	that
began	as	fuzzy	parodies	and	grew	progressively	sharper.	No	refinement	process
was	necessary:	just	a	single	set	of	rules	that	somehow	embodied	the	final	shape.

Barnsley	and	his	co-workers	now	embarked	on	an	out-of–control	program
of	producing	pictures,	cabbages	and	molds	and	mud.	The	key	question	was	how
to	reverse	the	process:	given	a	particular	shape,	how	to	choose	a	set	of	rules.	The
answer,	which	 he	 called	 “collage	 theorem,”	was	 so	 inanely	 simple	 to	 describe
that	listeners	sometimes	thought	there	must	be	some	trick.	You	would	begin	with
a	 drawing	 of	 the	 shape	 you	 wanted	 to	 reproduce.	 Barnsley	 chose	 a	 black
spleenwort	 fern	 for	one	of	his	 first	 experiments,	 having	 long	been	a	 fern	buff.
Then	using	a	computer	terminal	and	a	mouse	as	pointing	device,	you	would	lay
small	copies	over	the	original	shape,	letting	them	overlap	sloppily	if	need	be.	A
highly	fractal	shape	could	easily	be	tiled	with	copies	of	itself,	a	less	fractal	shape
less	easily,	and	at	some	level	of	approximation	every	shape	could	be	tiled.



THE	CHAOS	GAME.	Each	new	point	falls	randomly,	but	gradually	the	image	of	a	fern	emerges.	All	the
necessary	information	is	encoded	in	a	few	simple	rules.

“If	the	image	is	complicated,	the	rules	will	be	complicated,”	Barnsley	said.
“On	 the	 other	 hand,	 if	 the	 object	 has	 a	 hidden	 fractal	 order	 to	 it—and	 it’s	 a
central	observation	of	Benoit’s	that	much	of	nature	does	have	this	hidden	order
—then	it	will	be	possible	with	a	few	rules	to	decode	it.	The	model,	then,	is	more
interesting	than	a	model	made	with	Euclidean	geometry,	because	we	know	that
when	you	look	at	the	edge	of	a	leaf	you	don’t	see	straight	lines.”	His	first	fern,
produced	with	a	small	desktop	computer,	perfectly	matched	the	image	in	the	fern
book	he	had	since	he	was	a	child.	“It	was	a	staggering	 image,	correct	 in	every
aspect.	No	biologist	would	have	any	trouble	identifying	it.”

In	some	sense,	Barnsley	contended,	nature	must	be	playing	its	own	version
of	the	chaos	game.	“There’s	only	so	much	information	in	the	spore	that	encodes
one	 fern,”	 he	 said.	 “So	 there’s	 a	 limit	 to	 the	 elaborateness	 with	 which	 a	 fern
could	grow.	It’s	not	surprising	that	we	can	find	equivalent	succinct	information
to	describe	ferns.	It	would	be	surprising	if	it	were	otherwise.”

But	 was	 chance	 necessary?	 Hubbard,	 too,	 thought	 about	 the	 parallels
between	 the	Mandelbrot	set	and	 the	biological	encoding	of	 information,	but	he



bristled	 at	 any	 suggestion	 that	 such	 processes	 might	 depend	 on	 probability.
“There	 is	 no	 randomness	 in	 the	Mandelbrot	 set,”	 Hubbard	 said.	 “There	 is	 no
randomness	 in	 anything	 that	 I	 do.	 Neither	 do	 I	 think	 that	 the	 possibility	 of
randomness	has	any	direct	relevance	to	biology.	In	biology	randomness	is	death,
chaos	is	death.	Everything	is	highly	structured.	When	you	clone	plants,	the	order
in	which	the	branches	come	out	is	exactly	the	same.	The	Mandelbrot	set	obeys
an	 extraordinarily	 precise	 scheme	 leaving	 nothing	 to	 chance	 whatsoever.	 I
strongly	 suspect	 that	 the	 day	 somebody	 actually	 figures	 out	 how	 the	 brain	 is
organized	 they	will	 discover	 to	 their	 amazement	 that	 there	 is	 a	 coding	 scheme
for	 building	 the	 brain	 which	 is	 of	 extraordinary	 precision.	 The	 idea	 of
randomness	in	biology	is	just	reflex.”

In	Barnsley’s	technique,	however,	chance	serves	only	as	a	tool.	The	results
are	deterministic	and	predictable.	As	points	flash	across	the	computer	screen,	no
one	 can	 guess	where	 the	 next	 one	will	 appear;	 that	 depends	 on	 the	 flip	 of	 the
machine’s	 internal	coin.	Yet	somehow	the	 flow	of	 light	always	 remains	within
the	bounds	necessary	to	carve	a	shape	in	phosphorous.	To	that	extent	the	role	of
chance	is	an	illusion.	“Randomness	is	a	red	herring,”	Barnsley	said.	“It’s	central
to	 obtaining	 images	 of	 a	 certain	 invariant	 measure	 that	 live	 upon	 the	 fractal
object.	But	the	object	itself	does	not	depend	on	the	randomness.	With	probability
one,	you	always	draw	the	same	picture.

“It’s	 giving	 deep	 information,	 probing	 fractal	 objects	 with	 a	 random
algorithm.	 Just	 as,	when	we	 go	 into	 a	 new	 room,	 our	 eyes	 dance	 around	 it	 in
some	order	which	we	might	as	well	take	to	be	random,	and	we	get	a	good	idea	of
the	 room.	 The	 room	 is	 just	 what	 it	 is.	 The	 object	 exists	 regardless	 of	 what	 I
happen	to	do.”

The	Mandelbrot	set,	 in	the	same	way,	exists.	It	existed	before	Peitgen	and
Richter	 began	 turning	 it	 into	 an	 art	 form,	 before	 Hubbard	 and	 Douady
understood	 its	mathematical	 essence,	 even	 before	Mandelbrot	 discovered	 it.	 It
existed	as	soon	as	science	created	a	context—a	framework	of	complex	numbers
and	a	notion	of	 iterated	functions.	Then	 it	waited	 to	be	unveiled.	Or	perhaps	 it
existed	 even	 earlier,	 as	 soon	 as	 nature	 began	 organizing	 itself	 by	 means	 of
simple	physical	laws,	repeated	with	infinite	patience	and	everywhere	the	same.

______________
*	A	Mandelbrot	set	program	needs	just	a	few	essential	pieces.	The	main	engine	is	a	loop	of	instructions	that
takes	its	starting	complex	number	and	applies	the	arithmetical	rule	to	it.	For	the	Mandelbrot	set,	the	rule	is
this:	z→z2	+	c,	where	z	begins	at	zero	and	c	is	the	complex	number	corresponding	to	the	point	being	tested.
So,	take	0,	multiply	it	by	itself,	and	add	the	starting	number;	take	the	result—the	starting	number—multiply
it	by	itself,	and	add	the	starting	number;	take	the	new	result,	multiply	it	by	itself,	and	add	the	starting



number.	Arithmetic	with	complex	numbers	is	straightforward.	A	complex	number	is	written	with	two	parts:
for	example,	2	+	3i	(the	address	for	the	point	at	2	east	and	3	north	on	the	complex	plane).	To	add	a	pair	of
complex	numbers,	you	just	add	the	real	parts	to	get	a	new	real	part	and	the	imaginary	parts	to	get	a	new
imaginary	part:

To	multiply	two	complex	numbers,	you	multiply	each	part	of	one	number	by	each	part	of	the	other	and	add
the	four	results	together.	Because	i	multiplied	by	itself	equals	–1,	by	the	original	definition	of	imaginary
numbers,	one	term	of	the	result	collapses	into	another.

To	break	out	of	this	loop,	the	program	needs	to	watch	the	running	total.	If	the	total	heads	off	to	infinity,
moving	farther	and	farther	from	the	center	of	the	plane,	the	original	point	does	not	belong	to	the	set,	and	if
the	running	total	becomes	greater	than	2	or	smaller	than	–	2	in	either	its	real	or	imaginary	part,	it	is	surely
heading	off	to	infinity—the	program	can	move	on.	But	if	the	program	repeats	the	calculation	many	times
without	becoming	greater	than	2,	then	the	point	is	part	of	the	set.	How	many	times	depends	on	the	amount
of	magnification.	For	the	scales	accessible	to	a	personal	computer,	100	or	200	is	often	plenty,	and	1,000	is
safe.

The	program	must	repeat	this	process	for	each	of	thousands	of	points	on	a	grid,	with	a	scale	that	can	be
adjusted	for	greater	magnification.	And	the	program	must	display	its	result.	Points	in	the	set	can	be	colored
black,	other	points	white.	Or	for	a	more	vividly	appealing	picture,	the	white	points	can	be	replaced	by
colored	gradations.	If	the	iteration	breaks	off	after	ten	repetitions,	for	example,	a	program	might	plot	a	red
dot;	for	twenty	repetitions	an	orange	dot;	for	forty	repetitions	a	yellow	dot,	and	so	on.	The	choice	of	colors



and	cutoff	points	can	be	adjusted	to	suit	the	programmer’s	taste.	The	colors	reveal	the	contours	of	the
terrain	just	outside	the	set	proper.



The	Dynamical	Systems
Collective

Communication	across	the	revolutionary	divide	is	inevitably	partial.
—THOMAS	S.	KUHN



SANTA	CRUZ	was	the	newest	campus	in	the	University	of	California	system,
carved	 into	 storybook	 scenery	 an	 hour	 south	 of	 San	 Francisco,	 and	 people
sometimes	 said	 that	 it	 looked	 more	 like	 a	 national	 forest	 than	 a	 college.	 The
buildings	 were	 nestled	 among	 redwoods,	 and,	 in	 the	 spirit	 of	 the	 time,	 the
planners	endeavored	to	leave	every	tree	standing.	Little	footpaths	ran	from	place
to	 place.	 The	whole	 campus	 lay	 atop	 a	 hill,	 so	 that	 every	 so	 often	 you	would
happen	upon	the	view	south	across	the	sparkling	waves	of	Monterey	Bay.	Santa
Cruz	 opened	 in	 1966,	 and	 within	 a	 few	 years	 it	 became,	 briefly,	 the	 most
selective	 of	 the	 California	 campuses.	 Students	 associated	 it	 with	 many	 of	 the
icons	of	 the	 intellectual	avant-garde:	Norman	O.	Brown,	Gregory	Bateson,	and
Herbert	Marcuse	 lectured	 there,	 and	 Tom	 Lehrer	 sang.	 The	 school’s	 graduate
departments,	 building	 from	 scratch,	 began	 with	 an	 ambivalent	 outlook,	 and
physics	was	no	exception.	The	faculty—about	fifteen	physicists—was	energetic
and	mostly	young,	suited	to	the	mix	of	bright	nonconformists	attracted	to	Santa
Cruz.	They	were	 influenced	by	 the	 freethinking	 ideology	of	 the	 time;	yet	 they
also,	 the	 physicists,	 looked	 southward	 toward	 Caltech	 and	 realized	 that	 they
needed	to	establish	standards	and	demonstrate	their	seriousness.

One	graduate	student	whose	seriousness	no	one	doubted	was	Robert	Stetson
Shaw,	a	bearded	Boston	native	and	Harvard	graduate,	the	oldest	of	six	children
of	a	doctor	and	a	nurse,	who	in	1977	was	about	to	turn	thirty-one	years	old.	That
made	him	a	 little	older	 than	most	graduate	students,	his	Harvard	career	having
been	 interrupted	 several	 times	 for	 Army	 service,	 commune	 living,	 and	 other
impromptu	 experiences	 somewhere	 between	 those	 extremes.	He	 did	 not	 know
why	 he	 came	 to	 Santa	Cruz.	He	 had	 never	 seen	 the	 campus,	 although	 he	 had
seen	a	brochure,	with	pictures	of	 the	 redwoods	and	 language	about	 trying	new
educational	 philosophies.	 Shaw	was	 quiet—shy,	 in	 a	 forceful	 sort	 of	way.	He
was	a	good	student,	and	he	had	reached	a	point	 just,	a	 few	months	away	from
completing	 his	 doctoral	 thesis	 on	 superconductivity.	 No	 one	 was	 particularly
concerned	 that	he	was	wasting	 time	downstairs	 in	 the	physics	building	playing
with	an	analog	computer.

The	education	of	a	physicist	depends	on	a	system	of	mentors	and	protégés.
Established	 professors	 get	 research	 assistants	 to	 help	 with	 laboratory	 work	 or
tedious	calculations.	In	return	the	graduate	students	and	postdoctoral	fellows	get
shares	 of	 their	 professors’	 grant	money	 and	 bits	 of	 publication	 credit.	A	 good
mentor	 helps	 his	 student	 choose	 problems	 that	 will	 be	 both	 manageable	 and
fruitful.	 If	 the	 relationship	prospers,	 the	professor’s	 influence	helps	his	protégé
find	employment.	Often	their	names	will	be	forever	linked.	When	a	science	does
not	yet	exist,	however,	few	people	are	ready	to	teach	it.	In	1977	chaos	offered	no



mentors.	 There	were	 no	 classes	 in	 chaos,	 no	 centers	 for	 nonlinear	 studies	 and
complex	systems	research,	no	chaos	textbooks,	nor	even	a	chaos	journal.

WILLIAM	 BURKE,	 A	 SANTA	 CRUZ	 COSMOLOGIST	 and	 relativist,	 ran	 into	 his
friend	Edward	A.	Spiegel,	an	astrophysicist,	at	one	o’clock	in	the	morning	in	the
lobby	 of	 a	 Boston	 hotel,	 where	 they	 were	 attending	 a	 conference	 on	 general
relativity.	 “Hey,	 I’ve	 just	 been	 listening	 to	 the	Lorenz	 attractor,”	 Spiegel	 said.
Spiegel	had	 transmuted	 this	emblem	of	chaos,	using	some	impromptu	circuitry
connected	 to	 a	 hi-fi	 set,	 into	 a	 looping	 slide-whistle	 antimelody.	 He	 brought
Burke	into	the	bar	for	a	drink	and	explained.

Spiegel	knew	Lorenz	personally,	and	he	had	known	about	chaos	since	the
1960s.	He	had	made	 it	his	business	 to	pursue	clues	 to	 the	possibility	of	erratic
behavior	 in	 models	 of	 star	 motion,	 and	 he	 kept	 in	 touch	 with	 the	 French
mathematicians.	 Eventually,	 as	 a	 professor	 at	 Columbia	 University,	 he	 made
turbulence	 in	 space—“cosmic	 arrhythmias”—the	 focus	 of	 his	 astronomical
study.	He	had	a	 flair	 for	 captivating	his	 colleagues	with	new	 ideas,	 and	as	 the
night	wore	on	he	captivated	Burke.	Burke	was	open	to	such	things.	He	had	made
his	 reputation	 by	working	 through	 one	 of	 Einstein’s	more	 paradoxical	 gifts	 to
physics,	the	notion	of	gravity	waves	rippling	through	the	fabric	of	space-time.	It
was	 a	 highly	 nonlinear	 problem,	 with	 misbehavior	 related	 to	 the	 troublesome
nonlinearities	in	fluid	dynamics.	It	was	also	properly	abstract	and	theoretical,	but
Burke	 liked	down-to-earth	physics,	 too,	at	one	point	publishing	a	paper	on	 the
optics	 of	 beer	 glasses:	 how	 thick	 could	 you	make	 the	 glass	 and	 still	 leave	 the
appearance	 of	 a	 full	 portion	 of	 beer.	 He	 liked	 to	 say	 that	 he	 was	 a	 bit	 of	 a
throwback	 who	 considered	 physics	 to	 be	 reality.	 Furthermore,	 he	 had	 read
Robert	May’s	paper	in	Nature,	with	its	plaintive	plea	for	more	education	about
simple	nonlinear	systems,	and	he,	too,	had	taken	a	few	hours	to	play	with	May’s
equations	on	a	calculator.	So	the	Lorenz	attractor	sounded	interesting.	He	had	no
intention	of	listening	to	it.	He	wanted	to	see	it.	When	he	returned	to	Santa	Cruz,
he	handed	Rob	Shaw	a	piece	of	paper	on	which	he	had	scrawled	a	set	of	 three
differential	equations.	Could	Shaw	put	these	on	the	analog	computer?

In	 the	 evolution	of	 computers,	 analog	machines	 represented	a	blind	alley.
They	did	not	belong	in	physics	departments,	and	the	existence	of	such	things	at
Santa	 Cruz	 was	 pure	 happenstance:	 the	 original	 plans	 for	 Santa	 Cruz	 had
included	 an	 engineering	 school;	 by	 the	 time	 the	 engineering	 school	 was
canceled,	an	eager	purchasing	agent	had	already	bought	some	equipment.	Digital
computers,	built	up	from	circuitry	that	switched	off	or	on,	zero	or	one,	no	or	yes,
gave	precise	answers	 to	 the	questions	programmers	asked,	and	 they	proved	far
more	amenable	to	 the	miniaturization	and	acceleration	of	 technology	that	ruled



the	 computer	 revolution.	 Anything	 done	 once	 on	 a	 digital	 computer	 could	 be
done	again,	with	exactly	the	same	result,	and	in	principle	could	be	done	on	any
other	digital	computer.	Analog	computers	were,	by	design,	fuzzy.	Their	building
blocks	 were	 not	 yes-no	 switches	 but	 electronic	 circuits	 like	 resistors	 and
capacitors—instantly	familiar	to	anyone	who	played	with	radios	in	the	era	before
solid-state,	 as	Shaw	had.	The	machine	 at	Santa	Cruz	was	 a	Systron-Donner,	 a
heavy,	dusty	thing	with	a	patch	panel	for	its	front,	like	the	patch	panels	used	by
old–fashioned	telephone	switchboards.	Programming	the	analog	computer	was	a
matter	 of	 choosing	 electronic	 components	 and	 plugging	 cords	 into	 the	 patch
panel.

By	building	up	various	combinations	of	circuitry,	a	programmer	simulates
systems	 of	 differential	 equations	 in	 ways	 that	 happen	 to	 be	 well-suited	 to
engineering	 problems.	 Say	 you	want	 to	model	 an	 automobile	 suspension	with
springs,	 dampers,	 and	 mass,	 to	 design	 the	 smoothest	 ride.	 Oscillations	 in	 the
circuitry	can	be	made	to	correspond	to	the	oscillations	in	the	physical	system.	A
capacitor	takes	the	place	of	a	spring,	inductors	represent	mass,	and	so	forth.	The
calculations	are	not	precise.	Numerical	computation	is	sidestepped.	Instead	you
have	 a	model	made	of	metal	 and	 electrons,	 quite	 fast	 and—best	 of	 all—easily
adjustable.	Simply	by	turning	knobs,	you	can	adjust	variables,	making	the	spring
stronger	 or	 the	 friction	weaker.	And	 you	 can	watch	 the	 results	 change	 in	 real
time,	patterns	traced	across	the	screen	of	an	oscilloscope.

Upstairs	 in	 the	 superconductivity	 laboratory,	 Shaw	 was	 making	 his
desultory	way	to	the	end	of	his	thesis	work.	But	he	was	beginning	to	spend	more
and	more	 time	playing	with	 the	Systron-Donner.	He	had	got	 far	enough	 to	see
phase-space	 portraits	 of	 some	 simple	 systems—representations	 of	 periodic
orbits,	or	limit	cycles.	If	he	had	seen	chaos,	in	the	form	of	strange	attractors,	he
certainly	had	not	recognized	it.	The	Lorenz	equations,	handed	to	him	on	a	piece
of	paper,	were	no	more	complicated	than	the	systems	he	had	been	tinkering	with.
It	took	just	a	few	hours	to	patch	in	the	right	cords	and	adjust	the	knobs.	A	few
minutes	 later,	 Shaw	 knew	 that	 he	 would	 never	 finish	 his	 superconductivity
thesis.

He	 spent	 several	 nights	 in	 that	 basement,	 watching	 the	 green	 dot	 of	 the
oscilloscope	 flying	 around	 the	 screen,	 tracing	 over	 and	 over	 the	 characteristic
owl’s	mask	of	the	Lorenz	attractor.	The	flow	of	the	shape	stayed	on	the	retina,	a
flickering,	fluttering	thing,	unlike	any	object	Shaw’s	research	had	shown	him.	It
seemed	to	have	a	life	of	its	own.	It	held	the	mind	just	as	a	flame	does,	by	running
in	patterns	that	never	repeat.	The	imprecision	and	not-quite–repeatability	of	the
analog	 computer	 worked	 to	 Shaw’s	 advantage.	 He	 quickly	 saw	 the	 sensitive
dependence	on	initial	conditions	that	persuaded	Edward	Lorenz	of	the	futility	of



longterm	weather	 forecasting.	He	would	 set	 the	 initial	 conditions,	 push	 the	 go
button,	 and	 off	 the	 attractor	 would	 go.	 Then	 he	 would	 set	 the	 same	 initial
conditions	 again—as	 close	 as	 physically	 possible—and	 the	 orbit	 would	 sail
merrily	away	from	its	previous	course,	yet	end	up	on	the	same	attractor.

As	a	child,	Shaw	had	illusions	of	what	science	would	be	like—dashing	off
romantically	into	the	unknown.	This	was	finally	a	kind	of	exploration	that	lived
up	to	his	illusions.	Low-temperature	physics	was	fun	from	a	tinkerer’s	point	of
view,	with	plenty	of	plumbing	and	big	magnets,	liquid	helium	and	dials.	But	for
Shaw	it	was	leading	nowhere.	Soon	he	moved	the	analog	computer	upstairs,	and
the	room	was	never	used	for	superconductivity	again.

“ALL	YOU	HAVE	TO	DO	is	put	your	hands	on	these	knobs,	and	suddenly	you
are	exploring	in	this	other	world	where	you	are	one	of	the	first	travelers	and	you
don’t	want	to	come	up	for	air,”	said	Ralph	Abraham,	a	professor	of	mathematics
who	dropped	by	 in	 the	early	days	 to	watch	 the	Lorenz	attractor	 in	motion.	He
had	been	with	Steve	Smale	in	the	most	glorious	early	days	at	Berkeley,	and	so	he
was	one	of	very	few	members	of	the	Santa	Cruz	faculty	with	a	background	that
would	let	him	grasp	the	significance	of	Shaw’s	game-playing.	His	first	reaction
was	astonishment	at	the	speed	of	the	display—and	Shaw	pointed	out	that	he	was
using	 extra	 capacitors	 to	 keep	 it	 from	 running	 even	 faster.	 The	 attractor	 was
robust,	too.	The	imprecision	of	the	analog	circuitry	proved	that—the	tuning	and
tweaking	 of	 knobs	 did	 not	 make	 the	 attractor	 vanish,	 did	 not	 turn	 it	 into
something	 random,	but	 turned	 it	 or	 bent	 it	 in	ways	 that	 slowly	began	 to	make
sense.	“Rob	had	the	spontaneous	experience	where	a	little	exploration	reveals	all
the	 secrets,”	 Abraham	 said.	 “All	 the	 important	 concepts—the	 Lyapunov
exponent,	the	fractal	dimension—would	just	naturally	occur	to	you.	You	would
see	it	and	start	exploring.”

Was	 this	 science?	 It	 certainly	 was	 not	 mathematics,	 this	 computer	 work
with	 no	 formalisms	 or	 proofs,	 and	 no	 amount	 of	 sympathetic	 encouragement
from	people	like	Abraham	could	change	that.	The	physics	faculty	saw	no	reason
to	 think	 it	 was	 physics,	 either.	 Whatever	 it	 was,	 it	 drew	 an	 audience.	 Shaw
usually	 left	 his	 door	 open,	 and	 it	 happened	 that	 the	 entrance	 to	 the	 physics
department	was	 just	 across	 the	 hall.	 The	 foot	 traffic	was	 considerable.	 Before
long,	he	found	himself	with	company.

The	 group	 that	 came	 to	 call	 itself	 the	 Dynamical	 Systems	 Collective—
others	 sometimes	 called	 it	 the	 Chaos	 Cabal—depended	 on	 Shaw	 as	 its	 quiet
center.	He	suffered	from	a	certain	diffidence	in	putting	his	ideas	forward	in	the
academic	 marketplace;	 fortunately	 for	 him,	 his	 new	 associates	 had	 no	 such
problem.	They,	meanwhile,	often	 returned	 to	his	 steady	vision	of	how	 to	carry



out	an	unplanned	program	of	exploring	an	unrecognized	science.
Doyne	Farmer,	a	 tall,	angular,	and	sandy-haired	Texas	native,	became	 the

group’s	most	 articulate	 spokesman.	 In	 1977	 he	was	 twenty-four	 years	 old,	 all
energy	 and	 enthusiasm,	 a	 machine	 for	 ideas.	 Those	 who	 met	 him	 sometimes
suspected	at	first	that	he	was	all	hot	air.	Norman	Packard,	three	years	younger,	a
boyhood	friend	who	had	grown	up	in	the	same	New	Mexico	town,	Silver	City,
arrived	at	Santa	Cruz	that	fall,	just	as	Farmer	was	beginning	a	year	off	to	devote
all	his	energy	to	his	plan	for	applying	the	laws	of	motion	to	the	game	of	roulette.
This	 enterprise	 was	 as	 earnest	 as	 it	 was	 far-fetched.	 For	 more	 than	 a	 decade
Farmer	 and	 a	 changing	 cast	 of	 fellow	 physicists,	 professional	 gamblers,	 and
hangers-on	pursued	the	roulette	dream.	Farmer	did	not	give	 it	up	even	after	he
joined	 the	 Theoretical	 Division	 of	 Los	 Alamos	 National	 Laboratory.	 They
calculated	 tilts	 and	 trajectories,	wrote	 and	 rewrote	 custom	 software,	 embedded
computers	in	shoes	and	made	nervous	forays	into	gambling	casinos.	But	nothing
quite	 worked	 as	 planned.	 At	 one	 time	 or	 another,	 all	 the	 members	 of	 the
collective	but	Shaw	 lent	 their	 energy	 to	 roulette,	 and	 it	 had	 to	be	 said	 that	 the
project	gave	 them	unusual	 training	 in	 the	 rapid	analysis	of	dynamical	 systems,
but	it	did	little	to	reassure	the	Santa	Cruz	physics	faculty	that	Farmer	was	taking
science	seriously.

The	fourth	member	of	 the	group	was	James	Crutchfield,	 the	youngest	and
the	 only	 native	 Californian.	 He	 was	 short	 and	 powerfully	 built,	 a	 stylish
windsurfer	 and,	 most	 important	 for	 the	 collective,	 an	 instinctive	 master	 of
computing.	Crutchfield	 came	 to	 Santa	Cruz	 as	 an	 undergraduate,	worked	 as	 a
laboratory	assistant	on	Shaw’s	pre-chaos	superconductivity	experiments,	spent	a
year	 commuting	 “over	 the	hill,”	 as	 they	 said	 in	Santa	Cruz,	 to	 a	 job	 at	 IBM’s
research	center	in	San	Jose,	and	did	not	actually	join	the	physics	department	as	a
graduate	 student	 until	 1980.	 By	 then	 he	 had	 spent	 two	 years	 hanging	 around
Shaw’s	 laboratory	 and	 rushing	 to	 pick	 up	 the	 mathematics	 he	 needed	 to
understand	 dynamical	 systems.	 Like	 the	 rest	 of	 the	 group,	 he	 left	 the
department’s	standard	track	behind.

It	was	spring	in	1978	before	 the	department	quite	believed	that	Shaw	was
abandoning	his	superconductivity	thesis.	He	was	so	close	to	finishing.	No	matter
how	 bored	 he	 was,	 the	 faculty	 reasoned	 that	 he	 could	 rush	 through	 the
formalities,	get	his	doctorate	and	move	on	to	the	real	world.	As	for	chaos,	there
were	questions	of	 academic	 suitability.	No	one	 at	Santa	Cruz	was	qualified	 to
supervise	 a	 course	 of	 study	 in	 this	 field-without–a-name.	 No	 one	 had	 ever
received	 a	 doctorate	 in	 it.	 Certainly	 no	 jobs	were	 available	 for	 graduates	with
this	 kind	 of	 specialty.	 There	 was	 also	 the	 matter	 of	 money.	 Physics	 at	 Santa
Cruz,	 as	 at	 every	 American	 university,	 was	 financed	 mostly	 by	 the	 National



Science	 Foundation	 and	 other	 agencies	 of	 the	 federal	 government	 through
research	 grants	 to	 members	 of	 the	 faculty.	 The	 Navy,	 the	 Air	 Force,	 the
Department	 of	 Energy,	 the	 Central	 Intelligence	 Agency—all	 dispensed	 vast
sums	for	pure	research,	without	necessarily	caring	about	immediate	application
to	 hydrodynamics,	 aerodynamics,	 energy,	 or	 intelligence.	 A	 faculty	 physicist
would	get	enough	 to	pay	 for	 laboratory	equipment	and	 the	salaries	of	 research
assistants—graduate	 students,	who	would	 piggy-back	 themselves	 on	 his	 grant.
He	 would	 pay	 for	 their	 photocopying,	 for	 their	 travel	 to	 meetings,	 even	 for
salaries	to	keep	them	going	in	the	summers.	Otherwise	a	student	was	financially
adrift.	This	was	the	system	from	which	Shaw,	Farmer,	Packard,	and	Crutchfield
now	cut	themselves	off.

When	certain	kinds	of	electronic	equipment	began	to	disappear	at	night,	it
became	prudent	to	look	for	them	in	Shaw’s	former	low-temperature	laboratory.
Occasionally	 a	 member	 of	 the	 collective	 would	 be	 able	 to	 cadge	 a	 hundred
dollars	 from	the	graduate	student	association,	or	 the	physics	department	would
find	a	way	to	appropriate	that	much.	Plotters,	converters,	electronic	filters	began
to	 accumulate.	 A	 particle	 physics	 group	 down	 the	 hall	 had	 a	 small	 digital
computer	 that	was	 destined	 for	 the	 scrapheap;	 it	 found	 its	way	 to	 Shaw’s	 lab.
Farmer	became	a	particular	specialist	in	scrounging	computer	time.	One	summer
he	 was	 invited	 to	 the	 National	 Center	 for	 Atmospheric	 Research	 in	 Boulder,
Colorado,	 where	 huge	 computers	 handle	 research	 on	 such	 tasks	 as	 global
weather	modeling,	and	his	ability	to	siphon	expensive	time	from	these	machines
stunned	the	climatologists.

The	 Santa	 Cruzians’	 tinkering	 sensibility	 served	 them	 well.	 Shaw	 had
grown	up	“gizmo-oriented.”	Packard	had	fixed	television	sets	as	a	boy	in	Silver
City.	Crutchfield	belonged	 to	 the	 first	 generation	of	mathematicians	 for	whom
the	 logic	of	computer	processors	was	a	natural	 language.	The	physics	building
itself,	in	its	shady	redwood	setting,	was	like	physics	buildings	everywhere,	with
a	universal	ambience	of	cement	floors	and	walls	that	always	needed	repainting,
but	the	room	taken	over	by	the	chaos	group	developed	its	own	atmosphere,	with
piles	of	papers	 and	pictures	of	Tahitian	 islanders	on	 the	walls	 and,	 eventually,
printouts	of	strange	attractors.	At	almost	any	hour,	though	night	was	a	safer	bet
than	morning,	 a	 visitor	 could	 see	members	 of	 the	 group	 rearranging	 circuitry,
yanking	out	patch	cords,	arguing	about	consciousness	or	evolution,	adjusting	an
oscilloscope	display,	or	just	staring	while	a	glowing	green	spot	traced	a	curve	of
light,	its	orbit	flickering	and	seething	like	something	alive.

“THE	 SAME	 THING	 REALLY	 DREW	 all	 of	 us:	 the	 notion	 that	 you	 could	 have
determinism	 but	 not	 really,”	 Farmer	 said.	 “The	 idea	 that	 all	 these	 classical



deterministic	 systems	 we’d	 learned	 about	 could	 generate	 randomness	 was
intriguing.	We	were	driven	to	understand	what	made	that	tick.

“You	 can’t	 appreciate	 the	 kind	 of	 revelation	 that	 is	 unless	 you’ve	 been
brainwashed	by	six	or	seven	years	of	a	typical	physics	curriculum.	You’re	taught
that	 there	 are	 classical	 models	 where	 everything	 is	 determined	 by	 initial
conditions,	 and	 then	 there	 are	 quantum	 mechanical	 models	 where	 things	 are
determined	but	you	have	to	contend	with	a	limit	on	how	much	initial	information
you	can	gather.	Nonlinear	was	a	word	that	you	only	encountered	in	the	back	of
the	book.	A	physics	student	would	take	a	math	course	and	the	last	chapter	would
be	on	nonlinear	 equations.	You	would	usually	 skip	 that,	 and,	 if	you	didn’t,	 all
they	 would	 do	 is	 take	 these	 nonlinear	 equations	 and	 reduce	 them	 to	 linear
equations,	so	you	just	get	approximate	solutions	anyway.	It	was	just	an	exercise
in	frustration.

“We	 had	 no	 concept	 of	 the	 real	 difference	 that	 nonlinearity	 makes	 in	 a
model.	The	idea	that	an	equation	could	bounce	around	in	an	apparently	random
way—that	was	 pretty	 exciting.	You	would	 say,	 ‘Where	 is	 this	 random	motion
coming	 from?	 I	 don’t	 see	 it	 in	 the	 equations.’	 It	 seemed	 like	 something	 for
nothing,	or	something	out	of	nothing.”

Crutchfield	said,	“It	was	a	realization	that	here	is	a	whole	realm	of	physical
experience	that	just	doesn’t	fit	in	the	current	framework.	Why	wasn’t	that	part	of
what	we	were	taught?	We	had	a	chance	to	look	around	the	immediate	world—a
world	so	mundane	it	was	wonderful—and	understand	something.”

They	 enchanted	 themselves	 and	 dismayed	 their	 professors	 with	 leaps	 to
questions	of	determinism,	 the	nature	of	 intelligence,	 the	direction	of	biological
evolution.

“The	glue	that	held	us	together	was	a	long-range	vision,”	Packard	said,	“It
was	 striking	 to	 us	 that	 if	 you	 take	 regular	 physical	 systems	 which	 have	 been
analyzed	 to	 death	 in	 classical	 physics,	 but	 you	 take	 one	 little	 step	 away	 in
parameter	space,	you	end	up	with	something	 to	which	all	of	 this	huge	body	of
analysis	does	not	apply.

“The	phenomenon	of	chaos	could	have	been	discovered	long,	 long	ago.	It
wasn’t,	 in	 part	 because	 this	 huge	 body	 of	 work	 on	 the	 dynamics	 of	 regular
motion	didn’t	 lead	 in	 that	direction.	But	 if	you	 just	 look,	 there	 it	 is.	 It	brought
home	 the	 point	 that	 one	 should	 allow	oneself	 to	 be	 guided	 by	 the	 physics,	 by
observations,	 to	 see	what	kind	of	 theoretical	 picture	one	 could	develop.	 In	 the
long	run	we	saw	the	investigation	of	complicated	dynamics	as	an	entry	point	that
might	lead	to	an	understanding	of	really,	really	complicated	dynamics.”

Farmer	said,	“On	a	philosophical	level,	it	struck	me	as	an	operational	way
to	 define	 free	 will,	 in	 a	 way	 that	 allowed	 you	 to	 reconcile	 free	 will	 with



determinism.	The	system	is	deterministic,	but	you	can’t	say	what	it’s	going	to	do
next.	At	the	same	time,	I’d	always	felt	that	the	important	problems	out	there	in
the	world	had	to	do	with	the	creation	of	organization,	in	life	or	intelligence.	But
how	 did	 you	 study	 that?	 What	 biologists	 were	 doing	 seemed	 so	 applied	 and
specific;	chemists	certainly	weren’t	doing	it;	mathematicians	weren’t	doing	it	at
all,	 and	 it	 was	 something	 that	 physicists	 just	 didn’t	 do.	 I	 always	 felt	 that	 the
spontaneous	emergence	of	self-organization	ought	to	be	part	of	physics.

“Here	 was	 one	 coin	 with	 two	 sides.	 Here	 was	 order,	 with	 randomness
emerging,	 and	 then	 one	 step	 further	 away	 was	 randomness	 with	 its	 own
underlying	order.”

SHAW	AND	HIS	COLLEAGUES	had	to	turn	their	raw	enthusiasm	into	a	scientific
program.	They	had	 to	ask	questions	 that	could	be	answered	and	 that	would	be
worth	 answering.	 They	 sought	 ways	 of	 connecting	 theory	 and	 experiment—
there,	 they	 felt,	 was	 a	 gap	 that	 needed	 to	 be	 closed.	 Before	 they	 could	 even
begin,	they	had	to	learn	what	was	known	and	what	was	not,	and	this	itself	was	a
formidable	challenge.

They	were	hindered	by	the	tendency	of	communication	to	travel	piecemeal
in	 science,	 particularly	 when	 a	 new	 subject	 jumps	 across	 the	 established
subdisciplines.	Often	they	had	no	idea	whether	they	were	on	new	or	old	territory.
One	 invaluable	 antidote	 to	 their	 ignorance	 was	 Joseph	 Ford,	 an	 advocate	 of
chaos	 at	 the	 Georgia	 Institute	 of	 Technology.	 Ford	 had	 already	 decided	 that
nonlinear	 dynamics	was	 the	 future	 of	 physics—the	 entire	 future—and	 had	 set
himself	up	as	a	clearinghouse	of	information	on	journal	articles.	His	background
was	 in	 nondissipative	 chaos,	 the	 chaos	 of	 astronomical	 systems	 or	 of	 particle
physics.	He	had	an	unusually	intimate	knowledge	of	the	work	being	done	by	the
Soviet	school,	and	he	made	it	his	business	to	seek	out	connections	with	anyone
who	 remotely	 shared	 the	 philosophical	 spirit	 of	 this	 new	 enterprise.	 He	 had
friends	 everywhere.	 Any	 scientist	 who	 sent	 in	 a	 paper	 on	 nonlinear	 science
would	have	his	work	summarized	on	Ford’s	growing	list	of	abstracts.	The	Santa
Cruz	 students	 found	 out	 about	 Ford’s	 list	 and	 made	 up	 a	 form	 postcard	 for
requesting	prepublication	copies	of	articles.	Soon	the	preprints	flooded	in.

They	 realized	 that	many	 sorts	 of	 questions	 could	 be	 asked	 about	 strange
attractors.	 What	 are	 their	 characteristic	 shapes?	 What	 is	 their	 topological
structure?	 What	 does	 the	 geometry	 reveal	 about	 the	 physics	 of	 the	 related
dynamical	systems?	The	first	approach	was	the	hands-on	exploration	that	Shaw
began	with.	Much	of	the	mathematical	literature	dealt	directly	with	structure,	but
the	mathematical	approach	struck	Shaw	as	too	detailed—still	too	many	trees	and
not	enough	forest.	As	he	worked	his	way	through	the	literature,	he	felt	 that	the



mathematicians,	deprived	by	their	own	traditions	of	the	new	tools	of	computing,
had	been	buried	in	the	particular	complexities	of	orbit	structures,	infinities	here
and	 discontinuities	 there.	 The	 mathematicians	 had	 not	 cared	 especially	 about
analog	 fuzziness—from	 the	physicist’s	 point	 of	view,	 the	 fuzziness	 that	 surely
controlled	real-world	systems.	Shaw	saw	on	his	oscilloscope	not	 the	 individual
orbits	but	an	envelope	in	which	the	orbits	were	embedded.	It	was	the	envelope
that	 changed	 as	 he	 gently	 turned	 the	 knobs.	 He	 could	 not	 give	 a	 rigorous
explanation	 of	 the	 folds	 and	 twists	 in	 the	 language	 of	mathematical	 topology.
Yet	he	began	to	feel	that	he	understood	them.

A	physicist	wants	to	make	measurements.	What	was	there	in	these	elusive
moving	 images	 to	 measure?	 Shaw	 and	 the	 others	 tried	 to	 isolate	 the	 special
qualities	 that	 made	 strange	 attractors	 so	 enchanting.	 Sensitive	 dependence	 on
initial	 conditions—the	 tendency	 of	 nearby	 trajectories	 to	 pull	 away	 from	 one
another.	 This	 was	 the	 quality	 that	 made	 Lorenz	 realize	 that	 deterministic
longterm	weather	forecasting	was	an	impossibility.	But	where	were	the	calipers
to	gauge	such	a	quality?	Could	unpredictability	itself	be	measured?

The	 answer	 to	 this	 question	 lay	 in	 a	 Russian	 conception,	 the	 Lyapunov
exponent.	This	number	provided	a	measure	of	just	the	topological	qualities	that
corresponded	to	such	concepts	as	unpredictability.	The	Lyapunov	exponents	in	a
system	 provided	 a	 way	 of	 measuring	 the	 conflicting	 effects	 of	 stretching,
contracting,	and	folding	in	the	phase	space	of	an	attractor.	They	gave	a	picture	of
all	 the	 properties	 of	 a	 system	 that	 lead	 to	 stability	 or	 instability.	An	 exponent
greater	than	zero	meant	stretching—nearby	points	would	separate.	An	exponent
smaller	than	zero	meant	contraction.	For	a	fixed-point	attractor,	all	the	Lyapunov
exponents	were	negative,	since	the	direction	of	pull	was	inward	toward	the	final
steady	 state.	An	 attractor	 in	 the	 form	 of	 a	 periodic	 orbit	 had	 one	 exponent	 of
exactly	 zero	 and	 other	 exponents	 that	 were	 negative.	 A	 strange	 attractor,	 it
turned	out,	had	to	have	at	least	one	positive	Lyapunov	exponent.

To	their	chagrin,	the	Santa	Cruz	students	did	not	invent	this	idea,	but	they
developed	 it	 in	 the	 most	 practical	 ways	 possible,	 learning	 how	 to	 measure
Lyapunov	 exponents	 and	 relate	 them	 to	 other	 important	 properties.	 They	 used
computer	 animation	 to	 make	movies	 illustrating	 the	 beating	 together	 of	 order
and	 chaos	 in	 dynamical	 systems.	 Their	 analysis	 showed	 vividly	 how	 some
systems	 could	 create	 disorder	 in	 one	 direction	 while	 remaining	 trim	 and
methodical	 in	 another.	One	movie	 showed	what	 happened	 to	 a	 tiny	 cluster	 of
nearby	 points—representing	 initial	 conditions—on	 a	 strange	 attractor	 as	 the
system	evolved	in	time.	The	cluster	began	to	spread	out	and	lose	focus.	It	turned
into	a	dot	and	then	a	blob.	For	certain	kinds	of	attractors,	the	blob	would	quickly
spread	 all	 over.	 Such	 attractors	 were	 efficient	 at	 mixing.	 For	 other	 attractors,



though,	 the	 spreading	would	 only	 occur	 in	 certain	 directions.	 The	 blob	would
become	a	band,	chaotic	along	one	axis	and	orderly	along	another.	It	was	as	if	the
system	 had	 an	 orderly	 impulse	 and	 a	 disorderly	 one	 together,	 and	 they	 were
decoupling.	As	one	impulse	led	to	random	unpredictability,	 the	other	kept	time
like	a	precise	clock.	Both	impulses	could	be	defined	and	measured.

CHAOTIC	MIXING.	One	blob	mixes	rapidly;	another	blob,	just	a	bit	closer	to	the	center,	barely	mixes	at
all.	 In	 experiments	 by	 Julio	M.	Ottino	 and	 others	with	 real	 fluids,	 the	 process	 of	mixing—ubiquitous	 in
nature	 and	 industry,	 yet	 still	 poorly	 understood—proved	 intimately	 bound	 up	 with	 the	 mathematics	 of
chaos.	The	patterns	revealed	a	stretching	and	folding	that	led	back	to	the	horseshoe	map	of	Smale.

THE	 MOST	 CHARACTERISTICALLY	 Santa	 Cruzian	 imprint	 on	 chaos	 research
involved	a	piece	of	mathematics	cum	philosophy	known	as	information	theory,
invented	 in	 the	 late	 1940s	 by	 a	 researcher	 at	 the	Bell	Telephone	Laboratories,
Claude	 Shannon.	 Shannon	 called	 his	 work	 “The	 Mathematical	 Theory	 of
Communication,”	but	 it	 concerned	a	 rather	 special	quantity	called	 information,
and	 the	 name	 information	 theory	 stuck.	 The	 theory	 was	 a	 product	 of	 the
electronic	 age.	 Communication	 lines	 and	 radio	 transmissions	 were	 carrying	 a
certain	 thing,	 and	 computers	would	 soon	 be	 storing	 this	 same	 thing	 on	 punch



cards	or	magnetic	cylinders,	and	the	thing	was	neither	knowledge	nor	meaning.
Its	basic	units	were	not	ideas	or	concepts	or	even,	necessarily,	words	or	numbers.
This	 thing	 could	 be	 sense	 or	 nonsense—but	 the	 engineers	 and	mathematicians
could	measure	it,	transmit	it,	and	test	the	transmission	for	accuracy.	Information
proved	as	good	a	word	as	any,	but	people	had	to	remember	that	they	were	using
a	 specialized	value-free	 term	without	 the	usual	 connotations	of	 facts,	 learning,
wisdom,	understanding,	enlightenment.

Hardware	 determined	 the	 shape	 of	 the	 theory.	 Because	 information	 was
stored	in	binary	on-off	switches	newly	designated	as	bits,	bits	became	the	basic
measure	 of	 information.	 From	 a	 technical	 point	 of	 view,	 information	 theory
became	a	handle	for	grasping	how	noise	in	the	form	of	random	errors	interfered
with	the	flow	of	bits.	It	gave	a	way	of	predicting	the	necessary	carrying	capacity
of	 communication	 lines	 or	 compact	 disks	 or	 any	 technology	 that	 encoded
language,	 sounds,	 or	 images.	 It	 offered	 a	 theoretical	 means	 of	 reckoning	 the
effectiveness	 of	 different	 schemes	 for	 correcting	 errors—for	 example,	 using
some	 bits	 as	 checks	 on	 others.	 It	 put	 teeth	 into	 the	 crucial	 notion	 of
“redundancy.”	 In	 terms	 of	 Shannon’s	 information	 theory,	 ordinary	 language
contains	 greater	 than	 fifty	 percent	 redundancy	 in	 the	 form	of	 sounds	or	 letters
that	 are	not	 strictly	necessary	 to	 conveying	 a	message.	This	 is	 a	 familiar	 idea;
ordinary	 communication	 in	 a	 world	 of	 mumblers	 and	 typographical	 errors
depends	on	redundancy.	The	famous	advertisement	for	shorthand	training—if	u
cn	rd	 ths	msg…—illustrated	 the	point,	and	 information	 theory	allowed	 it	 to	be
measured.	Redundancy	 is	a	predictable	departure	 from	 the	 random.	Part	of	 the
redundancy	 in	 ordinary	 language	 lies	 in	 its	 meaning,	 and	 that	 part	 is	 hard	 to
quantify,	depending	as	 it	does	on	people’s	shared	knowledge	of	 their	 language
and	the	world.	This	is	the	part	that	allows	people	to	solve	crossword	puzzles	or
fill	 in	 the	 missing	 word	 at	 the	 end	 of	 a.	 But	 other	 kinds	 of	 redundancy	 lend
themselves	more	easily	 to	numerical	measures.	Statistically,	 the	 likelihood	 that
any	 letter	 in	 English	 will	 be	 “e”	 is	 far	 greater	 than	 one	 in	 twenty-six.
Furthermore,	 letters	do	not	have	 to	be	counted	as	 isolated	units.	Knowing	 that
one	letter	in	an	English	text	is	“t”	helps	in	predicting	that	the	next	might	be	“h”
or	 “o,”	 and	 knowing	 two	 letters	 helps	 even	 more,	 and	 so	 on.	 The	 statistical
tendency	of	various	two–	and	three-letter	combinations	to	turn	up	in	a	language
goes	a	long	way	toward	capturing	some	characteristic	essence	of	the	language.	A
computer	 guided	 only	 by	 the	 relative	 likelihood	 of	 the	 possible	 sequences	 of
three	 letters	 can	 produce	 an	 otherwise	 random	 stream	 of	 nonsense	 that	 is
recognizably	 English	 nonsense.	 Cryptologists	 have	 long	 made	 use	 of	 such
statistical	patterns	in	breaking	simple	codes.	Communications	engineers	now	use
them	in	devising	techniques	to	compress	data,	removing	the	redundancy	to	save



space	on	a	transmission	line	or	storage	disk.	To	Shannon,	the	right	way	to	look
at	 such	 patterns	 was	 this:	 a	 stream	 of	 data	 in	 ordinary	 language	 is	 less	 than
random;	each	new	bit	is	partly	constrained	by	the	bits	before;	thus	each	new	bit
carries	somewhat	less	than	a	bit’s	worth	of	real	information.	There	was	a	hint	of
paradox	floating	in	this	formulation.	The	more	random	a	data	stream,	the	more
information	would	be	conveyed	by	each	new	bit.

Beyond	its	technical	aptness	to	the	beginning	of	the	computer	era,	Shannon
information	 theory	gained	a	modest	philosophical	stature,	and	a	surprising	part
of	 the	 theory’s	appeal	 to	people	beyond	Shannon’s	 field	could	be	attributed	 to
the	 choice	 of	 a	 single	 word:	 entropy.	 As	 Warren	 Weaver	 put	 it	 in	 a	 classic
exposition	 of	 information	 theory,	 “When	 one	meets	 the	 concept	 of	 entropy	 in
communication	theory,	he	has	a	right	to	be	rather	excited—a	right	to	suspect	that
one	 has	 hold	 of	 something	 that	may	 turn	 out	 to	 be	 basic	 and	 important.”	 The
concept	of	entropy	comes	from	thermodynamics,	where	it	serves	as	an	adjunct	of
the	 Second	 Law,	 the	 inexorable	 tendency	 of	 the	 universe,	 and	 any	 isolated
system	in	 it,	 to	slide	 toward	a	state	of	 increasing	disorder.	Divide	a	swimming
pool	in	half	with	some	barrier;	fill	one	half	with	water	and	one	with	ink;	wait	for
all	 to	be	still;	 lift	 the	barrier;	 simply	 through	 the	 random	motion	of	molecules,
eventually	the	ink	and	water	will	mix.	The	mixing	never	reverses	itself,	even	if
you	wait	 till	 the	end	of	 the	universe,	which	is	why	the	Second	Law	is	so	often
said	 to	be	 the	part	of	physics	 that	makes	 time	a	one-way	street.	Entropy	 is	 the
name	for	the	quality	of	systems	that	 increases	under	the	Second	Law—mixing,
disorder,	randomness.	The	concept	is	easier	to	grasp	intuitively	than	to	measure
in	any	real-life	situation.	What	would	be	a	reliable	test	for	the	level	of	mixing	of
two	 substances?	 One	 could	 imagine	 counting	 the	 molecules	 of	 each	 in	 some
sample.	But	what	if	they	were	arranged	yes-no–yes-no–yes-no–yes-no?	Entropy
could	hardly	be	described	as	high.	One	could	count	just	the	even	molecules,	but
what	 if	 the	arrangement	were	yes-no–no-yes–yes-no–no-yes?	Order	 intrudes	 in
ways	 that	 defy	 any	 straightforward	 counting	 algorithm.	 And	 in	 information
theory,	 issues	 of	 meaning	 and	 representation	 present	 extra	 complications.	 A
sequence	like	01	0100	0100	0010	111	010	11	00	000	0010	111	010	11	0100	0
000	000…might	seem	orderly	only	to	an	observer	familiar	with	Morse	code	and
Shakespeare.	 And	 what	 about	 the	 topologically	 perverse	 patterns	 of	 a	 strange
attractor?

To	Robert	Shaw,	strange	attractors	were	engines	of	information.	In	his	first
and	grandest	conception,	chaos	offered	a	natural	way	of	returning	to	the	physical
sciences,	 in	 reinvigorated	 form,	 the	 ideas	 that	 information	 theory	 had	 drawn
from	thermodynamics.	Strange	attractors,	conflating	order	and	disorder,	gave	a
challenging	 twist	 to	 the	 question	 of	 measuring	 a	 system’s	 entropy.	 Strange



attractors	served	as	efficient	mixers.	They	created	unpredictability.	They	raised
entropy.	And	as	Shaw	saw	it,	they	created	information	where	none	existed.

Norman	Packard	was	 reading	Scientific	American	 one	day	and	 spotted	an
advertisement	for	an	essay	contest	called	the	Louis	Jacot	competition.	This	was
suitably	far-fetched—a	prize	lucratively	endowed	by	a	French	financier	who	had
nurtured	 a	 private	 theory	 about	 the	 structure	 of	 the	 universe,	 galaxies	 within
galaxies.	It	called	for	essays	on	Jacot’s	 theme,	whatever	 that	was.	(“It	sounded
like	a	bunch	of	crank	mail,”	Farmer	said.)	But	 judging	 the	competition	was	an
impressive	panel	drawn	 from	France’s	 scientific	 establishment,	 and	 the	money
was	 impressive	 as	 well.	 Packard	 showed	 the	 advertisement	 to	 Shaw.	 The
deadline	was	New	Year’s	Day	1978.

By	now	the	collective	was	meeting	regularly	in	an	outsized	old	Santa	Cruz
house	not	far	from	the	beach.	The	house	accumulated	flea-market	furniture	and
computer	equipment,	much	of	which	was	devoted	to	the	roulette	problem.	Shaw
kept	a	piano	there,	on	which	he	would	play	baroque	music	or	improvise	his	own
blend	of	 the	classical	and	modern.	In	 their	meetings	the	physicists	developed	a
working	style,	a	routine	of	 throwing	out	 ideas	and	filtering	them	through	some
sieve	of	practicality,	reading	the	literature,	and	conceiving	papers	of	their	own.
Eventually	 they	 learned	 to	 collaborate	 on	 journal	 articles	 in	 a	 reasonably
efficient	 round-robin	 way,	 but	 the	 first	 paper	 was	 Shaw’s,	 one	 of	 the	 few	 he
would	produce,	and	he	kept	the	writing	of	it	to	himself,	characteristically.	Also
characteristically,	it	was	late.

In	 December	 1977	 Shaw	 headed	 out	 from	 Santa	 Cruz	 to	 attend	 the	 first
meeting	 of	 the	 New	 York	 Academy	 of	 Sciences	 devoted	 to	 chaos.	 His
superconductivity	professor	paid	his	fare,	and	Shaw	arrived	uninvited	to	hear	in
person	the	scientists	he	knew	only	from	their	writing.	David	Ruelle.	Robert	May.
James	Yorke.	Shaw	was	awed	by	 these	men	and	also	by	 the	astronomical	$35
room	charge	 at	 the	Barbizon	Hotel.	Listening	 to	 the	 talks,	 he	 swung	back	 and
forth	 between	 feeling	 that	 he	 had	 been	 ignorantly	 reinventing	 ideas	 that	 these
men	had	worked	out	in	considerable	detail	and,	on	the	other	hand,	feeling	that	he
had	an	important	new	point	of	view	to	contribute.	He	had	brought	the	unfinished
draft	of	his	information	theory	paper,	scribbled	in	longhand	on	scraps	of	paper	in
a	folder,	and	he	tried	unsuccessfully	to	get	a	typewriter,	first	from	the	hotel	and
then	from	local	repair	shops.	In	the	end	he	took	his	folder	away	with	him.	Later,
when	his	friends	begged	him	for	details,	he	told	them	the	high	point	had	been	a
dinner	 in	 honor	 of	 Edward	 Lorenz,	who	was	 finally	 receiving	 the	 recognition
that	 had	 eluded	 him	 for	 so	 many	 years.	When	 Lorenz	 walked	 into	 the	 room,
shyly	 holding	 his	 wife’s	 hand,	 the	 scientists	 rose	 to	 their	 feet	 to	 give	 him	 an
ovation.	Shaw	was	struck	by	how	terrified	the	meteorologist	looked.



A	 few	weeks	 later,	 on	 a	 trip	 to	Maine,	where	 his	 parents	 had	 a	 vacation
house,	 he	 finally	 mailed	 his	 paper	 to	 the	 Jacot	 competition.	 New	 Year’s	 had
passed,	but	the	envelope	was	generously	backdated	by	the	local	postmaster.	The
paper—a	blend	of	 esoteric	mathematics	 and	 speculative	philosophy,	 illustrated
with	 cartoon-like	 drawings	 by	 Shaw’s	 brother	 Chris—won	 an	 honorable
mention.	Shaw	received	a	 large	enough	cash	prize	 to	pay	 for	a	 trip	 to	Paris	 to
collect	the	honor.	It	was	a	small	enough	achievement,	but	it	came	at	a	difficult
moment	 in	 the	group’s	 relations	with	 the	department.	They	desperately	needed
whatever	 external	 signs	 of	 credibility	 they	 could	 find.	 Farmer	 was	 giving	 up
astrophysics,	Packard	was	abandoning	statistical	mechanics,	and	Crutchfield	still
was	 not	 ready	 to	 call	 himself	 a	 graduate	 student.	 The	 department	 felt	matters
were	out	of	control.

“STRANGE	 ATTRACTORS,	 CHAOTIC	 BEHAVIOR,	 and	 Information	 Flow”
circulated	that	year	in	a	preprint	edition	that	eventually	reached	about	1,000,	the
first	painstaking	effort	to	weave	together	information	theory	and	chaos.

Shaw	brought	some	assumptions	of	classical	mechanics	out	of	the	shadows.
Energy	in	natural	systems	exists	on	two	levels:	the	macroscales,	where	everyday
objects	 can	 be	 counted	 and	 measured,	 and	 the	 microscales,	 where	 countless
atoms	 swim	 in	 random	 motion,	 unmeasurable	 except	 as	 an	 average	 entity,
temperature.	 As	 Shaw	 noted,	 the	 total	 energy	 living	 in	 the	 microscales	 could
outweigh	 the	 energy	 of	 the	macroscales,	 but	 in	 classical	 systems	 this	 thermal
motion	was	 irrelevant—isolated	 and	unusable.	The	 scales	do	not	 communicate
with	one	another.	“One	does	not	have	to	know	the	temperature	to	do	a	classical
mechanics	 problem,”	 he	 said.	 It	 was	 Shaw’s	 view,	 however,	 that	 chaotic	 and
near-chaotic	 systems	 bridged	 the	 gap	 between	 macroscales	 and	 microscales.
Chaos	was	the	creation	of	information.

One	 could	 imagine	 water	 flowing	 past	 an	 obstruction.	 As	 every
hydrodynamicist	and	white-water	canoeist	knows,	if	the	water	flows	fast	enough,
it	 produces	 whorls	 downstream.	 At	 some	 speed,	 the	 whorls	 stay	 in	 place.	 At
some	 higher	 speed,	 they	 move.	 An	 experimenter	 could	 choose	 a	 variety	 of
methods	 for	 extracting	 data	 from	 such	 a	 system,	 with	 velocity	 probes	 and	 so
forth,	but	why	not	try	something	simple:	pick	a	point	directly	downstream	from
the	obstruction	 and,	 at	 uniform	 time	 intervals,	 ask	whether	 the	whorl	 is	 to	 the
right	or	the	left.

If	the	whorls	are	static,	the	data	stream	will	look	like	this:	left-left–left-left–
left-left–left-left–left-left–left-left–left-left–left-left–left-left–left-left–.	 After	 a
while,	 the	 observer	 starts	 to	 feel	 that	 new	bits	 of	 data	 are	 failing	 to	 offer	 new
information	about	the	system.



Or	the	whorls	might	be	moving	back	and	forth	periodically:	left-right–left-
right–left-right–left-right–left-right–left-right–left-right–left-right–left-right–left-
right–.	Again,	 though	at	 first	 the	 system	seems	one	degree	more	 interesting,	 it
quickly	ceases	to	offer	any	surprises.

As	 the	 system	 becomes	 chaotic,	 however,	 strictly	 by	 virtue	 of	 its
unpredictability,	 it	 generates	 a	 steady	 stream	 of	 information.	 Each	 new
observation	 is	 a	 new	 bit.	 This	 is	 a	 problem	 for	 the	 experimenter	 trying	 to
characterize	the	system	completely.	“He	could	never	 leave	the	room,”	as	Shaw
said.	“The	flow	would	be	a	continuous	source	of	information.”

Where	is	this	information	coming	from?	The	heat	bath	of	the	microscales,
billions	of	molecules	 in	 their	 random	thermodynamic	dance.	Just	as	 turbulence
transmits	energy	 from	 large	scales	downward	 through	chains	of	vortices	 to	 the
dissipating	small	scales	of	viscosity,	so	information	is	transmitted	back	from	the
small	 scales	 to	 the	 large—at	 any	 rate,	 this	 was	 how	 Shaw	 and	 his	 colleagues
began	describing	it.	And	the	channel	transmitting	the	information	upward	is	the
strange	attractor,	magnifying	 the	 initial	 randomness	 just	as	 the	Butterfly	Effect
magnifies	small	uncertainties	into	large-scale	weather	patterns.

The	 question	 was	 how	much.	 Shaw	 found—after	 unwittingly	 duplicating
some	 of	 their	 work—that	 again	 Soviet	 scientists	 had	 been	 there	 first.	 A.	 N.
Kolmogorov	 and	Yasha	 Sinai	 had	worked	 out	 some	 illuminating	mathematics
for	the	way	a	system’s	“entropy	per	unit	time”	applies	to	the	geometric	pictures
of	 surfaces	 stretching	 and	 folding	 in	 phase	 space.	 The	 conceptual	 core	 of	 the
technique	was	a	matter	of	drawing	some	arbitrarily	small	box	around	some	set	of
initial	conditions,	as	one	might	draw	a	small	square	on	the	side	of	a	balloon,	then
calculating	the	effect	of	various	expansions	or	twists	on	the	box.	It	might	stretch
in	one	direction,	for	example,	while	remaining	narrow	in	the	other.	The	change
in	area	corresponded	to	an	introduction	of	uncertainty	about	the	system’s	past,	a
gain	or	loss	of	information.

To	 the	 extent	 that	 information	was	 just	 a	 fancy	word	 for	unpredictability,
this	 conception	 merely	 matched	 the	 ideas	 that	 such	 scientists	 as	 Ruelle	 were
developing.	But	the	information	theory	framework	allowed	the	Santa	Cruz	group
to	 adopt	 a	 body	 of	mathematical	 reasoning	 that	 had	 been	well	 investigated	 by
communications	theorists.	The	problem	of	adding	extrinsic	noise	to	an	otherwise
deterministic	system,	for	example,	was	new	in	dynamics	but	familiar	enough	in
communications.	The	real	appeal	for	these	young	scientists,	however,	was	only
partly	 the	 mathematics.	 When	 they	 spoke	 of	 systems	 generating	 information,
they	 thought	about	 the	spontaneous	generation	of	pattern	 in	 the	world.	“At	 the
pinnacle	 of	 complicated	 dynamics	 are	 processes	 of	 biological	 evolution,	 or
thought	processes,”	Packard	said.	“Intuitively	there	seems	a	clear	sense	in	which



these	 ultimately	 complicated	 systems	 are	 generating	 information.	 Billions	 of
years	ago	 there	were	 just	blobs	of	protoplasm;	now	billions	of	years	 later	here
we	 are.	 So	 information	 has	 been	 created	 and	 stored	 in	 our	 structure.	 In	 the
development	 of	 one	 person’s	mind	 from	 childhood,	 information	 is	 clearly	 not
just	 accumulated	 but	 also	 generated—created	 from	 connections	 that	 were	 not
there	before.”	 It	was	 the	kind	of	 talk	 that	 could	make	a	 sober	physicist’s	head
spin.

THEY	WERE	TINKERERS	FIRST,	 though,	and	philosophers	only	second.	Could
they	 make	 a	 bridge	 from	 the	 strange	 attractors	 they	 knew	 so	 well	 to	 the
experiments	 of	 classical	 physics?	 It	 was	 one	 thing	 to	 say	 that	 right-left–right-
right–left-right–left-left–left-right	was	unpredictable	and	information-generating.
It	 was	 quite	 another	 to	 take	 a	 stream	 of	 real	 data	 and	 measure	 its	 Lyapunov
exponent,	 its	 entropy,	 its	 dimension.	Still,	 the	Santa	Cruz	physicists	 had	made
themselves	 more	 comfortable	 with	 these	 ideas	 than	 had	 any	 of	 their	 older
colleagues.	 By	 living	 with	 strange	 attractors	 day	 and	 night,	 they	 convinced
themselves	that	they	recognized	them	in	the	flapping,	shaking,	beating,	swaying
phenomena	of	their	everyday	lives.

They	had	a	game	they	would	play,	sitting	at	a	coffeehouse.	They	would	ask:
How	 far	 away	 is	 the	 nearest	 strange	 attractor?	Was	 it	 that	 rattling	 automobile
fender?	That	flag	snapping	erratically	in	a	steady	breeze?	A	fluttering	leaf?	“You
don’t	 see	 something	 until	 you	 have	 the	 right	metaphor	 to	 let	 you	 perceive	 it,”
Shaw	 said,	 echoing	 Thomas	 S.	 Kuhn.	 Before	 long,	 their	 relativist	 friend	 Bill
Burke	was	 quite	 convinced	 that	 the	 speedometer	 in	 his	 car	was	 rattling	 in	 the
nonlinear	fashion	of	a	strange	attractor.	And	Shaw,	settling	on	an	experimental
project	 that	 would	 occupy	 him	 for	 years	 to	 come,	 adopted	 as	 homely	 a
dynamical	system	as	any	physicist	could	imagine:	a	dripping	faucet.	Most	people
imagine	 the	 canonical	 dripping	 faucet	 as	 relentlessly	 periodic,	 but	 it	 is	 not
necessarily	so,	as	a	moment	of	experimentation	reveals.	“It’s	a	simple	example
of	 a	 system	 that	 goes	 from	 predictable	 behavior	 to	 unpredictable	 behavior,”
Shaw	said.	“If	you	turn	it	up	a	little	bit,	you	can	see	a	regime	where	the	pitter-
patter	 is	 irregular.	As	 it	 turns	out,	 it’s	not	a	predictable	pattern	beyond	a	 short
time.	 So	 even	 something	 as	 simple	 as	 a	 faucet	 can	 generate	 a	 pattern	 that	 is
eternally	creative.”

As	a	generator	of	organization,	the	dripping	faucet	offers	little	to	work	with.
It	 generates	 only	 drips,	 and	 each	 drip	 is	 about	 the	 same	 as	 the	 last.	 But	 for	 a
beginning	 investigator	 of	 chaos,	 the	 dripping	 faucet	 proved	 to	 have	 certain
advantages.	Everyone	already	has	a	mental	picture	of	 it.	The	data	 stream	 is	 as
one-dimensional	as	could	be:	a	rhythmic	drumbeat	of	single	points	measured	in



time.	 None	 of	 these	 qualities	 could	 be	 found	 in	 systems	 that	 the	 Santa	 Cruz
group	 explored	 later—the	 human	 immune	 system,	 for	 example,	 or	 the
troublesome	beam-beam	effect	that	was	inexplicably	degrading	the	performance
of	 colliding	 particle	 beams	 at	 the	 Stanford	 Linear	 Accelerator	 Center	 to	 the
north.	 Experimenters	 like	 Libchaber	 and	 Swinney	 obtained	 a	 one-dimensional
data	stream	by	placing	a	probe	arbitrarily	at	one	point	in	a	slightly	more	complex
system.	In	the	dripping	faucet	the	single	line	of	data	is	all	 there	is.	And	it	 isn’t
even	a	continuously	varying	velocity	or	temperature—just	a	list	of	drip	times.

Asked	to	organize	an	attack	on	such	a	system,	a	traditional	physicist	might
begin	 by	 making	 as	 complete	 a	 physical	 model	 as	 possible.	 The	 processes
governing	the	creation	and	breaking	off	of	drips	are	understandable,	if	not	quite
so	simple	as	they	might	seem.	One	important	variable	is	the	rate	of	flow.	(This
had	to	be	slow	compared	to	most	hydrodynamic	systems.	Shaw	usually	looked	at
drop	 rates	of	1	 to	10	per	 second,	which	meant	 a	 flow	 rate	of	30	 to	300	gpf—
gallons	per	fortnight.)	Other	variables	include	the	viscosity	of	the	fluid	and	the
surface	 tension.	A	 drop	 of	water	 hanging	 from	 a	 faucet,	waiting	 to	 break	 off,
assumes	 a	 complicated	 three-dimensional	 shape,	 and	 the	 calculation	 of	 this
shape	 alone	 was,	 as	 Shaw	 said,	 “a	 state-of–the-art	 computer	 calculation.”
Furthermore,	the	shape	is	far	from	static.	A	drop	filling	with	water	is	like	a	little
elastic	 bag	 of	 surface	 tension,	 oscillating	 this	way	 and	 that,	 gaining	mass	 and
stretching	its	walls	until	it	passes	a	critical	point	and	snaps	off.	A	physicist	trying
to	model	the	drip	problem	completely—writing	down	sets	of	coupled	nonlinear
partial	 differential	 equations	 with	 appropriate	 boundary	 conditions	 and	 then
trying	to	solve	them—would	find	himself	lost	in	a	deep,	deep	thicket.

An	alternative	approach	would	be	to	forget	about	the	physics	and	look	only
at	the	data,	as	though	it	were	coming	out	of	a	black	box.	Given	a	list	of	numbers
representing	 intervals	 between	drips,	 could	 an	 expert	 in	 chaotic	 dynamics	 find
something	useful	to	say?	Indeed,	as	it	turned	out,	methods	could	be	devised	for
organizing	such	data	and	working	backward	into	the	physics,	and	these	methods
became	critical	to	the	applicability	of	chaos	to	real-world	problems.

But	 Shaw	 began	 halfway	 between	 these	 extremes,	 by	 making	 a	 sort	 of
caricature	of	a	complete	physical	model.	Ignoring	drop	shapes,	ignoring	complex
motions	in	three	dimensions,	he	roughly	summarized	drip	physics.	He	imagined
a	weight	hanging	from	a	spring.	He	imagined	that	the	weight	grew	steadily	with
time.	As	it	grew,	the	spring	would	stretch	and	the	weight	would	hang	lower	and
lower.	When	it	reached	a	certain	point,	a	portion	of	the	weight	would	break	off.
The	amount	that	would	detach,	Shaw	supposed	arbitrarily,	would	depend	strictly
on	the	speed	of	the	descending	weight	when	it	reached	the	cutoff	point.

Then,	of	course,	the	remaining	weight	would	bounce	back	up,	as	springs	do,



with	oscillations	that	graduate	students	learn	to	model	using	standard	equations.
The	 interesting	 feature	 of	 the	 model—the	 only	 interesting	 feature,	 and	 the
nonlinear	 twist	 that	 made	 chaotic	 behavior	 possible—was	 that	 the	 next	 drip
depended	on	how	the	springiness	interacted	with	the	steadily	increasing	weight.
A	down	bounce	might	help	the	weight	reach	the	cutoff	point	that	much	sooner,
or	an	up	bounce	might	delay	the	process	slightly.	With	a	real	faucet,	drops	are
not	all	the	same	size.	The	size	depends	both	on	the	velocity	of	the	flow	and	on
the	direction	of	the	bounce.	If	a	drop	starts	off	its	life	already	moving	downward,
then	it	will	break	off	sooner.	If	it	happens	to	be	on	the	rebound,	it	will	be	able	to
fill	 with	 a	 bit	 more	 water	 before	 it	 snaps.	 Shaw’s	 model	 was	 exactly	 crude
enough	to	be	summed	up	in	three	differential	equations,	the	minimum	necessary
for	 chaos,	 as	 Poincaré	 and	Lorenz	 had	 shown.	But	would	 it	 generate	 as	much
complexity	as	a	real	faucet?	And	would	the	complexity	be	of	the	same	kind?

Thus	Shaw	found	himself	sitting	in	a	 laboratory	in	 the	physics	building,	a
big	plastic	tub	of	water	over	his	head,	a	tube	running	down	to	a	premium-quality
hardware-store	brass	nozzle.	As	each	drop	fell,	it	interrupted	a	light	beam,	and	a
microcomputer	 in	 the	 next	 room	 recorded	 the	 time.	Meanwhile	 Shaw	 had	 his
three	 arbitrary	 equations	 up	 and	 running	 on	 the	 analog	 computer,	 producing	 a
stream	 of	 imaginary	 data.	 One	 day	 he	 performed	 some	 show-and–tell	 for	 the
faculty—a	“pseudocolloquium,”	 as	Crutchfield	 said,	 because	graduate	 students
were	not	permitted	to	give	formal	colloquiums.	Shaw	played	a	tape	of	a	faucet
making	 its	 drumbeat	 on	 a	 piece	 of	 tin.	And	 he	 had	 his	 computer	 going	 click-
click–click	 in	a	crisp	syncopation,	 revealing	patterns	 to	 the	ear.	He	had	solved
the	problem	simultaneously	from	front	and	back,	and	his	listeners	could	hear	the
deep	structure	in	this	seemingly	disorderly	system.	But	to	go	further,	the	group
needed	a	way	of	taking	raw	data	from	any	experiment	and	working	backward	to
equations	and	strange	attractors	that	characterized	chaos.

With	a	more	complicated	system,	one	could	 imagine	plotting	one	variable
against	 another,	 relating	 changes	 in	 temperature	 or	 velocity	 to	 the	 passage	 of
time.	But	 the	dripping	 faucet	provided	only	a	 series	of	 times.	So	Shaw	 tried	a
technique	 that	 may	 have	 been	 the	 Santa	 Cruz	 group’s	 cleverest	 and	 most
enduring	 practical	 contribution	 to	 the	 progress	 of	 chaos.	 It	 was	 a	 method	 of
reconstructing	 a	 phase	 space	 for	 an	 unseen	 strange	 attractor,	 and	 it	 could	 be
applied	 to	any	series	of	data	at	 all.	For	 the	dripping	 faucet	data,	Shaw	made	a
two-dimensional	graph	in	which	the	x	axis	represented	a	time	interval	between	a
pair	 of	 drops	 and	 the	 y	 axis	 represented	 the	 next	 time	 interval.	 If	 150
milliseconds	passed	between	drop	one	and	drop	two,	and	then	150	milliseconds
passed	between	drop	 two	and	drop	 three,	he	would	plot	a	point	at	 the	position
150–150.



That	was	all	there	was	to	it.	If	the	dripping	was	regular,	as	it	tended	to	be
when	the	water	flowed	slowly	and	the	system	was	in	 its	“water	clock	regime,”
the	graph	would	be	suitably	dull.	Every	point	would	land	at	the	same	place.	The
graph	would	be	a	single	dot.	Or	almost.	Actually,	the	first	difference	between	the
computer	dripping	faucet	and	 the	real	dripping	faucet	was	 that	 the	real	version
was	subject	to	noise,	and	exceedingly	sensitive.	“It	turns	out	that	the	thing	is	an
excellent	 seismometer,”	Shaw	 said	 ironically,	 “very	 efficient	 in	 bringing	 noise
up	from	the	little-league	scales	to	the	big-league	scales.”	Shaw	ended	up	doing
most	of	his	work	at	night,	when	foot	traffic	in	the	physics	corridors	was	lightest.
Noise	meant	that,	 instead	of	the	single	dot	predicted	by	theory,	he	would	see	a
slightly	fuzzy	blob.

As	 the	 flow	 rate	 was	 increased,	 the	 system	 would	 go	 through	 a	 period-
doubling	 bifurcation.	 Drops	 would	 fall	 in	 pairs.	 One	 interval	 might	 be	 150
milliseconds,	 and	 the	 next	 might	 be	 80.	 So	 the	 graph	 would	 show	 two	 fuzzy
blobs,	one	centered	at	150–80	and	the	other	at	80–150.	The	real	test	came	when
the	pattern	became	chaotic.	If	it	were	truly	random,	points	would	be	scattered	all
over	the	graph.	There	would	be	no	relation	to	be	found	between	one	interval	and
the	next.	But	if	a	strange	attractor	were	hidden	in	the	data,	it	might	reveal	itself
as	a	coalescence	of	fuzziness	into	distinguishable	structures.

Often	three	dimensions	were	necessary	to	see	the	structure,	but	that	was	no
problem.	 The	 technique	 could	 easily	 be	 generalized	 to	 higher-dimensional
graph-making.	Instead	of	plotting	interval	n	against	interval	n	+1,	one	could	plot
interval	n	against	interval	n	+	1	against	interval	n	+	2.	It	was	a	trick—a	gimmick.
Ordinarily	 a	 three-dimensional	graph	 required	knowledge	of	 three	 independent
variables	 in	 a	 system.	 The	 trick	 gave	 three	 variables	 for	 the	 price	 of	 one.	 It
reflected	 the	 faith	 of	 these	 scientists	 that	 order	 was	 so	 deeply	 ingrained	 in
apparent	 disorder	 that	 it	 would	 find	 a	 way	 of	 expressing	 itself	 even	 to
experimenters	who	 did	 not	 know	which	 physical	 variables	 to	measure	 or	who
were	 not	 able	 to	measure	 such	 variables	 directly.	As	Farmer	 said,	 “When	you
think	about	a	variable,	the	evolution	of	it	must	be	influenced	by	whatever	other
variables	 it’s	 interacting	with.	Their	values	must	 somehow	be	contained	 in	 the
history	of	that	thing.	Somehow	their	mark	must	be	there.”	In	the	case	of	Shaw’s
dripping	faucet	the	pictures	illustrated	the	point.	In	three	dimensions,	especially,
the	patterns	emerged,	resembling	loopy	trails	of	smoke	left	by	an	out-of–control
sky-writing	plane.	Shaw	was	able	 to	match	plots	of	 the	experimental	data	with
data	produced	by	his	analog	computer	model,	the	main	difference	being	that	the
real	data	was	always	fuzzier,	smeared	out	by	noise.	Even	so,	 the	structure	was
unmistakable.	The	Santa	Cruz	group	began	collaborating	with	such	experienced
experimentalists	as	Harry	Swinney,	who	had	moved	to	the	University	of	Texas



in	Austin,	and	 they	 learned	how	to	 retrieve	strange	attractors	 from	all	kinds	of
systems.	 It	 was	 a	 matter	 of	 embedding	 the	 data	 in	 a	 phase	 space	 of	 enough
dimensions.	Soon	Floris	Takens,	who	had	invented	strange	attractors	with	David
Ruelle,	 independently	 gave	 a	 mathematical	 foundation	 for	 this	 powerful
technique	of	reconstructing	the	phase	space	of	an	attractor	from	a	stream	of	real
data.	 As	 countless	 researchers	 soon	 discovered,	 the	 technique	 distinguishes
between	mere	 noise	 and	 chaos,	 in	 the	 new	 sense:	 orderly	 disorder	 created	 by
simple	processes.	Truly	random	data	remains	spread	out	 in	an	undefined	mess.
But	 chaos—deterministic	 and	patterned—pulls	 the	data	 into	 visible	 shapes.	Of
all	the	possible	pathways	of	disorder,	nature	favors	just	a	few.

THE	TRANSITION	FROM	REBEL	to	physicist	was	slow.	Every	so	often,	sitting	in
a	 coffeehouse	 or	 working	 in	 their	 laboratory,	 one	 or	 another	 of	 the	 students
would	have	to	fight	back	amazement	that	their	scientific	fantasy	had	not	ended.
God,	we’re	still	doing	this	and	it	still	makes	sense,	as	Jim	Crutchfield	would	say.
We’re	still	here.	How	far	is	it	going	to	go?

Their	 chief	 supporters	 on	 the	 faculty	 were	 the	 Smale	 protégé	 Ralph
Abraham	 in	 the	 mathematics	 department	 and	 in	 the	 physics	 department	 Bill
Burke,	 who	 had	 himself	 made	 “czar	 of	 the	 analog	 computer”	 to	 protect	 the
collective’s	 claim	 to	 this	 piece	 of	 equipment,	 at	 least.	 The	 rest	 of	 the	 physics
faculty	 found	 itself	 in	 a	 more	 difficult	 position.	 A	 few	 years	 later,	 some
professors	 denied	 bitterly	 that	 the	 collective	 had	 been	 forced	 to	 overcome
indifference	 or	 opposition	 from	 the	 department.	 The	 collective	 reacted	 just	 as
bitterly	to	what	it	considered	revisionist	history	on	the	part	of	belated	converts	to
chaos.	“We	had	no	advisor,	nobody	telling	us	what	to	do,”	said	Shaw.	“We	were
in	 an	 adversary	 role	 for	 years,	 and	 it	 continues	 to	 this	 day.	 We	 were	 never
funded	at	Santa	Cruz.	Every	one	of	us	worked	for	considerable	periods	of	time
without	 pay,	 and	 it	 was	 a	 shoestring	 operation	 the	 entire	 way,	 with	 no
intellectual	or	other	guidance.”

By	its	lights,	though,	the	faculty	tolerated	and	even	abetted	a	long	period	of
research	 that	 seemed	 to	 fall	 short	 of	 any	 substantial	 kind	 of	 science.	 Shaw’s
thesis	advisor	in	superconductivity	kept	him	on	salary	for	a	year	or	so,	long	after
Shaw	had	veered	away	from	low-temperature	physics.	No	one	ever	quite	ordered
the	chaos	research	to	stop.	At	worst	the	faculty	reached	an	attitude	of	benevolent
discouragement.	 Each	member	 of	 the	 collective	was	 taken	 aside	 from	 time	 to
time	 for	 heart-to–heart	 talks.	 They	were	warned	 that,	 even	 if	 somehow	 a	way
could	be	found	to	justify	doctorates,	no	one	would	be	able	to	help	the	students
find	 jobs	 in	a	nonexistent	 field.	This	may	be	a	 fad,	 the	 faculty	would	say,	and
then	where	will	you	be?	Yet	outside	the	redwood	shelter	of	the	Santa	Cruz	hills,



chaos	was	creating	its	own	scientific	establishment,	and	the	Dynamical	Systems
Collective	had	to	join	it.

One	year	Mitchell	Feigenbaum	came	by,	making	the	rounds	of	the	lecture
circuit	 to	 explain	 his	 breakthrough	 in	 universality.	 As	 always,	 his	 talks	 were
abstrusely	mathematical;	renormalization	group	theory	was	an	esoteric	piece	of
condensed	 matter	 physics	 that	 these	 students	 had	 not	 studied.	 Besides,	 the
collective	was	more	interested	in	real	systems	than	in	delicate	one-dimensional
maps.	Doyne	Farmer,	meanwhile,	heard	that	a	Berkeley	mathematician,	Oscar	E.
Lanford	 III,	 was	 exploring	 chaos,	 and	 he	 went	 up	 to	 talk.	 Lanford	 listened
politely	 and	 then	 looked	 at	 Farmer	 and	 said	 they	 had	 nothing	 in	 common.	He
was	trying	to	understand	Feigenbaum.

How	deadly!	Where’s	 the	guy’s	sense	of	scope?	Farmer	 thought.	“He	was
looking	at	these	little	orbits.	Meanwhile	we	were	into	information	theory	with	all
its	 profundity,	 taking	 chaos	 apart,	 seeing	 what	 make	 it	 tick,	 trying	 to	 relate
metric	entropy	and	Lyapunov	exponents	to	more	statistical	measures.”

In	 his	 conversation	with	 Farmer,	 Lanford	 did	 not	 emphasize	 universality,
and	 only	 later	 did	 Farmer	 realize	 that	 he	 had	 missed	 the	 point.	 “It	 was	 my
naïveté,”	 Farmer	 said.	 “The	 idea	 of	 universality	 was	 not	 just	 a	 great	 result.
Mitchell’s	 thing	was	also	a	 technique	 to	employ	a	whole	army	of	unemployed
critical	phenomena	people.

“Up	 to	 that	 point	 it	 appeared	 that	 nonlinear	 systems	 would	 have	 to	 be
treated	 in	a	 case-by–case	way.	We	were	 trying	 to	come	up	with	a	 language	 to
quantify	it	and	describe	it,	but	it	still	seemed	as	though	everything	would	have	to
be	 treated	 case	 by	 case.	We	 saw	 no	 way	 to	 put	 systems	 in	 classes	 and	 write
solutions	 that	 would	 be	 valid	 for	 the	 whole	 class,	 as	 in	 linear	 systems.
Universality	meant	finding	properties	that	were	exactly	the	same	in	quantifiable
ways	for	everything	in	that	class.	Predictable	properties.	That’s	why	it	was	really
important.

“And	there	was	a	sociological	factor	that	pumped	even	more	fuel.	Mitchell
cast	 his	 results	 in	 the	 language	 of	 renormalization.	He	 took	 all	 this	machinery
that	 people	 in	 critical	 phenomena	 had	 been	 skilled	 in	 using.	 Those	 guys	were
having	a	hard	time,	because	there	didn’t	seem	to	be	any	interesting	problems	left
for	them	to	do.	They	were	looking	around	for	something	else	to	apply	their	bag
of	 tricks	 to.	 And	 suddenly	 Feigenbaum	 came	 forward	 with	 his	 extremely
significant	application	of	this	bag	of	tricks.	It	spawned	an	entire	subdiscipline.”

Quite	 independently,	 however,	 the	Santa	Cruz	 students	 began	 to	make	 an
impression	of	 their	 own.	Within	 the	department	 their	 star	 began	 to	 rise	 after	 a
surprise	 appearance	 at	 a	 midwinter	 meeting	 in	 condensed	 matter	 physics	 in
Laguna	 Beach	 in	 1978,	 organized	 by	 Bernardo	 Huberman	 of	 the	 Xerox	 Palo



Alto	Research	Center	 and	Stanford	University.	The	 collective	was	not	 invited,
but	it	went	nonetheless,	bundling	itself	into	Shaw’s	1959	Ford	ranch-style	station
wagon,	 an	 automobile	 known	 as	 the	 Cream	 Dream.	 Just	 in	 case,	 the	 group
brought	 some	equipment,	 including	a	huge	 television	monitor	and	a	videotape.
When	an	invited	speaker	canceled	at	the	last	minute,	Huberman	invited	Shaw	to
take	 his	 place.	 The	 timing	 was	 perfect.	 Chaos	 had	 attained	 the	 status	 of
buzzword,	 but	 few	 of	 the	 physicists	 attending	 the	 conference	 knew	 what	 it
meant.	So	Shaw	began	by	explaining	attractors	in	phase	space:	first	fixed	points
(where	 everything	 stops);	 then	 limit	 cycles	 (where	 everything	 oscillates);	 then
strange	attractors	(everything	else).	He	demonstrated	with	his	computer	graphics
on	 videotape.	 (“Audiovisual	 aids	 gave	 us	 an	 edge,”	 he	 said.	 “We	 could
hypnotize	 them	with	 flashing	 lights.”)	He	 illuminated	 the	Lorenz	 attractor	 and
the	dripping	faucet.	He	explained	 the	geometry—how	shapes	are	stretched	and
folded,	and	what	 that	meant	 in	 the	grand	 terms	of	 information	 theory.	And	for
good	measure,	he	put	 in	a	 few	words	at	 the	end	about	shifting	paradigms.	The
talk	was	 a	 popular	 triumph,	 and	 in	 the	 audience	were	 several	members	 of	 the
Santa	 Cruz	 faculty,	 seeing	 chaos	 for	 the	 first	 time	 through	 the	 eyes	 of	 their
colleagues.

IN	 1979	 THE	 WHOLE	 GROUP	 attended	 the	 second	 chaos	meeting	 of	 the	New
York	 Academy	 of	 Sciences,	 this	 time	 as	 participants,	 and	 now	 the	 field	 was
exploding.	 The	 1977	 meeting	 had	 been	 Lorenz’s,	 attended	 by	 specialists
numbering	 in	 the	dozens.	This	meeting	was	Feigenbaum’s,	and	scientists	came
by	 the	 hundreds.	Where	 two	 years	 earlier	Rob	Shaw	had	 shyly	 tried	 to	 find	 a
typewriter	so	that	he	could	produce	a	paper	to	leave	under	people’s	doors,	now
the	 Dynamical	 Systems	 Collective	 had	 become	 a	 virtual	 printing	 press,
producing	papers	rapidly	and	always	under	joint	authorship.

But	 the	 collective	 could	not	 go	on	 forever.	The	 closer	 it	 came	 to	 the	 real
world	of	science,	the	closer	it	came	to	unraveling.	One	day	Bernardo	Huberman
called.	He	asked	for	Rob	Shaw,	but	he	happened	to	get	Crutchfield.	Huberman
needed	 a	 collaborator	 for	 a	 tight,	 simple	 paper	 about	 chaos.	 Crutchfield,	 the
youngest	member	of	the	collective,	concerned	about	being	thought	of	as	merely
its	“hacker,”	was	beginning	to	realize	that	in	one	respect	the	Santa	Cruz	faculty
had	been	right	all	along:	each	of	the	students	was	someday	going	to	have	to	be
judged	as	an	individual.	Huberman,	furthermore,	had	all	the	sophistication	about
the	profession	of	physics	that	the	students	lacked,	and	in	particular	he	knew	how
to	get	the	most	mileage	from	a	given	piece	of	work.	He	had	his	doubts,	having
seen	 their	 laboratory—“It	was	all	very	vague,	you	know,	 sofas	and	bean	bags,
like	stepping	into	a	time	machine,	flower	children	and	the	1960s	again.”	But	he



needed	an	analog	computer,	and	in	fact	Crutchfield	managed	to	get	his	research
program	running	in	hours.	The	collective	was	a	problem,	though.	“All	the	guys
want	in,”	Crutchfield	said	at	one	point,	and	Huberman	said	absolutely	not.	“It’s
not	just	the	credit,	it’s	the	blame.	Suppose	the	paper	is	wrong—you’re	going	to
blame	a	 collective?	 I’m	not	 part	 of	 a	 collective.”	He	wanted	one	partner	 for	 a
clean	job.

The	 result	 was	 just	 what	 Huberman	 had	 hoped	 for:	 the	 first	 paper	 about
chaos	 to	 be	 published	 in	 the	 premier	 American	 journal	 for	 reporting
breakthroughs	in	physics,	Physical	Review	Letters.	In	terms	of	scientific	politics
this	 was	 a	 nontrivial	 achievement.	 “To	 us	 it	 was	 fairly	 obvious	 stuff,”
Crutchfield	said,	“but	what	Bernardo	understood	was	that	it	would	have	a	huge
impact.”	 It	 was	 also	 one	 beginning	 of	 the	 group’s	 assimilation	 into	 the	 real
world.	Farmer	was	angered,	seeing	in	Crutchfielďs	defection	an	undermining	of
the	collective	spirit.

Crutchfield	 was	 not	 alone	 in	 stepping	 outside	 the	 group.	 Soon	 Farmer
himself,	 and	 Packard,	 too,	 were	 collaborating	 with	 established	 physicists	 and
mathematicians:	Huberman,	Swinney,	Yorke.	The	ideas	formed	in	the	cauldron
at	 Santa	 Cruz	 became	 a	 firm	 part	 of	 the	 framework	 of	 the	 modern	 study	 of
dynamical	systems.	When	a	physicist	with	a	mass	of	data	wanted	to	investigate
its	dimension	or	its	entropy,	the	appropriate	definitions	and	working	techniques
might	well	be	those	created	in	the	years	of	patching	plugs	in	the	Systron-Donner
analog	computer	and	staring	at	the	oscilloscope.	Climate	specialists	would	argue
about	 whether	 the	 chaos	 of	 the	 world’s	 atmosphere	 and	 oceans	 had	 infinite
dimensions,	 as	 traditional	 dynamicists	would	 assume,	 or	 somehow	 followed	 a
low-dimensional	 strange	 attractor.	 Economists	 analyzing	 stock	 market	 data
would	try	to	find	attractors	of	dimension	3.7	or	5.3.	The	lower	the	dimension,	the
simpler	 the	 system.	 Many	 mathematical	 peculiarities	 had	 to	 be	 sorted	 and
understood.	 Fractal	 dimension,	 Hausdorff	 dimension,	 Lyapunov	 dimension,
information	 dimension—the	 subtleties	 of	 these	 measures	 of	 a	 chaotic	 system
were	 best	 explained	 by	 Farmer	 and	Yorke.	An	 attractor’s	 dimension	was	 “the
first	 level	 of	 knowledge	 necessary	 to	 characterize	 its	 properties.”	 It	 was	 the
feature	that	gave	“the	amount	of	information	necessary	to	specify	the	position	of
a	point	on	 the	attractor	 to	within	a	given	accuracy.”	The	methods	of	 the	Santa
Cruz	students	and	their	older	collaborators	tied	these	ideas	to	the	other	important
measures	of	systems:	the	rate	of	decay	of	predictability,	the	rate	of	information
flow,	 the	 tendency	 to	create	mixing.	Sometimes	 scientists	using	 these	methods
would	 find	 themselves	 plotting	 data,	 drawing	 little	 boxes,	 and	 counting	 the
number	of	data	points	 in	each	box.	Yet	 even	 such	 seemingly	crude	 techniques
brought	 chaotic	 systems	 for	 the	 first	 time	 within	 the	 reach	 of	 scientific



understanding.
Meanwhile,	 having	 learned	 to	 look	 for	 strange	 attractors	 in	 flapping	 flags

and	rattling	speedometers,	the	scientists	made	a	point	of	finding	the	symptoms	of
deterministic	 chaos	 all	 through	 the	 current	 literature	 of	 physics.	 Unexplained
noise,	 surprising	fluctuations,	 regularity	mixing	with	 irregularity—these	effects
popped	 up	 in	 papers	 from	 experimentalists	 working	 with	 everything	 from
particle	 accelerators	 to	 lasers	 to	 Josephson	 junctions.	 The	 chaos	 specialists
would	make	these	symptoms	their	own,	 telling	the	unconverted,	 in	effect,	your
problems	 are	 our	 problems.	 “Several	 experiments	 on	 Josephson	 junction
oscillators	have	revealed	a	striking	noise-rise	phenomena,”	a	paper	would	begin,
“which	cannot	be	accounted	for	in	terms	of	thermal	fluctuations.”

By	 the	 time	 the	 collective	 departed,	 some	 of	 the	 Santa	 Cruz	 faculty	 had
turned	to	chaos,	too.	Other	physicists,	though,	felt	in	retrospect	that	Santa	Cruz
had	 missed	 an	 opportunity	 to	 begin	 the	 kind	 of	 national	 center	 for	 work	 in
nonlinear	dynamics	 that	 soon	began	appearing	on	other	campuses.	 In	 the	early
1980s	the	members	of	the	collective	graduated	and	dispersed.	Shaw	finished	his
dissertation	in	1980,	Farmer	in	1981,	Packard	in	1982.	Crutchfield’s	appeared	in
1983,	 a	 typographical	 hodgepodge	 interleaving	 typed	 pages	 with	 no	 less	 than
eleven	papers	already	published	in	the	journals	of	physics	and	mathematics.	He
went	 on	 to	 the	 University	 of	 California	 at	 Berkeley.	 Farmer	 joined	 the
Theoretical	Division	of	Los	Alamos.	Packard	and	Shaw	joined	the	Institute	for
Advanced	Study	in	Princeton.	Crutchfield	studied	video	feedback	loops.	Farmer
worked	 on	 “fat	 fractals”	 and	 modeled	 the	 complex	 dynamics	 of	 the	 human
immune	 system.	 Packard	 explored	 spatial	 chaos	 and	 the	 formation	 of
snowflakes.	 Only	 Shaw	 seemed	 reluctant	 to	 join	 the	 mainstream.	 His	 own
influential	legacy	comprised	just	two	papers,	one	that	had	won	him	a	trip	to	Paris
and	one,	about	the	dripping	faucet,	that	summed	up	all	his	Santa	Cruz	research.
Several	times,	he	came	close	to	quitting	science	altogether.	As	one	of	his	friends
said,	he	was	oscillating.



Inner	Rhythms

The	sciences	do	not	try	to	explain,	they	hardly	even	try	to	interpret,	they	mainly
make	 models.	 By	 a	 model	 is	 meant	 a	 mathematical	 construct	 which,	 with	 the
addition	 of	 certain	 verbal	 interpretations,	 describes	 observed	 phenomena.	 The
justification	 of	 such	 a	mathematical	 construct	 is	 solely	 and	 precisely	 that	 it	 is
expected	to	work.

—JOHN	VON	NEUMANN



BERNARDO	HUBERMAN	LOOKED	OUT	over	his	audience	of	assorted	theoretical
and	 experimental	 biologists,	 pure	 mathematicians	 and	 physicians	 and
psychiatrists,	and	he	realized	that	he	had	a	communication	problem.	He	had	just
finished	 an	 unusual	 talk	 at	 an	 unusual	 gathering	 in	 1986,	 the	 first	 major
conference	on	chaos	in	biology	and	medicine,	under	the	various	auspices	of	the
New	York	Academy	of	Sciences,	 the	National	 Institute	 of	Mental	Health,	 and
the	 Office	 of	 Naval	 Research.	 In	 the	 cavernous	 Masur	 Auditorium	 at	 the
National	Institutes	of	Health	outside	Washington,	Huberman	saw	many	familiar
faces,	chaos	specialists	of	long	standing,	and	many	unfamiliar	ones	as	well.	An
experienced	 speaker	 could	 expect	 some	 audience	 impatience—it	 was	 the
conference’s	last	day,	and	it	was	dangerously	close	to	lunch	time.

Huberman,	a	dapper	black-haired	Californian	transplanted	from	Argentina,
had	kept	up	his	 interest	 in	 chaos	 since	his	 collaborations	with	members	of	 the
Santa	Cruz	gang.	He	was	a	research	fellow	at	the	Xerox	Corporation’s	Palo	Alto
Research	Center.	But	sometimes	he	dabbled	in	projects	that	did	not	belong	to	the
corporate	 mission,	 and	 here	 at	 the	 biology	 conference	 he	 had	 just	 finished
describing	one	of	those:	a	model	for	the	erratic	eye	movement	of	schizophrenics.

Psychiatrists	 have	 struggled	 for	 generations	 to	 define	 schizophrenia	 and
classify	schizophrenics,	but	 the	disease	has	been	almost	as	difficult	 to	describe
as	 to	 cure.	 Most	 of	 its	 symptoms	 appear	 in	 mind	 and	 behavior.	 Since	 1908,
however,	 scientists	have	known	of	 a	physical	manifestation	of	 the	disease	 that
seems	 to	 afflict	not	only	 schizophrenics	but	 also	 their	 relatives.	When	patients
try	 to	watch	 a	 slowly	 swinging	 pendulum,	 their	 eyes	 cannot	 track	 the	 smooth
motion.	Ordinarily	the	eye	is	a	remarkably	smart	instrument.	A	healthy	person’s
eyes	stay	locked	on	moving	targets	without	the	least	conscious	thought;	moving
images	stay	frozen	in	place	on	the	retina.	But	a	schizophrenic’s	eyes	jump	about
disruptively	 in	 small	 increments,	 overshooting	 or	 undershooting	 the	 target	 and
creating	a	constant	haze	of	extraneous	movements.	No	one	knows	why.

Physiologists	 accumulated	 vast	 amounts	 of	 data	 over	 the	 years,	 making
tables	 and	 graphs	 to	 show	 the	 patterns	 of	 erratic	 eye	 motion.	 They	 generally
assumed	 that	 the	 fluctuations	 came	 from	 fluctuations	 in	 the	 signal	 from	 the
central	 nervous	 system	 controlling	 the	 eye’s	 muscles.	 Noisy	 output	 implied
noisy	 input,	 and	 perhaps	 some	 random	 disturbances	 afflicting	 the	 brains	 of
schizophrenics	were	 showing	 up	 in	 the	 eyes.	 Huberman,	 a	 physicist,	 assumed
otherwise	and	made	a	modest	model.

He	thought	in	the	crudest	possible	way	about	the	mechanics	of	the	eye	and
wrote	 down	 an	 equation.	 There	was	 a	 term	 for	 the	 amplitude	 of	 the	 swinging
pendulum	and	a	 term	for	 its	 frequency.	There	was	a	 term	for	 the	eye’s	 inertia.



There	 was	 a	 term	 for	 damping,	 or	 friction.	 And	 there	 were	 terms	 for	 error
correction,	to	give	the	eye	a	way	of	locking	in	on	the	target.

As	Huberman	explained	to	his	audience,	the	resulting	equation	happens	to
describe	an	analogous	mechanical	system:	a	ball	rolling	in	a	curved	trough	while
the	trough	swings	from	side	to	side.	The	side-to–side	motion	corresponds	to	the
motion	 of	 the	 pendulum,	 and	 the	walls	 of	 the	 trough	 correspond	 to	 the	 error-
correcting	feature,	tending	to	push	the	ball	back	toward	the	center.	In	the	now-
standard	 style	 of	 exploring	 such	 equations,	 Huberman	 had	 run	 his	 model	 for
hours	on	a	computer,	changing	the	various	parameters	and	making	graphs	of	the
resulting	 behaviors.	He	 found	both	 order	 and	 chaos.	 In	 some	 regimes,	 the	 eye
would	 track	 smoothly;	 then,	 as	 the	 degree	 of	 nonlinearity	 was	 increased,	 the
system	would	go	through	a	fast	period-doubling	sequence	and	produce	a	kind	of
disorder	 that	 was	 indistinguishable	 from	 the	 disorder	 reported	 in	 the	 medical
literature.

In	the	model,	the	erratic	behavior	had	nothing	to	do	with	any	outside	signal.
It	 was	 an	 inevitable	 consequence	 of	 too	 much	 nonlinearity	 in	 the	 system.	 To
some	of	 the	doctors	 listening,	Huberman’s	model	 seemed	 to	match	a	plausible
genetic	model	 for	 schizophrenia.	 A	 nonlinearity	 that	 could	 either	 stabilize	 the
system	or	disrupt	it,	depending	on	whether	the	nonlinearity	was	weak	or	strong,
might	correspond	to	a	single	genetic	trait.	One	psychiatrist	compared	the	concept
to	the	genetics	of	gout,	in	which	too	high	a	level	of	uric	acid	creates	pathological
symptoms.	 Others,	 more	 familiar	 than	 Huberman	 with	 the	 clinical	 literature,
pointed	out	that	schizophrenics	were	not	alone;	a	whole	range	of	eye	movement
problems	 could	 be	 found	 in	 different	 kinds	 of	 neurological	 patients.	 Periodic
oscillations,	 aperiodic	 oscillations,	 all	 sorts	 of	 dynamical	 behavior	 could	 be
found	in	the	data	by	anyone	who	cared	to	go	back	and	apply	the	tools	of	chaos.

But	for	every	scientist	present	who	saw	new	lines	of	research	opening	up,
there	 was	 another	 who	 suspected	 Huberman	 of	 grossly	 oversimplifying	 his
model.	When	it	came	time	for	questions,	their	annoyance	and	frustration	spilled
out.	“My	problem	is,	what	guides	you	in	the	modeling?”	one	of	these	scientists
said.	“Why	look	for	these	specific	elements	of	nonlinear	dynamics,	namely	these
bifurcations	and	chaotic	solutions?”

Huberman	paused.	“Oh,	okay.	Then	I	truly	failed	at	stating	the	purpose	of
this.	The	model	is	simple.	Someone	comes	to	me	and	says,	we	see	this,	so	what
do	you	think	happens.	So	I	say,	well,	what	is	the	possible	explanation.	So	they
say,	well,	 the	only	 thing	we	can	come	up	with	 is	 something	 that	 is	 fluctuating
over	such	a	short	time	in	your	head.	So	then	I	say,	well	look,	I’m	a	chaotician	of
sorts,	and	I	know	that	the	simplest	nonlinear	tracking	model	you	can	write	down,
the	 simplest,	 has	 these	generic	 features,	 regardless	of	 the	details	of	what	 these



things	are	like.	So	I	do	that	and	people	say,	oh,	that’s	very	interesting,	we	never
thought	that	perhaps	this	was	intrinsic	chaos	in	the	system.

“The	 model	 does	 not	 have	 any	 neurophysiological	 data	 that	 I	 can	 even
defend.	All	 I’m	 saying	 is	 that	 the	 simplest	 tracking	 is	 something	 that	 tends	 to
make	an	error	and	go	to	zero.	That’s	the	way	we	move	our	eyes,	and	that’s	the
way	an	antenna	tracks	an	airplane.	You	can	apply	this	model	to	anything.”

Out	on	the	floor,	another	biologist	 took	the	microphone,	still	frustrated	by
the	 stick-figure	 simplicity	 of	Huberman’s	model.	 In	 real	 eyes,	 he	 pointed	 out,
four	 muscle–control	 systems	 operate	 simultaneously.	 He	 began	 a	 highly
technical	description	of	what	he	considered	realistic	modeling,	explaining	how,
for	 example,	 the	 mass	 term	 is	 thrown	 away	 because	 the	 eye	 is	 heavily	 over-
damped.	“And	there’s	one	additional	complication,	which	is	that	the	amount	of
mass	present	depends	on	the	velocity	of	rotation,	because	part	of	the	mass	lags
behind	 when	 the	 eye	 accelerates	 very	 rapidly.	 The	 jelly	 inside	 the	 eye	 lags
behind	when	the	outer	casing	rotates	very	fast.”

Pause.	Huberman	was	 stymied.	 Finally	 one	 of	 the	 conference	 organizers,
Arnold	Mandell,	a	psychiatrist	with	a	long	interest	in	chaos,	took	the	microphone
from	him.

“Look,	as	a	shrink	I	want	to	make	an	interpretation.	What	you’ve	just	seen
is	 what	 happens	 when	 a	 nonlinear	 dynamicist	 working	 with	 low-dimensional
global	systems	comes	to	talk	to	a	biologist	who’s	been	using	mathematical	tools.
The	 idea	 that	 in	 fact	 there	 are	 universal	 properties	 of	 systems,	 built	 into	 the
simplest	 representations,	 alienates	 all	 of	 us.	 So	 the	 question	 is	 ‘What	 is	 the
subtype	of	the	schizophrenia,’	‘There	are	four	ocular	motor	systems,’	and	‘What
is	 the	 modeling	 from	 the	 standpoint	 of	 the	 actual	 physical	 structure,’	 and	 it
begins	to	decompose.

“What’s	 actually	 the	 case	 is	 that,	 as	 physicians	 or	 scientists	 learning	 all
50,000	 parts	 of	 everything,	 we	 resent	 the	 possibility	 that	 there	 are	 in	 fact
universal	elements	of	motion.	And	Bernardo	comes	up	with	one	and	look	what
happens.”

Huberman	said,	“It	happened	in	physics	five	years	ago,	but	by	now	they’re
convinced.”

THE	CHOICE	IS	ALWAYS	the	same.	You	can	make	your	model	more	complex
and	more	 faithful	 to	 reality,	 or	 you	 can	make	 it	 simpler	 and	 easier	 to	 handle.
Only	 the	 most	 naïve	 scientist	 believes	 that	 the	 perfect	 model	 is	 the	 one	 that
perfectly	represents	reality.	Such	a	model	would	have	the	same	drawbacks	as	a
map	as	 large	and	detailed	as	 the	city	 it	 represents,	a	map	depicting	every	park,
every	 street,	 every	 building,	 every	 tree,	 every	 pothole,	 every	 inhabitant,	 and



every	map.	Were	such	a	map	possible,	its	specificity	would	defeat	its	purpose:	to
generalize	 and	 abstract.	 Mapmakers	 highlight	 such	 features	 as	 their	 clients
choose.	Whatever	their	purpose,	maps	and	models	must	simplify	as	much	as	they
mimic	the	world.

For	 Ralph	Abraham,	 the	 Santa	 Cruz	mathematician,	 a	 good	model	 is	 the
“daisy	world”	of	James	E.	Lovelock	and	Lynn	Margulis,	proponents	of	 the	so-
called	Gaia	hypothesis,	in	which	the	conditions	necessary	for	life	are	created	and
maintained	by	life	itself	in	a	self-sustaining	process	of	dynamical	feedback.	The
daisy	world	is	perhaps	the	simplest	imaginable	version	of	Gaia,	so	simple	as	to
seem	 idiotic.	 “Three	 things	 happen,”	 as	Abraham	 put	 it,	 “white	 daisies,	 black
daisies,	and	unplanted	desert.	Three	colors:	white,	black,	and	red.	How	can	this
teach	 us	 anything	 about	 our	 planet?	 It	 explains	 how	 temperature	 regulation
emerges.	 It	 explains	why	 this	 planet	 is	 a	 good	 temperature	 for	 life.	 The	 daisy
world	model	is	a	terrible	model,	but	it	 teaches	how	biological	homeostasis	was
created	on	earth.”

White	daisies	 reflect	 light,	making	 the	planet	cooler.	Black	daisies	absorb
light,	 lowering	 the	 albedo,	 or	 reflectivity,	 and	 thus	making	 the	 planet	warmer.
But	white	daisies	“want”	warm	weather,	meaning	that	they	thrive	preferentially
as	 temperatures	 rise.	 Black	 daisies	 want	 cool	 weather.	 These	 qualities	 can	 be
expressed	 in	 a	 set	 of	 differential	 equations	 and	 the	 daisy	 world	 can	 be	 set	 in
motion	 on	 a	 computer.	 A	 wide	 range	 of	 initial	 conditions	 will	 lead	 to	 an
equilibrium	attractor—and	not	necessarily	a	static	equilibrium.

“It’s	just	a	mathematical	model	of	a	conceptual	model,	and	that’s	what	you
want—you	 don’t	 want	 high-fidelity	 models	 of	 biological	 or	 social	 systems,”
Abraham	 said.	 “You	 just	 put	 in	 the	 albedos,	 make	 some	 initial	 planting,	 and
watch	billions	of	years	of	evolution	go	by.	And	you	educate	children	to	be	better
members	of	the	board	of	directors	of	the	planet.”

The	 paragon	 of	 a	 complex	 dynamical	 system	 and	 to	 many	 scientists,
therefore,	the	touchstone	of	any	approach	to	complexity	is	the	human	body.	No
object	 of	 study	 available	 to	 physicists	 offers	 such	 a	 cacophony	 of
counterrhythmic	motion	on	scales	from	macroscopic	 to	microscopic:	motion	of
muscles,	 of	 fluids,	 of	 currents,	 of	 fibers,	 of	 cells.	No	physical	 system	has	 lent
itself	to	such	an	obsessive	brand	of	reductionism:	every	organ	has	its	own	micro-
structure	 and	 its	 own	 chemistry,	 and	 student	 physiologists	 spend	 years	 just	 on
the	 naming	 of	 parts.	 Yet	 how	 ungraspable	 these	 parts	 can	 be!	 At	 its	 most
tangible,	a	body	part	can	be	a	seemingly	well-defined	organ	like	the	liver.	Or	it
can	 be	 a	 spatially	 challenging	 network	 of	 solid	 and	 liquid	 like	 the	 vascular
system.	Or	it	can	be	an	invisible	assembly,	truly	as	abstract	a	thing	as	“traffic”	or
“democracy,”	like	the	immune	system,	with	its	lymphocytes	and	T4	messengers,



a	 miniaturized	 cryptography	 machine	 for	 encoding	 and	 decoding	 data	 about
invading	 organisms.	 To	 study	 such	 systems	 without	 a	 detailed	 knowledge	 of
their	anatomy	and	chemistry	would	be	futile,	so	heart	specialists	learn	about	ion
transport	 through	ventricular	muscle	 tissue,	brain	specialists	 learn	 the	electrical
particulars	 of	 neuron	 firing,	 and	 eye	 specialists	 learn	 the	 name	 and	 place	 and
purpose	of	each	ocular	muscle.	In	the	1980s	chaos	brought	to	life	a	new	kind	of
physiology,	 built	 on	 the	 idea	 that	 mathematical	 tools	 could	 help	 scientists
understand	 global	 complex	 systems	 independent	 of	 local	 detail.	 Researchers
increasingly	recognized	the	body	as	a	place	of	motion	and	oscillation—and	they
developed	methods	of	listening	to	its	variegated	drumbeat.	They	found	rhythms
that	 were	 invisible	 on	 frozen	microscope	 slides	 or	 daily	 blood	 samples.	 They
studied	 chaos	 in	 respiratory	 disorders.	They	 explored	 feedback	mechanisms	 in
the	 control	 of	 red	 and	 white	 blood	 cells.	 Cancer	 specialists	 speculated	 about
periodicity	and	irregularity	 in	 the	cycle	of	cell	growth.	Psychiatrists	explored	a
multidimensional	 approach	 to	 the	 prescription	 of	 antidepressant	 drugs.	 But
surprising	findings	about	one	organ	dominated	the	rise	of	 this	new	physiology,
and	 that	was	 the	heart,	whose	animated	 rhythms,	 stable	or	unstable,	healthy	or
pathological,	so	precisely	measured	the	difference	between	life	and	death.

EVEN	DAVID	RUELLE	HAD	STRAYED	from	formalism	to	speculate	about	chaos
in	the	heart—“a	dynamical	system	of	vital	interest	to	every	one	of	us,”	he	wrote.

“The	 normal	 cardiac	 regime	 is	 periodic,	 but	 there	 are	 many	 nonperiodic
pathologies	(like	ventricular	fibrillation)	which	lead	to	the	steady	state	of	death.
It	seems	that	great	medical	benefit	might	be	derived	from	computer	studies	of	a
realistic	 mathematical	 model	 which	 would	 reproduce	 the	 various	 cardiac
dynamical	regimes.”

Teams	 of	 researchers	 in	 the	 United	 States	 and	 Canada	 took	 up	 the
challenge.	 Irregularities	 in	 the	 heartbeat	 had	 long	 since	 been	 discovered,
investigated,	 isolated,	 and	 categorized.	 To	 the	 trained	 ear,	 dozens	 of	 irregular
rhythms	 can	 be	 distinguished.	 To	 the	 trained	 eye,	 the	 spiky	 patterns	 of	 the
electrocardiogram	offer	 clues	 to	 the	 source	 and	 the	 seriousness	 of	 an	 irregular
rhythm.	A	layman	can	gauge	the	richness	of	the	problem	from	the	cornucopia	of
names	 available	 for	 different	 sorts	 of	 arrhythmias.	 There	 are	 ectopic	 beats,
electrical	 alternans,	 and	 torsades	 de	 pointes.	 There	 are	 high-grade	 block	 and
escape	 rhythms.	There	 is	parasystole	 (atrial	or	ventricular,	pure	or	modulated).
There	are	Wenckebach	rhythms	(simple	or	complex).	There	is	tachycardia.	Most
damaging	 of	 all	 to	 the	 prospect	 for	 survival	 is	 fibrillation.	 This	 naming	 of
rhythms,	 like	 the	naming	of	parts,	 comforts	physicians.	 It	 allows	 specificity	 in
diagnosing	 troubled	 hearts,	 and	 it	 allows	 some	 intelligence	 to	 bear	 on	 the



problem.	 But	 researchers	 using	 the	 tools	 of	 chaos	 began	 to	 discover	 that
traditional	 cardiology	 was	 making	 the	 wrong	 generalizations	 about	 irregular
heartbeats,	inadvertently	using	superficial	classifications	to	obscure	deep	causes.

They	 discovered	 the	 dynamical	 heart.	 Almost	 always	 their	 backgrounds
were	 out	 of	 the	 ordinary.	 Leon	 Glass	 of	 McGill	 University	 in	 Montreal	 was
trained	in	physics	and	chemistry,	where	he	indulged	an	interest	in	numbers	and
in	 irregularity,	 too,	 completing	 his	 doctoral	 thesis	 on	 atomic	motion	 in	 liquids
before	 turning	 to	 the	 problem	 of	 irregular	 heartbeats.	 Typically,	 he	 said,
specialists	 diagnose	 many	 different	 arrhythmias	 by	 looking	 at	 short	 strips	 of
electrocardiograms.	“It’s	treated	by	physicians	as	a	pattern	recognition	problem,
a	 matter	 of	 identifying	 patterns	 they	 have	 seen	 before	 in	 practice	 and	 in
textbooks.	 They	 really	 don’t	 analyze	 in	 detail	 the	 dynamics	 of	 these	 rhythms.
The	 dynamics	 are	 much	 richer	 than	 anybody	 would	 guess	 from	 reading	 the
textbooks.”

At	 Harvard	 Medical	 School,	 Ary	 L.	 Goldberger,	 co-director	 of	 the
arrhythmia	laboratory	of	Beth	Israel	Hospital	 in	Boston,	believed	that	 the	heart
research	 represented	 a	 threshold	 for	 collaboration	 between	 physiologists	 and
mathematicians	 and	 physicists.	 “We’re	 at	 a	 new	 frontier,	 and	 a	 new	 class	 of
phenomenology	 is	 out	 there,”	 he	 said.	 “When	 we	 see	 bifurcations,	 abrupt
changes	 in	behavior,	 there	 is	nothing	 in	 conventional	 linear	models	 to	 account
for	 that.	Clearly	we	need	a	new	class	of	models,	and	physics	seems	to	provide
that.”	 Goldberger	 and	 other	 scientists	 had	 to	 overcome	 barriers	 of	 scientific
language	and	institutional	classification.	A	considerable	obstacle,	he	felt,	was	the
uncomfortable	 antipathy	 of	 many	 physiologists	 to	 mathematics.	 “In	 1986	 you
won’t	find	the	word	fractals	in	a	physiology	book,”	he	said.	“I	think	in	1996	you
won’t	be	able	to	find	a	physiology	book	without	it.”

A	 doctor	 listening	 to	 the	 heartbeat	 hears	 the	whooshing	 and	 pounding	 of
fluid	 against	 fluid,	 fluid	 against	 solid,	 and	 solid	 against	 solid.	 Blood	 courses
from	chamber	to	chamber,	squeezed	by	the	contracting	muscles	behind,	and	then
stretches	the	walls	ahead.	Fibrous	valves	snap	shut	audibly	against	the	backflow.
The	 muscle	 contractions	 themselves	 depend	 on	 a	 complex	 three-dimensional
wave	 of	 electrical	 activity.	 Modeling	 any	 one	 piece	 of	 the	 heart’s	 behavior
would	 strain	a	 supercomputer;	modeling	 the	whole	 interwoven	cycle	would	be
impossible.	 Computer	 modeling	 of	 the	 kind	 that	 seems	 natural	 to	 a	 fluid
dynamics	 expert	 designing	 airplane	wings	 for	 Boeing	 or	 engine	 flows	 for	 the
National	Aeronautics	 and	Space	Administration	 is	 an	 alien	practice	 to	medical
technologists.

Trial	 and	 error,	 for	 example,	 has	 governed	 the	 design	 of	 artificial	 heart
valves,	the	metal	and	plastic	devices	that	now	prolong	the	lives	of	those	whose



natural	 valves	 wear	 out.	 In	 the	 annals	 of	 engineering	 a	 special	 place	must	 be
reserved	for	nature’s	own	heart	valve,	a	filmy,	pliant,	translucent	arrangement	of
three	tiny	parachute-like	cups.	To	let	blood	into	the	heart’s	pumping	chambers,
the	valve	must	 fold	gracefully	out	of	 the	way.	To	keep	blood	from	backing	up
when	the	heart	pumps	it	forward,	the	valve	must	fill	and	slam	closed	under	the
pressure,	and	it	must	do	so,	without	leaking	or	tearing,	two	or	three	billion	times.
Human	 engineers	 have	 not	 done	 so	well.	Artificial	 valves,	 by	 and	 large,	 have
been	 borrowed	 from	 plumbers:	 standard	 designs	 like	 “ball	 in	 cage,”	 tested,	 at
great	cost,	in	animals.	To	overcome	the	obvious	problems	of	leakage	and	stress
failure	was	hard	 enough.	Few	could	have	 anticipated	how	hard	 it	would	be	 to
eliminate	another	problem.	By	changing	 the	patterns	of	 fluid	flow	in	 the	heart,
artificial	valves	create	areas	of	 turbulence	and	areas	of	 stagnation;	when	blood
stagnates,	it	forms	clots;	when	clots	break	off	and	travel	to	the	brain,	they	cause
strokes.	Such	clotting	was	the	fatal	barrier	to	making	artificial	hearts.	Only	in	the
mid–1980s,	 when	 mathematicians	 at	 the	 Courant	 Institute	 of	 New	 York
University	 applied	new	computer	modeling	 techniques	 to	 the	 problem,	 did	 the
design	of	heart	valves	begin	to	take	full	advantage	of	available	technology.	Their
computer	made	motion	pictures	of	a	beating	heart,	two-dimensional	but	vividly
recognizable.	Hundreds	of	dots,	representing	particles	of	blood,	stream	through
the	valve,	stretching	the	elastic	walls	of	the	heart	and	creating	whirling	vortices.
The	mathematicians	found	that	the	heart	adds	a	whole	level	of	complexity	to	the
standard	fluid	flow	problem,	because	any	realistic	model	must	take	into	account
the	 elasticity	 of	 the	 heart	 walls	 themselves.	 Instead	 of	 flowing	 over	 a	 rigid
surface,	 like	 air	 over	 an	 airplane	 wing,	 blood	 changes	 the	 heart	 surface
dynamically	and	nonlinearly.

Even	subtler,	and	far	deadlier,	was	the	problem	of	arrhythmias.	Ventricular
fibrillation	 causes	 hundreds	 of	 thousands	 of	 sudden	 deaths	 each	 year	 in	 the
United	 States	 alone.	 In	 many	 of	 those	 cases,	 fibrillation	 has	 a	 specific,	 well-
known	 trigger:	 blockage	 of	 the	 arteries,	 leading	 to	 the	 death	 of	 the	 pumping
muscle.	Cocaine	use,	nervous	stress,	hypothermia—these,	too,	can	predispose	a
person	to	fibrillation.	In	many	cases	the	onset	of	fibrillation	remains	mysterious.
Faced	with	a	patient	who	has	survived	an	attack	of	fibrillation,	a	doctor	would
prefer	to	see	damage—evidence	of	a	cause.	A	patient	with	a	seemingly	healthy
heart	is	actually	more	likely	to	suffer	a	new	attack.

There	 is	 a	 classic	 metaphor	 for	 the	 fibrillating	 heart:	 a	 bag	 of	 worms.
Instead	 of	 contracting	 and	 relaxing,	 contracting	 and	 relaxing	 in	 a	 repetitive,
periodic	way,	the	heart’s	muscle	tissue	writhes,	uncoordinated,	helpless	to	pump
blood.	 In	a	normally	beating	heart	 the	electrical	signal	 travels	as	a	coordinated
wave	 through	 the	 three-dimensional	 structure	 of	 the	 heart.	 When	 the	 signal



arrives,	each	cell	contracts.	Then	each	cell	relaxes	for	a	critical	refractory	period,
during	which	 it	 cannot	 be	 set	 off	 again	 prematurely.	 In	 a	 fibrillating	 heart	 the
wave	breaks	up.	The	heart	is	never	all	contracted	or	all	relaxed.

One	perplexing	feature	of	fibrillation	is	that	many	of	the	heart’s	individual
components	 can	 be	 working	 normally.	 Often	 the	 heart’s	 pacemaking	 nodes
continue	 to	 send	 out	 regular	 electrical	 ticks.	 Individual	 muscle	 cells	 respond
properly.	Each	cell	 receives	 its	stimulus,	contracts,	passes	 the	stimulus	on,	and
relaxes	to	wait	for	the	next	stimulus.	In	autopsy	the	muscle	tissue	may	reveal	no
damage	 at	 all.	 That	 is	 one	 reason	 chaos	 experts	 believed	 that	 a	 new,	 global
approach	was	necessary:	the	parts	of	a	fibrillating	heart	seem	to	be	working,	yet
the	whole	goes	fatally	awry.	Fibrillation	is	a	disorder	of	a	complex	system,	just
as	mental	disorders—whether	or	not	they	have	chemical	roots—are	disorders	of
a	complex	system.

The	heart	will	not	stop	fibrillating	on	its	own.	This	brand	of	chaos	is	stable.
Only	a	jolt	of	electricity	from	a	defibrillation	device—a	jolt	that	any	dynamicist
recognizes	as	a	massive	perturbation—can	return	the	heart	to	its	steady	state.	On
the	 whole,	 defibrillators	 are	 effective.	 But	 their	 design,	 like	 the	 design	 of
artificial	 heart	 valves,	 has	 required	 much	 guesswork.	 “The	 business	 of
determining	 the	 size	 and	 shape	 of	 that	 jolt	 has	 been	 strictly	 empirical,”	 said
Arthur	 T.	Winfree,	 a	 theoretical	 biologist.	 “There	 just	 hasn’t	 been	 any	 theory
about	that.	It	now	appears	that	some	assumptions	are	not	correct.	It	appears	that
defibrillators	can	be	radically	redesigned	to	 improve	their	efficiency	many	fold
and	 therefore	 improve	 the	 chance	 of	 success	many	 fold.”	 For	 other	 abnormal
heart	rhythms	an	assortment	of	drug	therapies	have	been	tried,	also	based	largely
on	trial	and	error—“a	black	art,”	as	Winfree	put	it.	Without	a	sound	theoretical
understanding	 of	 the	 heart’s	 dynamics,	 it	 is	 tricky	 to	 predict	 the	 effects	 of	 a
given	drug.	“A	wonderful	job	has	been	done	in	the	last	twenty	years	of	finding
out	all	 the	nitty	gritty	details	of	membrane	physiology,	all	 the	detailed,	precise
workings	of	the	immense	complexity	of	all	the	parts	of	the	heart.	That	essential
part	of	the	business	is	in	good	shape.	What’s	gotten	overlooked	is	the	other	side,
trying	to	achieve	some	global	perspective	on	how	it	all	works.”

WINFREE	CAME	FROM	A	FAMILY	in	which	no	one	had	gone	to	college.	He	got
started,	he	would	say,	by	not	having	a	proper	education.	His	father,	rising	from
the	bottom	of	the	life	insurance	business	to	the	level	of	vice	president,	moved	the
family	 almost	yearly	up	 and	down	 the	East	Coast,	 and	Winfree	 attended	more
than	a	dozen	schools	before	 finishing	high	school.	He	developed	a	 feeling	 that
the	interesting	things	in	the	world	had	to	do	with	biology	and	mathematics	and	a
companion	feeling	that	no	standard	combination	of	 the	two	subjects	did	justice



to	what	was	interesting.	So	he	decided	not	to	take	a	standard	approach.	He	took	a
five-year	 course	 in	 engineering	physics	 at	Cornell	University,	 learning	 applied
mathematics	and	a	full	range	of	hands-on	laboratory	styles.	Prepared	to	be	hired
into	 the	military-industrial	 complex,	 he	 got	 a	 doctorate	 in	 biology,	 striving	 to
combine	experiment	with	theory	in	new	ways.	He	began	at	Johns	Hopkins,	left
because	 of	 conflicts	 with	 the	 faculty,	 continued	 at	 Princeton,	 left	 because	 of
conflicts	with	the	faculty	there,	and	finally	was	awarded	a	Princeton	degree	from
a	distance,	when	he	was	already	teaching	at	the	University	of	Chicago.

Winfree	is	a	rare	kind	of	thinker	in	the	biological	world,	bringing	a	strong
sense	 of	 geometry	 to	 his	 work	 on	 physiological	 problems.	 He	 began	 his
exploration	of	biological	dynamics	in	the	early	seventies	by	studying	biological
clocks—circadian	 rhythms.	 This	 was	 an	 area	 traditionally	 governed	 by	 a
naturalist’s	 approach:	 this	 rhythm	 goes	 with	 that	 animal,	 and	 so	 forth.	 In
Winfree’s	 view	 the	 problem	 of	 circadian	 rhythms	 should	 lend	 itself	 to	 a
mathematical	 style	 of	 thinking.	 “I	 had	 a	 headful	 of	 nonlinear	 dynamics	 and
realized	 that	 the	 problem	 could	 be	 thought	 of,	 and	 ought	 to	 be	 thought	 of,	 in
those	qualitative	terms.	Nobody	had	any	idea	what	the	mechanisms	of	biological
clocks	are.	So	you	have	two	choices.	You	can	wait	until	the	biochemists	figure
out	 the	 mechanism	 of	 clocks	 and	 then	 try	 to	 derive	 some	 behavior	 from	 the
known	 mechanisms,	 or	 you	 can	 start	 studying	 how	 clocks	 work	 in	 terms	 of
complex	 systems	 theory	 and	 nonlinear	 and	 topological	 dynamics.	 Which	 I
undertook	to	do.”

At	one	time	he	had	a	laboratory	full	of	mosquitoes	in	cages.	As	any	camper
could	 guess,	mosquitoes	 perk	 up	 around	 dusk	 each	 day.	 In	 a	 laboratory,	 with
temperature	 and	 light	 kept	 constant	 to	 shield	 them	 from	 day	 and	 night,
mosquitoes	turn	out	to	have	an	inner	cycle	of	not	twenty-four	hours	but	twenty-
three.	 Every	 twenty-three	 hours,	 they	 buzz	 around	 with	 particular	 intensity.
What	 keeps	 them	 on	 track	 outdoors	 is	 the	 jolt	 of	 light	 they	 get	 each	 day;	 in
effect,	it	resets	their	clock.

Winfree	shined	artificial	light	on	his	mosquitoes,	in	doses	that	he	carefully
regulated.	 These	 stimuli	 either	 advanced	 or	 delayed	 the	 next	 cycle,	 and	 he
plotted	the	effect	against	the	timing	of	the	blast.	Then,	instead	of	trying	to	guess
at	the	biochemistry	involved,	he	looked	at	the	problem	topologically—that	is,	he
looked	at	the	qualitative	shape	of	the	data,	instead	of	the	quantitative	details.	He
came	to	a	startling	conclusion:	There	was	a	singularity	in	the	geometry,	a	point
different	from	all	 the	other	points.	Looking	at	 the	singularity,	he	predicted	 that
one	special,	precisely	timed	burst	of	light	would	cause	a	complete	breakdown	of
a	mosquito’s	biological	clock,	or	any	other	biological	clock.

The	prediction	was	surprising,	but	Winfree’s	experiments	bore	it	out.	“You



go	to	a	mosquito	at	midnight	and	give	him	a	certain	number	of	photons,	and	that
particularly	well-timed	 jolt	 turns	 off	 the	mosquito’s	 clock.	 He’s	 an	 insomniac
after	that—he’ll	doze,	buzz	for	a	while,	all	at	random,	and	he’ll	continue	doing
that	for	as	long	as	you	care	to	watch,	or	until	you	come	along	with	another	jolt.
You’ve	 given	 him	 perpetual	 jet	 lag.”	 In	 the	 early	 seventies	 Winfree’s
mathematical	approach	to	circadian	rhythms	stirred	little	general	interest,	and	it
was	 hard	 to	 extend	 the	 laboratory	 technique	 to	 species	 that	 would	 object	 to
sitting	in	little	cages	for	months	at	a	time.

Human	 jet	 lag	 and	 insomnia	 remain	 on	 the	 list	 of	 unsolved	 problems	 in
biology.	 Both	 bring	 out	 the	 worst	 charlatanism—useless	 pills	 and	 nostrums.
Researchers	 did	 amass	 data	 on	 human	 subjects,	 usually	 students	 or	 retired
people,	 or	 playwrights	 with	 plays	 to	 finish,	 willing	 to	 accept	 a	 few	 hundred
dollars	a	week	to	live	in	“time	isolation”:	no	daylight,	no	temperature	change,	no
clocks,	 and	 no	 telephones.	 People	 have	 a	 sleep-wake	 cycle	 and	 also	 a	 body-
temperature	cycle,	both	nonlinear	oscillators	that	restore	themselves	after	slight
perturbations.	 In	 isolation,	 without	 a	 daily	 resetting	 stimulus,	 the	 temperature
cycle	seems	to	be	about	twenty-five	hours,	with	the	low	occurring	during	sleep.
But	experiments	by	German	researchers	found	that	after	some	weeks	the	sleep-
wake	cycle	would	detach	itself	from	the	temperature	cycle	and	become	erratic.
People	would	stay	awake	for	twenty	or	thirty	hours	at	a	time,	followed	by	ten	or
twenty	hours	of	sleep.	Not	only	would	the	subjects	remain	unaware	that	their	day
had	 lengthened,	 they	 would	 refuse	 to	 believe	 it	 when	 told.	 Only	 in	 the	 mid–
1980s,	though,	did	researchers	begin	to	apply	Winfree’s	systematic	approach	to
humans,	starting	with	an	elderly	woman	who	did	needlepoint	 in	 the	evening	in
front	 of	 banks	 of	 bright	 light.	 Her	 cycle	 changed	 sharply,	 and	 she	 reported
feeling	great,	as	if	she	were	driving	in	a	car	with	the	top	down.	As	for	Winfree,
he	had	moved	on	to	the	subject	of	rhythms	in	the	heart.



CHEMICAL	CHAOS.	Waves	propagating	outward	in	concentric	circles	and	even	spiral	waves	were	signs
of	 chaos	 in	 a	widely	 studied	 chemical	 reaction,	 the	Beluzov-Zhabotinsky	 reaction.	 Similar	 patterns	 have
been	observed	in	dishes	of	millions	of	amoeba.	Arthur	Winfree	theorized	that	such	waves	are	analogous	to
the	waves	of	electrical	activity	coursing	through	heart	muscles,	regularly	or	erratically.

Actually,	he	would	not	have	said	“moved	on.”	To	Winfree	it	was	the	same
subject—different	chemistry,	same	dynamics.	He	had	gained	a	specific	 interest
in	the	heart,	however,	after	he	helplessly	witnessed	the	sudden	cardiac	deaths	of
two	people,	one	a	relative	on	a	summer	vacation,	the	other	a	man	in	a	pool	where
Winfree	was	 swimming.	Why	 should	 a	 rhythm	 that	 has	 stayed	 on	 track	 for	 a
lifetime,	two	billion	or	more	uninterrupted	cycles,	through	relaxation	and	stress,
acceleration	 and	 deceleration,	 suddenly	 break	 into	 an	 uncontrolled,	 fatally
ineffectual	frenzy?

WINFREE	 TOLD	 THE	 STORY	 of	 an	 early	 researcher,	 George	 Mines,	 who	 in
1914	 was	 twenty-eight	 years	 old.	 In	 his	 laboratory	 at	 McGill	 University	 in
Montreal,	 Mines	 made	 a	 small	 device	 capable	 of	 delivering	 small,	 precisely
regulated	electrical	impulses	to	the	heart.

“When	Mines	 decided	 it	 was	 time	 to	 begin	work	with	 human	 beings,	 he



chose	the	most	readily	available	experimental	subject:	himself,”	Winfree	wrote.
“At	about	six	o’clock	that	evening,	a	janitor,	 thinking	it	was	unusually	quiet	in
the	 laboratory,	 entered	 the	 room.	Mines	was	 lying	 under	 the	 laboratory	 bench
surrounded	by	twisted	electrical	equipment.	A	broken	mechanism	was	attached
to	his	chest	over	the	heart	and	a	piece	of	apparatus	nearby	was	still	recording	the
faltering	heartbeat.	He	died	without	recovering	consciousness.”

One	might	guess	that	a	small	but	precisely	timed	shock	can	throw	the	heart
into	fibrillation,	and	indeed	even	Mines	had	guessed	it,	shortly	before	his	death.
Other	shocks	can	advance	or	 retard	 the	next	beat,	 just	as	 in	circadian	rhythms.
But	one	difference	between	hearts	and	biological	clocks,	a	difference	that	cannot
be	set	aside	even	in	a	simplified	model,	is	that	a	heart	has	a	shape	in	space.	You
can	 hold	 it	 in	 your	 hand.	 You	 can	 track	 an	 electrical	 wave	 through	 three
dimensions.

To	 do	 so,	 however,	 requires	 ingenuity.	 Raymond	 E.	 Ideker	 of	 Duke
University	Medical	Center	read	an	article	by	Winfree	in	Scientific	American	 in
1983	and	noted	four	specific	predictions	about	 inducing	and	halting	fibrillation
based	 on	 nonlinear	 dynamics	 and	 topology.	 Ideker	 didn’t	 really	 believe	 them.
They	 seemed	 too	 speculative	 and,	 from	 a	 cardiologist’s	 point	 of	 view,	 so
abstract.	Within	three	years,	all	four	had	been	tested	and	confirmed,	and	Ideker
was	 conducting	 an	 advanced	 program	 to	 gather	 the	 richer	 data	 necessary	 to
develop	 the	 dynamical	 approach	 to	 the	 heart.	 It	 was,	 as	 Winfree	 said,	 “the
cardiac	equivalent	of	a	cyclotron.”

The	 traditional	 electrocardiogram	 offers	 only	 a	 gross	 one-dimensional
record.	During	 heart	 surgery	 a	 doctor	 can	 take	 an	 electrode	 and	move	 it	 from
place	to	place	on	the	heart,	sampling	as	many	as	fifty	or	sixty	sites	over	a	 ten-
minute	period	and	thus	producing	a	sort	of	composite	picture.	During	fibrillation
this	technique	is	useless.	The	heart	changes	and	quivers	far	too	rapidly.	Ideker’s
technique,	 depending	heavily	on	 real-time	 computer	 processing,	was	 to	 embed
128	electrodes	in	a	web	that	he	would	place	over	a	heart	 like	a	sock	on	a	foot.
The	 electrodes	 recorded	 the	 voltage	 field	 as	 each	 wave	 traveled	 through	 the
muscle,	and	the	computer	produced	a	cardiac	map.

Ideker’s	 immediate	 intention,	 beyond	 testing	Winfree’s	 theoretical	 ideas,
was	 to	 improve	 the	 electrical	 devices	 used	 to	 halt	 fibrillation.	 Emergency
medical	teams	carry	standard	versions	of	defibrillators,	ready	to	deliver	a	strong
DC	shock	across	 the	 thorax	of	a	 stricken	patient.	Experimentally,	cardiologists
have	developed	a	small	implantable	device	to	be	sewn	inside	the	chest	cavity	of
patients	 thought	 to	 be	 especially	 at	 risk,	 although	 identifying	 such	 patients
remains	 a	 challenge.	 An	 implantable	 defibrillator,	 somewhat	 bigger	 than	 a
pacemaker,	 sits	 and	 waits,	 listening	 to	 the	 steady	 heartbeat,	 until	 it	 becomes



necessary	to	release	a	burst	of	electricity.	Ideker	began	to	assemble	the	physical
understanding	necessary	 to	make	 the	design	of	defibrillators	 less	a	high-priced
guessing	game,	more	a	science.

WHY	SHOULD	THE	LAWS	of	chaos	apply	to	the	heart,	with	its	peculiar	tissue
—cells	 forming	 interconnected	 branching	 fibers,	 transporting	 ions	 of	 calcium,
potassium,	and	sodium?	That	was	the	question	puzzling	scientists	at	McGill	and
the	Massachusetts	Institute	of	Technology.

Leon	 Glass	 and	 his	 colleagues	 Michael	 Guevara	 and	 Alvin	 Schrier	 at
McGill	carried	out	one	of	 the	most	 talked-about	 lines	of	 research	 in	 the	whole
short	 history	 of	 nonlinear	 dynamics.	 They	 used	 tiny	 aggregates	 of	 heart	 cells
from	 chicken	 embryos	 seven	 days	 old.	 These	 balls	 of	 cells,	 1/200	 of	 an	 inch
across,	 placed	 in	 a	 dish	 and	 shaken	 together,	 began	 beating	 spontaneously	 at
rates	 on	 the	 order	 of	 once	 a	 second,	 with	 no	 outside	 pacemaker	 at	 all.	 The
pulsation	was	clearly	visible	through	a	microscope.	The	next	step	was	to	apply
an	 external	 rhythm	 as	 well,	 and	 the	 McGill	 scientists	 did	 this	 through	 a
microelectrode,	a	 thin	 tube	of	glass	drawn	out	 to	a	 fine	point	and	 inserted	 into
one	of	 the	cells.	An	electric	potential	was	passed	 through	 the	 tube,	 stimulating
the	cells	with	a	strength	and	a	rhythm	that	could	be	adjusted	at	will.

They	 summed	 up	 their	 findings	 this	 way	 in	 Science	 in	 1981:	 “Exotic
dynamic	 behavior	 that	 was	 previously	 seen	 in	 mathematical	 studies	 and	 in
experiments	in	the	physical	sciences	may	in	general	be	present	when	biological
oscillators	are	periodically	perturbed.”	They	saw	period-doubling—beat	patterns
that	 would	 bifurcate	 and	 bifurcate	 again	 as	 the	 stimulus	 changed.	 They	made
Poincaré	maps	 and	 circle	maps.	They	 studied	 intermittency	 and	mode-locking.
“Many	different	rhythms	can	be	established	between	a	stimulus	and	a	little	piece
of	chicken	heart,”	Glass	said.	“Using	nonlinear	mathematics,	we	can	understand
quite	well	 the	different	 rhythms	and	 their	orderings.	Right	now,	 the	 training	of
cardiologists	 has	 almost	 no	mathematics,	 but	 the	way	we	 are	 looking	 at	 these
problems	is	the	way	that	at	some	point	in	the	future	people	will	have	to	look	at
these	problems.”

Meanwhile,	 in	 a	 joint	 Harvard-M.I.T.	 program	 in	 health	 sciences	 and
technology,	Richard	 J.	Cohen,	 a	 cardiologist	 and	 a	physicist,	 found	a	 range	of
period-doubling	 sequences	 in	 experiments	with	 dogs.	Using	 computer	models,
he	 tested	 one	 plausible	 scenario,	 in	 which	 the	 wavefront	 of	 electrical	 activity
breaks	 up	 on	 islands	 of	 tissue.	 “It	 is	 a	 clear	 instance	 of	 the	 Feigenbaum
phenomenon,”	 he	 said,	 “a	 regular	 phenomenon	 which,	 under	 certain
circumstances,	becomes	chaotic,	and	it	turns	out	that	the	electrical	activity	in	the
heart	has	many	parallels	with	other	systems	that	develop	chaotic	behavior.”



The	McGill	scientists	also	went	back	to	old	data	accumulated	on	different
kinds	of	abnormal	heartbeats.	 In	one	well-known	syndrome,	abnormal,	 ectopic
beats	 are	 interspersed	 with	 normal,	 sinus	 beats.	 Glass	 and	 his	 colleagues
examined	 the	 patterns,	 counting	 the	 numbers	 of	 sinus	 beats	 between	 ectopic
beats.	In	some	people,	the	numbers	would	vary,	but	for	some	reason	they	would
always	be	odd:	3	or	5	or	7.	In	other	people,	the	number	of	normal	beats	would
always	be	part	of	the	sequence:	2,	5,	8,	11….

“People	 have	 made	 these	 weird	 numerology	 observations,	 but	 the
mechanisms	are	not	very	easy	to	understand,”	Glass	said.	“There	is	often	some
type	of	regularity	in	these	numbers,	but	there	is	often	great	irregularity	also.	It’s
one	of	the	slogans	in	this	business:	order	in	chaos.”

Traditionally,	 thoughts	about	 fibrillation	 took	 two	 forms.	One	classic	 idea
was	that	secondary	pacemaking	signals	come	from	abnormal	centers	within	the
heart	muscle	 itself,	conflicting	with	 the	main	signal.	These	 tiny	ectopic	centers
fire	out	waves	at	uncomfortable	intervals,	and	the	interplay	and	overlapping	has
been	thought	to	break	up	the	coordinated	wave	of	contraction.	The	research	by
the	McGill	scientists	provided	some	support	for	this	idea,	by	demonstrating	that
a	 full	 range	of	dynamical	misbehavior	can	arise	 from	the	 interplay	between	an
external	 pulse	 and	 a	 rhythm	 inherent	 in	 the	 heart	 tissue.	 But	 why	 secondary
pacemaking	 centers	 should	 develop	 in	 the	 first	 place	 has	 remained	 hard	 to
explain.

The	other	approach	focused	not	on	the	initiation	of	electrical	waves	but	on
the	way	they	are	conducted	geographically	 through	the	heart,	and	the	Harvard-
M.I.T.	 researchers	 remained	 closer	 to	 this	 tradition.	 They	 found	 that
abnormalities	 in	 the	wave,	 spinning	 in	 tight	 circles,	 could	 cause	 “re-entry,”	 in
which	some	areas	begin	a	new	beat	too	soon,	preventing	the	heart	from	pausing
for	the	quiet	interval	necessary	to	maintain	coordinated	pumping.

By	stressing	the	methods	of	nonlinear	dynamics,	both	groups	of	researchers
were	able	to	use	the	awareness	that	a	small	change	in	one	parameter—perhaps	a
change	 in	 timing	 or	 electrical	 conductivity—could	 push	 an	 otherwise	 healthy
system	 across	 a	 bifurcation	 point	 into	 a	 qualitatively	 new	 behavior.	 They	 also
began	 to	 find	 common	 ground	 for	 studying	 heart	 problems	 globally,	 linking
disorders	 that	 were	 previously	 considered	 unrelated.	 Furthermore,	 Winfree
believed	that,	despite	their	different	focus,	both	the	ectopic	beat	school	and	the
re-entry	school	were	right.	His	topological	approach	suggested	that	the	two	ideas
might	be	one	and	the	same.

“Dynamical	 things	 are	 generally	 counterintuitive,	 and	 the	 heart	 is	 no
exception,”	Winfree	said.	Cardiologists	hoped	that	the	research	would	lead	to	a
scientific	way	of	identifying	those	at	risk	for	fibrillation,	designing	defibrillating



devices,	and	prescribing	drugs.	Winfree	hoped,	too,	that	a	global,	mathematical
perspective	on	such	problems	would	fertilize	a	discipline	 that	barely	existed	 in
the	United	States,	theoretical	biology.

NOW	 SOME	 PHYSIOLOGISTS	 SPEAK	 of	 dynamical	 diseases:	 disorders	 of
systems,	 breakdowns	 in	 coordination	 or	 control.	 “Systems	 that	 normally
oscillate,	stop	oscillating,	or	begin	to	oscillate	in	a	new	and	unexpected	fashion,
and	 systems	 that	 normally	 do	 not	 oscillate,	 begin	 oscillating,”	 was	 one
formulation.	 These	 syndromes	 include	 breathing	 disorders:	 panting,	 sighing,
Cheyne-Stokes	 respiration,	 and	 infant	 apnea—linked	 to	 sudden	 infant	 death
syndrome.	There	are	dynamical	blood	disorders,	 including	a	 form	of	 leukemia,
in	 which	 disruptions	 alter	 the	 balance	 of	 white	 and	 red	 cells,	 platelets	 and
lymphocytes.	Some	scientists	speculate	that	schizophrenia	itself	might	belong	in
this	category,	along	with	some	forms	of	depression.

But	physiologists	have	also	began	to	see	chaos	as	health.	It	has	 long	been
understood	 that	 nonlinearity	 in	 feedback	 processes	 serves	 to	 regulate	 and
control.	 Simply	 put,	 a	 linear	 process,	 given	 a	 slight	 nudge,	 tends	 to	 remain
slightly	off	track.	A	nonlinear	process,	given	the	same	nudge,	tends	to	return	to
its	 starting	 point.	 Christian	 Huygens,	 the	 seventeenth-century	 Dutch	 physicist
who	 helped	 invent	 both	 the	 pendulum	 clock	 and	 the	 classical	 science	 of
dynamics,	stumbled	upon	one	of	the	great	examples	of	this	form	of	regulation,	or
so	 the	 standard	 story	 goes.	 Huygens	 noticed	 one	 day	 that	 a	 set	 of	 pendulum
clocks	 placed	 against	 a	 wall	 happened	 to	 be	 swinging	 in	 perfect	 chorus-line
synchronization.	He	knew	that	the	clocks	could	not	be	that	accurate.	Nothing	in
the	mathematical	 description	 then	 available	 for	 a	 pendulum	 could	 explain	 this
mysterious	 propagation	 of	 order	 from	 one	 pendulum	 to	 another.	 Huygens
surmised,	 correctly,	 that	 the	 clocks	were	 coordinated	 by	 vibrations	 transmitted
through	 the	 wood.	 This	 phenomenon,	 in	 which	 one	 regular	 cycle	 locks	 into
another,	is	now	called	entrainment,	or	mode	locking.	Mode	locking	explains	why
the	moon	always	faces	the	earth,	or	more	generally	why	satellites	tend	to	spin	in
some	whole-number	 ratio	 of	 their	 orbital	 period:	 1	 to	 1,	 or	 2	 to	 1,	 or	 3	 to	 2.
When	the	ratio	is	close	to	a	whole	number,	nonlinearity	in	the	tidal	attraction	of
the	 satellite	 tends	 to	 lock	 it	 in.	 Mode	 locking	 occurs	 throughout	 electronics,
making	it	possible,	for	example,	for	a	radio	receiver	 to	 lock	in	on	signals	even
when	there	are	small	fluctuations	in	their	frequency.	Mode	locking	accounts	for
the	 ability	 of	 groups	 of	 oscillators,	 including	 biological	 oscillators,	 like	 heart
cells	 and	 nerve	 cells,	 to	 work	 in	 synchronization.	 A	 spectacular	 example	 in
nature	 is	 a	 Southeast	 Asian	 species	 of	 firefly	 that	 congregates	 in	 trees	 during
mating	periods,	thousands	at	one	time,	blinking	in	a	fantastic	spectral	harmony.



With	 all	 such	 control	 phenomena,	 a	 critical	 issue	 is	 robustness:	 how	well
can	 a	 system	 withstand	 small	 jolts.	 Equally	 critical	 in	 biological	 systems	 is
flexibility:	 how	 well	 can	 a	 system	 function	 over	 a	 range	 of	 frequencies.	 A
locking-in	 to	 a	 single	 mode	 can	 be	 enslavement,	 preventing	 a	 system	 from
adapting	to	change.	Organisms	must	respond	to	circumstances	that	vary	rapidly
and	 unpredictably;	 no	 heartbeat	 or	 respiratory	 rhythm	 can	 be	 locked	 into	 the
strict	periodicities	of	 the	 simplest	physical	models,	 and	 the	 same	 is	 true	of	 the
subtler	 rhythms	 of	 the	 rest	 of	 the	 body.	 Some	 researchers,	 among	 them	 Ary
Goldberger	 of	 Harvard	Medical	 School,	 proposed	 that	 healthy	 dynamics	were
marked	by	fractal	physical	structures,	 like	 the	branching	networks	of	bronchial
tubes	in	the	lung	and	conducting	fibers	in	the	heart,	 that	allow	a	wide	range	of
rhythms.	 Thinking	 of	 Robert	 Shaw’s	 arguments,	 Goldberger	 noted:	 “Fractal
processes	 associated	 with	 scaled,	 broadband	 spectra	 are	 ‘information-rich.’
Periodic	 states,	 in	 contrast,	 reflect	 narrow-band	 spectra	 and	 are	 defined	 by
monotonous,	 repetitive	 sequences,	 depleted	 of	 information	 content.”	 Treating
such	disorders,	he	and	other	physiologists	suggested,	may	depend	on	broadening
a	system’s	spectral	reserve,	 its	ability	 to	range	over	many	different	frequencies
without	falling	into	a	locked	periodic	channel.

Arnold	Mandell,	 the	 San	Diego	 psychiatrist	 and	 dynamicist	who	 came	 to
Bernardo	Huberman’s	defense	over	eye	movement	in	schizophrenics,	went	even
further	 on	 the	 role	 of	 chaos	 in	 physiology.	 “Is	 it	 possible	 that	 mathematical
pathology,	 i.e.	 chaos,	 is	 health?	 And	 that	 mathematical	 health,	 which	 is	 the
predictability	 and	 differentiability	 of	 this	 kind	 of	 a	 structure,	 is	 disease?”
Mandell	 had	 turned	 to	 chaos	 as	 early	 as	 1977,	 when	 he	 found	 “peculiar
behavior”	in	certain	enzymes	in	the	brain	that	could	only	be	accounted	for	by	the
new	 methods	 of	 nonlinear	 mathematics.	 He	 had	 encouraged	 the	 study	 of	 the
oscillating	 three-dimensional	 entanglements	 of	 protein	 molecules	 in	 the	 same
terms;	 instead	 of	 drawing	 static	 structures,	 he	 argued,	 biologists	 should
understand	such	molecules	as	dynamical	 systems,	capable	of	phase	 transitions.
He	was,	 as	 he	 said	 himself,	 a	 zealot,	 and	 his	main	 interest	 remained	 the	most
chaotic	organ	of	all.	“When	you	reach	an	equilibrium	in	biology	you’re	dead,”
he	said.	“If	I	ask	you	whether	your	brain	is	an	equilibrium	system,	all	I	have	to
do	is	ask	you	not	to	think	of	elephants	for	a	few	minutes,	and	you	know	it	isn’t
an	equilibrium	system.”



CHAOTIC	HARMONIES.	The	interplay	of	different	rhythms.	such	as	radio	frequencies	or	planetary	orbits,



produces	 a	 special	 version	 of	 chaos.	 Below	 and	 on	 the	 facing	 page,	 computer	 pictures	 of	 some	 of	 the
“attractors”	that	can	result	when	three	rhythms	come	together.

CHAOTIC	 FLOWS.	 A	 rod	 drawn	 through	 viscous	 fluid	 causes	 a	 simple,	 wavy	 form.	 If	 drawn	 several
times,	more	complicated	forms	arise.

To	Mandell,	the	discoveries	of	chaos	dictate	a	shift	in	clinical	approaches	to
treating	psychiatric	disorders.	By	any	objective	measure,	the	modern	business	of
“psychopharmacology”—the	use	of	drugs	 to	 treat	 everything	 from	anxiety	and
insomnia	to	schizophrenia	itself—has	to	be	judged	a	failure.	Few	patients,	if	any,
are	cured.	The	most	violent	manifestations	of	mental	 illness	can	be	controlled,
but	 with	 what	 longterm	 consequences,	 no	 one	 knows.	 Mandell	 offered	 his



colleagues	 a	 chilling	 assessment	 of	 the	 most	 commonly	 used	 drugs.
Phenothiazines,	 prescribed	 for	 schizophrenics,	 make	 the	 fundamental	 disorder
worse.	Tricyclic	 antidepressants	 “increase	 the	 rate	of	mood	cycling,	 leading	 to
longterm	increases	in	numbers	of	relapsing	psychopathologic	episodes.”	And	so
on.	Only	lithium	has	any	real	medical	success,	Mandell	said,	and	only	for	some
disorders.

As	he	saw	it,	the	problem	was	conceptual.	Traditional	methods	for	treating
this	 “most	 unstable,	 dynamic,	 infinite-dimensional	 machine”	 were	 linear	 and
reductionist.	“The	underlying	paradigm	remains:	one	gene	→	one	peptide	→	one
enzyme	→	one	neurotransmitter	→	one	receptor	→	one	animal	behavior	→	one
clinical	syndrome	→	one	drug	→	one	clinical	rating	scale.	It	dominates	almost
all	 research	 and	 treatment	 in	 psychopharmacology.	More	 than	 50	 transmitters,
thousands	 of	 cell	 types,	 complex	 electromagnetic	 phenomenology,	 and
continuous	 instability	based	 autonomous	 activity	 at	 all	 levels,	 from	proteins	 to
the	electroencephalogram—and	still	the	brain	is	thought	of	as	a	chemical	point-
to–point	switchboard.”	To	someone	exposed	to	the	world	of	nonlinear	dynamics
the	 response	 could	 only	 be:	 How	 naive.	 Mandell	 urged	 his	 colleagues	 to
understand	the	flowing	geometries	that	sustain	complex	systems	like	the	mind.

Many	other	scientists	began	to	apply	the	formalisms	of	chaos	to	research	in
artificial	 intelligence.	 The	 dynamics	 of	 systems	 wandering	 between	 basins	 of
attraction,	 for	example,	appealed	 to	 those	 looking	 for	a	way	 to	model	 symbols
and	memories.	A	physicist	 thinking	of	 ideas	as	 regions	with	 fuzzy	boundaries,
separate	yet	overlapping,	pulling	like	magnets	and	yet	letting	go,	would	naturally
turn	 to	 the	 image	 of	 a	 phase	 space	 with	 “basins	 of	 attraction.”	 Such	 models
seemed	to	have	the	right	features:	points	of	stability	mixed	with	instability,	and
regions	with	 changeable	boundaries.	Their	 fractal	 structure	offered	 the	kind	of
infinitely	 self-referential	 quality	 that	 seems	 so	 central	 to	 the	mind’s	 ability	 to
bloom	 with	 ideas,	 decisions,	 emotions,	 and	 all	 the	 other	 artifacts	 of
consciousness.	With	or	without	chaos,	serious	cognitive	scientists	can	no	longer
model	the	mind	as	a	static	structure.	They	recognize	a	hierarchy	of	scales,	from
neuron	 upward,	 providing	 an	 opportunity	 for	 the	 interplay	 of	 microscale	 and
macroscale	 so	 characteristic	 of	 fluid	 turbulence	 and	 other	 complex	 dynamical
processes.

Pattern	born	amid	formlessness:	that	is	biology’s	basic	beauty	and	its	basic
mystery.	 Life	 sucks	 order	 from	 a	 sea	 of	 disorder.	 Erwin	 Schrödinger,	 the
quantum	pioneer	and	one	of	several	physicists	who	made	a	nonspecialist’s	foray
into	biological	speculation,	put	it	this	way	forty	years	ago:	A	living	organism	has
the	 “astonishing	 gift	 of	 concentrating	 a	 ‘stream	 of	 order’	 on	 itself	 and	 thus
escaping	 the	 decay	 into	 atomic	 chaos.”	 To	 Schrödinger,	 as	 a	 physicist,	 it	 was



plain	 that	 the	 structure	 of	 living	 matter	 differed	 from	 the	 kind	 of	 matter	 his
colleagues	studied.	The	building	block	of	life—it	was	not	yet	called	DNA—was
an	 aperiodic	 crystal.	 “In	 physics	 we	 have	 dealt	 hitherto	 only	 with	 periodic
crystals.	 To	 a	 humble	 physicist’s	 mind,	 these	 are	 very	 interesting	 and
complicated	 objects;	 they	 constitute	 one	 of	 the	 most	 fascinating	 and	 complex
material	 structures	 by	which	 inanimate	nature	puzzles	 his	wits.	Yet,	 compared
with	 the	 aperiodic	 crystal,	 they	 are	 rather	 plain	 and	 dull.”	 The	 difference	was
like	 the	 difference	 between	 wallpaper	 and	 tapestry,	 between	 the	 regular
repetition	 of	 a	 pattern	 and	 the	 rich,	 coherent	 variation	 of	 an	 artist’s	 creation.
Physicists	had	learned	only	to	understand	wallpaper.	It	was	no	wonder	they	had
managed	to	contribute	so	little	to	biology.

Schrödinger’s	 view	was	unusual.	That	 life	was	 both	 orderly	 and	 complex
was	a	truism;	to	see	aperiodicity	as	the	source	of	its	special	qualities	verged	on
mystical.	 In	 Schrödinger’s	 day,	 neither	mathematics	 nor	 physics	 provided	 any
genuine	support	for	the	idea.	There	were	no	tools	for	analyzing	irregularity	as	a
building	block	of	life.	Now	those	tools	exist.



Chaos	and	Beyond

“The	classification	of	the	constituents	of	a	chaos,	nothing	less	here	is	essayed.”
—HERMAN	MELVILLE,	Moby-Dick



TWO	 DECADES	 AGO	 Edward	 Lorenz	 was	 thinking	 about	 the	 atmosphere,
Michel	Hénon	 the	 stars,	Robert	May	 the	balance	of	nature.	Benoit	Mandelbrot
was	an	unknown	IBM	mathematician,	Mitchell	Feigenbaum	an	undergraduate	at
the	City	College	of	New	York,	Doyne	Farmer	a	boy	growing	up	in	New	Mexico.
Most	 practicing	 scientists	 shared	 a	 set	 of	 beliefs	 about	 complexity.	 They	 held
these	beliefs	so	closely	that	they	did	not	need	to	put	them	into	words.	Only	later
did	it	become	possible	to	say	what	these	beliefs	were	and	to	bring	them	out	for
examination.

Simple	 systems	 behave	 in	 simple	 ways.	 A	 mechanical	 contraption	 like	 a
pendulum,	a	small	electrical	circuit,	an	idealized	population	of	fish	in	a	pond—
as	 long	 as	 these	 systems	 could	 be	 reduced	 to	 a	 few	 perfectly	 understood,
perfectly	 deterministic	 laws,	 their	 longterm	 behavior	 would	 be	 stable	 and
predictable.

Complex	 behavior	 implies	 complex	 causes.	 A	 mechanical	 device,	 an
electrical	circuit,	a	wildlife	population,	a	fluid	flow,	a	biological	organ,	a	particle
beam,	 an	 atmospheric	 storm,	 a	 national	 economy—a	 system	 that	 was	 visibly
unstable,	unpredictable,	or	out	of	control	must	either	be	governed	by	a	multitude
of	independent	components	or	subject	to	random	external	influences.

Different	 systems	 behave	 differently.	A	 neurobiologist	who	 spent	 a	 career
studying	 the	 chemistry	 of	 the	 human	 neuron	 without	 learning	 anything	 about
memory	 or	 perception,	 an	 aircraft	 designer	 who	 used	 wind	 tunnels	 to	 solve
aerodynamic	problems	without	understanding	the	mathematics	of	turbulence,	an
economist	who	analyzed	the	psychology	of	purchasing	decisions	without	gaining
an	ability	 to	 forecast	 large-scale	 trends—scientists	 like	 these,	knowing	 that	 the
components	 of	 their	 disciplines	 were	 different,	 took	 it	 for	 granted	 that	 the
complex	 systems	 made	 up	 of	 billions	 of	 these	 components	 must	 also	 be
different.

Now	 all	 that	 has	 changed.	 In	 the	 intervening	 twenty	 years,	 physicists,
mathematicians,	 biologists,	 and	 astronomers	 have	 created	 an	 alternative	 set	 of
ideas.	Simple	systems	give	rise	to	complex	behavior.	Complex	systems	give	rise
to	 simple	 behavior.	 And	 most	 important,	 the	 laws	 of	 complexity	 hold
universally,	caring	not	at	all	for	the	details	of	a	system’s	constituent	atoms.

For	the	mass	of	practicing	scientists—particle	physicists	or	neurologists	or
even	mathematicians—the	change	did	not	matter	 immediately.	They	continued
to	work	on	 research	problems	within	 their	disciplines.	But	 they	were	aware	of
something	 called	 chaos.	 They	 knew	 that	 some	 complex	 phenomena	 had	 been
explained,	and	 they	knew	 that	other	phenomena	suddenly	seemed	 to	need	new
explanations.	A	scientist	studying	chemical	reactions	in	a	laboratory	or	tracking



insect	 populations	 in	 a	 three-year	 field	 experiment	 or	 modeling	 ocean
temperature	variations	could	not	respond	in	the	traditional	way	to	the	presence	of
unexpected	fluctuations	or	oscillations—that	is,	by	ignoring	them.	For	some,	that
meant	 trouble.	 On	 the	 other	 hand,	 pragmatically,	 they	 knew	 that	 money	 was
available	from	the	federal	government	and	from	corporate	research	facilities	for
this	faintly	mathematical	kind	of	science.	More	and	more	of	 them	realized	that
chaos	offered	 a	 fresh	way	 to	 proceed	with	old	 data,	 forgotten	 in	 desk	drawers
because	 they	 had	 proved	 too	 erratic.	 More	 and	 more	 felt	 the
compartmentalization	of	science	as	an	impediment	to	their	work.	More	and	more
felt	 the	 futility	 of	 studying	 parts	 in	 isolation	 from	 the	whole.	 For	 them,	 chaos
was	the	end	of	the	reductionist	program	in	science.

Uncomprehension;	resistance;	anger;	acceptance.	Those	who	had	promoted
chaos	 longest	 saw	 all	 of	 these.	 Joseph	 Ford	 of	 the	 Georgia	 Institute	 of
Technology	remembered	lecturing	to	a	thermodynamics	group	in	the	1970s	and
mentioning	 that	 there	was	 a	 chaotic	 behavior	 in	 the	Duffing	 equation,	 a	well-
known	 textbook	model	 for	 a	 simple	 oscillator	 subject	 to	 friction.	To	Ford,	 the
presence	of	chaos	in	the	Duffing	equation	was	a	curious	fact—just	one	of	those
things	he	knew	to	be	true,	although	several	years	passed	before	it	was	published
in	 Physical	 Review	 Letters.	 But	 he	 might	 as	 well	 have	 told	 a	 gathering	 of
paleontologists	that	dinosaurs	had	feathers.	They	knew	better.

“When	 I	 said	 that?	 Jee-sus	 Christ,	 the	 audience	 began	 to	 bounce	 up	 and
down.	It	was,	‘My	daddy	played	with	the	Duffing	equation,	and	my	granddaddy
played	with	 the	Duffing	 equation,	 and	 nobody	 seen	 anything	 like	what	 you’re
talking	about.’	You	would	really	run	across	resistance	to	the	notion	that	nature	is
complicated.	What	I	didn’t	understand	was	the	hostility.”

Comfortable	 in	 his	 Atlanta	 office,	 the	 winter	 sun	 setting	 outside,	 Ford
sipped	soda	from	an	oversized	mug	with	the	word	chaos	painted	in	bright	colors.
His	younger	colleague	Ronald	Fox	talked	about	his	own	conversion,	soon	after
buying	 an	 Apple	 II	 computer	 for	 his	 son,	 at	 a	 time	 when	 no	 self-respecting
physicist	 would	 buy	 such	 a	 thing	 for	 his	 work.	 Fox	 heard	 that	 Mitchell
Feigenbaum	 had	 discovered	 universal	 laws	 guiding	 the	 behavior	 of	 feedback
functions,	 and	 he	 decided	 to	write	 a	 short	 program	 that	would	 let	 him	 see	 the
behavior	on	the	Apple	display.	He	saw	it	all	painted	across	the	screen—pitchfork
bifurcations,	stable	lines	breaking	in	two,	then	four,	then	eight;	the	appearance	of
chaos	 itself;	 and	 within	 the	 chaos,	 the	 astonishing	 geometric	 regularity.	 “In	 a
couple	of	 days	you	 could	 redo	 all	 of	Feigenbaum,”	Fox	 said.	Self-teaching	by
computing	 persuaded	 him	 and	 others	 who	 might	 have	 doubted	 a	 written
argument.

Some	 scientists	 played	with	 such	programs	 for	 a	while	 and	 then	 stopped.



Others	could	not	help	but	be	changed.	Fox	was	one	of	those	who	had	remained
conscious	of	the	limits	of	standard	linear	science.	He	knew	he	had	habitually	set
the	hard	nonlinear	problems	aside.	In	practice	a	physicist	would	always	end	up
saying,	This	 is	 a	 problem	 that’s	 going	 to	 take	me	 to	 the	 handbook	 of	 special
functions,	which	is	the	last	place	I	want	to	go,	and	I’m	sure	as	hell	not	going	to
get	on	a	machine	and	do	it,	I’m	too	sophisticated	for	that.

“The	general	picture	of	nonlinearity	got	a	lot	of	people’s	attention—slowly
at	first,	but	increasingly,”	Fox	said.	“Everybody	that	looked	at	it,	it	bore	fruit	for.
You	 now	 look	 at	 any	 problem	 you	 looked	 at	 before,	 no	 matter	 what	 science
you’re	 in.	 There	 was	 a	 place	 where	 you	 quit	 looking	 at	 it	 because	 it	 became
nonlinear.	Now	you	know	how	to	look	at	it	and	you	go	back.”

Ford	said,	“If	an	area	begins	 to	grow,	it	has	 to	be	because	some	clump	of
people	 feel	 that	 there’s	 something	 it	 offers	 them—that	 if	 they	 modify	 their
research,	 the	rewards	could	be	very	big.	To	me	chaos	 is	 like	a	dream.	It	offers
the	 possibility	 that,	 if	 you	 come	 over	 and	 play	 this	 game,	 you	 can	 strike	 the
mother	lode.”

Still,	no	one	could	quite	agree	on	the	word	itself.
Philip	Holmes,	 a	white-bearded	mathematician	 and	 poet	 from	Cornell	 by

way	of	Oxford:	The	complicated,	aperiodic,	attracting	orbits	of	certain	(usually
low-dimensional)	dynamical	systems.

Hao	Bai-Lin,	 a	 physicist	 in	 China	who	 assembled	many	 of	 the	 historical
papers	 of	 chaos	 into	 a	 single	 reference	 volume:	 A	 kind	 of	 order	 without
periodicity.	 And:	 A	 rapidly	 expanding	 field	 of	 research	 to	 which
mathematicians,	physicists,	hydrodynamicists,	ecologists	and	many	others	have
all	made	important	contributions.	And:	A	newly	recognized	and	ubiquitous	class
of	natural	phenomena.

H.	 Bruce	 Stewart,	 an	 applied	 mathematician	 at	 Brookhaven	 National
Laboratory	on	Long	Island:	Apparently	random	recurrent	behavior	 in	a	simple
deterministic	(clockwork-like)	system.

Roderick	V.	Jensen	of	Yale	University,	a	theoretical	physicist	exploring	the
possibility	 of	 quantum	 chaos:	 The	 irregular,	 unpredictable	 behavior	 of
deterministic,	nonlinear	dynamical	systems.

James	Crutchfield	of	the	Santa	Cruz	collective:	Dynamics	with	positive,	but
finite,	metric	entropy.	The	 translation	 from	mathese	 is:	behavior	 that	produces
information	(amplifies	small	uncertainties),	but	is	not	utterly	unpredictable.

And	Ford,	self-proclaimed	evangelist	of	chaos:	Dynamics	freed	at	last	from
the	 shackles	 of	 order	 and	 predictability….	 Systems	 liberated	 to	 randomly
explore	their	every	dynamical	possibility….	Exciting	variety,	richness	of	choice,
a	cornucopia	of	opportunity.



John	Hubbard,	exploring	iterated	functions	and	the	infinite	fractal	wildness
of	 the	Mandelbrot	 set,	 considered	 chaos	 a	 poor	 name	 for	 his	work,	 because	 it
implied	randomness.	To	him,	the	overriding	message	was	that	simple	processes
in	nature	could	produce	magnificent	edifices	of	complexity	without	randomness.
In	 nonlinearity	 and	 feedback	 lay	 all	 the	 necessary	 tools	 for	 encoding	 and	 then
unfolding	structures	as	rich	as	the	human	brain.

To	other	 scientists,	 like	Arthur	Winfree,	 exploring	 the	 global	 topology	of
biological	systems,	chaos	was	too	narrow	a	name.	It	implied	simple	systems,	the
one-dimensional	maps	 of	 Feigenbaum	 and	 the	 two–	 or	 three–	 (and	 a	 fraction)
dimensional	 strange	attractors	of	Ruelle.	Low-dimensional	chaos	was	a	 special
case,	 Winfree	 felt.	 He	 was	 interested	 in	 the	 laws	 of	 many-dimensional
complexity—and	 he	 was	 convinced	 that	 such	 laws	 existed.	 Too	 much	 of	 the
universe	seemed	beyond	the	reach	of	low-dimensional	chaos.

The	 journal	 Nature	 carried	 a	 running	 debate	 about	 whether	 the	 earth’s
climate	followed	a	strange	attractor.	Economists	looked	for	recognizable	strange
attractors	 in	 stock	 market	 trends	 but	 so	 far	 had	 not	 found	 them.	 Dynamicists
hoped	 to	 use	 the	 tools	 of	 chaos	 to	 explain	 fully	 developed	 turbulence.	 Albert
Libchaber,	 now	 at	 the	 University	 of	 Chicago,	 was	 turning	 his	 elegant
experimental	 style	 to	 the	 service	 of	 turbulence,	 creating	 a	 liquid-helium	 box
thousands	of	times	larger	than	his	tiny	cell	of	1977.	Whether	such	experiments,
liberating	fluid	disorder	in	both	space	and	time,	would	find	simple	attractors,	no
one	 knew.	As	 the	 physicist	 Bernardo	Huberman	 said,	 “If	 you	 had	 a	 turbulent
river	 and	 put	 a	 probe	 in	 it	 and	 said,	 ‘Look,	 here’s	 a	 low-dimensional	 strange
attractor,’	we	would	all	take	off	our	hats	and	look.”

Chaos	 was	 the	 set	 of	 ideas	 persuading	 all	 these	 scientists	 that	 they	 were
members	 of	 a	 shared	 enterprise.	 Physicist	 or	 biologist	 or	 mathematician,	 they
believed	that	simple,	deterministic	systems	could	breed	complexity;	that	systems
too	 complex	 for	 traditional	mathematics	 could	yet	 obey	 simple	 laws;	 and	 that,
whatever	their	particular	field,	their	task	was	to	understand	complexity	itself.

“LET	 US	 AGAIN	 LOOK	 at	 the	 laws	 of	 thermodynamics,”	 wrote	 James	 E.
Lovelock,	author	of	 the	Gaia	hypothesis.	“It	 is	 true	 that	at	 first	 sight	 they	 read
like	the	notice	at	the	gate	of	Dante’s	Hell…”	But.

The	Second	Law	is	one	piece	of	technical	bad	news	from	science	that	has
established	 itself	 firmly	 in	 the	 nonscientific	 culture.	 Everything	 tends	 toward
disorder.	Any	process	that	converts	energy	from	one	form	to	another	must	lose
some	as	heat.	Perfect	efficiency	is	impossible.	The	universe	is	a	one-way	street.
Entropy	must	always	 increase	 in	 the	universe	and	 in	any	hypothetical	 isolated
system	within	it.	However	expressed,	the	Second	Law	is	a	rule	from	which	there



seems	no	appeal.	In	thermodynamics	that	is	true.	But	the	Second	Law	has	had	a
life	of	its	own	in	intellectual	realms	far	removed	from	science,	taking	the	blame
for	disintegration	of	societies,	economic	decay,	the	breakdown	of	manners,	and
many	 other	 variations	 on	 the	 decadent	 theme.	 These	 secondary,	 metaphorical
incarnations	of	 the	Second	Law	now	seem	especially	misguided.	 In	our	world,
complexity	flourishes,	and	those	looking	to	science	for	a	general	understanding
of	nature’s	habits	will	be	better	served	by	the	laws	of	chaos.

Somehow,	after	all,	as	the	universe	ebbs	toward	its	final	equilibrium	in	the
featureless	 heat	 bath	 of	 maximum	 entropy,	 it	 manages	 to	 create	 interesting
structures.	 Thoughtful	 physicists	 concerned	 with	 the	 workings	 of
thermodynamics	realize	how	disturbing	is	the	question	of,	as	one	put	it,	“how	a
purposeless	 flow	 of	 energy	 can	 wash	 life	 and	 consciousness	 into	 the	 world.”
Compounding	 the	 trouble	 is	 the	 slippery	 notion	 of	 entropy,	 reasonably	 well-
defined	 for	 thermodynamic	 purposes	 in	 terms	 of	 heat	 and	 temperature,	 but
devilishly	 hard	 to	 pin	 down	 as	 a	measure	 of	 disorder.	 Physicists	 have	 trouble
enough	measuring	the	degree	of	order	in	water,	forming	crystalline	structures	in
the	 transition	 to	 ice,	 energy	 bleeding	 away	 all	 the	 while.	 But	 thermodynamic
entropy	 fails	 miserably	 as	 a	 measure	 of	 the	 changing	 degree	 of	 form	 and
formlessness	 in	 the	 creation	 of	 amino	 acids,	 of	 microorganisms,	 of	 self-
reproducing	plants	and	animals,	of	complex	information	systems	like	the	brain.
Certainly	 these	 evolving	 islands	 of	 order	 must	 obey	 the	 Second	 Law.	 The
important	laws,	the	creative	laws,	lie	elsewhere.

Nature	 forms	 patterns.	 Some	 are	 orderly	 in	 space	 but	 disorderly	 in	 time,
others	 orderly	 in	 time	 but	 disorderly	 in	 space.	 Some	 patterns	 are	 fractal,
exhibiting	 structures	 self-similar	 in	 scale.	 Others	 give	 rise	 to	 steady	 states	 or
oscillating	 ones.	 Pattern	 formation	 has	 become	 a	 branch	 of	 physics	 and	 of
materials	science,	allowing	scientists	 to	model	 the	aggregation	of	particles	 into
clusters,	the	fractured	spread	of	electrical	discharges,	and	the	growth	of	crystals
in	ice	and	metal	alloys.	The	dynamics	seem	so	basic—shapes	changing	in	space
and	 time—yet	only	now	are	 the	 tools	available	 to	understand	 them.	 It	 is	 a	 fair
question	now	to	ask	a	physicist,	“Why	are	all	snowflakes	different?”

Ice	crystals	form	in	 the	 turbulent	air	with	a	famous	blending	of	symmetry
and	 chance,	 the	 special	 beauty	 of	 six-fold	 indeterminacy.	 As	 water	 freezes,
crystals	 send	 out	 tips;	 the	 tips	 grow,	 their	 boundaries	 becoming	 unstable,	 and
new	 tips	 shoot	 out	 from	 the	 sides.	 Snowflakes	 obey	 mathematical	 laws	 of
surprising	 subtlety,	 and	 it	 was	 impossible	 to	 predict	 precisely	 how	 fast	 a	 tip
would	grow,	how	narrow	it	would	be,	or	how	often	it	would	branch.	Generations
of	scientists	sketched	and	cataloged	the	variegated	patterns:	plates	and	columns,
crystals	 and	 polycrystals,	 needles	 and	 dendrites.	 The	 treatises	 treated	 crystal



formation	as	a	classification	matter,	for	lack	of	a	better	approach.
Growth	of	such	tips,	dendrites,	is	now	known	as	a	highly	nonlinear	unstable

free	 boundary	 problem,	meaning	 that	models	 need	 to	 track	 a	 complex,	wiggly
boundary	as	it	changes	dynamically.	When	solidification	proceeds	from	outside
to	inside,	as	in	an	ice	tray,	the	boundary	generally	remains	stable	and	smooth,	its
speed	controlled	by	the	ability	of	 the	walls	 to	draw	away	the	heat.	But	when	a
crystal	 solidifies	 outward	 from	 an	 initial	 seed—as	 a	 snowflake	 does,	 grabbing
water	 molecules	 while	 it	 falls	 through	 the	 moisture-laden	 air—the	 process
becomes	unstable.	Any	bit	of	boundary	that	gets	out	ahead	of	its	neighbors	gains
an	advantage	in	picking	up	new	water	molecules	and	therefore	grows	that	much
faster—the	“lightning-rod	effect.”	New	branches	form,	and	then	subbranches.

One	difficulty	was	in	deciding	which	of	the	many	physical	forces	involved
are	 important	 and	 which	 can	 safely	 be	 ignored.	 Most	 important,	 as	 scientists
have	long	known,	 is	 the	diffusion	of	 the	heat	released	when	water	freezes.	But
the	physics	of	heat	diffusion	cannot	completely	explain	the	patterns	researchers
observe	when	 they	 look	at	 snowflakes	under	microscopes	or	grow	 them	 in	 the
laboratory.	Recently	scientists	worked	out	a	way	to	incorporate	another	process:
surface	tension.	The	heart	of	the	new	snowflake	model	is	the	essence	of	chaos:	a
delicate	balance	between	forces	of	stability	and	forces	of	instability;	a	powerful
interplay	of	forces	on	atomic	scales	and	forces	on	everyday	scales.



BRANCHING	AND	CLUMPING,	(on	facing	page).	The	study	of	pattern	formation,	encouraged	by	fractal
mathematics,	brought	together	such	natural	patterns	as	the	lightning-like	paths	of	an	electrical	discharge	and
the	simulated	aggregation	of	randomly	moving	particles	(inset).

Where	 heat	 diffusion	 tends	 to	 create	 instability,	 surface	 tension	 creates
stability.	 The	 pull	 of	 surface	 tension	 makes	 a	 substance	 prefer	 smooth
boundaries	like	the	wall	of	a	soap	bubble.	It	costs	energy	to	make	surfaces	that
are	rough.	The	balancing	of	these	tendencies	depends	on	the	size	of	the	crystal.
While	diffusion	is	mainly	a	large-scale,	macroscopic	process,	surface	tension	is
strongest	at	the	microscopic	scales.

Traditionally,	because	 the	surface	 tension	effects	are	so	small,	 researchers
assumed	 that	 for	 practical	 purposes	 they	 could	 disregard	 them.	 Not	 so.	 The
tiniest	scales	proved	crucial;	there	the	surface	effects	proved	infinitely	sensitive
to	the	molecular	structure	of	a	solidifying	substance.	In	the	case	of	ice,	a	natural
molecular	symmetry	gives	a	built-in	preference	for	six	directions	of	growth.	To
their	 surprise,	 scientists	 found	 that	 the	 mixture	 of	 stability	 and	 instability
manages	 to	 amplify	 this	 microscopic	 preference,	 creating	 the	 near-fractal
lacework	 that	makes	snowflakes.	The	mathematics	came	not	 from	atmospheric
scientists	but	from	theoretical	physicists,	along	with	metallurgists,	who	had	their



own	 interest.	 In	 metals	 the	 molecular	 symmetry	 is	 different,	 and	 so	 are	 the
characteristic	 crystals,	 which	 help	 determine	 an	 alloy’s	 strength.	 But	 the
mathematics	are	the	same:	the	laws	of	pattern	formation	are	universal.

Sensitive	 dependence	 on	 initial	 conditions	 serves	 not	 to	 destroy	 but	 to
create.	As	a	growing	snowflake	falls	to	earth,	typically	floating	in	the	wind	for
an	hour	or	more,	 the	choices	made	by	the	branching	tips	at	any	instant	depend
sensitively	on	such	things	as	the	temperature,	the	humidity,	and	the	presence	of
impurities	 in	 the	 atmosphere.	 The	 six	 tips	 of	 a	 single	 snowflake,	 spreading
within	a	millimeter	space,	 feel	 the	same	temperatures,	and	because	 the	 laws	of
growth	are	purely	deterministic,	they	maintain	a	near-perfect	symmetry.	But	the
nature	of	 turbulent	air	 is	such	 that	any	pair	of	snowflakes	will	experience	very
different	 paths.	The	 final	 flake	 records	 the	history	of	 all	 the	 changing	weather
conditions	it	has	experienced,	and	the	combinations	may	as	well	be	infinite.



BALANCING	STABILITY	AND	INSTABILITY.	As	a	liquid	crystallizes,	it	forms	a	growing	tip	(shown	in
a	multiple-exposure	photograph)	with	a	boundary	that	becomes	unstable	and	sends	off	side-branches	(left).
Computer	simulations	of	the	delicate	thermodynamic	processes	mimic	real	snowflakes	(above).

Snowflakes	are	nonequilibrium	phenomena,	physicists	like	to	say.	They	are
products	of	imbalance	in	the	flow	of	energy	from	one	piece	of	nature	to	another.
The	flow	turns	a	boundary	into	a	tip,	the	tip	into	an	array	of	branches,	the	array
into	a	complex	structure	never	before	seen.	As	scientists	have	discovered	such
instability	obeying	the	universal	laws	of	chaos,	they	have	succeeded	in	applying
the	same	methods	to	a	host	of	physical	and	chemical	problems,	and,	inevitably,
they	 suspect	 that	 biology	 is	 next.	 In	 the	 back	 of	 their	 minds,	 as	 they	 look	 at
computer	 simulations	of	dendrite	growth,	 they	 see	algae,	 cell	walls,	organisms
budding	and	dividing.

From	microscopic	particles	to	everyday	complexity,	many	paths	now	seem
open.	 In	 mathematical	 physics	 the	 bifurcation	 theory	 of	 Feigenbaum	 and	 his
colleagues	advances	in	the	United	States	and	Europe.	In	the	abstract	reaches	of
theoretical	 physics	 scientists	 probe	 other	 new	 issues,	 such	 as	 the	 unsettled
question	 of	 quantum	 chaos:	 Does	 quantum	 mechanics	 admit	 the	 chaotic
phenomena	 of	 classical	 mechanics?	 In	 the	 study	 of	 moving	 fluids	 Libchaber



builds	 his	 giant	 liquid-helium	box,	while	Pierre	Hohenberg	 and	Günter	Ahlers
study	the	odd-shaped	traveling	waves	of	convection.	In	astronomy	chaos	experts
use	unexpected	gravitational	instabilities	to	explain	the	origin	of	meteorites—the
seemingly	inexplicable	catapulting	of	asteroids	from	far	beyond	Mars.	Scientists
use	the	physics	of	dynamical	systems	to	study	the	human	immune	system,	with
its	 billions	 of	 components	 and	 its	 capacity	 for	 learning,	 memory,	 and	 pattern
recognition,	 and	 they	 simultaneously	 study	 evolution,	 hoping	 to	 find	 universal
mechanisms	of	adaptation.	Those	who	make	such	models	quickly	see	structures
that	replicate	themselves,	compete,	and	evolve	by	natural	selection.

“Evolution	 is	 chaos	 with	 feedback,”	 Joseph	 Ford	 said.	 The	 universe	 is
randomness	 and	 dissipation,	 yes.	 But	 randomness	 with	 direction	 can	 produce
surprising	complexity.	And	as	Lorenz	discovered	so	long	ago,	dissipation	is	an
agent	of	order.

“God	plays	dice	with	the	universe,”	is	Ford’s	answer	to	Einstein’s	famous
question.	“But	they’re	loaded	dice.	And	the	main	objective	of	physics	now	is	to
find	out	by	what	rules	were	they	loaded	and	how	can	we	use	them	for	our	own
ends.”

SUCH	IDEAS	HELP	drive	the	collective	enterprise	of	science	forward.	Still,	no
philosophy,	 no	 proof,	 no	 experiment	 ever	 seems	 quite	 enough	 to	 sway	 the
individual	researchers	for	whom	science	must	first	and	always	provide	a	way	of
working.	In	some	laboratories,	 the	 traditional	ways	falter.	Normal	science	goes
astray,	 as	 Kuhn	 put	 it;	 a	 piece	 of	 equipment	 fails	 to	 meet	 expectations;	 “the
profession	 can	 no	 longer	 evade	 anomalies.”	 For	 any	 one	 scientist	 the	 ideas	 of
chaos	could	not	prevail	until	the	method	of	chaos	became	a	necessity.

Every	 field	 had	 its	 own	 examples.	 In	 ecology,	 there	 was	 William	 M.
Schaffer,	who	 trained	as	 the	 last	 student	of	Robert	MacArthur,	 the	dean	of	 the
field	in	the	fifties	and	sixties.	MacArthur	built	a	conception	of	nature	that	gave	a
firm	 footing	 to	 the	 idea	 of	 natural	 balance.	 His	 models	 supposed	 that
equilibriums	 would	 exist	 and	 that	 populations	 of	 plants	 and	 animals	 would
remain	close	to	them.	To	MacArthur,	balance	in	nature	had	what	could	almost	be
called	 a	 moral	 quality—states	 of	 equilibrium	 in	 his	 models	 entailed	 the	 most
efficient	use	of	 food	 resources,	 the	 least	waste.	Nature,	 if	 left	 alone,	would	be
good.

Two	 decades	 later	 MacArthur’s	 last	 student	 found	 himself	 realizing	 that
ecology	based	on	a	sense	of	equilibrium	seems	doomed	 to	 fail.	The	 traditional
models	are	betrayed	by	their	linear	bias.	Nature	is	more	complicated.	Instead	he
sees	 chaos,	 “both	 exhilarating	 and	 a	 bit	 threatening.”	 Chaos	 may	 undermine
ecology’s	most	enduring	assumptions,	he	tells	his	colleagues.	“What	passes	for



fundamental	concepts	in	ecology	is	as	mist	before	the	fury	of	the	storm—in	this
case,	a	full,	nonlinear	storm.”

Schaffer	 is	 using	 strange	 attractors	 to	 explore	 the	 epidemiology	 of
childhood	diseases	such	as	measles	and	chicken	pox.	He	has	collected	data,	first
from	 New	 York	 City	 and	 Baltimore,	 then	 from	 Aberdeen,	 Scotland,	 and	 all
England	 and	Wales.	 He	 has	 made	 a	 dynamical	 model,	 resembling	 a	 damped,
driven	 pendulum.	 The	 diseases	 are	 driven	 each	 year	 by	 the	 infectious	 spread
among	children	returning	to	school,	and	damped	by	natural	resistance.	Schaffer’s
model	 predicts	 strikingly	 different	 behavior	 for	 these	 diseases.	 Chicken	 pox
should	 vary	 periodically.	Measles	 should	 vary	 chaotically.	 As	 it	 happens,	 the
data	 show	 exactly	 what	 Schaffer	 predicts.	 To	 a	 traditional	 epidemiologist	 the
yearly	variations	in	measles	seemed	inexplicable—random	and	noisy.	Schaffer,
using	the	techniques	of	phase-space	reconstruction,	shows	that	measles	follow	a
strange	attractor,	with	a	fractal	dimension	of	about	2.5.

Schaffer	 computed	Lyapunov	 exponents	 and	made	Poincaré	maps.	 “More
to	the	point,”	Schaffer	said,	“if	you	look	at	the	pictures	it	jumps	out	at	you,	and
you	 say,	 ‘My	God,	 this	 is	 the	 same	 thing.’”	Although	 the	 attractor	 is	 chaotic,
some	predictability	becomes	possible	 in	 light	of	 the	deterministic	nature	of	 the
model.	A	year	of	high	measles	infection	will	be	followed	by	a	crash.	After	a	year
of	medium	infection,	the	level	will	change	only	slightly.	A	year	of	low	infection
produces	 the	 greatest	 unpredictability.	 Schaffer’s	 model	 also	 predicted	 the
consequences	 of	 damping	 the	 dynamics	 by	 mass	 inoculation	 programs—
consequences	that	could	not	be	predicted	by	standard	epidemiology.

On	 the	 collective	 scale	 and	 on	 the	 personal	 scale,	 the	 ideas	 of	 chaos
advance	 in	different	ways	and	 for	different	 reasons.	For	Schaffer,	 as	 for	many
others,	 the	 transition	 from	 traditional	 science	 to	 chaos	 came	 unexpectedly.	He
was	 a	 perfect	 target	 for	 Robert	 May’s	 evangelical	 plea	 in	 1975;	 yet	 he	 read
May’s	 paper	 and	 discarded	 it.	 He	 thought	 the	 mathematical	 ideas	 were
unrealistic	for	the	kinds	of	systems	a	practicing	ecologist	would	study.	Oddly,	he
knew	 too	 much	 about	 ecology	 to	 appreciate	 May’s	 point.	 These	 were	 one-
dimensional	maps,	he	 thought—what	bearing	could	 they	have	on	continuously
changing	systems?	So	a	colleague	said,	“Read	Lorenz.”	He	wrote	the	reference
on	a	slip	of	paper	and	never	bothered	to	pursue	it.

Years	 later	 Schaffer	 lived	 in	 the	 desert	 outside	 of	 Tucson,	 Arizona,	 and
summers	found	him	in	the	Santa	Catalina	mountains	just	to	the	north,	islands	of
chaparral,	merely	hot	when	the	desert	floor	is	roasting.	Amid	the	thickets	in	June
and	July,	after	the	spring	blooming	season	and	before	the	summer	rain,	Schaffer
and	 his	 graduate	 students	 tracked	 bees	 and	 flowers	 of	 different	 species.	 This
ecological	 system	 was	 easy	 to	 measure	 despite	 all	 its	 year-to–year	 variation.



Schaffer	 counted	 the	 bees	 on	 every	 stalk,	 measured	 the	 pollen	 by	 draining
flowers	 with	 pipettes,	 and	 analyzed	 the	 data	 mathematically.	 Bumblebees
competed	 with	 honeybees,	 and	 honeybees	 competed	 with	 carpenter	 bees,	 and
Schaffer	made	a	convincing	model	to	explain	the	fluctuations	in	population.

By	1980	he	knew	that	something	was	wrong.	His	model	broke	down.	As	it
happened,	 the	 key	 player	 was	 a	 species	 he	 had	 overlooked:	 ants.	 Some
colleagues	 suspected	 unusual	winter	weather;	 others	 unusual	 summer	weather.
Schaffer	 considered	 complicating	 his	model	 by	 adding	more	 variables.	But	 he
was	deeply	frustrated.	Word	was	out	among	the	graduate	students	that	summer
at	5,000	feet	with	Schaffer	was	hard	work.	And	then	everything	changed.

He	 happened	 upon	 a	 preprint	 about	 chemical	 chaos	 in	 a	 complicated
laboratory	experiment,	and	he	 felt	 that	 the	authors	had	experienced	exactly	his
problem:	the	impossibility	of	monitoring	dozens	of	fluctuating	reaction	products
in	 a	 vessel	 matched	 the	 impossibility	 of	 monitoring	 dozens	 of	 species	 in	 the
Arizona	mountains.	Yet	they	had	succeeded	where	he	had	failed.	He	read	about
reconstructing	phase	space.	He	finally	read	Lorenz,	and	Yorke,	and	others.	The
University	 of	 Arizona	 sponsored	 a	 lecture	 series	 on	 “Order	 in	 Chaos.”	 Harry
Swinney	 came,	 and	 Swinney	 knew	 how	 to	 talk	 about	 experiments.	 When	 he
explained	chemical	chaos,	displaying	a	 transparency	of	a	 strange	attractor,	and
said,	“That’s	real	data,”	a	chill	ran	up	Schaffer’s	spine.

“All	of	a	sudden	I	knew	that	that	was	my	destiny,”	Schaffer	said.	He	had	a
sabbatical	 year	 coming.	 He	 withdrew	 his	 application	 for	 National	 Science
Foundation	 money	 and	 applied	 for	 a	 Guggenheim	 Fellowship.	 Up	 in	 the
mountains,	he	knew,	the	ants	changed	with	the	season.	Bees	hovered	and	darted
in	a	dynamical	buzz.	Clouds	skidded	across	the	sky.	He	could	not	work	the	old
way	any	more.



Afterword

EVEN	NOW,	CHAOS	 THEORY	 sounds	 like	a	bit	of	 an	oxymoron.	 In	 the	1980s,
“chaos”	and	“theory”	were	words	that	didn’t	seem	to	belong	in	the	same	room,
let	alone	 the	same	sentence.	When	friends	heard	 that	 I	was	researching	a	book
about	chaos—and	that	it	was	to	do	with	science—there	were	quizzical	looks	and
raised	eyebrows.	Much	 later,	one	 told	me	she	had	 thought	 I	was	writing	about
“gas.”	As	 it	 says	 in	 the	 subtitle,	 chaos	was	 a	new	 science—strange	 and	 alien-
sounding,	exciting	and	hard	to	accept.

What	 a	 difference	 twenty	 years	 make.	 The	 ideas	 of	 chaos	 have	 been
adopted	and	internalized,	not	just	by	mainstream	science	but	also	by	the	culture
at	large.	Still,	even	now,	plenty	of	scientists	find	chaos	to	be	strange	and	alien-
sounding,	exciting	and	hard	to	accept.

We’ve	all	now	heard	of	chaos,	at	least	a	little.	“I’m	still	not	clear	on	chaos,”
says	 Laura	 Dern’s	 character	 in	 the	 1993	 film	 Jurassic	 Park,	 so	 that	 Jeff
Goldblum’s	character—who	announces	himself	as	a	“chaotician”—can	explain
flirtatiously,	 “It	 simply	 deals	 with	 unpredictability	 in	 complex	 systems….	 A
butterfly	can	flap	its	wings	in	Peking,	and	in	Central	Park	you	get	rain	instead	of
sunshine.”	By	then	the	Butterfly	Effect	was	well	on	its	way	to	becoming	a	pop-
culture	cliché:	inspiring	at	least	two	movies,	an	entry	in	Bartlett’s	Quotations,	a
music	video,	and	a	 thousand	Web	sites	and	blogs.	 (Only	 the	place	names	keep
changing:	the	butterfly	flaps	its	wings	in	Brazil,	Peru,	China,	California,	Tahiti,
and	 South	 America,	 and	 the	 rain/hurricane/tornado/storm	 arrives	 in	 Texas,
Florida,	 New	 York,	 Nebraska,	 Kansas,	 and	 Central	 Park.)	 After	 the	 big
hurricanes	 of	 2006,	 Physics	 Today	 published	 an	 article	 titled	 “Battling	 the
Butterfly	 Effect,”	 whimsically	 blaming	 butterflies	 in	 battalions:	 “Visions	 of
Lepidoptera	terrorist	training	camps	spring	suddenly	to	mind.”

Aspects	 of	 chaos—different	 aspects,	 usually—have	 been	 taken	 up	 by
modern	management	theorists	on	the	one	hand,	and	postmodern	literary	theorists
on	 the	 other.	 Both	 camps	 have	 found	 use	 for	 phrases	 like	 “orderly	 disorder,”
especially	popular	 in	dissertation	 titles.	Compelling	 literary	characters,	 such	as
Shakespeare’s	 Cleopatra,	 are	 seen	 to	 be	 “strange	 attractors.”	 So	 are	 chart
patterns	in	the	financial	markets.	Meanwhile,	painters	as	well	as	sculptors	have
found	inspiration	in	both	the	words	and	the	images	of	fractal	geometry.	For	my



money,	 the	 most	 powerful	 artistic	 incarnation	 of	 these	 ideas	 came	 in	 Tom
Stoppard’s	play	Arcadia,	which	opened	in	London	a	few	months	before	Jurassic
Park.	It,	too,	features	a	mathematician	reveling	in	chaos:	“The	freaky	stuff,”	he
says,	“is	turning	out	to	be	the	mathematics	of	the	natural	world.”	Stoppard	goes
beyond	orderly	disorder	 to	 the	 tension	between	 the	 formal	English	garden	 and
the	 wilderness,	 between	 the	 classical	 and	 the	 Romantic.	 He	 is	 channeling	 the
voices	in	this	book,	and	to	quote	him	here	is	to	engage	in	loopy	feedback,	but	I
can’t	help	 it.	He	captures	 the	exhilaration	of	so	many	young	researchers	at	 the
discovery	of	chaos.	He	sees	the	opening	door	and	the	vista	beyond.

The	ordinary-sized	 stuff	which	 is	our	 lives,	 the	 things	people	write	poetry
about—clouds—daffodils—waterfalls—and	 what	 happens	 in	 a	 cup	 of
coffee	 when	 the	 cream	 goes	 in—these	 things	 are	 full	 of	 mystery,	 as
mysterious	 to	 us	 as	 the	 heavens	 were	 to	 the	 Greeks….	 The	 future	 is
disorder.	A	door	like	this	has	cracked	open	five	or	six	times	since	we	got	up
on	 our	 hind	 legs.	 It’s	 the	 best	 possible	 time	 to	 be	 alive,	 when	 almost
everything	you	thought	you	knew	was	wrong.

The	door	is	open	more	than	a	crack	now,	and	a	new	generation	of	scientists	has
come	 along,	 armed	 with	 a	 more	 robust	 set	 of	 assumptions	 about	 how	 nature
works.	They	know	that	a	complex	dynamical	system	can	get	freaky.	They	know,
when	 it	 does	 that,	 that	 you	 can	 still	 look	 it	 in	 the	 eye	 and	 take	 its	 measure.
Meetings	across	disciplinary	lines	to	share	methodologies	on	scaling	patterns	or
network	behaviors	are	now,	if	not	the	rule,	at	least	no	longer	the	exception.

By	and	large,	 the	pioneers	of	chaos	came	in	from	the	wilderness	and	took
their	places	 in	 the	scientific	establishment.	Edward	Lorenz,	as	a	much-honored
professor	emeritus	at	M.I.T.,	was	still	 seen	coming	 to	work	 in	his	nineties	and
watching	 the	 weather	 from	 his	 office	 high	 up	 in	 Building	 54.	 Mitchell
Feigenbaum	 joined	Rockefeller	University	 and	 created	 a	mathematical	 physics
laboratory	 there.	Robert	May	became	president	of	 the	Royal	Society	and	chief
scientific	adviser	to	the	government	of	the	U.K.	and,	in	2001,	was	created	Baron
May	of	Oxford.	As	 for	Benoit	Mandelbrot,	 a	 “Vita”	 he	 published	on	his	Yale
Web	 page	 in	 2006	 listed	 twenty-four	 awards,	 prizes,	 and	 medals,	 two
decorations,	nineteen	“diplomas,	honoris	causa	&	the	like,”	twelve	memberships
in	scientific	societies,	 fifteen	memberships	on	editorial	boards	and	committees,
and	 a	 variety	 of	 items	 bearing	 his	 name,	 including	 a	 “Tree	 along	 the	 Nobel
Lane”	in	Balantonfüred,	Hungary,	a	laboratory	in	China,	and	an	asteroid.

The	 principles	 they	 discovered	 and	 the	 concepts	 they	 invented	 have
continued	 to	 evolve—beginning	 with	 the	 word	 “chaos”	 itself.	 Already	 by	 the



mid–1980s	 the	 word	 was	 being	 defined	 rather	 narrowly	 (see	 here)	 by	 many
scientists,	who	applied	it	to	a	special	subset	of	the	phenomena	covered	by	more
general	terms	such	as	“complex	systems.”	Astute	readers,	though,	could	tell	that
I	 preferred	 Joe	 Ford’s	 more	 freewheeling	 “cornucopia”	 style	 of	 definition
—“Dynamics	freed	at	last	from	the	shackles	of	order	and	predictability…”—and
still	 do.	 But	 everything	 evolves	 in	 the	 direction	 of	 specialization,	 and	 strictly
speaking,	“chaos”	is	now	a	very	particular	thing.	When	Yaneer	Bar-Yam	wrote	a
kilopage	textbook,	Dynamics	of	Complex	Systems,	in	2003,	he	took	care	of	chaos
proper	in	the	first	section	of	the	first	chapter.	(“The	first	chapter,	I	have	to	admit,
is	 300	 pages,	 okay?”	 he	 says.)	 Then	 came	 Stochastic	 Processes,	 Modeling
Simulation,	 Cellular	 Automata,	 Computation	 Theory	 and	 Information	 Theory,
Scaling,	 Renormalization,	 and	 Fractals,	 Neural	 Networks,	 Attractor	 Networks,
Homogenous	Systems,	Inhomogenous	Systems,	and	so	on.

Bar-Yam,	the	son	of	a	high-energy	physicist,	had	studied	condensed	matter
physics	and	become	an	engineering	professor	at	Boston	University,	but	he	left	in
1997	 to	 found	 the	 New	 England	 Complex	 Systems	 Institute.	 He	 had	 been
exposed	to	Stephen	Wolfram’s	work	on	cellular	automata	and	Robert	Devaney’s
work	 in	 chaos	 and	 discovered	 that	 he	 was	 less	 interested	 in	 polymers	 and
superconductors	 than	 in	 neural	 networks	 and—he	 says	 this	 with	 no	 sense	 of
grandiosity—the	nature	of	human	civilization.	“Thinking	about	civilization,”	he
says,	 “led	 me	 to	 think	 about	 complexity	 as	 an	 entity.	 How	 do	 you	 compare
civilization	 to	 something	 else?	 Is	 it	 like	 brass?	 Is	 it	 like	 a	 frog?	How	 do	 you
answer	that	question?	This	is	what	motivates	complex	systems.”

In	case	you	couldn’t	tell,	civilization	is	more	like	a	frog	than	brass.	For	one
thing,	it	evolves—evolutionary,	adaptive	processes	being	essential	in	the	design
and	 creation	 of	 anything	 so	 complex	 that	 it	 cannot	 effectively	 be	 decomposed
into	separate	pieces.	So-cioeconomic	systems	are	 like	ecosystems.	In	fact,	 they
are	 ecosystems.	With	computer	modeling,	Bar-Yam	has	been	studying,	among
other	 things,	 global	 patterns	 of	 ethnic	 violence,	 trying	 to	 isolate	 patterns	 of
population	 mixing	 and	 boundaries	 that	 trigger	 conflicts.	 At	 its	 core,	 this	 is
research	 on	 pattern	 formation.	 That	 he	 can	 do	 this	 work	 at	 all	 illustrates	 the
profound	 shift	over	 the	past	 two	decades	 in	 the	community’s	understanding	of
what	 constitutes	 a	 legitimate	 scientific	 problem.	 “Let	me	 diagram	 for	 you	 the
process,”	he	says.	He	has	a	parable:

People	are	working	to	harvest	fruit	from	an	orchard,	okay?	Beautiful	fruit
were	taken	and	brought	to	market,	and	then	you	harvest	fruit	that’s	higher
up	in	the	trees.	It’s	a	little	bit	harder	to	get	to	and	maybe	a	little	bit	smaller
and	not	as	nice.	And	then	you	build	ladders	and	you	climb	up	the	tree	and



you	 get	 to	 the	 higher	 fruit.	 And	 then	 you	 reward	 people	 for	 building	 the
ladders.

My	feeling	of	what	I	did	is,	I	looked	and	I	saw	that	there	was	a	hedge,
and	 beyond	 the	 hedge	was	 another	 orchard,	which	 had	 beautiful	 fruit	 on
many,	many	 trees.	And	here	 am,	 I	 find	a	 fruit	 and	 I	 go	back	 through	 the
hedge	 and	 I	 show	 it	 to	 people.	 And	 they	 say,	 “That’s	 not	 a	 fruit!”	 They
couldn’t	recognize	the	fruit	anymore.

Communication	is	better	now,	he	feels.	Disciplines	across	the	scientific	spectrum
have	 learned	 to	 focus	on	understanding	complexity	 and	 scale	 and	patterns	 and
the	collective	behavior	that	is	associated	with	patterns.	That’s	fruit.

IN	THE	HEADY	early	days,	researchers	described	chaos	as	the	century’s	third
revolution	 in	 the	 physical	 sciences,	 after	 relativity	 and	 quantum	 mechanics.
What	 has	 become	 clear	 now	 is	 that	 chaos	 is	 inextricable	 from	 relativity	 and
quantum	mechanics.	There	is	only	one	physics.

The	 fundamental	 equations	 of	 general	 relativity	 are	 nonlinear—already	 a
signal,	we	know	by	now,	that	chaos	lurks.	“People	aren’t	always	well	versed	in
its	 methods,”	 says	 Janna	 Levin,	 an	 astrophysicist	 and	 cosmologist	 at	 Barnard
College	of	Columbia	University.	“Theoretical	physics	in	particular	is	built	on	the
notion	of	fundamental	symmetries,”	she	notes.	“For	that	reason,	I	think	it’s	been
a	 difficult	 paradigm	 shift	 for	 theoretical	 physics	 to	 embrace.”	 Symmetries	 and
symmetry	groups	tend	to	produce	solvable	equations—that’s	why	they	work	so
well.	When	they	work.

As	 a	 relativist,	 Levin	 deals	 in	 the	 biggest	 questions	 there	 are.	 (Is	 the
universe	infinite,	for	example,	or	just	really	big?	Her	work	suggests	big,	or—if
we	 want	 to	 be	 technical—topologically	 compact	 and	 multiconnected.)	 In
studying	 the	 origin	 of	 the	 universe,	 Levin	 found	 herself	 dealing	 with	 chaos
willy-nilly	and	ran	into	resistance.	“When	I	first	brought	this	work	out,	there	was
an	insanely	violent	reaction	against	it,”	she	says.	People	thought	chaos	was	fine
“for	 complicated,	 grungy	 physical	 systems—not	 the	 pure,	 uncomplicated	 and
virtual	terrain	of	fundamental	physics.”

We	were	working	on	chaos	 in	pure	general	relativity	without	any	grunge,
and	this	was	a	tiny,	tiny,	little	industry—working	out	chaos	in	a	generic	big
bang,	or	collapse	to	a	black	hole,	or	in	orbits	around	a	black	hole.	People
don’t	 think	 it’s	 a	 spooky	word,	 but	 they’re	 surprised	 to	 see	 chaos	 play	 a
role	in	something	as	ungrungy—no	atoms	or	junk—as	a	purely	relativistic
system.



Astronomers	had	already	found	the	fingerprints	of	chaos	in	violence	on	the	sun’s
surface,	gaps	in	the	asteroid	belt,	and	the	distribution	of	galaxies.	Levin	and	her
colleagues	 have	 found	 them	 in	 the	 exit	 from	 the	 big	 bang	 and	 in	 black	 holes.
They	predict	that	light	trapped	by	a	black	hole	can	enter	unstable	chaotic	orbits
and	be	reemitted—making	the	black	hole	visible,	if	only	briefly.	Yes,	chaos	can
light	 up	black	holes.	 “There	 are	 rational	 numbers	 to	mine,	 fractal	 sets,	 and	 all
kinds	of	truly	beautiful	consequences,”	she	says.	“So	on	the	one	hand,	people	are
horrified,	 on	 the	 other	 they’re	mesmerized.”	 She	 does	 chaos	 in	 curved	 space-
time.	Einstein	would	be	proud.

AS	FOR	ME,	I	never	returned	to	chaos,	but	readers	might	spot	seeds	of	all	my
later	books	in	this	one.	I	knew	hardly	anything	about	Richard	Feynman,	but	he
has	a	cameo	here	(see	here).	Isaac	Newton	has	more	than	a	cameo:	he	seems	to
be	 the	antihero	of	 chaos,	or	 the	god	 to	be	overthrown.	 I	discovered	only	 later,
reading	 his	 notebooks	 and	 letters,	 how	 wrong	 I’d	 been	 about	 him.	 And	 for
twenty	years	I’ve	been	pursuing	a	thread	that	began	with	something	Rob	Shaw
told	me,	 about	 chaos	 and	 information	 theory,	 as	 invented	 by	Claude	Shannon.
Chaos	 is	 a	 creator	 of	 information—another	 apparent	 paradox.	 This	 thread
connects	with	something	Bernardo	Hubemian	said:	that	he	was	seeing	complex
behaviors	 emerge	 unexpectedly	 in	 information	 networks.	 Something	 was
dawning,	and	we’re	finally	starting	to	see	what	it	is.

James	Gleick
Key	West

February	2008



Notes	on	Sources
and	Further	Reading

THIS	BOOK	DRAWS	on	 the	words	of	about	 two	hundred	scientists,	 in	public
lectures,	in	technical	writing,	and	most	of	all	in	interviews	conducted	from	April
1984	to	December	1986.	Some	of	the	scientists	were	specialists	in	chaos;	others
were	 not.	 Some	 made	 themselves	 available	 for	 many	 hours	 over	 a	 period	 of
months,	 offering	 insights	 into	 the	 history	 and	 practice	 of	 science	 that	 are
impossible	to	credit	fully.	A	few	provided	unpublished	written	recollections.

Few	 useful	 secondary	 sources	 of	 information	 on	 chaos	 exist,	 and	 the	 lay
reader	in	search	of	further	reading	will	find	few	places	to	turn.	Perhaps	the	first
general	 introduction	 to	 chaos—still	 eloquently	 conveying	 the	 flavor	 of	 the
subject	 and	 outlining	 some	 of	 the	 fundamental	mathematics—was	Douglas	 R.
Hofstadter’s	 November	 1981	 column	 in	 Scientific	 American,	 reprinted	 in
Metamagical	Themas	(New	York:	Basic	Books,	1985).	Two	useful	collections	of
the	most	influential	scientific	papers	are	Hao	Bai-Lin,	Chaos	(Singapore:	World
Scientific,	1984)	and	Predrag	Cvitanović,	Universality	in	Chaos	(Bristol:	Adam
Hilger,	1984).	Their	selections	overlap	surprisingly	little;	the	former	is	perhaps	a
bit	 more	 historically	 oriented.	 For	 anyone	 interested	 in	 the	 origins	 of	 fractal
geometry,	 the	 indispensable,	 encyclopedic,	 exasperating	 source	 is	 Benoit
Mandelbrot,	The	Fractal	Geometry	of	Nature	(New	York:	Freeman,	1977).	The
Beauty	of	Fractals,	Heinz-Otto	Peitgen	and	Peter	H.	Richter	 (Berlin:	Springer-
Verlag,	1986),	delves	into	many	areas	of	the	mathematics	of	chaos	in	European-
Romantic	 fashion,	with	 invaluable	 essays	by	Mandelbrot,	Adrien	Douady,	 and
Gert	 Eilenberger;	 it	 contains	many	 lavish	 color	 and	 black-and–white	 graphics,
several	of	which	are	reproduced	in	this	book.	A	well-illustrated	text	directed	at
engineers	and	others	seeking	a	practical	survey	of	the	mathematical	 ideas	is	H.
Bruce	 Stewart	 and	 J.	 M.	 Thompson,	 Nonlinear	 Dynamics	 and	 Chaos
(Chichester:	 Wiley,	 1986).	 None	 of	 these	 books	 will	 be	 valuable	 to	 readers
without	some	technical	background.

In	describing	the	events	of	this	book	and	the	motivations	and	perspectives
of	 the	 scientists,	 I	 have	 avoided	 the	 language	 of	 science	 wherever	 possible,
assuming	 that	 the	 technically	 aware	 will	 know	 when	 they	 are	 reading	 about



integrability,	 power-law	 distribution,	 or	 complex	 analysis.	 Readers	 who	 want
mathematical	 elaboration	 or	 specific	 references	 will	 find	 them	 in	 the	 chapter
notes	 below.	 In	 selecting	 a	 few	 journal	 articles	 from	 the	 thousands	 that	might
have	been	cited,	I	chose	either	 those	which	most	directly	 influenced	the	events
chronicled	 in	 this	 book	 or	 those	which	will	 be	most	 broadly	 useful	 to	 readers
seeking	further	context	for	ideas	that	interest	them.

Descriptions	 of	 places	 are	 generally	 based	 on	my	 visits	 to	 the	 sites.	 The
following	 institutions	 made	 available	 their	 researchers,	 their	 libraries,	 and	 in
some	 cases	 their	 computer	 facilities:	 Boston	 University,	 Cornell	 University,
Courant	Institute	of	Mathematics,	European	Centre	for	Medium	Range	Weather
Forecasts,	Georgia	Institute	of	Technology,	Harvard	University,	IBM	Thomas	J.
Watson	 Research	 Center,	 Institute	 for	 Advanced	 Study,	 Lamont-Doherty
Geophysical	 Observatory,	 Los	 Alamos	 National	 Laboratory,	 Massachusetts
Institute	 of	 Technology,	 National	 Center	 for	 Atmospheric	 Research,	 National
Institutes	 of	 Health,	 National	 Meteorological	 Center,	 New	 York	 University,
Observatoire	de	Nice,	Princeton	University,	University	of	California	at	Berkeley,
University	 of	 California	 at	 Santa	 Cruz,	 University	 of	 Chicago,	 Woods	 Hole
Oceanographic	Institute,	Xerox	Palo	Alto	Research	Center.

For	particular	quotations	and	 ideas,	 the	notes	below	 indicate	my	principal
sources.	 I	 give	 full	 citations	 for	 books	 and	 articles;	where	 only	 a	 last	 name	 is
cited,	 the	 reference	 is	 to	 one	 of	 the	 following	 scientists,	 who	were	 especially
helpful	to	my	research:

Günter	Ahlers
F.Tito	Arecchi
Michael	Barnsley
Lennart	Bengtsson
William	D.	Bonner
Robert	Buchal
William	Burke
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PROLOGUE

LOS	ALAMOS	Feigenbaum,	Carruthers,	Campbell,	Farmer,	Visscher,	Kerr,
Hasslacher,	Jen.

“I	UNDERSTAND	YOU’RE”	Feigenbaum,	Carruthers.

GOVERNMENT	PROGRAM	Buchal,	Shlesinger,	Wisniewski.

ELEMENTS	OF	MOTION	Yorke.

PROCESS	RATHER	THAN	STATE	F.	K.	Browand,	“The	Structure	of	the	Turbulent
Mixing	Layer,”	Physica	18D	(1986),	p.	135.

THE	BEHAVIOR	OF	CARS	Japanese	scientists	took	the	traffic	problem	especially
seriously;	e.g.,	Toshimitsu	Musha	and	Hideyo	Higuchi,	“The	1/f	Fluctuation	of	a
Traffic	Current	on	an	Expressway,”	Japanese	Journal	of	Applied	Physics	(1976),
pp.	1271–75.

THAT	REALIZATION	Mandelbrot,	Ramsey;	Wisdom,	Marcus;	Alvin	M.	Saperstein,
“Chaos—A	Model	for	the	Outbreak	of	War,”	Nature	309	(1984),	pp.	303–5.

“FIFTEEN	YEARS	AGO”	Shlesinger.

JUST	THREE	THINGS	Shlesinger.

THIRD	GREAT	REVOLUTION	Ford.

“RELATIVITY	ELIMINATED”	Joseph	Ford,	“What	Is	Chaos,	That	We	Should	Be
Mindful	of	It?”	preprint,	Georgia	Institute	of	Technology,	p.	12.

THE	COSMOLOGIST	John	Boslough,	Stephen	Hawking’s	Universe	(Cambridge:
Cambridge	University	Press,	1980);	see	also	Robert	Shaw,	The	Dripping	Faucet
as	a	Model	Chaotic	System	(Santa	Cruz:	Aerial,	1984),	p.	1.



THE	BUTTERFLY	EFFECT

THE	SIMULATED	WEATHER	Lorenz,	Malkus,	Spiegel,	Farmer.	The	essential	Lorenz
is	a	triptych	of	papers	whose	centerpiece	is	“Deterministic	Nonperiodic	Flow,”
Journal	of	the	Atmospheric	Sciences	20	(1963),	pp.	130–41;	flanking	this	are
“The	Mechanics	of	Vacillation,”	Journal	of	the	Atmospheric	Sciences	20	(1963),
pp.	448–64,	and	“The	Problem	of	Deducing	the	Climate	from	the	Governing
Equations,”	Tellus	16	(1964),	pp.	1–11.	They	form	a	deceptively	elegant	piece	of
work	that	continues	to	influence	mathematicians	and	physicists	twenty	years
later.	Some	of	Lorenz’s	personal	recollections	of	his	first	computer	model	of	the
atmosphere	appear	in	“On	the	Prevalence	of	Aperiodicity	in	Simple	Systems,”	in
Global	Analysis,	eds.	Mgrmela	and	J.	Marsden	(New	York:	Springer-Verlag,
1979),	pp.	53–75.

THEY	WERE	NUMERICAL	RULES	A	readable	contemporary	description	by	Lorenz	of
the	problem	of	using	equations	to	model	the	atmosphere	is	“Large-Scale
Motions	of	the	Atmosphere:	Circulation,”	in	Advances	in	Earth	Science,	ed.	P.
M.	Hurley	(Cambridge,	Mass.:	The	M.I.T.	Press,	1966),	pp.	95–109.	An	early,
influential	analysis	of	this	problem	is	L.	F.	Richardson,	Weather	Prediction	by
Numerical	Process	(Cambridge:	Cambridge	University	Press,	1922).

PURITY	OF	MATHEMATICS	Lorenz.	Also,	an	account	of	the	conflicting	pulls	of
mathematics	and	meteorology	in	his	thinking	is	in	“Irregularity:	A	Fundamental
Property	of	the	Atmosphere,”	Crafoord	Prize	Lecture	presented	at	the	Royal
Swedish	Academy	of	Sciences,	Stockholm,	Sept.	28,	1983,	in	Tellus	36A
(1984),	pp.	98–110.

“IT	WOULD	EMBRACE”	Pierre	Simon	de	Laplace,	A	Philosophical	Essay	on
Probabilities	(New	York:	Dover,	1951).

“THE	BASIC	IDEA”	Winfree.

“THAT’S	THE	KIND	OF	RULE”	Lorenz.

SUDDENLY	HE	REALIZED	“On	the	Prevalence,”	p.	55.

SMALL	ERRORS	PROVED	CATASTROPHIC	Of	all	the	classical	physicists	and
mathematicians	who	thought	about	dynamical	systems,	the	one	who	best



understood	the	possibility	of	chaos	was	Jules	Henri	Poincaré.	Poincaré	remarked
in	Science	and	Method:
“A	very	small	cause	which	escapes	our	notice	determines	a	considerable	effect
that	we	cannot	fail	to	see,	and	then	we	say	that	the	effect	is	due	to	chance.	If	we
knew	exactly	the	laws	of	nature	and	the	situation	of	the	universe	at	the	initial
moment,	we	could	predict	exactly	the	situation	of	that	same	universe	at	a
succeeding	moment.	But	even	if	it	were	the	case	that	the	natural	laws	had	no
longer	any	secret	for	us,	we	could	still	know	the	situation	approximately.	If	that
enabled	us	to	predict	the	succeeding	situation	with	the	same	approximation,	that
is	all	we	require,	and	we	should	say	that	the	phenomenon	had	been	predicted,
that	it	is	governed	by	the	laws.	But	it	is	not	always	so;	it	may	happen	that	small
differences	in	the	initial	conditions	produce	very	great	ones	in	the	final
phenomena.	A	small	error	in	the	former	will	produce	an	enormous	error	in	the
latter.	Prediction	becomes	impossible….”
Poincaré’s	warning	at	the	turn	of	the	century	was	virtually	forgotten;	in	the
United	States,	the	only	mathematician	to	seriously	follow	Poincaré’s	lead	in	the
twenties	and	thirties	was	George	D.	Birkhoff,	who,	as	it	happened,	briefly	taught
a	young	Edward	Lorenz	at	M.I.T.

THAT	FIRST	DAY	Lorenz;	also,	“On	the	Prevalence,”	p.	56.

“WE	CERTAINLY	HADN’T”	Lorenz.

YEARS	OF	UNREAL	OPTIMISM	Woods,	Schneider;	a	broad	survey	of	expert	opinion
at	the	time	was	“Weather	Scientists	Optimistic	That	New	Findings	Are	Near,”
The	New	York	Times,	9	September	1963,	p.	1.

VON	NEUMANN	IMAGINED	Dyson.

VAST	AND	EXPENSIVE	BUREAUCRACY	Bonner,	Bengtsson,	Woods,	Leith.

FORECASTS	OF	ECONOMIC	Peter	B.	Medawar,	“Expectation	and	Prediction,”	in
Pluto’s	Republic	(Oxford:	Oxford	University	Press,	1982),	pp.	301–4.

THE	BUTTERFLY	EFFECT	Lorenz	originally	used	the	image	of	a	seagull;	the	more
lasting	name	seems	to	have	come	from	his	paper,	“Predictability;	Does	the	Flap
of	a	Butterfly’s	Wings	in	Brazil	Set	Off	a	Tornado	in	Texas?”	address	at	the
annual	meeting	of	the	American	Association	for	the	Advancement	of	Science	in
Washington,	29	December	1979.



SUPPOSE	THE	EARTH	Yorke.

“PREDICTION,	NOTHING”	Lorenz,	White.

THERE	MUST	BE	A	LINK	“The	Mechanics	of	Vacillation.”

FOR	WANT	OF	A	NAIL	George	Herbert;	cited	in	this	context	by	Norbert	Wiener,
“Nonlinear	Prediction	and	Dynamics,”	in	Collected	Works	with	Commentaries,
ed.	P.	Masani	(Cambridge,	Mass.:	The	M.I.T.	Press,	1981),	3:371.	Wiener
anticipated	Lorenz	in	seeing	at	least	the	possibility	of	“self-amplitude	of	small
details	of	the	weather	map.”	He	noted,	“A	tornado	is	a	highly	local	phenomenon,
and	apparent	trifles	of	no	great	extent	may	determine	its	exact	track.”

“THE	CHARACTER	OF	THE	EQUATION”	John	von	Neumann,	“Recent	Theories	of
Turbulence”	(1949),	in	Collected	Works,	ed.	A.	H.	Taub	(Oxford:	Pergamon
Press,	1963),	6:437.

CUP	OF	HOT	COFFEE	“The	predictability	of	hydrodynamic	flow,”	in	Transactions	of
the	New	York	Academy	of	Sciences	II:25:4	(1963),	pp.	409–32.

“WE	MIGHT	HAVE	TROUBLE”	Ibid.,	p.	410.

LORENZ	TOOK	A	SET	This	set	of	seven	equations	to	model	convection	was	devised
by	Barry	Saltzman	of	Yale	University,	whom	Lorenz	was	visiting.	Usually	the
Saltzman	equations	behaved	periodically,	but	one	version	“refused	to	settle
down,”	as	Lorenz	said,	and	Lorenz	realized	that	during	this	chaotic	behavior	four
of	the	variables	were	approaching	zero—thus	they	could	be	disregarded.	Barry
Saltzman,	“Finite	Amplitude	Convection	as	an	Initial	Value	Problem,”	Journal
of	the	Atmospheric	Sciences	19	(1962),	p.	329.

GEODYNAMO	Malkus;	the	chaos	view	of	the	earth’s	magnetic	fields	is	still	hotly
debated,	with	some	scientists	looking	for	other,	external	explanations,	such	as
blows	from	huge	meteorites.	An	early	exposition	of	the	idea	that	the	reversals
come	from	chaos	built	into	the	system	is	K.	A.	Robbins,	“A	moment	equation
description	of	magnetic	reversals	in	the	earth,”	Proceedings	of	the	National
Academy	of	Science	73	(1976),	pp.	4297–4301.

WATER	WHEEL	Malkus.

THREE	EQUATIONS	This	classic	model,	commonly	called	the	Lorenz	system,	is:



dx/dt	=	10(y-x)
dy/dt	=	–	xz	+	28x	–	y
dz/dt	=	xy–(8/3)z.
Since	appearing	in	“Deterministic	Nonperiodic	Flow,”	the	system	has	been
widely	analyzed;	one	authoritative	technical	volume	is	Colin	Sparrow,	The
Lorenz	Equations,	Bifurcations,	Chaos,	and	Strange	Attractors	(Springer-Verlag,
1982).

“ED,	WE	KNOW”	Malkus,	Lorenz.

NO	ONE	THOUGHT	“Deterministic	Nonperiod	Flow”	was	cited	about	once	a	year	in
the	mid	1960s	by	the	scientific	community;	two	decades	later,	it	was	cited	more
than	one	hundred	times	a	year.



REVOLUTION

THE	HISTORIAN	OF	SCIENCE	Kuhn’s	understanding	of	scientific	revolutions	has
been	widely	dissected	and	debated	in	the	twenty-five	years	since	he	put	it
forward,	at	about	the	time	Lorenz	was	programming	his	computer	to	model
weather.	For	Kuhn’s	views	I	have	relied	primarily	on	The	Structure	of	Scientific
Revolutions,	2nd	ed.	enl.	(Chicago:	University	of	Chicago	Press,	1970)	and
secondarily	on	The	Essential	Tension:	Selected	Studies	in	Scientific	Tradition
and	Change	(Chicago:	University	of	Chicago,	1977);	“What	Are	Scientific
Revolutions?”	(Occasional	Paper	No.	18,	Center	for	Cognitive	Science,
Massachusetts	Institute	of	Technology);	and	Kuhn,	interview.	Another	useful
and	important	analysis	of	the	subject	is	I.	Bernard	Cohen,	Revolution	in	Science
(Cambridge,	Mass.:	Belknap	Press,	1985).

“I	CAN’T	MAKE	Structure,	pp.	62–65,	citing	J.	S.	Bruner	and	Leo	Postman,	“On
the	Perception	of	Incongruity:	A	Paradigm,”	Journal	of	Personality	XVIII
(1949),	p.	206.

MOPPING	UP	OPERATIONS	structure,	p.	24.

EXPERIMENTALISTS	CARRY	OUT	Tension,	p.	229.

IN	BENJAMIN	FRANKLIN’S	STRUCTURE,	pp.	13–15.

“UNDER	NORMAL	CONDITIONS	TENSION,	p.	234.

A	PARTICLE	PHYSICIST	Cvitanović

TOLSTOY	Ford,	interview	and	“Chaos:	Solving	the	Unsolvable,	Predicting	the
Unpredictable,”	in	Chaotic	Dynamics	andFractals,	ed.	M.	F.	Barnsley	and	S.	G.
Demko	(New	York:	Academic	Press,	1985).

SUCH	COINAGES	But	Michael	Berry	notes	that	the	OED	has	“Chaology	(rare)	‘the
history	or	description	of	the	chaos.’”	Berry,	“The	Unpredictable	Bouncing
Rotator:	A	Chaology	Tutorial	Machine,”	preprint,	H.	H.	Wills	Physics
Laboratory,	Bristol.

“IT’S	MASOCHISM	Richter.



THESE	RESULTS	APPEAR	J.	Crutchfield,	M.	Nauenberg	and	J.	Rudnick,	“Scaling
for	External	Noise	at	the	Onset	of	Chaos,”	Physical	Review	Letters	46	(1981),	p.
933.

THE	HEART	OF	CHAOS	Alan	Wolf,	“Simplicity	and	Universality	in	the	Transition
to	Chaos,”	Nature	305	(1983),	p.	182.

CHAOS	NOW	PRESAGES	Joseph	Ford,	“What	is	Chaos,	That	We	Should	Be	Mindful
of	It?”	preprint,	Georgia	Institute	of	Technology,	Atlanta.

REVOLUTIONS	DO	NOT	“What	Are	Scientific	Revolutions?”	p.	23.

“IT	IS	RATHER	AS	IF”	Structure,	p.	111.

THE	LABORATORY	MOUSE	Yorke	and	others.

WHEN	ARISTOTLE	LOOKED	“What	Are	Scientific	Revolutions?”	pp.	2–10.

“IF	TWO	FRIENDS”	Galileo	Opere	VIII:	277.	Also	VIII:	129–30.

“PHYSIOLOGICAL	AND	PSYCHIATRIC”	David	Tritton,	“Chaos	in	the	swing	of	a
pendulum,”	New	Scientist,	24	July	1986,	p.	37.	This	is	a	readable,	nontechnical
essay	on	the	philosophical	implications	of	pendulum	chaos.

THAT	CAN	HAPPEN	In	practice,	someone	pushing	a	swing	can	always	produce
more	or	less	regular	motion,	presumably	using	an	unconscious	nonlinear
feedback	mechanism	of	his	own.

YET,	ODD	AS	IT	SEEMS	Among	many	analyses	of	the	possible	complications	of	a
simple	driven	pendulum,	a	good	summary	is	D.	D’Humieres,	M.	R.	Beasley,	B.
A.	Huberman,	and	A.	Libchaber,	“Chaotic	States	and	Routes	to	Chaos	in	the
Forced	Pendulum,”	Physical	Review	A	26	(1982),	pp.	3483–96.

SPACE	BALLS	Michael	Berry	researched	the	physics	of	this	toy	both	theoretically
and	experimentally.	In	“The	Unpredictable	Bouncing	Rotator”	he	describes	a
range	of	behaviors	understandable	only	in	the	language	of	chaotic	dynamics:
“KAM	tori,	bifurcation	of	periodic	orbits,	Hamiltonian	chaos,	stable	fixed	points
and	strange	attractors.”

FRENCH	ASTRONOMER	Hénon.



JAPANESE	ELECTRICAL	ENGINEER	Ueda.	45	A	YOUNG	PHYSICIST	Fox.

SMALE	Smale,	Yorke,	Guckenheimer,	Abraham.	May,	Feigenbaum;	a	brief,
somewhat	anecdotal	account	of	Smale’s	thinking	during	this	period	is	“On	How
I	Got	Started	in	Dynamical	Systems,”	in	Steve	Smale,	The	Mathematics	of	Time:
Essays	on	Dynamical	Systems,	Economic	Processes,	and	Related	Topics	(New
York:	Springer-Verlag,	1980),	pp.	147–51.

THE	SCENE	IN	Moscow	Raymond	H.	Anderson,	“Moscow	Silences	a	Critical
American,”	The	New	York	Times,	27	August	1966,	p.	1;	Smale,	“On	the	Steps	of
Moscow	University,”	The	Mathematical	Intelligencer	6:2,	pp.	21–27.

WHEN	HE	RETURNED	Smale.

A	LETTER	FROM	A	COLLEAGUE	The	colleague	was	N.	Levinson.	Several	threads	of
mathematics,	running	back	to	Poincaré,	came	together	here.	The	work	of
Birkhoff	was	one.	In	England,	Mary	Lucy	Cartwright	and	J.	E.	Littlewood
pursued	the	hints	turned	up	by	Balthasar	van	der	Pol	in	chaotic	oscillators.	These
mathematicians	were	all	aware	of	the	possibility	of	chaos	in	simple	systems,	but
Smale,	like	most	well-educated	mathematicians,	was	unaware	of	their	work,
until	the	letter	from	Levinson.

ROBUST	AND	STRANGE	Smale;	“On	How	I	Got	Started.”

IT	WAS	JUST	A	VACUUM	TUBE	van	der	Pol	described	his	work	in	Nature	120	(1927),
pp.	363–64.

“OFTEN	AN	IRREGULAR	NOISE”	Ibid.

TO	MAKE	A	SIMPLE	Smale’s	definitive	mathematical	exposition	of	this	work	is
“Differentiable	Dynamical	Systems,”	Bulletin	of	the	American	Mathematical
Society	1967,	pp.	747–817	(also	in	The	Mathematics	of	Time,	pp.	1–82).

THE	PROCESS	MIMICS	Rössler.

BUT	FOLDING	Yorke.

IT	WAS	A	GOLDEN	AGE	Guckenheimer,	Abraham.

“IT’S	THE	PARADIGM	SHIFT	Abraham.



A	MODEST	COSMIC	MYSTERY	Marcus,	Ingersoll,	Williams;	Philip	S.	Marcus,
“Coherent	Vortical	Features	in	a	Turbulent	Two-Dimensional	Flow	and	the
Great	Red	Spot	of	Jupiter,”	paper	presented	at	the	110th	Meeting	of	the
Acoustical	Society	of	America,	Nashville,	Tennessee,	5	November	1985.

“THE	RED	SPOT	ROARING”	John	Updike,	“The	Moons	of	Jupiter,”	Facing	Nature
(New	York:	Knopf,	1985),	p.	74.

VOYAGER	HAD	MADE	Ingersoll;	also,	Andrew	P.	Ingersoll,	“Order	from	Chaos:
The	Atmospheres	of	Jupiter	and	Saturn,”	Planetary	Report	4:3,	pp.	8–11.

“YOU	SEE	THIS”	Marcus.

“GEE,	WHAT	ABOUT”	Marcus.

LIFE’S	UPS	AND	DOWNS
RAVENOUS	FISH	May,	Schaffer,	Yorke,	Guckenheimer.	May’s	famous	review
article	on	the	lessons	of	chaos	in	population	biology	is	“Simple	Mathematical
Models	with	Very	Complicated	Dynamics,”	Nature	261	(1976),	pp.	459–67.
Also:	“Biological	Populations	with	Nonoverlapping	Generations:	Stable	Points,
Stable	Cycles,	and	Chaos,”	Science	186	(1974),	pp.	645–47,	and	May	and
George	F.	Oster,	“Bifurcations	and	Dynamic	Complexity	in	Simple	Ecological
Models,”	The	American	Naturalist	110	(1976),	pp.	573–99.	An	excellent	survey
of	the	development	of	mathematical	modeling	of	populations,	before	chaos,	is
Sharon	E.	Kingsland,	Modeling	Nature:	Episodes	in	the	History	of	Population
Ecology	(Chicago:	University	of	Chicago	Press,	1985).

THE	WORLD	MAKES	May	and	Jon	Seger,	“Ideas	in	Ecology:	Yesterday	and
Tomorrow,”	preprint,	Princeton	University,	p.	25.

CARICATURES	OF	REALITY	May	and	George	F.	Oster,	“Bifurcations	and	Dynamic
Complexity	in	Simple	Ecological	Models,”	The	American	Naturalist	110	(1976),
p.	573.

BY	THE	1950s	May.

REFERENCE	BOOKS	J.	Maynard	Smith,	Mathematical	Ideas	in	Biology
(Cambridge:	Cambridge	University	Press,	1968),	p.	18;	Harvey	J.	Gold,
Mathematical	Modeling	of	Biological	Systems.



IN	THE	BACK	May.

HE	PRODUCED	A	REPORT	Gonorrhea	Transmission	Dynamics	and	Control.	Herbert
W.	Hethcote	and	James	A.	Yorke	(Berlin:	Springer-Verlag,	1984).

THE	EVEN-ODD	SYSTEM	From	computer	simulations,	Yorke	found	that	the	system
forced	drivers	to	make	more	trips	to	the	filling	station	and	to	keep	their	tanks
fuller	all	the	time;	thus	the	system	increased	the	amount	of	gasoline	sitting
wastefully	in	the	nation’s	automobiles	at	any	moment.

HE	ANALYZED	THE	MONUMENT’S	SHADOW	Airport	records	later	proved	Yorke
correct.

LORENZ’S	PAPER	Yorke.

“FACULTY	MEMBERS”	Murray	Gell-Mann,	“The	Concept	of	the	Institute,”	in
Emerging	Syntheses	in	Science,	proceedings	of	the	founding	workshops	of	the
Santa	Fe	Institute	(Santa	Fe:	The	Santa	Fe	Institute,	1985),	p.	11.

HE	GAVE	A	COPY	Yorke,	Smale.

“IF	YOU	COULD	WRITE”	Yorke.

HOW	NONLINEAR	NATURE	IS	A	readable	essay	on	linearity,	nonlinearity,	and	the
historical	use	of	computers	in	understanding	the	difference	is	David	Campbell,
James	P.	Crutchfield,	J.	Doyne	Farmer,	and	Erica	Jen,	“Experimental
Mathematics:	The	Role	of	Computation	in	Nonlinear	Science,”	Communications
of	the	Association	for	Computing	Machinery	28	(1985),	pp.	374–84.

“IT	DOES	NOT	SAY”	Fermi,	quoted	in	S.	M.	Ulam,	Adventures	of	a	Mathematician
(New	York:	Scribners,	1976).	Ulam	also	describes	the	origin	of	another
important	thread	in	the	understanding	of	nonlinearity,	the	Fermi-Pasta–Ulam
theorem.	Looking	for	problems	that	could	be	computed	on	the	new	MANIAC
computer	at	Los	Alamos,	the	scientists	tried	a	dynamical	system	that	was	simply
a	vibrating	string—a	simple	model	“having,	in	addition,	a	physically	correct
small	nonlinear	term.”	They	found	patterns	coalescing	into	an	unexpected
periodicity.	As	Ulam	recounts	it:	“The	results	were	entirely	different
qualitatively	from	what	even	Fermi,	with	his	great	knowledge	of	wave	motions,
had	expected….	To	our	surprise	the	string	started	playing	a	game	of	musical
chairs,	…”	Fermi	considered	the	results	unimportant,	and	they	were	not	widely



published,	but	a	few	mathematicians	and	physicists	followed	them	up,	and	they
became	a	particular	part	of	the	local	lore	at	Los	Alamos.	Adventures,	pp.	226–
28.

“NON	ELEPHANT	ANIMALS”	quoted	in	“Experimental	Mathematics,”	p.	374.

“THE	FIRST	MESSAGE”	Yorke.

YORKE’S	PAPER	Written	with	his	student	Tien-Yien	Li.	“Period	Three	Implies
Chaos,”	American	Mathematical	Monthly	82	(1975),	pp.	985–92.

MAY	CAME	TO	BIOLOGY	May.

“WHAT	THE	CHRIST”	May;	it	was	this	seemingly	unanswerable	question	that
drove	him	from	analytic	methods	to	numerical	experimentation,	meant	to
provide	intuition,	at	least.

STARTLING	THOUGH	IT	WAS	Yorke.

A.	N.	SARKOVSKII	“Coexistence	of	Cycles	of	a	Continuous	Map	of	a	Line	into
Itself,”	Ukrainian	Mathematics	Journal	16	(1964),	p.	61.

SOVIET	MATHEMATICIANS	AND	PHYSICISTS	Sinai,	personal	communication,	8
December	1986.

SOME	WESTERN	CHAOS	EXPERTS	e.g.,	Feigenbaum,	Cvitanović.

TO	SEE	DEEPER	Hoppensteadt,	May.

THE	FEELING	OF	ASTONISHMENT	Hoppensteadt.

WITHIN	ECOLOGY	May.

NEW	YORK	CITY	MEASLES	William	M.	Schaffer	and	Mark	Kot,	“Nearly	One-
dimensional	Dynamics	in	an	Epidemic,”	Journal	of	Theoretical	Biology	112
(1985),	pp.	403–27;	Schaffer,	“Stretching	and	Folding	in	Lynx	Fur	Returns:
Evidence	for	a	Strange	Attractor	in	Nature,”	The	American	Naturalist	124
(1984),	pp.	798–820.

THE	WORLD	WOULD	BE	“Simple	Mathematical	Models,”	p.	467.



“THE	MATHEMATICAL	INTUITION”	Ibid.



A	GEOMETRY	OF	NATURE

A	PICTURE	OF	REALITY	Mandelbrot,	Gomory,	Voss,	Barnsley,	Richter,	Mumford,
Hubbard,	Shlesinger.	The	Benoit	Mandelbrot	bible	is	The	Fractal	Geometry	of
Nature	(New	York:	Freeman,	1977).	An	interview	by	Anthony	Barcellos	appears
in	Mathematical	People,	ed.	Donald	J.	Albers	and	G.	L.	Alexanderson	(Boston:
Birkhäuser,	1985).	Two	essays	by	Mandelbrot	that	are	less	well	known	and
extremely	interesting	are	“On	Fractal	Geometry	and	a	Few	of	the	Mathematical
Questions	It	Has	Raised,”	Proceedings	of	the	Inter	national	Congress	of
Mathematicians,	16–14	August	1983,	Warsaw,	pp.	1661–75;	and	“Towards	a
Second	Stage	of	Indeterminism	in	Science,”	preprint,	IBM	Thomas	J.	Watson
Research	Center,	Yorktown	Heights,	New	York.	Review	articles	on	applications
of	fractals	have	grown	too	common	to	list,	but	two	useful	examples	are	Leonard
M.	Sander,	“Fractal	Growth	Processes,”	Nature	322	(1986),	pp.	789–93;	Richard
Voss,	“Random	Fractal	Forgeries:	From	Mountains	to	Music,”	in	Science	and
Uncertainty,	ed.	Sara	Nash	(London:	IBM	United	Kingdom,	1985).

CHARTED	ON	THE	OLDER	MAN’S	BLACKBOARD	Houthakker,	Mandelbrot.

WASSILY	LEONTIEF	Quoted	in	Fractal	Geometry,	p.	423.

INTRODUCED	FOR	A	LECTURE	Woods	Hole	Oceanographic	Institute,	August	1985.

BORN	IN	WARSAW	Mandelbrot.

BOURBAKI	Mandelbrot,	Richter.	Little	has	been	written	about	Bourbaki	even
now;	one	playful	introduction	is	Paul	R.	Halmos,	“Nicholas	Bourbaki,”
Scientific	American	196	(1957),	pp.	88–89.

MATHEMATICS	SHOULD	BE	SOMETHING	Smale.

THE	FIELD	DEVELOPS	Peitgen.

PIONEER-BY–NECESSITY	“Second	Stage,”	p.	5.

THIS	HIGHLY	ABSTRACT	Mandelbrot;	Fractal	Geometry,	p.	74;	J.	M.	Berger	and
Benoit	Mandelbrot,	“A	New	Model	for	the	Clustering	of	Errors	on	Telephone
Circuits,”	IBM	Journal	of	Research	and	Development	7	(1963),	pp.	224–36.



THE	JOSEPH	EFFECT	Fractal	Geometry,	p.	248.

CLOUDS	ARE	NOT	SPHERES	Ibid.,	p.	1,	for	example.

WONDERING	ABOUT	COASTLINES	Ibid.,	p.	27.

THE	PROCESS	OF	ABSTRACTION	Ibid.,	p.	17.

“THE	NOTION”	Ibid.,	p.	18.

ONE	WINTRY	AFTERNOON	Mandelbrot.

THE	EIFFEL	TOWER	Fractal	Geometry,	p.	131,	and	“On	Fractal	Geometry,”	p.
1663.	102	ORIGINATED	BY	MATHEMATICIANS	F.	Hausdorff	and	A.	S.	Besicovich.

“THERE	WAS	A	LONG	HIATUS”	Mandelbrot.

IN	THE	NORTHEASTERN	Scholz;	C.	H.	Scholz	and	C.	A.	Aviles,	“The	Fractal
Geometry	of	Faults	and	Faulting,”	preprint,	Lamont-Doherty	Geophysical
Observatory;	C.	H.	Scholz,	“Scaling	Laws	for	Large	Earthquakes,”	Bulletin	of
the	Seismological	Society	of	America	72	(1982),	pp.	1–14.

“A	MANIFESTO”	Fractal	Geometry,	p.	24.

“NOT	A	HOW-TO	BOOK”	Scholz.

“IT’S	A	SINGLE	MODEL”	Scholz.

“IN	THE	GRADUAL”	William	Bloom	and	Don	W.	Fawcett,	A	Textbook	of	Histology
(Philadelphia:	W.	B.	Saunders,	1975).

SOME	THEORETICAL	BIOLOGISTS	One	review	of	these	ideas	is	Ary	L.	Goldberger,
“Nonlinear	Dynamics,	Fractals,	Cardiac	Physiology,	and	Sudden	Death,”	in
Temporal	Disorder	in	Human	Oscillatory	Systems,	ed.	L.	Rensing,	U.	An	der
Heiden,	M.	Mackey	(New	York:	Springer-Verlag,	1987).

THE	NETWORK	OF	SPECIAL	FIBERS	Goldberger,	West.

SEVERAL	CHAOS-MINDED	CARDIOLOGISTS	Ary	L.	Goldberger,	Valmik	Bhargava,
Bruce	J.	West	and	Arnold	J.	Mandell,	“On	a	Mechanism	of	Cardiac	Electrical
Stability:	The	Fractal	Hypothesis,”	Biophysics	Journal	48	(1985),	p.	525.



WHEN	E.	I.	DUPONT	Barnaby	J.	Feder,	“The	Army	May	Have	Matched	the	Goose,”
The	New	York	Times,	30	November	1986,	4:16.

“I	STARTED	LOOKING”	Mandelbrot.

HIS	NAME	APPEARED	I.	Bernard	Cohen,	Revolution	in	Science	(Cambridge,	Mass.:
Belknap,	1985),	p.	46.

“OF	COURSE,	HE	IS	A	BIT”	Mumford.

“HE	HAD	SO	MANY	DIFFICULTIES”	Richter.

IF	THEY	WANTED	TO	AVOID	Just	as	Mandelbrot	later	could	avoid	the	credit
routinely	given	to	Mitchell	Feigenbaum	in	references	to	Feigenbaum	numbers
and	Feigenbaum	universality.	Instead,	Mandelbrot	habitually	referred	to	P.	J.
Myrberg,	a	mathematician	who	had	studied	iterates	of	quadratic	mappings	in	the
early	1960s,	obscurely.

“MANDELBROT	DIDN’T	HAVE	EVERYBODY’S”	Richter.

“THE	POLITICS	AFFECTED”	Mandelbrot.

EXXON’S	HUGE	RESEARCH	FACILITY	Klafter.

ONE	MATHEMATICIAN	TOLD	FRIENDS	Related	by	Huberman.

“WHY	IS	IT	THAT”	“Freedom,	Science,	and	Aesthetics,”	in	Schönheit	im	Chaos,	p.
35.

“THE	PERIOD	HAD	NO	SYMPATHY”	John	Fowles,	A	Maggot	(Boston:	Little,	Brown,
1985),	p.	11.

“WE	HAVE	THE	ASTRONOMERS”	Robert	H.	G.	Helleman,	“Self-Generated	Behavior
in	Nonlinear	Mechanics,”	in	Fundamental	Problems	in	Statistical	Mechanics	5,
ed.	E.	G.	D.	Cohen	(Amsterdam:	North-Holland,	1980),	p.	165.

BUT	PHYSICISTS	WANTED	MORE	Leo	Kadanoff,	for	example,	asked	“Where	is	the
physics	of	fractals?”	in	Physics	Today,	February	1986,	p.	6,	and	then	answered
the	question	with	a	new	“multi-fractal”	approach	in	Physics	Today,	April	1986,
p.	17,	provoking	a	typically	annoyed	response	from	Mandelbrot,	Physics	Today,



September	1986,	p.	11.	Kadanoff’s	theory,	Mandelbrot	wrote,	“fills	me	with	the
pride	of	a	father—soon	to	be	a	grandfather?”



STRANGE	ATTRACTORS

THE	GREAT	PHYSICISTS	Ruelle,	Hénon,	Rössler,	Sinai,	Feigenbaum,	Mandelbrot,
Ford,	Kraichnan.	Many	perspectives	exist	on	the	historical	context	for	the
strange-attractor	view	of	turbulence.	A	worthwhile	introduction	is	John	Miles,
“Strange	Attractors	in	Fluid	Dynamics,”	in	Advances	in	Applied	Mechanics	24
(1984),	pp.	189,	214.	Ruelle’s	most	accessible	review	article	is	“Strange
Attractors,”	Mathematical	Intelligencer	2	(1980),	pp.	126–37;	his	catalyzing
proposal	was	David	Ruelle	and	Floris	Takens,	“On	the	Nature	of	Turbulence,”
Communications	in	Mathematical	Physics	20	(1971),	pp.	167–92;	his	other
essential	papers	include	“Turbulent	Dynamical	Systems,”	Proceedings	of	the
International	Congress	of	Mathematicians,	16–24	August	1983,	Warsaw,	pp.
271–86;	“Five	Turbulent	Problems,”	Physica	7D	(1983),	pp.	40–44;	and	“The
Lorenz	Attractor	and	the	Problem	of	Turbulence,”	in	Lecture	Notes	in
Mathematics	No.	565	(Berlin:	Springer-Verlag,	1976),	pp.	146–58.

THERE	WAS	A	STORY	Many	versions	of	this	exist.	Orszag	cites	four	substitutes	for
Heisenberg—von	Neumann,	Lamb,	Sommerfeld,	and	von	Karman—and	adds,	“I
imagine	if	God	actually	gave	an	answer	to	these	four	people	it	would	be	different
in	each	case.”

THIS	ASSUMPTION	Ruelle;	also	“Turbulent	Dynamical	Systems,”	p.	281.

TEXT	ON	FLUID	DYNAMICS	L.	D.	Landau	and	E.	M.	Lifshitz,	Fluid	Mechanics
(Oxford:	Pergamon,	1959).

THE	OSCILLATORY,	THE	SKEWED	VARICOSE	Malkus.

“THAT’S	TRUE”	Swinney.

IN	1973	SWINNEY	Swinney,	Gollub.

“IT	WAS	A	STRING-AND–SEALING-WAX”	Dyson.

“SO	WE	READ	THAT”	Swinney.

WHEN	THEY	BEGAN	REPORTING	Swinney,	Gollub.



“THERE	WAS	THE	TRANSITION”	Swinney.

EXPERIMENT	FAILED	TO	CONFIRM	J.	P.	Gollub	and	H.	L.	Swinney,	“Onset	of
Turbulence	in	a	Rotating	Fluid,”	Physical	Review	Letters	35	(1975),	p.	927.
These	first	experiments	only	opened	the	door	to	an	appreciation	of	the	complex
spatial	behaviors	that	could	be	produced	by	varying	the	few	parameters	of	flow
between	rotating	cylinders.	The	next	few	years	identified	patterns	from
“corkscrew	wavelets”	to	“wavy	inflow	and	outflow”	to	“interpenetrating
spirals.”	A	summary	is	C.	David	Andereck,	S.	S.	Liu,	and	Harry	L.	Swinney,
“Flow	Regimes	in	a	Circular	Couette	System	with	Independently	Rotating
Cylinders,”	Journal	of	Fluid	Mechanics	164	(1986),	pp.	155–83.

DAVID	RUELLE	SOMETIMES	SAID	Ruelle.	132.

“ALWAYS	NONSPECIALISTS	FIND”	Ruelle.

HE	WROTE	A	PAPER	“On	the	Nature	of	Turbulence.”

OPINIONS	STILL	VARIED	They	quickly	discovered	that	some	of	their	ideas	had
already	appeared	in	the	Russian	literature;	“on	the	other	hand,	the	mathematical
interpretation	which	we	give	of	turbulence	seems	to	remain	our	own
responsibility!”	they	wrote.	“Note	Concerning	Our	Paper	‘On	the	Nature	of
Turbulence,’”	Communications	in	Mathematical	Physics	23	(1971),	pp.	343–44.

PSYCHOANALYTICALLY	“SUGGESTIVE”	Ruelle.

“DID	YOU	EVER	ASK	GOD”	“Strange	Attractors,”	p.	131.

“TAKENS	HAPPENED”	Ruelle.

“SOME	MATHEMATICIANS	IN	CALIFORNIA”	Ralph	H.	Abraham	and	Christopher	D.
Shaw,	Dynamics:	The	Geometry	of	Behavior	(Santa	Cruz:	Aerial:	1984).

“IT	ALWAYS	BOTHERS	ME”	Richard	P.	Feynman,	The	Character	of	Physical	Law
(Cambridge,	Mass.:	The	M.I.T.	Press,	1967),	p.	57.

DAVID	RUELLE	SUSPECTED	Ruelle.

THE	REACTION	OF	THE	SCIENTIFIC	PUBLIC	“Turbulent	Dynamical	Systems,”	p.	275.



EDWARD	LORENZ	HAD	ATTACHED	“Deterministic	Nonperiodic	Flow,”	p.	137.

“IT	IS	DIFFICULT	TO	RECONCILE	Ibid.,	p.	140.

HE	WENT	TO	VISIT	LORENZ	Ruelle.

“DON’T	FORM	A	SELFISH	CONCEPT	Ueda	reviews	his	early	discoveries	from	the
point	of	view	of	electrical	circuits	in	“Random	Phenomena	Resulting	from
Nonlinearity	in	the	System	Described	by	Duffing’s	Equation,”	in	International
Journal	of	NonLinear	Mechanics	20	(1985),	pp.	481–91,	and	gives	a	personal
account	of	his	motivation	and	the	cool	response	of	his	colleagues	in	a	postscript.
Also,	Stewart,	private	communication.

“A	SAUSAGE	IN	A	SAUSAGE”	Rössler.

THE	MOST	ILLUMINATING	STRANGE	ATTRACTOR	Hénon;	he	reported	his	invention	in
“A	Two-Dimensional	Mapping	with	a	Strange	Attractor,”	in	Communications	in
Mathematical	Physics	50	(1976),	pp.	69–77,	and	Michel	Hénon	and	Yves
Pomeau,	“Two	Strange	Attractors	with	a	Simple	Structure,”	in	Turbulence	and
the	Navier-Stokes	Equations,	ed.	R.	Teman	(New	York:	Springer-Verlag,	1977).

IS	THE	SOLAR	SYSTEM	Wisdom.

“TO	HAVE	MORE	FREEDOM”	Michel	Hénon	and	Carl	Heiles,	“The	Applicability	of
the	Third	Integral	of	Motion:	Some	Numerical	Experiments,”	Astronomical
Journal	69	(1964),	p.	73.

AT	THE	OBSERVATORY	Hénon.

“I,	TOO,	WAS	CONVINCED”	Hénon.

“HERE	COMES	THE	SURPRISE”	“The	Applicability,”	p.	76.

“BUT	THE	MATHEMATICAL	APPROACH”	Ibid.,	p.	79.

A	VISITING	PHYSICIST	Yves	Pomeau.

“SOMETIMES	ASTRONOMERS	ARE	FEARFUL”	Hénon.

OTHERS	ASSEMBLED	MILLIONS	Ramsey.



“I	HAVE	NOT	SPOKEN”	“Strange	Attractors,”	p.	137.



UNIVERSALITY

“YOU	CAN	FOCUS”	Feigenbaum.	Feigenbaum’s	crucial	papers	on	universality	are
“Quantitative	Unversality	for	a	Class	of	Nonlinear	Transformations,”	Journal	of
Statistical	Physics	19	(1978),	pp.	25–52,	and	“The	Universal	Metric	Properties
of	Nonlinear	Transformations,”	Journal	of	Statistical	Physics	21	(1979),	pp.
669–706;	a	somewhat	more	accessible	presentation,	though	still	requiring	some
mathematics,	is	his	review	article,	“Universal	Behavior	in	Nonlinear	Systems,”
Los	Alamos	Science	1	(Summer	1981),	pp.	4–27.	I	also	relied	on	his	unpublished
recollections,	“The	Discovery	of	Universality	in	Period	Doubling.”

WHEN	FEIGENBAUM	CAME	TO	LOS	ALAMOS	Feigenbaum,	Carruthers,	Cvitanović,
Campbell,	Farmer,	Visscher,	Kerr,	Hasslacher,	Jen.

“IF	YOU	HAD	SET	UP”	Carruthers.

THE	MYSTERY	OF	THE	UNIVERSE	Feigenbaum.

OCCASIONALLY	AN	ADVISOR	Carruthers.

AS	KADANOFF	VIEWED	Kadanoff.

“THE	CEASELESS	MOTION”	Gustav	Mahler,	letter	to	Max	Marschalk.

“WITH	LIGHT	POISE”	Goethe’s	Zür	Farbenlehre	is	now	available	in	several
editions.	I	relied	on	the	beautifully	illustrated	Goethe’s	Color	Theory,	ed.
Rupprecht	Matthaei,	trans.	Herb	Aach	(New	York:	Van	Nostrand	Reinhold,
1970);	more	readily	available	is	Theory	of	Colors	(Cambridge,	Mass.:	The
M.I.T.	Press,	1970),	with	an	excellent	introduction	by	Deane	B.	Judd.

THIS	ONE	INNOCENT-LOOKING	EQUATION	At	one	point,	Ulam	and	von	Neumann
used	its	chaotic	properties	as	a	solution	to	the	problem	of	generating	random
numbers	with	a	finite	digital	computer.

TO	METROPOLIS,	STEIN,	AND	STEIN	This	paper—the	sole	pathway	from	Stanislaw
Ulam	and	John	von	Neumann	to	James	Yorke	and	Mitchell	Feigenbaum—is
“On	Finite	Limit	Sets	for	Transformations	on	the	Unit	Interval,”	Journal	of
Combinatorial	Theory	15	(1973),	pp.	25–44.



DOES	A	CLIMATE	EXIST	“The	Problem	of	Deducing	the	Climate	from	the
Governing	Equations,”	Tellus	16	(1964),	pp.	1–11.

THE	WHITE	EARTH	CLIMATE	Manabe.

HE	KNEW	NOTHING	OF	LORENZ	Feigenbaum.

ODDLY	May.

THE	SAME	COMBINATIONS	OF	R’S	AND	L’S	“On	Finite	Limit	Sets,”	pp.	30–31.	The
crucial	hint:	“The	fact	that	these	patterns	…	are	a	common	property	of	four
apparently	unrelated	transformations	…	suggests	that	the	pattern	sequence	is	a
general	property	of	a	wide	class	of	mappings.	For	this	reason	we	have	called	this
sequence	of	patterns	the	U-sequence	where	‘U’	stands	(with	some	exaggeration)
for	‘universal.’”	But	the	mathematicians	never	imagined	that	the	universality
would	extend	to	actual	numbers;	they	made	a	table	of	84	different	parameter
values,	each	taken	to	seven	decimal	places,	without	observing	the	geometrical
relationships	hidden	there.

“THE	WHOLE	TRADITION	OF	PHYSICS”	Feigenbaum.

HIS	FRIENDS	SPECULATED	Cvitanović.

SUDDENLY	YOU	COULD	SEE	Ford.

PRIZES	AND	AWARDS	The	MacArthur	fellowship;	the	1986	Wolf	Prize	in	physics.

“FEIGENBAUMOLOGY”	Dyson.

“IT	WAS	A	VERY	HAPPY”	Gilmore.

BUT	ALL	THE	WHILE	Cvitanović.

WORK	BY	OSCAR	E.	LANFORD	Even	then,	the	proof	was	unorthodox	in	that	it
depended	on	tremendous	amounts	of	numerical	calculation,	so	that	it	could	not
be	carried	out	or	checked	without	the	use	of	a	computer.	Lanford;	Oscar	E.
Lanford,	“A	Computer-Assisted	Proof	of	the	Feigenbaum	Conjectures,”	Bulletin
of	the	American	Mathematical	Society	6	(1982),	p.	427;	also,	P.	Collet,	J.P.
Eckmann,	and	O.	E.	Lanford,	“Universal	Properties	of	Maps	on	an	Interval,”
Communications	in	Mathematical	Physics	81	(1980),	p.	211.



“SIR,	DO	YOU	MEAN”	Feigenbaum;	”The	Discovery	of	Universality,”	p.	17.

IN	THE	SUMMER	OF	1977	Ford,	Feigenbaum,	Lebowitz.

“MITCH	HAD	SEEN	UNIVERSALITY”	Ford.

“SOMETHING	DRAMATIC	HAPPENED”	Feigenbaum.



THE	EXPERIMENTER

“ALBERT	IS	GETTING	MATURE”	Libchaber,	Kadanoff.

HE	SURVIVED	THE	WAR	Libchaber.

“HEUUM	IN	A	SMALL	BOX”	Albert	Libchaber,	“Experimental	Study	of
Hydrodynamic	Instabilities.	Rayleigh-Benard	Experiment:	Helium	in	a	Small
Box,”	in	Nonlinear	Phenomena	at	Phase	Transitions	and	Instabilities,	ed.	T.
Riste	(New	York:	Plenum,	1982),	p.	259.

THE	LABORATORY	OCCUPIED	Libchaber,	Feigenbaum.

“SCIENCE	WAS	CONSTRUCTED”	Libchaber.

“BUT	YOU	KNOW	THEY	DO!”	Libchaber.

“THE	FLECKED	RIVER”	Wallace	Stevens,	“This	Solitude	of	Cataracts,”	The	Palm
at	the	End	of	the	Mind,	ed.	Holly	Stevens	(New	York:	Vintage,	1972),	p.	321.

“INSOLID	BILLOWING	OF	THE	SOLID”	“Reality	Is	an	Activity	of	the	Most	August
Imagination,”	Ibid.,	p.	396.

“BUILDS	ITS	OWN	BANKS”	Theodor	Schwenk,	Sensitive	Chaos	(New	York:
Schocken,	1976),	p.	19.

“ARCHETYPAL	PRINCIPLE”	Ibid.

“THIS	PICTURE	OF	STRANDS”	Ibid.,	p.	16.

“THE	INEQUALITIES”	Ibid.,	p.	39.

“IT	MAY	BE”	D’Arcy	Wentworth	Thompson,	On	Growth	and	Form,	J.	T.	Bonner,
ed.	(Cambridge:	Cambridge	University	Press,	1961),	p.	8.

“BEYOND	COMPARISON	THE	FINEST”	Ibid.,	p.	viii.

“FEW	HAD	ASKED”	Stephen	Jay	Gould,	Hen’s	Teeth	and	Horse’s	Toes	(New
York:	Norton,	1983),	p.	369.



“DEEP-SEATED	RHYTHMS	OF	GROWTH”	On	Growth	and	Form,	p.	267.

“THE	INTERPRETATION	IN	TERMS	OF	FORCE”	Ibid.,	p.	114.

IT	WAS	SO	SENSITIVE	Campbell.

“IT	WAS	CLASSICAL	PHYSICS”	Libchaber.

NOW,	HOWEVER,	A	NEW	FREQUENCY	Libchaber	and	Maurer,	1980	and	1981.	Also
Cvitanović’s	introduction	gives	a	lucid	summary.

“THE	NOTION	THAT	THE	ACTUAL”	Hohenberg.

“THEY	STOOD	AMID	THE	SCATTERED”	Feigenbaum,	Libchaber.

“YOU	HAVE	TO	REGARD	IT”	Gollub.

A	VAST	BESTIARY	OF	LABORATORY	EXPERIMENTS	The	literature	is	equally	vast.	One
summary	of	the	early	melding	of	theory	and	experiment	in	a	variety	of	systems
is	Harry	L.	Swinney,	“Observations	of	Order	and	Chaos	in	Nonlinear	Systems,”
Physica	7D	(1983),	pp.	3–15;	Swinney	provides	a	list	of	references	divided	into
categories,	from	electronic	and	chemical	oscillators	to	more	esoteric	kinds	of
experiments.

TO	MANY,	EVEN	MORE	CONVINCING	Valter	Franceschini	and	Claudio	Tebaldi,
“Sequences	of	Infinite	Bifurcations	and	Turbulence	in	a	Five-Mode	Truncation
of	the	Navier-Stokes	Equations,”	Journal	of	Statistical	Physics	21	(1979),	pp.
707–26.

IN	1980	A	EUROPEAN	GROUP	P.	Collet,	J.–P.	Eckmann,	and	H.	Koch,	“Period
Doubling	Bifurcations	for	Families	of	Maps	on	Rn,”	Journal	of	Statistical
Physics	25	(1981),	p.	1.

“A	PHYSICIST	WOULD	ASK	ME”	Libchaber.



IMAGES	OF	CHAOS

MICHAEL	BARNSLEY	MET	Barnsley.

RUELLE	SHUNTED	IT	BACK	Barnsley.

JOHN	HUBBARD,	AN	AMERICAN	Hubbard;	also	Adrien	Douady,	“Julia	Sets	and	the
Mandelbrot	Set,”	in	pp.	161–73.	The	main	text	of	The	Beauty	of	Fractals	also
give	a	mathematical	summary	of	Newton’s	method,	as	well	as	the	other	meeting
grounds	of	complex	dynamics	discussed	in	this	chapter.

“NOW,	FOR	EQUATIONS”	“Julia	Sets	and	the	Mandelbrot	Set,”	p.	170.

HE	STILL	PRESUMED	Hubbard.

A	BOUNDARY	BETWEEN	TWO	COLORS	Hubbard;	The	Beauty	of	Fractals;	Peter	H.
Richter	and	Heinz-Otto	Peitgen,	“Morphology	of	Complex	Boundaries,”
Bunsen-Gesellschaft	für	Physikalische	Chemie	89	1985),	pp.	575–88.

THE	MANDELBROT	SET	A	readable	introduction,	with	instructions	for	writing	a
do-it–yourself	microcomputer	program,	is	A.	K.	Dewdney,	“Computer
Recreations,”	Scientific	American	(August	1985),	pp.	16–32.	Peitgen	and	Richter
in	The	Beauty	of	Fractals	offer	a	detailed	review	of	the	mathematics,	as	well	as
some	of	the	most	spectacular	pictures	available.

THE	MOST	COMPLEX	OBJECT	Hubbard,	for	example.

“YOU	OBTAIN	AN	INCREDIBLE	VARIETY	“Julia	Sets	and	the	Mandelbrot	Set,”	p.	161.

IN	1979	MANDELBROT	DISCOVERED	Mandelbrot,	Laff,	Hubbard.	A	first-person
account	by	Mandelbrot	is	“Fractals	and	the	Rebirth	of	Iteration	Theory,”	in	The
Beauty	of	Fractals,	pp.	151–60.

AS	HE	TRIED	CALCULATING	Mandelbrot;	The	Beauty	of	Fractals.

MANDELBROT	STARTED	WORRYING	Mandelbrot.

NO	TWO	PIECES	ARE	“TOGETHER”	Hubbard.



“EVERYTHING	WAS	VERY	GEOMETRIC”	Peitgen.

AT	CORNELL,	MEANWHILE	Hubbard.

RICHTER	HAD	COME	TO	COMPLEX	SYSTEMS	Richter.

“IN	A	BRAND	NEW	AREA”	Peitgen.

“RIGOR	IS	THE	STRENGTH”	Peitgen.

FRACTAL	BASIN	BOUNDARIES	Yorke;	a	good	introduction,	for	the	technically
inclined,	is	Steven	W.	MacDonald,	Celso	Grebogi,	Edward	Ott,	and	James	A.
Yorke,	“Fractal	Basin	Boundaries,”	Physica	17D	(1985),	pp.	125–83.

AN	IMAGINARY	PINBALL	MACHINE	Yorke.

“NOBODY	CAN	SAY”	Yorke,	remarks	at	Conference	on	Perspectives	in	Biological
Dynamics	and	Theoretical	Medicine,	National	Institutes	of	Health,	Bethesda,
Maryland,	10	April	1986.

TYPICALLY,	MORE	THAN	THREE-QUARTERS	Yorke.

THE	BORDER	BETWEEN	CALM	AND	CATASTROPHE	Similarly,	in	a	text	meant	to
introduce	chaos	to	engineers,	H.	Bruce	Stewart	and	J.	M.	Thompson	warned:
“Lulled	into	a	false	sense	of	security	by	his	familiarity	with	the	unique	response
of	a	linear	system,	the	busy	analyst	or	experimentalist	shouts	‘Eureka,	this	is	the
solution,’	once	a	simulation	settles	onto	an	equilibrium	of	steady	cycle,	without
bothering	to	explore	patiently	the	outcome	from	different	starting	conditions.	To
avoid	potentially	dangerous	errors	and	disasters,	industrial	designers	must	be
prepared	to	devote	a	greater	percentage	of	their	effort	into	exploring	the	full
range	of	dynamic	responses	of	their	systems.”	Nonlinear	Dynamics	and	Chaos
(Chichester;	Wiley,	1986),	p.	xiii.

“PERHAPS	WE	SHOULD	BELIEVE”	The	Beauty	of	Fractals,	p.	136.

WHEN	HE	WROTE	ABOUT	e.g.,	“Iterated	Function	Systems	and	the	Global
Construction	of	Fractals,”	Proceedings	of	the	Royal	Society	of	London	A	399
(1985),	pp.	243–75.

“IF	THE	IMAGE	IS	COMPLICATED”	Barnsley.



“THERE	IS	NO	RANDOMNESS”	Hubbard.

“RANDOMNESS	IS	A	RED”	Barnsley.



THE	DYNAMICAL	SYSTEMS	COLLECTIVE

SANTA	CRUZ	Farmer,	Shaw,	Crutchfield,	Packard,	Burke,	Nauenberg,	Abrahams,
Guckenheimer.	The	essential	Robert	Shaw,	applying	information	theory	to
chaos,	is	The	Dripping	Faucet	as	a	Model	Chaotic	System	(Santa	Cruz:	Aerial,
1984),	along	with	“Strange	Attractors,	Chaotic	Behavior,	and	Information
Theory,”	Zeitschrift	für	Naturforschung	36a	(1981),	p.	80.	An	account	of	the
roulette	adventures	of	some	of	the	Santa	Cruz	students,	conveying	much	of	the
color	of	these	years,	is	Thomas	Bass,	The	Eudemonic	Pie	(Boston:	Houghton
Mifflin,	1985).

HE	DID	NOT	KNOW	Shaw.

WILLIAM	BURKE,	a	SANTA	CRUZ	COSMOLOGIST	Burke,	Spiegel.

“COSMIC	ARRHYTHMIAS”	Edward	A.	Spiegel,	“Cosmic	Arrhythmias,”	in	Chaos	in
Astrophysics,	J.	R.	Buchler	et	al.,	eds.	(New	York:	D.	Reidel,	1985),	pp.	91–135.

THE	ORIGINAL	PLANS	Farmer,	Crutchfield.

BY	BUILDING	UP	Shaw,	Crutchfield,	Burke.

A	FEW	MINUTES	LATER	Shaw.

“ALL	YOU	HAVE	TO	DO”	Abraham.

DOYNE	FARMER	Farmer	is	the	main	figure	and	Packard	is	a	secondary	figure	in
The	Eudemonic	Pie,	the	story	of	the	roulette	project,	written	by	a	sometime
associate	of	the	group.

PHYSICS	AT	SANTA	CRUZ	Burke,	Farmer,	Crutchfield.

“GIZMO-ORIENTED”	Shaw.

FORD	HAD	ALREADY	DECIDED	Ford.

THEY	REALIZED	THAT	MANY	SORTS	Shaw,	Farmer.

INFORMATION	THEORY	The	classic	text,	still	quite	readable,	is	Claude	E.	Shannon



and	Warren	Weaver,	The	Mathematical	Theory	of	Communication	(Urbana:
University	of	Illinois,	1963),	with	a	helpful	introduction	by	Weaver.

“WHEN	ONE	MEETS	THE	CONCEPT”	Ibid.,	p.	13.

NORMAN	PACKARD	WAS	READING	Packard.

IN	DECEMBER	1977	Shaw.

WHEN	LORENZ	WALKED	INTO	THE	ROOM	Shaw,	Farmer.

HE	FINALLY	MAILED	HIS	PAPER	“Strange	Attractors,	Chaotic	Behavior,	and
Information	Flow.”

A.	N.	KOLMOGOROV	AND	YASHA	SINAI	Sinai,	private	communication.

AT	THE	PINNACLE	Packard.

“YOU	DON’T	SEE	SOMETHING”	Shaw.

“IT’S	A	SIMPLE	EXAMPLE”	Shaw.

SYSTEMS	THAT	THE	SANTA	CRUZ	GROUP	Farmer;	a	dynamical	systems	approach	to
the	immune	system,	modeling	the	human	body’s	ability	to	“remember”	and	to
recognize	patterns	creatively,	is	outlined	in	J.	Doyne	Farmer,	Norman	H.
Packard,	and	Alan	S.	Perelson,	“The	Immune	System,	Adaptation,	and	Machine
Learning,”	preprint,	Los	Alamos	National	Laboratory,	1986.

ONE	IMPORTANT	VARIABLE	The	Dripping	Faucet,	p.	4.

“A	STATE-OF–THE-ART	COMPUTER	CALCULATION”	Ibid.

A	“PSEUDOCOLLOQUIUM”	Crutchfield.

“IT	TURNS	OUT”	Shaw.

“WHEN	YOU	THINK	ABOUT	A	VARIABLE”	Farmer.

RECONSTRUCTING	THE	PHASE	SPACE	These	methods,	which	became	a	mainstay	of
experimental	technique	in	many	different	fields,	were	greatly	refined	and
extended	by	the	Santa	Cruz	researchers	and	other	experimentalists	and	theorists.



One	of	the	key	Santa	Cruz	proposals	was	Norman	H.	Packard,	James	P.
Crutchfield,	J.	Doyne	Farmer,	and	Robert	S.	Shaw	[the	canonical	byline	list],
“Geometry	from	a	Time	Series,”	Physical	Review	Letters	47	(1980),	p.	712.	The
most	influential	paper	on	the	subject	by	Floris	Takens	was	“Detecting	Strange
Attractors	in	Turbulence,”	in	Lecture	Notes	in	Mathematics	898,	D.	A.	Rand	and
L.	S.	Young,	eds.	(Berlin:	Springer-Verlag,	1981),	p.	336.	An	early	but	fairly
broad	review	of	the	techniques	of	reconstructing	phase-space	portraits	is	Harold
Froehling,	James	P.	Crutchfield,	J.	Doyne	Farmer,	Norman	H.	Packard,	and
Robert	S.	Shaw,	“On	Determining	the	Dimension	of	Chaotic	Flows,”	Physica	3D
(1981),	pp.	605–17.

“GOD,	WE’RE	STILL”	Crutchfield.

SOME	PROFESSORS	DENIED	e.g.,	Nauenberg.

“WE	HAD	NO	ADVISOR”	Shaw.

MORE	INTERESTED	IN	REAL	SYSTEMS	Not	that	the	students	ignored	maps	altogether.
Crutchfield,	inspired	by	May’s	work,	spent	so	much	time	in	1978	making
bifurcation	diagrams	that	he	was	barred	from	the	computer	center’s	plotter.	Too
many	pens	had	been	destroyed	laying	down	the	thousands	of	dots.

LANFORD	LISTENED	POLITELY	Farmer.

“IT	WAS	MY	NAIVETÉ”	Farmer.

“AUDIOVISUAL	AIDS”	Shaw.

ONE	DAY	BERNARDO	HUBERMAN	crutchfield,	huberman.

“IT	WAS	ALL	VERY	VAGUE”	Huberman.

THE	FIRST	PAPER	Bernardo	A.	Huberman	and	James	P.	Crutchfield,	“Chaotic
States	of	Anharmonic	Systems	in	Periodic	Fields,”	Physical	Review	Letters	43
(1979),	p.	1743.

FARMER	WAS	ANGERED	Crutchfield.

CLIMATE	SPECIALISTS	This	is	a	continuing	debate	in	the	journal	Nature,	for
example.



ECONOMISTS	ANALYZING	STOCK	MARKET	Ramsey.

FRACTAL	DIMENSION,	HAUSDORFF	DIMENSION	J.	Doyne	Farmer,	Edward	Ott,	and
James	A.	Yorke,	“The	Dimension	of	Chaotic	Attractors,”	Physica	7D	(1983),	pp.
153–80.

“THE	FIRST	LEVEL	OF	KNOWLEDGE”	Ibid.,	p.	154.



INNER	RHYTHMS

HUBERMAN	LOOKED	OUT	Huberman,	Mandell	(interviews	and	remarks	at
Conference	on	Perspectives	in	Biological	Dynamics	and	Theoretical	Medicine,
Bethesda,	Maryland,	11	April	1986).	Also,	Bernardo	A.	Huberman,	“A	Model
for	Dysfunctions	in	Smooth	Pursuit	Eye	Movement,”	preprint,	Xerox	Palo	Alto
Research	Center,	Palo	Alto,	California.

“THREE	THINGS	HAPPEN”	Abraham.	The	basic	introduction	to	the	Gaia	hypothesis
—an	imaginative	dynamical	view	of	how	the	earth’s	complex	systems	regulate
themselves,	somewhat	sabotaged	by	its	deliberate	anthropomorphism—is	J.	E.
Lovelock,	Gaia:	A	New	Look	at	Life	on	Earth	(Oxford:	Oxford	University	Press,
1979).

RESEARCHERS	INCREASINGLY	RECOGNIZED	A	somewhat	arbitrary	selection	of
references	on	physiological	topics	(each	with	useful	citations	of	its	own):	Ary	L.
Goldberger,	Valmik	Bhargava,	and	Bruce	J.	West,	“Nonlinear	Dynamics	of	the
Heartbeat,”	Physica	17D	(1985),	pp.	207–14.	Michael	C.	Mackay	and	Leon
Glass,	“Oscillation	and	Chaos	in	Physiological	Control	Systems,”	Science	197
(1977),	p.	287.	Mitchell	Lewis	and	D.	C.	Rees,	“Fractal	Surfaces	of	Proteins,”
Science	230	(1985),	pp.	1163–65.	Ary	L.	Goldberger,	et	al.,	“Nonlinear
Dynamics	in	Heart	Failure:	Implications	of	Long-Wavelength	Cardiopulmonary
Oscillations,”	American	Heart	Journal	107	(1984),	pp.	612–15.	Teresa	Ree	Chay
and	John	Rinzel,	“Bursting,	Beating,	and	Chaos	in	an	Excitable	Membrane
Model,”	Biophysical	Journal	47	(1985),	pp.	357–66.	A	particularly	useful	and
wide-ranging	collection	of	other	such	papers	is	Chaos,	Arun	V.	Holden,	ed.
(Manchester:	Manchester	University	Press,	1986).

“A	DYNAMICAL	SYSTEM	OF	VITAL	INTEREST”	Ruelle,	“Strange	Attractors,”	p.	48.

“IT’S	TREATED	BY	PHYSICIANS”	Glass.

“WE’RE	AT	A	NEW	FRONTIER”	Goldberger.

MATHEMATICIANS	AT	THE	COURANT	INSTITUTE	Peskin;	David	M.	McQueen	and
Charles	S.	Peskin,	“Computer-Assisted	Design	of	Pivoting	Disc	Prosthetic
Mitral	Valves,”	Journal	of	Thoracic	and	Cardiovascular	Surgery	86	(1983),	pp.
126–35.



A	PATIENT	WITH	A	SEEMINGLY	HEALTHY	HEART	Cohen.

“THE	BUSINESS	OF	DETERMINING”	Winfree.

A	STRONG	SENSE	OF	GEOMETRY	Winfree	develops	his	view	of	geometric	time	in
biological	systems	in	a	provocative	and	beautiful	book,	When	Time	Breaks
Down:	The	Three-Dimensional	Dynamics	of	Electrochemical	Waves	and
Cardiac	Arrhythmias	(Princeton:	Princeton	University	Press,	1987);	a	review
article	on	the	applications	to	heart	rhythms	is	Arthur	T.	Winfree,	“Sudden
Cardiac	Death:	A	Problem	in	Topology,”	Scientific	American	248	(May	1983),
p.	144.

“I	HAD	A	HEADFUL”	Winfree.

“YOU	GO	TO	A	MOSQUITO”	Winfree.

SHE	REPORTED	FEELING	GREAT	Strogatz;	Charles	A.	Czeisler,	et	al.,	“Bright	Light
Resets	the	Human	Circadian	Pacemaker	Independent	of	the	Timing	of	the	Sleep-
Wake	Cycle,”	Science	233	(1986),	pp.

667–70.	Steven	Strogatz,	“A	Comparative	Analysis	of	Models	of	the	Human
Sleep-Wake	Cycle,”	preprint,	Harvard	University,	Cambridge,	Massachusetts.

HE	HAD	GAINED	Winfree.

“WHEN	MINES	DECIDED”	“Sudden	Cardiac	Death.”

TO	DO	SO,	HOWEVER	Ideker.

“THE	CARDIAC	EQUIVALENT”	Winfree.

IDEKER’S	IMMEDIATE	INTENTION	Ideker.

THEY	USED	TINY	AGGREGATES	Glass.

“EXOTIC	DYNAMIC	BEHAVIOR”	Michael	R.	Guevara,	Leon	Glass,	and	Alvin
Schrier,	“Phase	Locking,	Period-Doubling	Bifurcations,	and	Irregular	Dynamics
in	Periodically	Stimulated	Cardiac	Cells,”	Science	214	(1981),	p.	1350.

“MANY	DIFFERENT	RHYTHMS”	Glass.



“IT	IS	A	CLEAR	INSTANCE”	Cohen.

“PEOPLE	HAVE	MADE	THESE	WEIRD”	Glass.

“DYNAMICAL	THINGS	ARE	GENERALLY”	Winfree.

“SYSTEMS	THAT	NORMALLY	OSCILLATE”	Leon	Glass	and	Michael	C.	Mackay,
“Pathological	Conditions	Resulting	from	Instabilities	in	Physiological	Control
Systems,”	Annals	of	the	New	York	Academy	of	Sciences	316	(1979),	p.	214.

“FRACTAL	PROCESSES”	Ary	L.	Goldberger,	Valmik	Bhargava,	Bruce	J.	West,	and
Arnold	J.	Mandell,	“Some	Observations	on	the	Question:	Is	Ventricular
Fibrillation	‘Chaos,’”	preprint.

“IS	IT	POSSIBLE”	Mandell.

“WHEN	YOU	REACH	AN	EQUILIBRIUM”	Mandell.

MANDELL	OFFERED	HIS	COLLEAGUES	Arnold	J.	Mandell,	“From	Molecular
Biological	Simplification	to	More	Realistic	Central	Nervous	System	Dynamics:
An	Opinion,”	in	Psychiatry:	Psychobiological	Foundations	of	Clinical
Psychiatry	3:2,	J.	O.	Cavenar,	et	al.,	eds.	(New	York:	Lippincott,	1985).

“THE	UNDERLYING	PARADIGM	REMAINS”	Ibid.

THE	DYNAMICS	OF	SYSTEMS	Huberman.

SUCH	MODELS	SEEMED	TO	HAVE	Bernardo	A.	Huberman	and	Tad	Hogg,	“Phase
Transitions	in	Artificial	Intelligence	Systems,”	preprint,	Xerox	Palo	Alto
Research	Center,	Palo	Alto,	California,	1986.	Also,	Tad	Hogg	and	Bernardo	A.
Huberman,	“Understanding	Biological	Computation:	Reliable	Learning	and
Recognition,”	Proceedings	of	the	National	Academy	of	Sciences	81	(1984),	pp.
6871–75.

“ASTONISHING	GIFT	OF	CONCENTRATING”	Erwin	Schrödinger,	What	Is	Life?
(Cambridge:	Cambridge	University	Press,	1967),	p.	82.

“IN	PHYSICS	WE	HAVE	DEALT”	Ibid.,	p.	5.



CHAOS	AND	BEYOND

“WHEN	I	SAID	THAT?”	Ford.

“IN	A	COUPLE	OF	DAYS”	Fox.

THE	WORD	ITSELF	(Holmes)	SIAM	Review	28	(1986),	p.	107;	(Hao)	Chaos
(Singapore:	World	Scentific,	1984),	p.	i;	(Stewart)	“The	Geometry	of	Chaos,”	in
The	Unity	of	Science,	Brookhaven	Lecture	Series,	No.	209	(1984),	p.	1;	(Jensen)
“Classical	Chaos,”	American	Scientist	(April	1987);	(Crutchfield)	private
communication;	(Ford)	“Book	Reviews,”	International	Journal	of	Theoretical
Physics	25	(1986),	No.	1.

TO	HIM,	THE	OVERRIDING	MESSAGE	Hubbard.

TOO	NARROW	A	NAME	Winfree.

“IF	YOU	HAD	A	TURBULENT	RIVER”	Huberman.

“LET	US	AGAIN	LOOK”	Gaia,	p.	125.

THOUGHTFUL	PHYSICISTS	P.	W.	Atkins,	The	Second	Law	(New	York:	W.	H.
Freeman,	1984),	p.	179.	This	excellent	recent	book	is	one	of	the	few	accounts	of
the	Second	Law	to	explore	the	creative	power	of	dissipation	in	chaotic	systems.
A	highly	individual,	philosophical	view	of	the	relationships	between
thermodynamics	and	dynamical	systems	is	Ilya	Prigogine,	Order	Out	of	Chaos:
Man’s	New	Dialogue	With	Nature	(New	York:	Bantam,	1984).

GROWTH	OF	SUCH	TIPS	Langer.	The	recent	literature	on	the	dynamical	snowflake
is	voluminous.	Most	useful	are:	James	S.	Langer,	“Instabilities	and	Pattern
Formation,”	Reviews	of	Modern	Physics	(52)	1980,	pp.	1–28;	Johann	Nittmann
and	H.	Eugene	Stanley,	“Tip	Splitting	without	Interfacial	Tension	and	Dendritic
Growth	Patterns	Arising	from	Molecular	Anisotropy,	Nature	321	(1986),	pp.
663–68;	David	A.	Kessler	and	Herbert	Levine,	“Pattern	Selection	in	Fingered
Growth	Phenomena,”	to	appear	in	Advances	in	Physics.

IN	THE	BACK	OF	THEIR	MINDS	Gollub,	Langer.



ODD-SHAPED	TRAVELING	WAVES	An	interesting	example	of	this	route	to	the	study
of	pattern	formation	is	P.	C.	Hohenberg	and	M.	C.	Cross,	“An	Introduction	to
Pattern	Formation	in	Nonequilibrium	Systems,”	preprint,	AT&T	Bell
Laboratories,	Murray	Hill,	New	Jersey.

IN	ASTRONOMY,	CHAOS	EXPERTS	Wisdom;	Jack	Wisdom,	“Meteorites	May	Follow
a	Chaotic	Route	to	Earth,”	Nature	315	(1985),	pp.	731–33,	and	“Chaotic
Behavior	and	the	Origin	of	the	3/1	Kirkwood	Gap,”	Icarus	56	(1983),	pp.	51–74.

STRUCTURES	THAT	REPLICATE	THEMSELVES	As	Farmer	and	Packard	put	it:
“Adaptive	behavior	is	an	emergent	property	which	spontaneously	arises	through
the	interaction	of	simple	components.	Whether	these	components	are	neurons,
amino	acids,	ants,	or	bit	strings,	adaptation	can	only	occur	if	the	collective
behavior	of	the	whole	is	qualitatively	different	from	that	of	the	sum	of	the
individual	parts.	This	is	precisely	the	definition	of	nonlinear.”	“Evolution,
Games,	and	Learning:	Models	for	Adaptation	in	Machines	and	Nature,”
introduction	to	conference	proceedings,	Center	for	Nonlinear	Studies,	Los
Alamos	National	Laboratory,	May	1985.

“EVOLUTION	IS	CHAOS”	“What	Is	Chaos?”	p.	14.

“GOD	PLAYS	DICE”	Ford.

“THE	PROFESSION	CAN	NO	LONGER”	Structure,	p.	5.

“BOTH	EXHILARATING	AND	A	BIT	THREATENING”	William	M.	Schaffer,	“Chaos	in
Ecological	Systems:	The	Coals	That	Newcastle	Forgot,”	Trends	in	Ecological
Systems	1	(1986),	p.	63.

“WHAT	PASSES	FOR	FUNDAMENTAL”	William	M.	Schaffer	and	Mark	Kot,	“Do
Strange	Attractors	Govern	Ecological	Systems?”	Bio-Science	35	(1985),	p.	349.

SCHAFFER	IS	USING	e.g.,	William	M.	Schaffer	and	Mark	Kot,	“Nearly	One
Dimensional	Dynamics	in	an	Epidemic,”	Journal	of	Theoretical	Biology	112
(1985),	pp.	403–27.

“MORE	TO	THE	POINT”	Schaffer.

YEARS	LATER,	SCHAFFER	LIVED	Schaffer;	also	William	M.	Schaffer,	“A	Personal
Hejeira,”	unpublished.
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